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Low-Complexity Demapping Algorithm for
Two-Dimensional Non-Uniform Constellations

Manuel Fuentes, David Vargas, and David Gómez-Barquero

Abstract—Non-uniform constellations (NUC) have been re-
cently introduced in digital broadcasting systems to close the
remaining gap to the unconstrained Shannon theoretical limit.
Compared to uniform quadrature amplitude modulation (QAM)
constellations, NUCs provide a signal-to-noise ratio (SNR) gain
(i.e., a reduction in the required SNR), especially for high-order
constellations. One-dimensional NUCs (1D-NUC) have a squared
shape with non-uniform distance between the constellation sym-
bols. Since the I and Q components remain as two independent
signals, a 1D-demapper as for uniform QAM constellations
is feasible. Two-dimensional NUCs (2D-NUC) provide a better
performance than 1D-NUCs, since they are designed by relaxing
the square shape constraint, with arbitrary shape along the
complex plane. However, the main drawback of 2D-NUCs is
the higher complexity at the receiver, since a 2D-demapper is
needed. In this paper, we propose a demapping algorithm that
reduces from 69% to 93% the number of required distances
when using 2D-NUCs. The algorithm discards or replicates
those constellation symbols that provide scarce information, with
a performance degradation lower to 0.1 dB compared to the
optimal Maximum Likelihood (ML) demapper.

Index Terms—Broadcasting, Non-Uniform Constellations,
Demapping Complexity, ATSC 3.0.

I. INTRODUCTION

B IT-INTERLEAVED Coding and Modulation (BICM) is
the pragmatic approach for combining channel coding

and digital modulations in fading transmission channels [1].
The core of the BICM encoder consists of the serial con-
catenation of a forward error correcting (FEC) code, a bit
interleaver (BIL), and a mapper that allocates blocks of
bits to the constellation symbols. Nowadays, state-of-the-art
BICM broadcasting systems are currently very close to the
unconstrained Shannon theoretical limit [2].

Regarding the evaluation of the modulations, first generation
terrestrial broadcasting systems such as DVB-T (Digital Video
Broadcasting - Terrestrial) [3] or ISDB-T (Integrated Services
Digital Broadcasting) [4] support QPSK, 16QAM and 64QAM
uniform constellations. The current state-of-the-art terres-
trial broadcasting technology commercially deployed DVB-
T2 (Terrestrial 2nd Generation) [5] includes the 256QAM
modulation and supports rotated constellations (RC). With
RCs, a certain rotation angle is applied to the constellation,
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so that the binary information is transmitted simultaneously
in different in-phase (I) and quadrature (Q) components. In
order to ensure that each component undergoes independent
fading, a component interleaver is needed after the rotation [6].
The handheld evolution of DVB-T2, NGH (Next Generation
Handled), is the first broadcasting system which includes one-
dimensional non-uniform constellations (1D-NUC), for 64 and
256NUC orders [7]. The next-generation U.S. terrestrial broad-
casting standard ATSC 3.0 (Advanced Television Systems
Committee 3rd Generation) includes two-dimensional non-
uniform constellations (2D-NUC) from 16 to 256NUC, and
1D-NUCs for new high-orders such as 1024NUC (or 1kNUC)
and 4096NUC (or 4kNUC) [2].

With uniform QAM, the constellation symbols are regularly
spaced in the constellation diagram and transmitted with equal
probabilities. However, there is a gap between the BICM
capacity of uniform QAM constellations and the theoretical
Shannon limit, which increases with the modulation order.
NUCs can be used to reduce this gap and provide a better
performance, reducing the required SNR with respect to the
corresponding uniform constellation (i.e., providing a coverage
gain). Consequently, the potential gain provided by NUCs
increases with the constellation size. NUCs are designed for
a particular SNR, and for a specific channel. For strong error
correcting codes such as Low-Density Parity Codes (LDPC),
with steep bit error rate (BER) curves as a function of the
SNR, the target SNR of the NUC is easily selected for each
code according to the SNR of the waterfall region.

1D-NUCs have a squared shape with non-uniform distance
between the constellation symbols, and they are formed by
two non-uniform pulse amplitude modulation (PAM) signals
[8]. Hence, the complexity can be drastically reduced by
using a one-dimensional demapper [9]. It utilizes the mapping
feature that the original constellation symbols in the same I/Q
component belong to the same subset for a specific even or
odd bit (0 or 1). The idea is to only select the best candidate in
each component and to find the minimum Euclidean distance.

2D-NUCs are designed by relaxing the square shape con-
straint of uniform constellations, with a better performance
than 1D-NUCs but with a higher receiver complexity since
they cannot be separated into two independent I/Q com-
ponents. In addition, the constellations adopted by ATSC
3.0 retain left-right and up-down symmetry [10]. Hence, the
complete constellation can be derived by defining just the first
quarter of the complex symbols. Fig. 1 shows an example
of 2D-256NUCs designed for three different SNRs of 10, 18
and 26 dB, for i.i.d. (independent and identically distributed)
Rayleigh channel. When optimizing NUCs at high SNRs the



SUBMITTED TO THE IEEE TRANSACTIONS ON BROADCASTING 2

Quadrature (Q)

In
-P

h
a
se

(I
)

0-0.5-1 10.5-1.5

-1

-0.5

-1.5

1.5

0.5

0

1

2
2
-2

-2

1.5
Quadrature (Q)

In
-P

h
a
se

(I
)

0-0.5-1 10.5-1.5

-1

-0.5

-1.5

1.5

0.5

0

1

2
2
-2

-2

1.5
Quadrature (Q)

In
-P

h
a
se

(I
)

0-0.5-1 10.5-1.5

-1

-0.5

-1.5

1.5

0.5

0

1

2
2
-2

-2

1.5

Fig. 1. Result of 2D-256NUCs designed for CRs 5/15 (left), 9/15 (center) and 13/15 (right), optimized for SNRs of 10, 18 and 26 dB, respectively, i.i.d.
Rayleigh channel.

positions converge toward the uniform QAM values. Without
a robust FEC code, the best option is to pack the constellation
symbols as uniformly spaced as possible. At low SNRs,
NUCs collapse into lower orders of constellation [11], where
almost identical symbols are grouped in clusters. With the
condensation, the most significant bits (MSB) provide similar
robustness as the positions of low-order constellations. On the
other hand, the least significant bits (LSB) cannot be resolved
from the overlapping points, since they offer a very weak
information, close to zero [12].

Previous works in the literature outline the design and the
evaluation of potential gains of NUCs. Reference [13] noted
the capacity shortfall for uniform QAMs, and introduced the
non-uniform concept, obtaining several constellations which
offer a capacity improvement. A more recent study [11]
tackles the optimization of 1D-NUCs, in AWGN channel.
In [14], high-order 1D- and 2D-NUCs are optimized with
respect to their BICM capacity, also for AWGN channel. In
[15], high-order NUCs with constellation sizes of up to 4k-
QAM are investigated for Ultra-High Definition TV (UHDTV)
broadcasting services.

One of the bottlenecks in real receiver implementations is
the use of demappers that calculate the distances to all con-
stellation symbols. This paper proposes a generic demapping
algorithm that can be applied to any type of 2D-NUCs. As an
example of application, we provide the results for the NUC
constellations optimized for ATSC 3.0. The paper focuses on
the 256NUC constellation, which is the highest modulation
order of 2D-NUCs used in the ATSC 3.0 specification [10].
As an additional result, the approach is also extended to a
higher constellation order of 2D-1kNUC. Code rates from 2/15
to 13/15 are considered. The proposed algorithm is based on
two different strategies. The first one takes advantage of the
symmetry that constellations provide, selecting a cluster of
points to compute the LLRs. It is based on the demappers
proposed in [16] and [17] for RCs. The concept is similar to
the Sphere Demapper (SD) [18], which also selects a cluster of
points to compute the LLRs. From the received point, SD only
selects the constellation points that are inside a fixed radius.
With SD, the number of operations is significantly reduced
compared to the Maximum Likelihood (ML) demapper. On

the other hand, reference [19] also analyzes the quadrant sym-
metry of the constellations, in order to precompute the LLR
values in a look-up table and completely avoid the demapping
process. The second strategy exploits the condensation of
NUCs, especially at low SNRs where some of the constellation
symbols almost repeat the same position in the I-Q plane. A
demapper exploiting this condensation was first proposed in
[20] and analyzed in [21]. Both strategies can be combined
in order to reduce from 69% to 93% the number of required
distances, depending on the CR, with almost no performance
loss compared to the optimal ML demapper. The proposed
demapper can be combined with RCs, in order to improve the
SNR requirement for high CRs with no additional complexity.

The rest of the paper is structured as follows. Section
II describes the demapping process of 2D-NUCs and its
complexity implications. Section III proposes an algorithm
designed to reduce the demapping complexity. Section IV
presents results in terms of performance, for a complete range
of CRs. Finally, the main findings of the work are summarized
in Section V.

II. DEMAPPING COMPLEXITY AT THE RECEIVER

This analysis is limited to single-input single-output (SISO)
antenna systems. It is necessary to differentiate between two
elements when comparing complexity: the number of required
distances to calculate each LLR and the complexity for the cal-
culation of the distance itself. Hence, the metric is calculated
with a different dimensionality for 1D and 2D demapping.
From the received symbol vector y, and the channel vector h,
each log-likelihood ratio (LLR) Λl is computed for all code
bits cl, l = 1, ..., B, with B as the number of bits that affect
each dimension of a constellation. B does not refer to the
number of bits per cell (bpc). For the LLR computation, a total
number of N Euclidean distances between the received symbol
y and all constellation symbols x is calculated. A single output
Λl can be computed with the following expression:

Λl , log
p(cl = 1|y, h)

p(cl = 0|y, h)
= log

∑
x∈χ1

l

exp(− |y−hx|
2

σ2
v

)∑
x∈χ0

l

exp(− |y−hx|
2

σ2
v

)
(1)
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TABLE I
DEMAPPING COMPLEXITY OF UNIFORM QAM, 1D-NUC, 2D-NUC AND

RC, FOR DIFFERENT BITS PER CELL, IN TERMS OF MATHEMATICAL
OPERATIONS TO COMPUTE THE LLRS.

bpc 4 6 8 10 12
QAM 4 8 16 32 64
1D-NUC 4 8 16 32 64
2D-NUC 32 128 512 2048 8192
RC 32 128 512 2048 8192

where σ2
v represents the noise variance, y is the received

symbol, x is a possible transmitted symbol, h is the channel
fading coefficient, and log refers to the natural logarithm. χ1

l

and χ0
l denote the complementary sets of transmit vectors

for which cl = 1 and cl = 0 respectively. The amount of
complementary sets χ1

l and χ0
l has to be B. A Maximum

Likelihood (ML) optimal demapper has therefore to consider
2B symbols in a D-dimensional (real-valued) space. Hence,
the complexity is O

(
D · 2B

)
.

The complexity depends on the type of constellation. Uni-
form QAM constellations can be split into two PAM constel-
lations. Therefore, the demapper has to consider the half of
symbols (B = bpc

2 ) in one dimension (D = 1). In this case, the
complexity is O

(
2

bpc
2

)
. With 1D-NUCs, this one-dimensional

demapping is also possible, and the complexity is maintained,
i.e., O

(
2

bpc
2

)
. However, with 2D-NUCs the demapper has

to evaluate for all symbols (B = bpc), the distances in two
dimensions (real and imaginary parts, D = 2). The complexity
in this case is O

(
2bpc+1

)
.

The same occurs with RCs, where the binary information is
transmitted simultaneously in different I and Q components.
The demapper has to consider all symbols in two dimensions,
regardless of the constellations shape. With RCs, it is not
possible to use a 1D-demapper in any case. Therefore, the
complexity with rotated constellations is also O

(
2bpc+1

)
.

Table I shows the demapping complexity in terms of math-
ematical operations to compute the LLRs, depending on the
type of constellation and bits per cell used.

The complexity order with 2D-NUCs becomes especially
high from bpc = 8. The proposed demapping algorithm
reduces the number of distances N necessary to compute each
LLR with this type of constellations, and it is explained next.

III. PROPOSED ALGORITHM TO REDUCE THE DEMAPPING
COMPLEXITY OF 2D-NUCS

The algorithm is based on two different strategies. The
first strategy is called Quadrant Search Reduction (QSR),
and computes the LLRs discarding those distances whose
probability of being computed is significantly low. The second
strategy is called Condensed Symbols Reduction (CSR), and
omits the computation of those distances which are similar to
others already calculated, and replicates them.

A. Quadrant Search Reduction (QSR)

The first strategy discards those distances that provide scarce
information to the LLR computation. In this paper we apply
QSR for 2D-NUCs. We note that the QSR algorithm can be
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Fig. 2. Histogram of the received constellation symbols for 2D-256NUC in
i.i.d. Rayleigh channel, with code rates 2/15 (top) and 13/15 (bottom).

used with any quadrant-symmetric constellation. The algo-
rithm is divided into two main steps. The first step consists of
calculating the probability of each symbol received, when they
are transmitted from a particular quadrant of the constellation.
The probability (from 0 to 1) of receiving a particular constel-
lation symbol is calculated as the number of times the symbol
is received divided by the total number of transmitted symbols.
Then, the received symbols are organized by probability order.
A total number of 109 points is transmitted, over an i.i.d.
Rayleigh channel. This number is confirmed in [17], and
provides enough accuracy in the calculations. The rest of
quadrants can be derived by symmetry. This step can be done
off-line, storing the symbols by probability order in a look-up
table. Then, the algorithm can compute the distances to the
most probable symbols N when necessary.

Fig. 2 shows two examples of the histograms achieved for
2D-256NUC in the first stage, with CRs 2/15 and 13/15,
designed in i.i.d. Rayleigh channel for SNRs of 3 and 26 dB
respectively. Both histograms have been obtained for the first
quadrant (Q1). For a given CR, the transmission is done for the
threshold SNR that provides a bit error rate (BER) of 10−4.
As Fig. 2 shows, the probability of receiving a constellation
point from the Q1 is higher for high SNRs (bottom). On the
other hand, at low SNRs (top) and because of the high noise
level, constellation points from other quadrants (especially Q2
and Q3) are received with a higher probability.

In the second step the minimum number of distances with
significant probability, necessary to implement the algorithm,
is obtained. In order to select the final subset N , it is necessary
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Fig. 3. Probability of selecting an erroneous quadrant (pe) with 2D-256NUCs
in i.i.d. Rayleigh channel, with code rates from 2/15 to 13/15.

to observe its impact on the system performance through
a BER analysis. The smaller the number of distances N
considered, the worse the performance, but with a lower
complexity. The proposed criteria is to select the smallest
possible N that ensures a performance loss smaller than 0.1
dB.

With QSR, it is assumed that a symbol is received in the
same quadrant that was transmitted. Hence, it is necessary to
know the transmitted quadrant. The quadrant is determined
using the sign of the I/Q components of the received symbol.
We define “pe” as the probability of selecting an erroneous
quadrant. The constellation symbols that are in the edge of
each quadrant provide less reliable results, and they usually
lead to errors. The probability “pe” is higher for low CRs, with
higher levels of noise power, see Fig. 3. However, precisely
those constellations with a very high probability of obtaining
an erroneous quadrant suffer a significant condensation. The
second strategy, which is explained next, takes advantage of
this condensation and calculates only distances for symbols
that are not repeated.

B. Condensed Symbols Reduction (CSR)

When optimizing NUCs in a transmission system, it is
possible to improve the BICM capacity by modifying the
position of the QAM constellation symbols. At low CRs,
NUCs converge to lower orders of constellation. In this case,
the constellation symbols share the MSB, maximizing the
Euclidean distance and maintaining independent dimensions
for each bit, meanwhile the LSB have almost no impact in
the LLR computation. The information provided by the LSB
is close to zero and will remain so, even for very large SNRs
[12]. These constellations are so-called condensed constella-
tions, as the constellation symbols almost repeat the same
position in the I-Q plane for the most nearby Gray mapped
symbols [11]. For example, with a 2D-256NUC designed for
a CR 2/15, which can be seen in the upper part of Fig. 2, only
sixteen points are apparently visible, resembling a 16NUC.
However, there are sixteen clusters with sixteen constellation
points in almost identical positions.

CSR is based on this condensation and calculates a single
distance for a complete cluster of symbols. The rest of
distances are derived by replicating the previously calculated
ones. In order to determine which symbols are grouped
together and which not, it is necessary to define a minimum
gap between them. The higher the gap selected, the bigger
the number of symbols grouped together in a single distance
to compute, reducing the complexity but also incurring into a
higher performance degradation.

C. Quadrant Condensed Search Reduction (QCSR)
It is possible to combine both QSR and CSR. We call this

algorithm Quadrant Condensed Search Reduction (QCSR).
The algorithm consists of taking the N constellation symbols
obtained with QSR and group them together as done with
CSR. The QCSR algorithm is detailed next.

Algorithm Quadrant Condensed Search Reduction (QCSR)
Require: (y, h, σ2

v , x, CR) {y: received symbol, h: channel
coefficient, σ2

v : noise variance, x: constellation, CR: code
rate}

Ensure: Λ {LLR computed}
1: for nsymb = 1 to size(y) do
2: calculate the received quadrant Q
3: load N(Q,CR) {Number of distances to be computed,

depending on the quadrant and code rate}
4: xnew ← x(1:N ) {N most probable constellation sym-

bols}
5: for ndist = 1: size(xnew) do
6: loop that computes the non-repeated distances

dist(y, h, σ2
v , xnew)

7: end for
8: replicate the rest of distances
9: for nllr = 1 to bpc do

10: loop that computes the LLRs: Λ(dist)
11: end for
12: end for

In the proposed algorithm, y is the received symbol, h is the
channel fading coefficient, σ2

v represents the noise variance, x
is a possible transmitted symbol, and CR refers to the code
rate. Λ denotes each log-likelihood ratio (LLR) computed.

At low SNRs, the CSR algorithm is more dominant because
the optimized 2D-NUCs are condensed, which also compli-
cates the quadrant search. At high SNRs the noise impact is
lower and the constellations are not condensed, and hence the
QSR algorithm is dominant.

IV. PERFORMANCE EVALUATION

We compare first, in terms of BER performance, the results
obtained with the optimal ML and the proposed QCSR demap-
per, and provide the minimum number of N distances that
need to be calculated, for i.i.d Rayleigh channel. Afterwards,
the performance loss obtained for different channel models
is provided. In the simulations, BILs and NUCs from ATSC
3.0 were used [2], with a LDPC code length of 64800 bits
and FEC codes from 2/15 to 13/15. No time and frequency
interleavers were applied in this case.
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Fig. 4. Performance of QSR (left) and CSR (right) demappers, depending
on the number of distances N and compared with the ML demapper. Results
presented for a code rate 6/15, i.i.d. Rayleigh channel.

A. Calculation of the minimum number of distances

As an example, Fig. 4 shows the performance of the
proposed strategies QSR and CSR for 2D-256NUCs and CR
6/15, depending on the number of distances N . The selected
criterion is to compare the SNR of each option that provides a
BER of 10−4, selecting the smallest possible N that ensures a
performance loss smaller than 0.1 dB. We define NQSR, NCSR

and NQCSR as the number of distances necessary for the QSR,
CSR and QCSR demappers, respectively.

In this particular case, both strategies QSR and CSR provide
a reasonable performance degradation compared to ML, using
a number of distances NQSR = 135 and NCSR = 88. In this
SNR range (13 dB), the noise impact is significantly low,
allowing the QSR strategy to work. On the other hand, the
constellation maintains a good condensation for CR 6/15, so
the CSR strategy provides a high reduction. Moreover, both
strategies can be combined. For the symbols obtained with
QSR, only those distances that are not repeated are computed,
and the rest are replicated, as CSR does. In this case, the
reduction comes to NQCSR = 66 distances.

Fig. 5 shows the performance comparison with the selected
N for four representative CRs: a low CR 2/15, a medium CR
6/15 (recently analyzed) and two high CRs 10/15 and 13/15.
The idea is to show separately the contribution of each strategy
to the proposed algorithm, observing the impact on the system
performance.

With low CRs such as 2/15 the SNR required is very low,
and then the constellations are compressed. The compression
allows the CSR strategy to work especially well, obtaining a
reduction in the number of distances from up to NCSR = 16,
with no performance loss. However, precisely the low SNR
hampers the quadrant search. The QSR strategy often is
erroneous, and needs to calculate almost all distances, having
NQSR = 235. Therefore, in this particular case the QCSR
algorithm works also with only NQCSR = 16. Although the
quadrant search fails, the algorithm only needs to consider the
16 unique distances that are not repeated, replicating the rest
and providing the correct information to the LLR computation.

With the high CR 10/15, the CSR strategy hardly works,
as the constellations are barely condensed. With CSR, it is
necessary to use NCSR = 224 distances. Nevertheless, the
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Fig. 5. Performance comparison of ML and QCSR demappers. QSR and
CSR strategies are also shown by separate. Results presented for code rates
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i.i.d. Rayleigh channel.

low noise impact allows QSR to work better, needing just
NQSR = 90. Combining both techniques, the final reduction is
NQCSR = 77. On the other hand, the constellation optimized
for the CR 13/15 is not condensed at all, considering that
each constellation symbol is unique in the I/Q plane. Hence,
the QCSR algorithm is based only in the QSR strategy for this
case, calculating NQCSR = 80 distances.

Fig. 6 summarizes the minimum number of distances N for
the proposed algorithm, for all CRs from 2/15 to 13/15. With
CSR, the higher contribution is achieved for low CRs, where
the number of operations can be reduced up to NCSR = 16,
which represents a reduction of 93%. Regarding the contribu-
tion of QSR, it can be seen that the curve is directly related
with the probability of selecting an erroneous quadrant, pe,
shown in Fig. 3. However, the performance of QSR becomes
better for high CRs, especially from 8/15 to 13/15. When
combining the two strategies into one single algorithm, it
becomes especially effective for medium CRs, where both
advantages can be taken into account.

Fig. 7 shows the final reduced constellations used with
QCSR when the first quadrant is transmitted, for the repre-
sentative CRs analyzed: 2/15, 6/15, 10/15 and 13/15. In a
real receiver, the complexity reduction is determined by the
maximum number of distances N to be computed. With the
combined QCSR demapper, the maximum value was obtained
for the CR 13/15, with NQCSR = 80, which implies a reduction
in the number of required operations of 69%.
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B. Performance Loss with Different Channel Models

This section provides the performance loss of QCSR for
different channel models for which the algorithm has not been
optimized, under ideal and realistic channel estimation condi-
tions. Table II shows the performance loss obtained with white
Gaussian noise (AWGN), F1 Ricean-fading and P1 Rayleigh-
fading channel models, which are defined in [22], compared to
the results obtained in the analysis for i.i.d. Rayleigh channel
model, under ideal channel estimation conditions. The F1

channel is used to describe the fixed outdoor rooftop-antenna
reception conditions, and the P1 channel is used to describe
the portable indoor or outdoor reception conditions.

With AWGN, the performance loss remains under 0.1 dB
for all considered CRs. The SNR required is lower than

TABLE II
PERFORMANCE LOSS OF QCSR UNDER IDEAL CHANNEL ESTIMATION

CONDITIONS

Code Rate
Channel Parameter (dB) 2/15 6/15 10/15 13/15

iid Rayleigh ML: SNR 3.2 13 19.9 26.5
QCSR: Loss < 0.1 < 0.1 < 0.1 < 0.1

AWGN ML: SNR 1.8 10.6 17.1 22.2
QCSR: Loss < 0.1 < 0.1 < 0.1 < 0.1

F1
ML: SNR 2.7 11.3 18 23.2

QCSR: Loss < 0.1 < 0.1 < 0.1 < 0.1

P1
ML: SNR 4.6 13.6 21.3 28.7

QCSR: Loss < 0.1 0.2 0.2 0.2

TABLE III
PERFORMANCE LOSS OF QCSR UNDER REALISTIC CHANNEL

ESTIMATION CONDITIONS

Code Rate
Channel Parameter (dB) 2/15 6/15 10/15 13/15

F1
ML: SNR 3.7 12.2 18.8 24

QCSR: Loss < 0.1 < 0.1 < 0.1 < 0.1

P1
ML: SNR 5.6 14.2 22 29.1

QCSR: Loss < 0.1 0.2 0.2 0.3

the obtained for i.i.d. Rayleigh channel, allowing the QCSR
algorithm to work better. The F1 channel model with fixed
reception, and therefore with a direct path (line-of-sight ray)
also permits lower SNRs than the i.i.d. Rayleigh channel.
For this reason, the performance loss of QCSR also remains
under 0.1 dB. However, the same does not occur with the
P1 portable channel. Having a less selective channel implies
higher SNRs. Higher noise levels entail a worse result of the
QCSR algorithm. In this case, the performance loss is up to
0.2 dB with high CRs.

Table III shows the performance loss of QCSR obtained un-
der realistic channel estimation conditions. With real channel
estimation, the channel fading h received is different from the
transmitted one. In order to obtain h, a linear frequency and
time interpolation from the pilot pattern (PP) is done. In the
case of study, PP7 and PP4 from DVB-T2 are used for the F1

and P1 channel models, respectively [22].
The higher performance loss of QCSR is obtained for the

P1 channel model, with 0.3 dB of difference in relation
to the optimum ML demapper for the CR 13/15. These
results confirm the robustness of the QCSR algorithm. QCSR
requires, for all studied cases, SNRs nearby to the optimum
ML demapper, feasible for its implementation in real receivers
where the obtained performance loss is almost negligible.

C. QCSR with Non-Uniform Rotated Constellations

In this section, we show an example of application of
the QCSR algorithm to non-uniform rotated constellations
(NURC). First, we consider the (non-rotated) NUCs adopted
in ATSC 3.0 and optimize the rotation angle, from QPSK to
256QAM. Selected angles are those that provide the maximum
BICM capacity for the i.i.d. Rayleigh channel model. After-
wards, we analyze the SNR performance of the 2D-256NURCs
with the proposed QCSR demapper, and compare it with the
optimum ML demapper.
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TABLE IV
OPTIMUM ROTATION ANGLES (◦) FOR 2D-NURCS WITH A MINIMUM

ROTATION GAIN OF 0.1 DB, FOR I.I.D RAYLEIGH CHANNEL.

Code Rate 8/15 9/15 10/15 11/15 12/15 13/15
QPSK 23.6 25.5 26.4 27.1 27.4 27.6

16NURC − − 14.3 15.5 18.1 19.3
64NURC − − − − 2.5 12.1

256NURC − − − − − 2.8
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Fig. 8. Rotation SNR gain (dB) of 2D-NURCs, for i.i.d Rayleigh channel

Uniform QAM constellations use fixed rotation angles for
each order of constellation. However, NUCs have different
shape depending on the coding rate (or SNR) for which they
are optimized. Hence, a different shape implies a different
optimum rotation angle. Table IV shows the resulting rotation
angles, for the orders of constellation (QPSK to 256QAM)
and CRs (8/15 to 13/15) with potential SNR rotation gain.
Those configurations with a SNR rotation gain under 0.1 dB
are marked with a dash. In the Table IV it can be noted that the
optimum rotation angle is higher for low-order constellations
and high CRs. The same occurs for SNR gains, see Fig. 8.

The additional diversity introduced by RCs improves the
performance of BICM for higher CRs, whereas for lower CRs
it is preferable to rely on the error-correction capabilities of
the FEC code [6]. With 2D-256NURCs, there is only gain
with the two highest CRs (12/15 and 13/15). For CR 12/15,
the optimum rotation angle obtained is 1◦, but with a slight
SNR gain of 0.03 dB. For 13/15, the SNR gain obtained is
0.2 dB. The gain of RCs can be higher with more restrictive
channels with erasures.

Regarding the demapping complexity, there is no increase
when rotating 2D-NUCs. The QCSR demapper can be used
in order to reduce the complexity in a similar way than
in previous sections. The rotation does not influence the
condensation, so this part of the algorithm remains identical.
Only a slight change in the first stage of QSR is required,
since it is necessary to reorganize the new N rotated symbols
by probability order, i.e., to obtain new histograms.

Fig. 9 shows the BER performance of the QCSR demapper
with and without rotation, compared with the optimum ML
demapper, for CRs 12/15 and 13/15. For CR 12/15, the
SNR performance of QCSR is very similar with and without
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Fig. 9. Performance comparison of ML and QCSR demappers, with and
without rotation. Results presented for 256QAM and code rates 12/15 (left)
and 13/15 (right), i.i.d. Rayleigh channel.

TABLE V
NUMBER OF DISTANCES AND COMPLEXITY REDUCTION OF QCSR WITH

2D-1KNUCS COMPARED TO THE ML DEMAPPER

Code Rate 2/15 6/15 8/15 10/15 13/15
NQSR 840 420 380 345 290
NCSR 16 336 416 704 896
NQCSR 16 102 136 224 252
Reduction 98% 90% 86% 78% 75%

Gain (dB) compared to 1D < 0 < 0 0 0.12 0.15

rotation. However, the same does not occur with 13/15, where
the SNR gain of the QCSR rotated demapper is also 0.2 dB (as
the rotated ML), and the number of distances is maintained,
with N = 80. Furthermore, compared to the non-rotated ML
demapper, the QCSR rotated demapper has a 0.1 dB gain, and
a complexity reduction of 69%.

D. QCSR with 2D-1kNUC

In this section, we extend the QCSR algorithm to 2D-
1kNUCs, for the CRs in which there is a potential SNR
gain compared to 1D-1kNUCs. Table V shows the number
of distances calculated with the QCSR demapper for 2D-
1kNUCs (NQCSR) and the reduction percentage. The number
of distances is obtained for different representative CRs:
the lowest 2/15, the highest 13/15 and three medium CRs
6/15, 8/15 and 10/15, and the proposed criteria is again to
select the smallest possible N that ensures a performance
loss smaller than 0.1 dB. With 2D-1kNUCs, the number of
required distances can be reduced from 75% to 98%, with a
higher reduction than 256NUCs. In this case, the constellations
remain condensed even for the highest CR. As occurred for
256NUCs, the maximum number of distances is obtained for
the CR 13/15, with NQCSR = 252. The number of Euclidean
distances is always under 256, lower than 2D-256NUCs with
optimum demapping.

Despite of the QCSR performance loss of 0.1 dB, there
is a SNR gain for several CRs compared to 1D-NUCs with
optimum demapping. Table V shows the SNR gain of QCSR
and 2D compared to the optimum 1D-demapper, where “<0”
means a SNR loss. Fig. 10 depicts an example of the BER
performance obtained with CRs 6/15 and 10/15. With 10/15,
the SNR gain of QCSR can be easily observed. However, with
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6/15 it is better to keep 1D-NUCs instead, since the SNR
required with the 1D-demapper is lower than the obtained with
QCSR and 2D-NUCs, and also the complexity.

V. CONCLUSION

In this paper, a suboptimal demapper for 2D-NUCs has
been proposed to reduce the demapping complexity in terms
of distances required for the LLR computation. The proposed
demapper is based on the combination of two strategies to
take advantage of the symmetry of the constellations and the
condensation, i.e., similar I/Q values of several constellation
symbols, of NUCs at low SNRs. The results show that a reduc-
tion in the number of required operations from 69% to 93%
can be achieved, depending on the code rate, when compared
to the optimal Maximum Likelihood (ML) demapper, with
almost no performance degradation (under 0.1 dB).
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[14] J. Zöllner and N. Loghin, Optimization of High-order Non-uniform
QAM Constellations, IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), London, UK, June
2013.

[15] B. Mouhouche, D. Ansorregui, and A. Mourad, High Order Non-
Uniform Constellations for broadcasting UHDTV, IEEE Wireless Com-
munications and Networking Conference, Istambul, Turkey, April 2014.

[16] D. Perez-Calderon, V. Baena-Lecuyer, A. C. Oria, P. Lopez, and
J. G. Doblado, Rotated constellation demapper for DVB-T2, IEEE
Electronic Letters, vol. 47, pp. 31-32, Jan. 2011.

[17] D. Perez-Calderon, V. Baena-Lecuyer, A. C. Oria, P. Lopez, and
J. G. Doblado, Simplified Rotated Constellation Demapper for Second
Generation Terrestrial Digital Video Broadcasting, IEEE Trans. Broad-
cast., vol. 59, no. 1, pp. 160-167, March 2013.

[18] B. Hassibi and H. Vikalo, On the sphere-decoding algorithm I. Expected
complexity, IEEE Tans. Signal Processing, vol. 53, no. 8, pp. 2806-2818,
Aug. 2005.

[19] J. Stott, Beyond NUQAM & ConQAM - overcoming their limitations,
especially at lower SNRs, DVB document TM-T0007.

[20] J. Stott, BICM limits for Condensed QAM, Further results, DVB
document TM-MIMO0023.

[21] S. Kwon, et al., Simplified Non-uniform Constellation Demapping
Scheme for the Next Broadcasting System, IEEE International Sympo-
sium on Broadband Multimedia Systems and Broadcasting (BMSB),
Ghent, Belgium, June 2015.

[22] ETSI TS 102 831 V1.2.1, Digital Video Broadcasting (DVB); Implemen-
tation guidelines for a second generation digital terrestrial television
broadcasting system (DVB-T2), Aug. 2012.

Manuel Fuentes received his M.Sc. degree in
telecommunication engineering and a second M.Sc.
degree in communication technologies, systems and
networks from the Universitat Politecnica de Valen-
cia, Spain, in 2012 and 2013, respectively. Currently,
he is pursuing a Ph.D. degree in telecommunications
at the Institute of Telecommunications and Multi-
media Applications (iTEAM), where he is working
since 2012. He participated in several R&D projects
where his research interests were focused on protec-
tion ratio measurements and network planning activ-

ities between digital broadcasting and 4G (LTE) technologies. He is a current
member of the DVB European forum and the ATSC forum, contributing to
the ATSC 3.0 standardization process. His current research interests include
innovative techniques in bit-interleaved coding and modulation systems, such
as non-uniform constellations or signal space diversity techniques, and multi-
antenna communications.

David Vargas received his M.Sc. degree in Telecom-
munication engineering from Universitat Politecnica
de Valencia (UPV), Spain in 2009. During his stud-
ies he spent one year at the University of Turku
(UTU), Finland. Currently he is pursuing a Ph.D.
degree at the Mobile Communications Group at
the Institute of Telecommunications and Multimedia
Applications (iTEAM), UPV. He has been a guest
researcher in the summer of 2011 at the Vienna
University of Technology, Austria, during 2013 at
McGill University, Montreal, Canada, and a research

intern in 2015 at BBC Research & Development, London, UK. He has
participated in the standardization process of the next generation mobile
broadcasting standard DVB-NGH and is currently an active participant in the
standardization process of the next-generation terrestrial broadcasting standard
ATSC 3.0. His research interests include multi-antenna communications,
signal processing for communications, and digital broadcasting.



SUBMITTED TO THE IEEE TRANSACTIONS ON BROADCASTING 9
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