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Abstract 

This paper describes a novel and sensitive method for extraction, preconcentration and 

determination of two important widely used fungicides, azoxystrobin and chlorothalonil. The developed 

methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with 

gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) 

with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such 

as the eluent volume, sample flow rate and salt addition were optimized. Under the optimal conditions, 

the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent 

reusability (>120 re-uses). The proposed method allowed the detection of 0.05 g L-1 of the fungicides 

and gave satisfactory recoveries (75-95%) when it was applied to drinking and environmental water 

samples (river, well, tap, irrigation, spring and sea waters).  

 

Keywords: azoxystrobin; chlorothalonil; gold nanoparticles; polymer-based material; solid-phase 

extraction; HPLC-DAD. 

 

Introduction 

Azoxystrobin (AZO, methyl (2E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-

methoxyacrylate) and chlorothalonil (CLT, 2,4,5,6-tetrachloroisophthalonitrile) (Fig. 1) are broad 

spectrum pesticides used as fungicides in a great variety of crops diseases. AZO is a systemic fungicide 

from the strobilurin chemical family, with eradicant, protectant and traslaminar properties. It acts 

inhibiting mitochondrial respiration, spore germination and mycelial growth, and shows antisporulant 

activity [1]. However, AZO has low toxicity for birds, mammals, bees and other non-target terrestrial 

organisms (arthropods and earthworms) [2]. CLT is a contact fungicide from the chloronitrile group, 

which has some activity as a bactericide, microbiocide, algaecide, insecticide, and acaricide, and prevents 

spore germination and zoospore motility [1]. It also presents activity against a number of turf diseases, 

with potential to deactivate several fungal enzymes at different points. It occupies the third position 

among the most widely used fungicide in the USA [3]. CLT irritates eyes and skin and it has been 

classified as probable human carcinogen by the US Environmental Agency (EPA) [4]. 
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polymeric structures, being AuNPs one of the most studied [20, 21]. Their large surface-to-volume ratio, 

stability, biological compatibility and unique optical and molecular-recognition properties have favored 

its widespread application [22]. Among the implemented strategies, the most commonly approach used is 

the functionalization of the porous surface of these polymers with thiol or amine groups followed by the 

covalent attachment of the AuNPs due to the strong affinity of gold for these groups [21, 23-25]. 

 Most of the applications related to pesticides determination involving AuNPs are supported on 

electrochemical sensors, often based on molecularly imprinted polymers containing this nanomaterial 

[26-29]. Despite the potential of AuNPs, its combination with organic polymers to perform as 

preconcentrating supports of pesticides has been scarcely studied [24, 30]. Thus, a GMA-co-ethylene 

dimethacrylate (EDMA) monolith or its powder has been functionalized with AuNPs for surface-

enhanced Raman scattering (SERS) determination of phosmet and disulfoton [24, 30]. Also a methoxy-

mercapto-poly(ethylene glycol) polymer [31] has been used to conjugate several Au shapes, including 

these NPs for SERS enhancement. Recently, Vergara et al. [25] have proposed a powdered GMA-co-

EDMA based polymer modified with AuNPs for SPE of proteins. This SPE procedure allowed the 

extraction and purification of these biomacromolecules since its preconcentration was not required.  

The aim of the present work is to study the retention behavior of this sorbent against small 

molecules (pesticides) and their application to environmental matrices, whose low concentrations makes 

preconcentration mandatory. Thereby, a SPEcombined with HPLC/DAD method is proposed for the 

determination of AZO and CLT in natural water samples. Both fungicides have been selected because, as 

commented above, they are formulated together in several preparations and, moreover, both contain a 

cyano group in their chemical structure, which has good affinity for gold surfaces. The influence of 

different experimental parameters on the extraction efficiency and preconcentration was optimized. In 

addition, the applicability of the proposed method was demostrated by the simultaneous determination of 

both fungicides in some drinking and environmental waters. This work represents the first application of 

methacrylate materials modified with AuNPs as SPE sorbents for the extraction and preconcentration of 

fungicides from water samples prior to HPLC-DAD analysis.   

  

Material and methods 

Chemicals and reagents 

 Chlorothalonil (CLO) (99.3%), azoxystrobin (AZO) (99.4%), glycidyl methacrylate (GMA), 

ethylene dimethacrylate (EDMA) and trisodium citrate were purchased from Sigma-Aldrich (Steinheim, 

Germany, http://www.sigmaaldrich.com). Azobisisobutyronitrile (AIBN) was from Fluka (Buchs, 

Switzerland, http://www.sigmaaldrich.com). HPLC gradient grade acetonitrile (ACN) and methanol 

(MeOH) were from Merck (Darmstadt, Germany, http://www.merck.com). AuNP suspension (particle 

size, 20 nm, stabilized with sodium citrate, 6.541011 particles per mL, 1.0910-9 M), cyclohexanol and 1-

dodecanol were from Alfa Aesar (Landcashire, United Kingdom, http://www.alfa.com). Ethanol and 

ammonia were from Scharlab (Barcelona, Spain, http://www.scharlab.com). A ultra-pure water system 

Puranity TU 6 from VWR (Germany, http://www.vwr.com) was used for water purification. 
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 Stock solutions of CLT and AZO (500 mg L-1) were prepared by dissolving appropriate amounts 

of each pesticide in ACN, and working standard solutions were obtained by dilution of the stock solutions 

with deionized water. 

 

Instrumentation 

 

Chromatographic analysis was carried out in an HPLC equipment from Jasco Analytica (Madrid, 

Spain, http://www.jasco-europe.com), composed of a PU-2089 quaternary gradient pump, an AS-2055 

autosampler with a 100 µL injection loop and a MD-2018 photodiode array detector. The system was 

controlled using the LC-NETII/AFC interface also supplied by Jasco. Acquisition and data treatment was 

performed using the ChromNAV software (version 1.17.01).  

 

Preparation and modification of GMA-based material 

 

 The preparation of GMA-co-EDMA polymeric material was based in a previous work [25]. 

Briefly, a polymerization mixture was prepared in a 10 mL glass vial by weighting GMA (20 wt%), 

EDMA (5 wt%), cyclohexanol (70 wt%) and 1-dodecanol (5 wt%). AIBN (1 wt% with respect to the 

monomers) was added as thermal initiator. This mixture was sonicated for 5 min and then purged with 

nitrogen to remove oxygen for 10 min. The polymerization was carried out in an oven at 60ºC for 24 h. 

Next, the polymeric material was washed with ethanol to remove the porogenic solvents and possible 

unreacted monomers. Then, the monolithic bulk material was ground with a mortar and sieved with a 

steel sieve with sizes between 125 and 200 µm. In order to functionalize the powdered material, it was 

treated with aqueous 4.5 M ammonia in a round bottomed-flask at 60ºC (water bath) for 2 h under 

continuous stirring. After completion of the reaction, the material was washed with ultra-pure water to 

remove the excess of ammonia until the pH of eluate was neutral.   

 

Functionalization of amino-modified GMA-co-EDMA material with AuNPs 

 

 The amino-modified powder material (ca. 800 mg) was mixed with AuNPs solution (ca. 70 mL) 

and then the mixture was allowed to react under stirring for 20 h. A pink coloured GMA-co-EDMA 

powder (resulting from the attachment of AuNPs) was obtained. Then, the material was washed with 38.8 

mM sodium citrate solution at pH 6.6 in order to remove the non-attached AuNPs onto the amino-

modified material. The AuNP-modified material was characterized by SEM (see Electronic 

Supplementary Material, Fig. S1) and its Au content (0.5 wt%) was also established by colorimetric 

method [25].  

 

SPE protocol and water samples 

 

 The SPE cartridges were prepared as follows. 200 mg of AuNP-modified polymer were packed 

between two frits (1/16’, 20 µm, Análisis Vínicos, Tomelloso, Spain, http://www.analisisvinicos.com) 
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into a 3 mL empty propylene disposable SPE cartridge (Análisis Vínicos). Activation of the sorbent was 

done with ACN (1.5 mL) and water (1.5 mL). Then, an appropriate volume (12.5 mL) of fungicide 

standard solution was loaded on the SPE material at a flow rate of 0.35 mL min-1. The retained analytes 

were eluted with an optimal volume (3 × 0.3 mL) of ACN and the extract was properly diluted with 

deionized water and was injected into HPLC system. The same procedure was applied to prepare a blank 

sorbent constituted by the GMA-co-EDMA polymer (200 mg). 

 Six water samples from different origins were selected for validating the optimized method. 

These included river, well, tap, irrigation, spring and sea waters. All the samples were taken from 

Valencia (Spain). They were collected in amber glass bottles and stored in the dark at 4ºC until analysis, 

performed before 48 h. In order to remove sand and other suspected solid matters, samples were filtered 

over a 0.45 m nylon membrane filters (Phenomenex, Torrance, CA, USA, 

http://www.phenomenex.com/). 

 Water samples were subjected to the process described above directly and after spiking with both 

pesticides at two fortification levels: 0.8 and 3.2 g L-1 for CLO and 1.7 and 6.6 g L-1 for AZO (values 

about 5 and 20 times higher than the limit of quantification (LOQ) of each pesticide when 12.5 mL of 

sample were processed). Three replicates of each concentration level were prepared. 

 

HPLC procedure 

 

 HPLC separation was performed with a Kinetex C18 100 x 4.6 mm (2.6 m particle size) core-

shell column from Phenomenex, in conjunction with a security guard UHPLC C18 column from Jasco 

Analytica. A mobile phase containing a mixture of ACN and water (55:45, v/v) was used, and the flow 

rate was set at 1 mL min-1. An aliquot (100 L) of the standard or sample solutions was injected into the 

HPLC system. The UV spectra were recorded between 200 and 400 nm, and quantification was 

performed at 232 and 203 nm for CLO and AZO, respectively.  

 

 

Results and discussion 

 

Optimization of SPE procedure 

 

 In order to achieve an appropriate extraction performance of the AuNP-modified material as SPE 

sorbent for preconcentrating CLT and AZO, several experimental parameters including type and volume 

of extraction solvent, extraction flow rate, sample volume and ionic strength were studied. The 

optimization of the SPE was performed using standard solutions of both fungicides. All presented results 

were obtained from the mean value of three replicates. 

 In order to establish the effectivity of each step in the SPE procedure, a preliminary study was 

done by collecting the fractions from the loading step (5 mL of a standard solution containing 100 g L-1 

of each fungicide), the washing step (1 mL of water) and the elution step (2.8 mL of ACN). These 
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Regarding to the mechanism of interaction between the selected fungicides and the sorbent 

material, it could be explained by taking into account the affinity of cyano group by noble metal 

nanoparticle surfaces. Thus, the adsorption of aromatic nitriles on a metal surface can be made through 

three coordinating sites, namely the nitrogen lone pairs, the CN  system and the  system of the benzene 

ring. In organometallic chemistry, nitriles are generally known to have a -type coordination to metal 

atoms via the nitrogen lone-pair electrons. In fact, SERS studies on several aromatic nitriles having both 

conjugated and unconjugated CN  systems have shown that adsorption via this CN  system has a 

significant influence on the binding mechanism for most aromatic nitriles on Au and Ag [33].  

 

Analytical performance of the method  

 

 The optimized SPE procedure was validated with respect to linearity, inter- and intra-day 

precision, limits of detection (LOD) and quantification (LOQ). Calibration curves were prepared at six 

levels and each calibration level was injected twice. Next, linear calibration plots were obtained by 

representing analyte peak area versus standard concentration (µg L-1). External calibration curves were 

employed since the slopes of calibration curves based on standard solutions and those obtained with 

spiked sample solutions tested did not differ significantly. The linear dynamic ranges and correlation 

coefficients are given in Table 1. 

The precision of the SPEcombined with HPLC method was evaluated by studying the intra- and 

inter-day reproducibilities of extractions of 12.5 mL of spiked water samples at two concentration levels. 

The intra-day precision was determined by analyzing six replicates within a given day, whereas the inter-

day precision was estimated by analyzing four series of three independent experiments carried out on four 

different days (see Table 1). The method showed a good precision with relative standard deviation (RSD) 

values below 7%. The limit of detection (LOD) of each pesticide was calculated as 3 times the standard 

deviation of the peak area, s, divided by the slope of the calibration curve [34]. The values of s were 

obtained by processing, with the SPE developed method, six aqueous solutions containing known low 

concentrations of the pesticides that fulfill the signal-to-noise ratio of 3. Limit of Quantification (LOQ) 

was obtained as 3.3 times the LOD values. The LOD obtained for CLT (0.05 g L-1) was below the 

maximum residue limit imposed by current regulations (0.1 g L-1 for individual pesticides in drinking 

water) [35]. In the case of AZO, a volume of 25 mL was processed to obtain the same LOD, and it could 

be performed without losses due to its higher breakthrough volume. The resulting LODs were lower or 

similar than the ones reported in literature for the simultaneous determination of both pesticides (see 

Section Comparison with other methods). 

 The stability and potential regeneration of the SPE sorbent were also investigated. The column 

can be easily reused after regeneration with 1.0 mL of deionized water and 1.0 mL of ACN, respectively, 

and is stable for up to 120 adsorption-elution cycles without significant decrease in the recoveries for both 

fungicides. 
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Table 1 Analytical figures of merit of the proposed SPE combined with HPLC/UV method 

Pest. 

Calibration 
Intra-day precisiona, 

% 

Inter-day precisiona, 

% LOD 

g L-1 

LOQ 

g L-1 Range 

g L-1 

Correlation 

coefficient 

Low 

levelb 

High 

levelc 

Low 

levelb 

High 

levelc 

AZO 2.8-15000 0.9996 2.2 3.5 4.8 3.0 0.05d 0.17d 

CLT 1.7-10000 0.9993 7.3 5.0 6.8 6.4 0.05 0.17 

a. Relative standard deviation (RSD, %)  
b. Ultra-pure water spiked with 1 and 2 g L-1 of CLT and AZO, respectively 
c. Ultra-pure water spiked with 7 and 14 g L-1 of CLT and AZO, respectively 
d. Processing volume, 25 mL 

 

Application to real water samples 

 The applicability of the proposed SPE method was tested by the determination of both fungicides 

in six complex water samples, namely river, well, tap, irrigation, spring and sea waters. None of the 

studied fungicides was detected in the original samples. Then, the standard solutions of both fungicides 

were added to all of the original samples in order to evaluate the validity of the presented method. Fig. 5 

shows a representative example of river water sample unspiked (traces a and c) and spiked at a 

concentration level of 1.7 and 0.8 µg L-1 of AZO and CLT, respectively (traces b and d). As shown in 

Table 2, recoveries between 75 and 95% were found with RSDs smaller than 14%. These results are good 

taking in account that the acceptable range for recoveries in water samples is usually set between 7 0% 

and 110%, with a maximum permitted RSD of 20% [36]. 
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Table 2 Analytical performance of the SPE combined with HPLC/UV method for real water samples 

(n=3) 

Sample 
(pH) 
(La, S/cm) 

Analytes Spiked level 
g L-1 

Recovery, % 
(RSD,%) 

Tap water 
(7.7) 
(397) 

AZO 1.7 
6.6 

84 (6) 
89 (5) 

CLT 0.8 
3.2 

88 (5) 
80 (1) 

Well water 
(7.6) 
(1754) 

AZO 1.7 
6.6 

95 (4) 
86 (4) 

CLT 0.8 
3.2 

91 (6) 
78 (3) 

Spring water 
(7.8) 
(482) 

AZO 1.7 
6.6 

82 (3) 
86 (5) 

CLT 0.8 
3.2 

77 (2) 
76 (3) 

River water 
(8.3) 
(981) 

AZO 1.7 
6.6 

75 (5) 
87 (3) 

CLT 0.8 
3.2 

81 (4) 
78 (3) 

Irrigation water 
(8.2) 
(813) 

AZO 1.7 
6.6 

78 (4) 
80 (3) 

CLT 0.8 
3.2 

77 (7) 
82 (3) 

Sea water 
(8.1) 
(54100) 

AZO 1.7 
6.6 

87 (11) 
85 (3) 

CLT 0.8 
3.2 

85 (14) 
78 (3) 

a L: conductivity 
 

 

Comparison with other methods  

The developed method was compared with a variety of previous reported methods for the 

simultaneous determination of both fungicides. The distinct features of these multirresidual analytical 

methods are summarized in Table 3. As can be seen, some works for certain food matrices showed low 

recoveries for CLT (< 70%) [6, 8-10, 12]. However, the mean recovery values assayed in this work are in 

the same order of magnitude than those found in previous works for most water and food samples 

considered [7, 11, 13, 14]. Concerning to the LODs, our values were better or of the same order that those 

reported using either SPE with conventional cartridges [1, 6] or liquid-liquid extraction [13]. However, 

the LODs achieved in this work were comparable to the ones obtained by Yang et al. [14]. Moreover, the 

proposed SPE protocol can be accomplished in short time and presents a very large reusability (see data 

above), which undoubtedly improves their availability for its application to extract these fungicides in 

different sample matrices. 
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Table 3 Comparison of the proposed SPE combined with HPLC/UV with other reported methods for the 

simultaneous determination of AZO and CLT 

Method Matrix LOD Recovery, % Ref. 
AZO CLT AZO CLT 

SPE-GC/MS Water 0.1 mg L-1 0.3 mg L-1 - - [1] 

SPE-GC/MS Malt beverages 5 g L-1 10 g L-1 92-94 34-42 [6] 

SPE-GC/MS or LP-GC/MS/MS Vegetables 0.2-18.8 g kg-1 0.1-1.6 g kg-1 95-108 88-97 [7] 

dSPE-GC/MS Food - - 84-107 21-51 [8] 

SFE-GC/MS Spinach - - 92 20 [9] 

dSPE-GC-MS/MS Cereals and dry 
animal Feed 

0.007 mg kg-1 0.01 mg kg-1 101-130 

 

68-94 [10] 

SLE/LTP-GC/ECD Strawberry 0.013 mg kg-1 0.008 mg kg-1 91-102 88-111 [11] 

QuEChERS-GC/ECD/NPD Peppermint [LOQ: 0.01 mg kg-1] [LOQ: 0.021 mg kg-1] 84-99 2-106 [12] 

LLE-GC/ECD Peppers 4 g L-1 1 g L-1 93-97 91-104 [13] 

VAM-IL-DLLME-HPLC/UV Water 0.04 g L-1 0.04 g L-1 89-96 79-85 [14] 

SPE-HPLC/UV Water 0.05 g L-1 0.05 g L-1 75-95 76-91 This 
work 

LLE: Liquid-liquid extraction; SFE: Supercritical fluid extraction; SLE/LTP: Solid-liquid 
extraction with low-temperature partitioning; LP: Low pressure; ECD: electron capture 

detector; NPD: nitrogen–phosphorus detector. VAM-IL-DLLME: Vortex-assisted magnetic -
cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction 

 

Conclusions 

 This paper describes a simple, sensitive, selective and reliable SPE procedure for the 

simultaneous determination of the fungicides AZO and CLT in water samples using a methacrylate 

polymer modified with AuNPs as sorbent prior to HPLC analysis. The proposed method has 

demonstrated to provide high recovery values (average recovery values > 75%), wide linear ranges and 

low detection limits (0.05 g L-1) for these analytes, being these values below the limit of detection 

imposed by current regulations for these compounds in water samples. The advantages of the present SPE 

method are its simplicity, environmentally sustainability (low consumption of solvents), high selectivity 

and reusability (more than 120 uses without losses in recoveries). Additionally, the results demonstrated 

that the tested sorbent exhibits notable merits for trapping fungicides like CLT and AZO or even to 

concentrate other environmental pollutants (containing amino, cyano or thiol groups in their structure) in 

water samples or other matrices, which constitutes an attractive perspective for ultra-trace analysis.  
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