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Abstract 

ABSTRACT 

New tendencies in the development of innovative food packages could affect 
product microbial stability during storage. In this sense, antifungal systems such 

as emulsions, nanoemulsions and mesoporous silica supports, may be promising 
alternatives to preserve the product quality without having to apply further 

thermal treatments.  
The formulation of stable antifungal systems and the optimisation of the 

methodology to be employed to prepare these systems play an important role in: 
i) their antifungal effectiveness; ii) bioactive compounds losses during their

preparation; and iii) their impact on the food product’s sensory profile.
Nanoemulsions prepared with essential oils generally presented higher 

antifungal effect than free essential oils applied at the same concentrations. 
Furthermore, the emulsifier played a key role in the resulting antifungal activity. 

Whey protein isolated-based nanoemulsions were more effective in inhibiting 
mycelial mould growth and spore germination than Tween 80-based ones. 

The great in vitro effectiveness of nanoemulsions to control mould 
development allowed to check their application to food products, and strawberry 
jam was selected as the food matrix. To this end, clove and cinnamon leaf 

emulsions were incorporated into strawberry jams to control fungal decay. 
Although these emulsions were able to reduce jam spoilage, their incorporation 

negatively affected the aroma, taste and the overall acceptance of the jam.  
Regarding the methodology employed to prepare oil-in-water emulsions, the 

magnetic stirring and high pressure homogenisation combination was the most 
effective to reduce essential oil losses. Moreover, stable cinnamon bark-xanthan 

gum emulsions with good in vitro antifungal properties against the target fungi 
were obtained. Despite the promising use of cinnamon bark emulsions to control 

fungi decay in strawberry jam, their incorporation negatively affected the 
product’s aroma, taste and overall acceptance.  

Given the strong impact of essential oils on the food product’s sensory profile, 
two new approaches were investigated: i) combinations of different antifungal 
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compounds in emulsions; and ii) immobilisation of bioactive compounds on 
mesoporous silica surfaces. The cinnamon bark essential oil, zinc gluconate and 

trans-ferulic acid combination allowed the obtention of a product considered 
microbiologically acceptable and with good organoleptic characteristics. However, 

total mould inhibition was not achieved. Consequently, the antifungal and sensory 
properties of the bioactive agents (eugenol and thymol) immobilised on 

mesoporous silica surfaces were studied. The preparation of jams with eugenol 
immobilised on MCM-41 microparticles induced better control of the fungal 

inhibition compared with the samples functionalised with thymol. The sensory 
analysis of the jams after incorporating the solids revealed that eugenol and 

thymol immobilisation cushioned the impact of these compounds on the jam 
flavour profile. 
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RESUMEN 

Las nuevas tendencias en el desarrollo de envases alimentarios innovadores 
podrían afectar a la estabilidad microbiana del producto durante el 

almacenamiento. En este sentido, sistemas antifúngicos tales como emulsiones, 
nanoemulsiones y soportes mesoporosos de sílice pueden ser alternativas 

prometedoras para preservar la calidad del producto sin tener que aplicar otros 
tratamientos térmicos. 

La formulación de sistemas antifúngicos estables y la optimización de la 
metodología a emplear para preparar estos sistemas, tienen un papel importante 

en: i) su eficacia antifúngica; ii) pérdidas de los compuestos bioactivos producidas 
durante su preparación; y iii) su impacto en el perfil sensorial del producto 

alimenticio. 
Las nanoemulsiones preparadas con aceites esenciales presentaron por norma 

general un mayor efecto antifúngico que los aceites libres aplicados a las mismas 
concentraciones. Asimismo, el tipo de emulsionante utilizado desempeñó un 

papel clave en la actividad antifúngica de las nanoemulsiones. Las 
nanoemulsiones preparadas con proteína de suero de leche fueron más eficaces 
en la inhibición del crecimiento micelial y en la germinación de las esporas que las 

formuladas con Tween 80. 
La gran eficacia in vitro de las nanoemulsiones en el control del desarrollo de 

moho permitió evaluar su aplicación en productos alimenticios, siendo 
seleccionada la confitura de fresa como matriz alimenticia. Con este fin, las 

emulsiones de los aceites esenciales de clavo y de hoja de canela fueron 
incorporadas a las confituras de fresa con el fin de controlar el deterioro fúngico. 

A pesar de que estas emulsiones fueron capaces de reducir el deterioro fúngico de 
las confituras de fresa, su incorporación afectó negativamente al aroma, el sabor y 

la aceptación global de la confitura. 
En cuanto a la metodología empleada para preparar emulsiones aceite-agua, 

la combinación de agitación magnética y homogeneización por altas presiones fue 
la más eficaz para reducir las pérdidas de aceite esencial. Asimismo, se obtuvieron 
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emulsiones estables con una alta capacidad antifúngica, determinada in vitro, 
frente a los hongos objeto de estudio. A pesar del prometedor uso de las 

emulsiones de aceite esencial de la corteza de canela en el control del deterioro 
fúngico de las confituras de fresa, su incorporación al alimento afectó 

negativamente al aroma, sabor y aceptación global del producto.  
Debido al gran impacto de los aceites esenciales en el perfil sensorial del 

producto alimenticio, se investigaron dos nuevos enfoques: i) combinaciones de 
diferentes compuestos antifúngicos en emulsiones; y ii) inmovilización de 

compuestos bioactivos sobre superficies de sílice mesoporosas. La combinación 
de aceite esencial de corteza de canela, el gluconato de zinc y el ácido trans-

ferúlico permitió la obtención de un producto considerado microbiológicamente 
aceptable con buenas características organolépticas pero no se consiguió la 
inhibición total del crecimiento de moho. Por ello, se estudiaron las propiedades 

antifúngicas y sensoriales de agentes bioactivos (eugenol y timol) inmovilizados 
sobre superficies de sílice mesoporosas. La preparación de las confituras con 

eugenol inmovilizado en las micropartículas de MCM-41, mostró un mejor control 
de la inhibición fúngica en comparación con las muestras preparadas con timol 

funcionalizado. El análisis sensorial de las muestras tras la incorporación de los 
sólidos a la confitura de fresa, reveló que la inmovilización de eugenol y timol 

reduce el impacto sensorial de estos compuestos en confituras de fresa.  



                                                                                                     Resum   

 

RESUM 

Les noves tendències en el desenvolupament d’envasos alimentaris 
innovadors podrien afectar l'estabilitat microbiana del producte durant 

l'emmagatzematge. En aquest sentit, sistemes antifúngics com les emulsions, 
nanoemulsions i suports mesoporosos de sílice poden ser alternatives 

prometedores per preservar la qualitat del producte sense haver d’aplicar altres 
tractaments tèrmics. 

La formulació de sistemes antifúngics estables, així com l'optimització de la 
metodologia a emprar per preparar aquests sistemes, tenen un paper important 

en: i) la seva eficàcia antifúngica; ii) pèrdues dels compostos bioactius produïdes 
durant la seva preparació; i iii) el seu impacte en el perfil sensorial del producte 

alimentari. 
Les nanoemulsions preparades amb olis essencials van presentar per norma 

general, un major efecte antifúngic que els olis lliures aplicats a les mateixes 
concentracions. Així mateix, el tipus d'emulsionant utilitzat va tenir un paper clau 

en l'activitat antifúngica de les nanoemulsions. Les nanoemulsions preparades 
amb proteïna de sèrum de llet van ser més efectives en la inhibició del creixement 
micelial i en la germinació de les espores que les formulades amb Tween 80. 

La gran eficàcia in vitro de les nanoemulsions en el control del 
desenvolupament de fongs va permetre avaluar la seva aplicació a productes 

alimentaris, sent seleccionada la confitura de maduixa com a matriu alimentària. 
Amb aquesta finalitat, les emulsions dels olis essencials de clau i de fulla de 

canyella van ser incorporades a les confitures de maduixa per tal de controlar el 
deteriorament fúngic. Tot i que aquestes emulsions reduïren el deteriorament 

fungic de les confitures de maduixa, la seva incorporació va afectar negativament 
a l'aroma, el sabor i l'acceptació global de la confitura. 

Pel que fa a la metodologia emprada per preparar emulsions oli-aigua, la 
combinació d'agitació magnètica i homogeneïtzació per altes pressions va ser la 

més eficaç per reduir les pèrdues d'oli essencial. A més, es van obtenir emulsions 
estables amb una alta capacitat antifúngica, determinada in vitro, davant dels 
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fongs objecte d'estudi. Malgrat el prometedor ús de les emulsions d'oli essencial 
de l'escorça de canyella en el control del deteriori fúngic de les confitures de 

maduixa, la seva incorporació a l'aliment va afectar negativament a l'aroma, sabor 
i acceptació global del producte. 

A causa del gran impacte dels olis essencials en el perfil sensorial del producte 
alimentari, es van investigar dos nous enfocaments: i) combinacions de diferents 

compostos antifúngics en les emulsions; i ii) immobilització de compostos 
bioactius sobre superfícies de sílice mesoporoses. La combinació d'oli essencial 

d'escorça de canyella, el gluconat de zinc i l'àcid trans-ferúlic va permetre 
l'obtenció d'un producte considerat microbiològicament acceptable amb bones 

característiques organolèptiques però no es va aconseguir la inhibició total del 
creixement del fong. Per això, es van estudiar les propietats antifúngiques i 
sensorials d'agents bioactius (eugenol i timol) immobilitzats sobre superfícies de 

sílice mesoporoses. La preparació de les confitures amb eugenol immobilitzat en 
les micropartícules de MCM-41, va mostrar un millor control de la inhibició 

fúngica en comparació amb les mostres preparades amb timol funcionalitzat. 
L'anàlisi sensorial de les mostres després de la incorporació dels sòlids a la 

confitura de maduixa, va revelar que la immobilització de eugenol i timol redueix 
l’impacte sensorial d’aquests compostos en confitures de maduixa. 
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PREFACE 

DISSERTATION OUTLINE 

This Thesis studies the use of antifungal systems formulated with different 
bioactive substances, generally recognised as safe (GRAS), to preserve and control 
fungi development in strawberry jam.  

Jam has been one of the commonest methods employed to preserve fruits for 
decades (Rababah et al., 2015). They are described as mixtures, with an 

appropriate gelled consistency, of sugars, pulp and/or purée of one or more fruits 
and water. Jams must have a soluble dry matter content ≥ 60%, except when 

sugars have been partially or totally substituted for sweeteners (RD 863/2003; 
REGLAMENTO (UE) 1129/2011). Traditionally after preparation, the jams are 

poured into glass jars at 85 °C, sealed with metal covers, inverted for 5 minutes, 
sterilised, and then, returned to a straight position (Rababah et al., 2015). This 

preparation type, together with the high sugar content and a low pH, ensures 
product stability during storage at room temperature. However, novel processing 

techniques,  that focus on maintaining fruit properties, and new packaging 
formats could result in a final product that offers different characteristics and 

stability during storage. High hydrostatic pressure (HHP) has been used as an 
alternative to pasteurisation and sterilisation. HHP is a good non-thermal 

preservation treatment that can achieve microbial inactivation and product 
stabilisation without amending sensory qualities (Dervisi et al., 2001). HHP offers 
new opportunities for the food industry to respond to consumer demands. 

However, this technology is currently more expensive than traditional processing 
technologies (high-temperature sterilisation) (Yaldagard et al., 2008). 

Conversely, new tendencies in the development of more attractive products 
focus on the visual aspects of the complete package, including the container, cap 

and label, and not only on ingredients or preparation (Weissmann et al., 2017). 
This occurs with PET bottles, which are an alternative to glass bottles. This 

container type offers several advantages. Its lighter weight reduces the 
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environmental impact during transport and the losses of foodstuff are decreased 
since fewer bottles are broken during filling and storage (Dombre et al., 2015). 

Moreover, in the present study, the most relevant advantages of using PET bottles 
compared with glass containers are the obtention of a product with an easy 

application and anti-dip system. However, in order to avoid PET bottles from 
deforming, jam must be packaged at 45 °C, which implies a possible source of 

contamination. This is why the product’s microbial stability is required during the 
packaging procedure and after opening the container. 

Fungi are the most relevant organisms to contaminate fruit and berry 
concentrates like jam, with low water activity (aw). The raw material used during 

jam manufacturing can contain fungal spores, which are inactivated during the 
cooking procedure. However, the jam containers used in the food industry may be 
re-contaminated by indoor fungi spores during container depletion (Nieminen et 

al., 2008).  
Aspergillus and Penicillium species are frequently found in postharvest 

products like fruit and vegetables. The principal changes produced in food 
products due to spoilage are pigmentation, discolouration, rotting, off-flavours 

and off-odours (Varga et al., 2008). Aspergillus and Penicillium species can 
colonise berries and cause them to decay (Jensen et al., 2013). 

Zygosaccharomyces species are the major spoilage microorganisms of fruit juices, 
carbonated drinks, ketchup, candied fruits, syrups and nougat, among others 

(Martorell et al., 2005). Specifically, Zygosaccharomyces rouxii and Z. bailii are 
characterised by their ability to tolerate low aw and pH environments. They are 

able to grow in products with high sugar contents (>60 %), and exhibit strong 
resistance to weak-acid preservatives, extreme osmotolerance, and have ability to 

ferment hexose sugars (James & Stratford, 2003). 
Essential oils (EOs) have been extensively used in the last few years for their 

antimicrobial and antifungal properties (Perdones et al., 2012; Abbaszadeh et al., 

2014; Salvia-Trujillo et al., 2014; Monu et al., 2016). EOs have been generally 
recognised as safe (GRAS) by the FDA in Code 21 of the Federal Regulation, part 

182.20, and their natural character makes their use in food products acceptable 
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by consumers (Burt, 2004). They are the most employed antifungal agents in the 
present Thesis. However, use of EOs is limited due to their: i) high volatility, which 

leads to bioactive compounds losses; ii) low solubility in water, which makes their 
antifungal action in food commodities with high moisture content;  and iii) 

intensive aroma. Therefore, different approaches have been proposed to 
overcome these drawbacks: i) optimisation of the methodology used to prepare 

oil-in-water (O/W) emulsions to reduce losses of EOs; ii) the combination of 
different antifungal compounds to cushion the food product’s impact without 

decreasing antifungal activity; iii) immobilisation of the bioactive agents on the 
surface of mesoporous silica supports as promising antifungal agents against 

moulds and yeasts without producing changes in the sensory profile of foods after 
their incorporation. The obtained results are disposed as follows: 

Chapter 1, entitled “Use of oil-in-water emulsions as potential antifungal 

delivery systems”, is divided into 3 sections. The first section studies the effect of 
physically stable nanoemulsion-based delivery systems to control their antifungal 

action against A. niger. Three EOs (cinnamon leaf, lemon and bergamot oils) and 
two emulsifiers (Tween 80 and whey protein isolate) were employed to prepare 

O/W nanoemulsions. The in vitro antifungal activity of the different systems was 
evaluated in terms of fungal and mycelial growth inhibition (%), spore germination 

inhibition (%) and the morphological damages produced to fungal hyphae and 
hyphal tips.  

The positive results obtained in the in vitro antifungal tests led to further 
studies to investigate the antifungal activity of O/W emulsions in food 

commodities. For this purpose, strawberry jam was selected as the food matrix 
and the results are included in the second section of Chapter 1. This section 

focuses on employing the O/W emulsions prepared with clove and cinnamon leaf 
EOs as natural agents. Both EOs contain eugenol as the main compound, which is 
responsible for their good antifungal properties, along with the other compounds 

present in these oils. The effect of polymer content was also evaluated. 
Moreover, the in vitro and in vivo antifungal tests were carried out against three 

mould strains: A. flavus, A. niger and Penicillium expansum. The preparation of 
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O/W emulsions revealed losses of EOs which were affected by the amount of 
xanthan gum (XG) employed in the formulation of emulsions. Taking into account 

these results and those obtained in the physicochemical characterisation of the 
O/W emulsions, the suitable amount of polymer and EO to be used in strawberry 

jam was established. Furthermore, the influence of storage temperature and the 
effectiveness of the O/W emulsions on mould growth in strawberry jam were also 

investigated. To this end, samples were maintained at 4 °C to simulate product 
cold storage after opening the jam container, and at 25 °C, the optimum growth 

temperature of fungi. The incorporation of O/W emulsions into strawberry jam 
allowed to control fungi spoilage of the product but negatively affected the 

aroma, taste and the overall acceptance of the product, which confirmed that 
further studies in this area are required. 

Optimisation of the methodology used to prepare O/W emulsions in order to 

diminish losses of EOs was studied in the third section. Furthermore, the 
evaluation of the antimicrobial activity of O/W emulsions in vitro, and also in 

strawberry jam to control mould and yeasts, was carried out. Different 
methodologies were followed to prepare emulsions: i) rotor-star device (1 min 

10,000 rpm, 3 min 20,000 rpm), followed by high pressure homogenisation (HPH) 
at 40 or 80 MPa; and ii) magnetic stirring for 15 min, followed by HPH at 40 or 80 

MPa. The results indicated that the optimum conditions were the use of magnetic 
stirring for 15 min followed by HPH at 40 or 80 MPa in order to reduce losses of 

EOs. This methodology is a good alternative to obtain stable emulsions with high 
in vitro antifungal properties against all the studied fungi. In fact the jam prepared 

with the emulsions that contained 0.08 mg/g of cinnamon bark EOs exhibited the 
total inhibition of A. flavus, P. expansum, Z. rouxii and Z. bailii. Nevertheless, the 

incorporation of cinnamon bark-xanthan gum emulsions negatively affected the 
jam’s aroma, taste and overall acceptance, which occurred in the previous 
chapter. 

Taking into account the impact of EOs and their main compounds on the 
sensory profile of the studied food product, the combination of different 

antifungal agents and the development of new antifungal systems were 
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investigated. Chapter 2 entitled “Combination of different antifungal agents in 
oil-in-water emulsions to control jam spoilage”, studies the use of cinnamon bark 

EO (CBEO), ZG and FA in the formulation of O/W emulsions to control strawberry 
jam spoilage by fungi with no changes to their sensory characteristics. The in vitro 

and in vivo assays of O/W emulsions were carried out against A. niger. This mould 
was selected due to its relevance in the decay of strawberry products and for its 

resistance against different preservatives from the in vitro results, which is a 
problem for both scientific and industrial areas. The physicochemical 

characteristics of the different O/W emulsions were also evaluated. Great 
antifungal properties in the in vitro assays were observed by using CBEO, ZG and 

FA in the formulation of O/W emulsion. The addition of emulsions to strawberry 
jam did no alter the organoleptic profile of the final product, but total mould 
inhibition was not accomplished. Therefore, the antifungal activity of the 

bioactive agents immobilised on mesoporous silica surfaces was investigated in 
Chapter 3, entitled “Eugenol and thymol immobilised on mesoporous silica-

based material as an innovative antifungal system: application in strawberry 
jam”. The evaluation of the antifungal effectiveness of the eugenol and thymol 

bioactive principles, both alone and when immobilised on the surface of MCM-41 
particles, and their impact on strawberry jam' final aroma and fungal decay, was 

studied. The characterisation of the mesoporous silica material was evaluated by 
standard techniques, such as particle size, ζ-potential values, FESEM images, 

thermogravimetric and elemental analyses. The jams prepared with the eugenol 
immobilised on the MCM-41 microparticles exhibited neither mould nor yeast 

development during the complete evaluation period. The sensory evaluation of 
jam confirmed that the immobilisation of eugenol and thymol on MCM-41 

cushioned the impact of these compounds on the food product’s flavour profile. 
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Abstract 

The kingdom Fungi is the most important group of microorganism contaminating 

food commodities, and chemical additives are commonly used in the food 
industry to prevent fungal spoilage. However, the increasing consumer concern 

about synthetic additives has led to their substitution by natural compounds in 
foods. The current review provides an overview of using natural agents isolated 

from different sources (plants, animals and microorganisms) as promising 
antifungal compounds, including information about their mechanism of action 

and their use in foods to preserve and prolong shelf life. Compounds derived from 
plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, 

antagonistic yeast and their metabolites) are able to control the decay caused by 
fungi in a wide variety of foods. Several strategies are employed to reduce the 

drawbacks of some antifungal agents, like their incorporation into oil-in-water 
emulsions and nanoemulsions, edible films and active packaging, and their 

combination with other natural preservatives. These strategies facilitate the 
addition of volatile agents into food products and, improve their antifungal 
effectiveness. Moreover, biological agents have been investigated as one of the 

most promising options in the control of postharvest decay. Numerous 
mechanisms of action have been elucidated and different approaches have been 

studied to enhance their antifungal effectiveness. 

Keywords: Plant secondary metabolite, essential oil, chitosan, lactic acid bacteria, 

antagonistic yeast, antifungal protection 
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1. INTRODUCTION

The kingdom Fungi is a group of eukaryotic organisms that includes unicellular

microorganisms such as yeasts and moulds. They are the most important group of 
organisms to contaminate fruits and vegetables, and other food commodities like 

wine, juice, fruit puree, jams, meat and cheddar cheese, among other food 
products (Nieminen et al., 2008; Gammariello et al., 2014). Furthermore, 

postharvest spoilage of fruits, vegetables, and cereals by phytopathogens, 
particularly fungal pathogens, produces significant economic losses (Liu et al., 

2017). 
The food industry has resorted to several techniques to prevent fungi growth 

and spoilage (Davidson and Taylor, 2007). Even though the most effective 
methods to control food spoilage are achieved by chemical additives, their 

negative consumer perception and the more severe regulations on the use of 
fungicides (Wisniewski et al., 2016; Calvo et al., 2017) have increased an interest 

in new alternatives to protect food products by replacing synthetic agents with 
natural compounds (Parafati et al., 2015; Russo et al., 2017).  

Natural antifungals can be obtained from different sources, including plants, 

animals and microorganisms (Table 1). Plant secondary metabolites are an 
important source of antifungal bioactive substances, and include essential oils, 

phenolic compounds, flavonoids and alkaloids among others (Ciocan and Bǎra, 
2007). Among the natural antifungals of animal origin, chitin, chitosan and 

lactoferrin are reported to possess antifungal activity against a wide range of fungi 
(Perdones et al., 2012; Wang et al., 2013). Furthermore, lactic acid bacteria (LAB) 

produces a wide variety of products with antifungal activity, among them, 
proteinaceous compounds called bacteriocins have shown to inhibit the growth 

and development of fungi (Hondrodimou et al., 2011). Recently, the use of 
antagonistic yeasts has attracted more interest since their inhibitory activity is not 

related with the production of toxic metabolites, which occurs with antibiotics 
that derive from bacteria, fungi, plants and animals (Vardanyan and Hruby, 2016). 
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The purpose of this review is to highlight the different sources of natural 
compounds of plant, animal and microbiological origins that can be used to 

control food spoilage caused by moulds and yeasts, and to explain their biological 
mode of action. Hence, this paper focuses on analysing the potential application 

of these natural compounds in food products to improve their shelf life. 

Table 1. Depiction of representative natural antifungals of different sources: 
plant, animal and microorganisms. 

NATURAL ANTIFUNGALS 

PLANT ORIGIN 

Essential oils (EOs) 

Phenolic compounds 
Phenolic acids 

Flavonoids 

Glucosinolates 

Other compounds 

ANIMAL ORIGIN 

Chitin 

Chitosan 

Lactoferrin 

MICROBIOLOGICAL 
ORIGIN 

Lactic acid bacteria 
(LAB) 
Antagonistic yeasts 
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2. ANTIFUNGALS OF PLANT ORIGIN

Plant antifungals are usually compounds that belong to their secondary

metabolisms. Essential oils (EOs), phenolic compounds, glucosinolates, hexanal 
and hexanol, among others, are antifungals that derive from plants. 

2.1 Essential oils 

Essential oils (EOs) are highly complex mixtures of often hundreds of 

individual aroma compounds that are poorly soluble in water and have a pleasant 
odour and taste. Moreover, EOs have been recognised as GRAS (Generally 

Recognised as Safe) by the U.S. Food and Drug Administration (CFR, 2014). 
Plant EOs have been used for many years in food and pharmaceutical products 

for their antifungal, antimycotic and pest control properties (Bajpai et al., 2012). 
In fact, their antifungal effectiveness has attracted the growing interest of 

researchers for being used as food preservatives (Vitoratos et al., 2013). The most 
widely employed EOs as natural food preservatives are cinnamon, clove, 

lemongrass, oregano, thyme, nutmeg and basil. Figure 1 shows the main 
compounds of these EOs.  

2.2.1 Mode of action 

Several hypotheses have been put forward to explain EOs’ antifungal activity: 

i) direct effects on enzymes and intracellular functions modification due to the
presence of OH groups that can form hydrogen bonds (Soylu et al., 2006; da Cruz-

Cabral et al., 2013); ii) changes in the morphology of different species of moulds
and yeasts as a result of the interactions with membrane enzymes, which diminish

cell wall firmness and integrity (Soylu et al., 2006; da Cruz-Cabral et al., 2013); iii)
accumulation of EO compounds in the cell membrane because of their molecular

structure and the position of functional groups, which leads to cell membrane
destabilisation and damage (Rao et al., 2010); and iv) variations in membrane
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permeability, granulation of the cytoplasm and cytoplasmic membrane disruption 
(Bennis et al., 2004; Tao et al., 2014). 

Figure 1. Main compounds of cinnamon, clove, lemon grass, oregano, thyme, 

nutmeg and basil EOs. 
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2.1.2 Incorporation in food systems 

The strong flavour of EOs makes their incorporation into food products at high 

doses difficult given the changes in their sensory profile (Perdones et al., 2012). 
Emulsions, nanoemulsions and edible coatings have exhibited several advantages, 

such as the encapsulation of functional lipophilic substances, which allow the 
preservation and lower the concentrations of antifungal agents, diminishing the 

impact on the sensory profile of food commodities while maintaining their 
effectiveness (Salvia-Trujillo et al., 2015). In these sense, emulsions incorporating 

EOs have been successfully applied in jam preservation and tomato plant. Clove 
and cinnamon leaf emulsions containing a final EO concentration of 0.34 and 0.39 

mg/g, respectively, were incorporated into strawberry jams to prevent fungal 
spoilage (Ribes et al., 2016). The jam samples with the emulsions were inoculated 

with two moulds of the Aspergillus genus and one mould of the Penicillium genus 
and were stored for 63 days at 4 °C and 25 °C. No mould development was 

noticed at day 49 and 28 for samples stored at cold and ambient temperature, 
respectively. Soylu et al. (2010) sprayed tomato plants with oil-in-water (O/W) 
emulsions prepared with different EOs (oregano, lavender and rosemary) to 

control fungal development. The obtained results showed that oregano EO 
proved the most effective against Botrytis cinerea (77% of protection by using 75 

mg/L of oregano EO; and 0% of protection in control samples) and no signs of 
phytotoxicity were found on the plants treated at the maximum concentration 

used. 
Several studies have dealt with the use of coatings to extend the shelf life of 

fruit products that are susceptible to fungi contamination due to their 
composition (high water and fructose content). Fuji apples were coated by 

dipping them in solutions prepared by mixing apple puree and an alginate solution 
with EOs (Rojas-Graü et al., 2007). An alginate-apple puree coating that contained 

1% and 1.5% of lemongrass, and 0.5% of oregano, inhibited fungi growth during a 
21-day period. In the same context, fresh-cut melon was dipped into an alginate

edible coating with EOs (Raybaudi-Massilia et al., 2008) in order to prevent fungi
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development. The incorporation of EOs into edible coatings reduced the natural 
fungi population of fresh-cut melon for 21 days, and cinnamon EO and eugenol 

displayed the most marked antifungal action (<3 log CFU/g). In another study, 
cinnamon leaf coatings with pectin have also been employed to prevent grape 

spoilage by B. cinerea (Melgarejo-Flores et al., 2013) revealing that samples 
treated with coatings, which contained 5 g/L of cinnamon leaf EO, presented 

100% fungal decay. Recently, Arancibia et al. (2014) formulated biodegradable 
bilayer films with soya protein isolate, lignin and formaldehyde that contained 

citronellal and geraniol to control fungi growth in banana samples during 6 days at 
15 °C. The incorporation of the films coatings with EO reduced fungi counts; 

especially at the end of the storage period, when mould and yeast counts were 
below 0.1 log CFU/g in treated bananas.  

In addition to emulsions, nanoemulsions and edible coatings, active packaging 

by incorporating EOs is another possibility to reduce the impact of EOs on the 
sensory properties of foods and to extend the shelf life of food products. The use 

of active packaging systems with EOs has been employed in sliced bread, cheese 
and apples (Balaguer et al., 2013). In this context, cinnamon EO incorporated into 

paraffin as a bioactive coating has been tested against Rhizopus stolonifer in sliced 
bread, where 80% and 90% of inhibition was achieved with 4% and 6% of 

cinnamon leaf on the coating (Rodriguez et al., 2008). Similarly, Balaguer et al. 
(2013) evaluated gliadin films that contained 5% of cinnamaldehyde as active 

packaging of bread and cheese spread. The results revealed that the active 
packaging of bread slices was effective for delaying fungal growth. The antifungal 

assays with cheese spread were carried out at 4 °C and the results showed no 
fungal growth for 30 days. Recently, apples inoculated with a mixture of twelve 

Penicillium spp. strains were treated in a chamber with oregano, cinnamon and 
clove EO. Apparently, 14% of the control apples did not present signs of infection 
compared with 39-42% of the samples treated with EOs, where oregano EO was 

still the most effective after 21 storage days, followed by clove and cinnamon EOs 
(Frankova et al., 2016). 
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2.2 Phenolic compounds 

Phenolic compounds constitute the main class of plant secondary metabolites 

with more than 8,000 identified phenolic structures. They are present in fruits, 
legumes, vegetables and whole grains (Pulido et al., 2000). Figure 2 shows a 

simplified classification of phenolic compounds that possess biological activity.  

Figure 2. Simplified classification of phenolic compounds with biological activity 
(Adapted from Hurtado-Fernández et al., 2010). 
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2.2.1 Mode of action 

The mode of action of phenolic compounds is related to: i) membrane 

dysfunction and disruption, which leads to the dissipation of the pH gradient and 
electrical potential, interference with the ATP-system in the cell, inhibition of 

enzymes, inhibition of germination, suppression of mycelia development and 
germ tub elongation (El-Mogy and Alsanius, 2012; da Cruz-Cabral et al., 2013); and 

ii) the interaction with membrane proteins, whose conformation and functionality
change, increasing concentrations of reactive oxygen species (da Rocha Neto et

al., 2015).

2.2.2 Incorporation into food systems 

Some researchers have reported the effectiveness of different phenolic 
compounds as protective natural preservatives for inhibiting spoilage fungi in 
multiple food systems.  To this extend, phenolic compounds from edible 

herbaceous species have been used to prevent growth of Monilinia laxa on 
nectarines and apricots; Penicillium digitatum on oranges; and B. cinerea on table 

grapes. Brown rot due to M. laxa growth in apricots and nectarines was inhibited 
by using phenolic compounds after 6 days. Moreover, on post-treatment day 25, a 

reduction of 92% in P. digitatum growth was observed in oranges by the authors, 
and a reduction of 53% in B. cinerea growth was obtained after 6 days of treating 

table grapes (Gatto et al., 2011). 
Effectiveness of esculetin, ferulic acid, quercetin, resveratrol, scopoletin, 

scoparone and umbelliferone to control Penicillium expansum on Golden 
Delicious and Granny Smith apples was evaluated by Sanzani et al. (2009). 

Quercetin and umbelliferone proved to be the most effective compounds, and 
independently of the application methodology (wound or dipping). These 

phenolic compounds, either alone or combined, prevented Golden Delicious 
apples from decaying by 86-92% compared to the control samples by wound 
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application. Differently, the combination of quercetin and umbelliferone by 
dipping, highlighted that only 33% of apples showed fungal decay after 8 days of 

treatment compared with 63% of the control samples (Sanzani et al., 2009). 
Furthermore, Quaglia et al. (2016) reported the effect of spraying pomegranates 

with phenolic compounds from olive-mill wastewater after inoculation with 
Penicillium sp. The treatment of pomegranate fruits with phenolic compounds at 

4 mg/mL and 8 mg/mL lowered the percentage disease index of Penicillium 
adametzioides, and the disease index was 30% and 15%, respectively.  

2.3 Glucosinolates 

Glucosinolates are secondary metabolites present in plants in the 
Brassicaceae, Capparaceae and Caricaceae families. They are found in grains, 

roots, peduncles and leaves of plants, and their amounts depend on the vital part 
of plants and maturation stage (Brown et al., 2003). When plants are wounded, 

glucosinolates are released from vacuoles and hydrolysed by the enzyme 
myrosinase to produce isothiocyanates (Grubb and Abel, 2006), which are 

characterised by their high volatility. Numerous reports focused on the antifungal 
action of glucosinolates, and isothiocyanates have been found (Troncoso et al., 

2005). 

2.3.1 Mode of action 

The hypotheses formulated to elucidate the mechanism of action of 

glucosinolates include: i) inhibition of oxygen uptake by fungi through the 
uncouple action of oxidative phosphorylation in the mitochondria of fungi by 

inhibiting coupling between electron transport and phosphorylation reactions, 
and thus hindering ATP synthesis (Kojima and Oawa, 1971); ii) formation of 

reactive oxygen species which leads to an intolerable level of oxidative stress in 
fungal cells, and irreparable damage (Wang et al., 2010); iii) the non-specific and 
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irreversible interaction of isothiocyanates with the sulfhydryl groups, disulphide 
bonds and amino groups of protein and amino acid residues (Kojima and Oawa, 

1971; Banks et al., 1986); and iv) the reaction of some glucosinolates, such as 
butenyl-isothiocyanate, with some enzymes present at the plasma membrane 

level to produce fungal growth inhibition or cell death (Sikkema et al., 1995). 

2.3.2 Incorporation into food systems 

Treatments based on atmospheres enriched with glucosinolates have been 
demonstrated as a good alternative to control fungi spoilage in fruits and 

vegetables. Troncoso-Rojas et al. (2005) investigated the use of benzyl-
isothiocyanate to control Alternaria alternata growth on tomatoes. The results 

indicated that this compound reduced fruit disease compared with the control 
samples.  

Other works have suggested the use of different glucosinolates to control 
fungi growth on peppers, blueberries, apples and strawberries. Green bell 

peppers were exposed to isothiocyanates to investigate their antifungal potential 
against A. alternata. To this end, a sterile filter paper was soaked with the 
glucosinolates solution and placed inside the bag with the samples. The results 

showed that the effect of 0.56 mg/mL of isothiocyanate was determinant in 
reducing fungi rot (Troncoso et al., 2005). Furthermore, vaporisation with allyl-

isothiocyanates on blueberries has proven effective against fungi by showing a 3% 
fungal decay after 21 days of treatment (Wang et al., 2010). Wu et al. (2011) 

treated apples with isothiocyanate vapours to control B. cinerea and P. expansum 
spoilage. The combination of different isothiocyanates reduced fungal growth 

incidence by up to 85%. Likewise, Ugolini et al. (2014) treated strawberries 
infected naturally with B. cinerea by using an atmosphere enriched with pure allyl-

isothiocyanate or one derived from defatted seed meals of Brassica carinata. This 
treatment significantly reduced the decay produced by B. cinerea by over 47% and 

up to 91% for 2 strawberry varieties. 
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2.4 Other compounds 

Some natural constituents, such as hexanal, hexanol, 2-(E)-hexenal, trans-2-

hexenal, and 2-nonanone, which are responsible for the aroma of some 
vegetables and fruits, protect damaged areas from fungi proliferation (Gardini et 

al., 2002). Their use also provides changes in the flavour and quality of food 
products owing to the presence of volatiles (Utama et al., 2002). 

2.4.1 Mode of action 

Even though the mechanism of action of some volatile compounds like 
antifungals is not clear, most authors agree that: i) the interaction of these 

compounds with protein sulfhydryl and amino groups causes severe damage to 
fungal membranes and cell walls, which results in the collapse and deterioration 

of hyphae (Andersen et al., 1994; Fallik et al., 1998); and ii) membrane disruption, 
which in turn produces leakage of electrolytes, reduces sugar and, amino acids 

from cells (Song et al., 2007). 

2.4.2 Incorporation into food systems 

The application of natural extracts, such as hexanal, trans-2-hexenal, and 2-
nonanone, into active packages improves the release of bioactive compounds 

during storage and diminishes the development of undesirable flavours in 
foodstuffs (Soares et al., 2009).  

Numerous works have reported the use of volatile compounds to prevent 
fungi development in fruits. Pears, apples, tomatoes, peaches, raspberries and 

strawberries are some fruits that have been studied by different authors to test 
the effect of volatile compounds to control fungal growth. Neri et al. (2006a) 

evaluated trans-2-hexenal antifungal activity on pears and apples. According to 
the authors, efficacy ranged from 53.6% to 97.8% in pears and apples, 
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respectively. In another study, Neri et al. (2006b) investigated the effectiveness of 
trans-2-hexanal against P. expansum in pears wounded with a conidial 

suspension. In this case, the most marked reduction in infection compared with 
the control samples took place in pears which were treated 24 h after pathogen 

inoculation (Effectiveness Index: 96.2%). 
In the same way, hexanal fumigations have been used to prevent mould growth in 

apples, tomatoes, raspberries and peaches. Apple treatments with hexanal 
vapours to control fungi development and lesions were evaluated by Fan et al. 

(2006). Apples were exposed to different concentrations of hexanal vapours at 
several temperatures. At 4 °C and with 5-7 µmol/L, only 52% of the apples 

developed lesions, whereas 98% of those treated with 8-12 µmol/L at 22 °C 
exhibited lesions. Similarly, the incidence obtained from natural raspberry decay 
caused by B. cinerea, after exposure at different concentrations of hexanal 

vapours, was evaluated (Song et al., 2007). The results highlighted that the 
incidence of decay lowered by 30% for all the raspberry varieties. Furthermore, 

Utto et al. (2008) treated tomatoes with hexanal vapours to study their antifungal 
activity. The tomatoes treated with 200-270 µL/L exhibited 40% of fungal growth. 

Finally, the use of 2- nonanone to prevent B. cinerea growth on strawberries has 
been investigated by Almenar et al. (2007). Treated fruit presented neither visible 

injuries nor fungi development, whereas 10% of the control strawberries showed 
B. cinerea development.

3. ANTIFUNGALS OF ANIMAL ORIGIN

Antifungals from animal sources involve compounds that are isolated from
animals or are animal-derived. Chitin, chitosan and lactoferrin are the most widely 

used antifungals that derive from animals. 
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3.1 Chitin and chitosan 

Chitin is an abundant biopolymer found in the exoskeleton of arthropods and 

crustaceans, fungal cell walls, and other biological materials. Crustacean shells, 
like those from carbs and shrimps, are the most widely used chitin sources for 

commercial applications given the availability of waste from seafood processing 
industries (Hamed et al., 2016). 

Chitosan is derived from chitin by deacetylation in alkaline media. It is a 
copolymer which consists in β-(1–4)-2-acetamido-D-glucose and β-(1–4)-2-amino-

D-glucose units. Chitosan exhibits different biological properties, including
antifungal, antibacterial and antiviral activities (Chirkov, 2002). Because of its wide

biological spectrum, an increasing interest for applications of coatings for
perishable foods has been observed in the last few years (Raafat et al., 2008).

3.1.1 Mode of action 

Different mechanisms of action of chitosan have been reported in the 

literature: i) interferences with uptake of minerals, such as Ca2+ or other nutrients, 
that delay the spore germination process (Plascencia-Jatomea et al., 2003); ii) 

interaction on the spore wall that inhibits spore germination (Plascencia-Jatomea 
et al., 2003); iii) induction of cell leakage by stress (Zakrzewska et al., 2005); iv) 

membrane permeabilisation through specific interactions with high-affinity 
binding sites on the fungal surface (Zakrzewska et al., 2005; Park et al., 2008; 

Galván Márquez et al., 2013); and v) interactions with DNA and/or RNA which, in 
turn, inhibit protein synthesis (Galván Márquez et al., 2013). 
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3.1.2 Incorporation into food systems 

Chitosan has demonstrated its great antifungal activity in various food 

commodities. Chitosan has been approved by the FDA as a GRAS food additive 
(USFDA, 2013), and its application in the industry is safe for both consumers and 

the environment (Romanazzi et al., 2017). Table 2 summarises the relevant 
antifungal effect of chitosan applications on different plants, seeds and food 

commodities.  
Chitosan has been used to prevent grey mould provoked by B. cinerea in 

cucumber plants (Ben-Shalom et al., 2003) by spraying solutions of chitosan or a 
chitin oligomers mixture. Treatment proves effective as it lowers the disease 

index compared with the control plants. Moreover, the antifungal effectiveness of 
chitosan on the development of Fusarium oxysporum f. sp. albedinis (Foa), the 

agent responsible for Bayoud disorder, in date palm roots was elucidated (El 
Hassni et al., 2004). In this case, when seedling roots of date palm were treated 

with the chitosan solution and inoculated with the mould, the seedling mortality 
lowered. 
Rodríguez et al. (2007) investigated the efficacy of chitosan and hydrolysed 

chitosan to induce enzymatic activities against Pyricularia grisea when applied to 
rice seeds (Oryza sativa L.), and also its results on leaf blast intensity in seedlings. 

For both chitosan types, the greatest disease defence in rice seedlings was 
obtained using 1,000 mg/L after 14 days of inoculation. Nevertheless, when 

applying 500 mg/L of chitosan and hydrolysed chitosan, severity was evidenced 14 
days after treatment.  

Several authors have highlight that grey mould on grapes is one of the most 
economically important disorders of grapevine and table grapes worldwide 

(Reglinski et al., 2010; Vasconcelos de Oliveira et al., 2014). The antifungal activity 
of chitosan against B. cinera on Chardonnay grape leaves was studied by Reglinski 

et al. (2010). Chardonnay leaves treated with chitosan proved more resistant to 
infection. Moreover, the effectiveness of chitosan on postharvest fungus infection 

by B. cinerea and P. expansum on grapes was elucidated (Vasconcelos de Oliveira 
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et al., 2014). Chitosan treatment reduced the number of infected plants 
compared with untreated samples. 

Some studies have employed chitosan in combination with other biopolymers 
or antifungal substances used by the food industry as edible coatings or packaging 

materials to control fungal spoilage in different fruits.  Vu et al. (2011) coated 
berries with modified-chitosan films that contained limonene and peppermint. 

Strawberries were sprayed, dried and stored for 14 days at 4 °C. On day 8, 45% of 
the fruits displayed some decay when chitosan-limonene films were applied, 

whereas the percentage of decay lowered by up to 60% when chitosan alone was 
applied or chitosan-peppermint was employed.  

Some authors have also coated strawberry fruits by dipping them into chitosan 
solutions. Different combinations of chitosan and calcium gluconate solutions 
were prepared by Hernández-Muñoz et al. (2008) to coat strawberries. The 

combination of chitosan and calcium gluconate at a ratio of 1:0.5 has inhibited 
fungal fruit decay during storage. Conversely, fungal decay was observed in 

samples coated with chitosan solution. The results showed that only 35% of 
strawberries were infected after 6 days of treatment when 1% of chitosan was 

employed. Similarly, strawberries were treated with film-forming dispersions of 
the chitosan-lemon EO. The results showed that pure chitosan coatings reduced 

the percentage of samples that displayed visual mould growth compared with the 
control strawberries. These results confirmed that chitosan antifungal action 

improved when the lemon EO was incorporated (Perdones et al., 2012). 
Sánchez-González et al. (2011) dipped grapes in film-forming dispersions 

prepared with chitosan, hydroxypropylmethylcellulose and the bergamot EO to 
prevent their spoilage. The development of moulds and yeast after 18 days were 

0.25 log CFU/g and 0.1 log CFU/g for the control and coated samples with the 
chitosan and bergamot EO, respectively.  
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The effect of alginate, chitosan, and their combinations, on Colletotrichum 
musae growth has been studied in bananas (Maqbool et al., 2010) by simulating 

marketing conditions (5 days/25 °C/60% RH). The authors suggested that the 
bananas coated with alginate would show no fungicidal activity. In fact, the fruits 

with alginate and chitosan delayed anthracnose for 28 days and food freshness 
was maintained. Chitosan has been also employed on dry fruit. Walnut kernels 

were immersed in a coating solution that contained chitosan and green tee 
extracts (Sabaghi et al., 2015). As a result, chitosan coatings reduced yeast and 

mould growth on samples. In some samples with green tea and chitosan (10 g/L), 
no yeast and mould growth was detected throughout the storage period.  

3.2 Lactoferrin 

Lactoferrin is an iron-binding glycoprotein present in milk and often employed 
as an antimicrobial agent in human medicine and food preservation. The protein 

is folded into two homologous globular lobes connected by a short α-helix peptide 
(Berlutti et al., 2011). Among its protective effects, several authors have reported 

antifungal activity (Wei et al., 2008; González-Chávez et al., 2009). 

3.2.1 Mode of action 

The mechanism of action of lactoferrin appears to be complex. Some 

researchers have suggested that the antifungal mode of action of lactoferrin 
might be related to: i) membrane rupture and leakage of intracellular proteins 

and sugars, which inhibit fungal growth (Wang et al., 2013; González-Chávez et al., 
2009); ii) reduced ATP production as a result of inhibited mitochondrial 

respiration (Wang et al., 2013); iii) oxidative injuries (Wang et al., 2013); and iv) 
Fe3+ chelation (Zarember et al., 2007). 
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3.2.2 Incorporation into food systems 

Very few studies are available in the literature that have reported antifungal 
effects of lactoferrin on food products. In one, Wang et al. (2013) sprayed tomato 

plants with a solution prepared with different lactoferrin concentrations and 
Tween 80. Treatment lasted 24 h before B. cinerea inoculation took place. The 

index of the samples that displayed visual mould growth lowered as the 
lactoferrin dose increased. Therefore, it can be stated that lactoferrin solution 
was able to protect more than 50% of samples when 100 mg/L of lactoferrin 

solution was used. 

4. ANTIFUNGALS OF MICROBIOLOGICAL ORIGIN

Biopreservation or use of microorganisms and/or their metabolites to prevent
fungi spoilage and to extend the shelf life of foodstuffs has attracted growing 

interest in the scientific and industry areas owing to changes in consumer 
opinions and demand (Le Lay et al., 2016). For these reasons, alternative 

methodologies to control postharvest loss caused by fungi have been 
investigated. Among natural biological agents, attention has been paid to lactic 

acid bacteria (LAB) and antagonistic yeasts as a result of their excellent 
effectiveness as antifungal agents (Leroy and De Vuyst, 2004; Gerez et al., 2013) 
(Figure 3).  
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Table 2. Relevant chitosan applications on plants, seeds and food products (Adapted from Kashyap et al., 2015). 

Plant/harvest Organisms Effect of chitosan application References 

Cucumber plant Botrytis cinerea Control the grey mould caused by Botrytis cinerea. (Ben-Shalom et al., 
2003) 

Roots and 
seedlings of date 
palm 

Fusarium oxysporum f. sp. 
albedinis (Foa) 

Reduction of the growth of Foa and production of morphological 
changes in Foa mycelium. 

(El Hassni et al., 
2004) 

Seeds of rice Pyricularia grisea Defense response induction associated with the concentration and 
type of chitosan. Symptoms of resistance were observed. 

(Rodríguez et al., 
2007) 

Strawberries Fungi The combination with calcium gluconate inhibited strawberries decay. (Hernández-Muñoz 
et al., 2008) 

Banana Colletotrichum musae Chitosan and alginate combinations inhibited C. musae growth. (Maqbool et al., 
2010) 

Grapevine leaves Botrytis cinerea Suppression of mould development on detached grapevine leaves.  (Reglinski et al., 
2010) 

Introduction 
Introduction 
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Table 2. (Continued) 

Plant/harvest Organisms Effect of chitosan application References 

Grapes Moulds and yeasts The combination with  hydroxypropylmethylcellulose and bergamot oil reduced
mould and yeasts development on grapes. 

(Sánchez-
González et 
al., 2011) 

Strawberries Moulds Chitosan films alone or combined with limonene and peppermint reduced fruit 
decay. 

(Vu et al., 
2011) 

Strawberries  Botrytis cinerea Reduction of the percentage of infected fruits and chitosan coatings with lemon oil 
presented great anti-Botrytis action. 

(Perdones et 
al., 2012) 

Grape 
Botrytis cinerea 
and Penicillium 
expansum 

Fungal growth was delayed when chitosan was applied as a coating on table grapes 
artificially contaminated with fungi spores. 

(Vasconcelos 
de Oliveira 
et al., 2014) 

Walnut kernels Moulds and yeasts Reduction of mould and yeasts growth in chitosan coatings and inhibition of fungal 
growth in chitosan-green tea coatings. 

(Sabaghi et 
al., 2015) 
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Figure 3. Classification of the antifungals of microbiological origin. 

4.1 LABs 

LABs are Gram (+), non-sporulating, catalase-negative, acid-resistant and 
anaerobic aerotolerant microorganisms. Eleven genera have been associated with 

food products: Carnobacterium, Enterococcus, Lactococcus, Lactobacillus, 
Lactosphaera, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Vagococcus 

and Weissella (Vries et al., 2006).  
LABs have obtained the GRAS and Qualified Presumption of Safety (QPS) 

status by the FDA and EU, respectively. They are used in the food industry for 
their capacity to control fungi spoilage and/or pathogen microorganisms by 

producing different antimicrobial compounds (Martinez et al., 2013). The main 
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identified antifungal metabolites include organic acids, proteinaceous compounds 
and fatty acids: i) the organic acids present in food commodities are additives or 

carbohydrate end-products produced by LABs, which include acetic, lactic and 
propionic acids as the main compounds originated by carbohydrate LABs 

fermentation (Ross et al., 2002); ii) bacteriocins, are a kind of ribosomal 
synthesised antifungal peptides or proteins (Nes et al., 1996). Various studies 

describe the production of these compounds originated by Lactococcus, 
Streptococcus, Lactobacillus and Pediococcus (Crowley et al., 2013); and iii) fatty 

acids perform an important function in antifungal activity and require at least one 
hydroxyl group and one double bond along the carbon backbone (Crowley et al., 

2013).  

4.1.1 Mode of action 

The mode of action of LABs could be related to their stationary phase. There is 

a possibility that cell lyses could contribute to fungal toxicity. Likewise, other 
mechanisms that could explain the antifungal effect of LABs include their 

competition for nutrients, space and exclusion of pathogens from entry sites in 
the matrix, and alteration of spore membrane, viscosity and permeability 

(Pawlowska et al., 2012). 
Regarding the mechanism of action of LAB products, some authors have put 

forward the following hypothesis: i) organic acids defuse through the membrane 
and cause its dissociation by releasing hydrogen ions which, in turn, cause pH to 
drop. Organic acids also increase membrane permeability and neutralise the 

electrochemical proton gradient (Oliveira et al., 2014); ii) bacteriocins provoke 
fungal cell membrane disruption, changes in their permeability to small 

monovalent cations (K+) and a large macromolecule like ATP (Sharma and 
Srivastava, 2014); and iii) fatty acids contribute to high membrane fluidity due to a 

low sterol content and a high degree of phospholipid fatty acid instauration 
(Benyagoub et al., 1996). 
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4.1.2 Incorporation into food systems 

Utilisation of LABs to prevent fungi spoilage has been studied in different 
foodstuffs, which include fruits and vegetables, bakery and dairy products (Table 

3).  

4.1.2.1 Fruits and vegetables 

To prevent fungal spoilage on fruits and vegetables, LABs have been employed 

as promising antifungal agents. Sathe et al. (2007) evaluated the antifungal 
activity of Lactobacillus plantarum CUK501 to prevent fungal spoilage of 

cucumber provoked by the inoculation of Aspergillus flavus, Fusarium 
graminearum, R. stolonifer and B. cinerea. This treatment effectively avoided the 

lesions provoked by all the evaluated moulds. In another study, apples were used 
as models to investigate the antifungal action of Pediococcus pentosaceus R47 
against P. expansum (Rouse et al., 2008). The authors pointed out that no mould 

growth was detected during the 14-day study. Similarly, Crowley et al. (2012) 
studied the antifungal effect of Lb. plantarum 16 and 62 in orange juice against 

Rhodotorula mucilaginosa and P. expansum. The authors highlighted that R. 
mucilaginosa counts were under 101 CFU/mL from days 8 to 25 and 8 to 14 for Lb. 

plantarum 16 and 62, respectively.  
Grapes have been also employed as a model to determine the antifungal 

potential of LABs (Weissella cibaria 861006 and Weisella paramesenteroides 
860509) against Penicillium oxalicum (Lan et al., 2012). After 2 days, hyphal 

development was perceived on the surface of the control samples, but no fungal 
hyphae were detected on the surface of the grapes treated with W. cibaria 

861006 until day 6 of treatment.  
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Table 3. LABs in fruit and vegetables, bakery products and dairy products (Adapted from Crowley et al., 2013). 

Food products Antifungal LAB Organism Reference 

Fruits and vegetables 

Cucumber Lactobacillus plantarum CUK501 
Aspergillus flavus, Fusarium graminearum,  
Rhizopus stolonifer, Botrytis cinerea and  
Sclerotinia minor 

(Sathe et al., 2007) 

Apples Pediococcus pentosaceus R47 Penicillium expansum (Rouse et al., 2008) 

Orange juice Lactobacillus plantarum 16 and 62 Rhodotorula mucilaginosa 
Penicillium expansum (Crowley et al., 2012) 

Grapes Weissella cibaria 860106 and 
Weissella paramesenteroides 860509 Penicillium oxalicum (Lan et al., 2012) 

Kumquats Lactobacillus plantarum IMAU10014 and a  
shuffled mutant strain (F3A3) Penicillium digitatum (Wang et al., 2013) 

Jackfruit Lactococcus lactis subsp. lactis Rhizopus stolonifer (Ghosh et al., 2015) 
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Table 3. (Continued) 

Food products Antifungal LAB Organism Reference 

Bakery products 

Bread 
Lactobacillus plantarum CRL 778, Lactobacillus 
reuteri CRL 1100, Lactobacillus brevis CRL 772 and 
CRL 796 

Aspergillus, Fusarium, and Penicillium species (Gerez et al., 2009) 

Bread Lactobacillus amylovorus DSM 19280 
Fusarium culmorum FST 4.05, Aspergillus niger 
FST4.21, Penicillium expansum FST 4.22, and 
Penicillium roqueforti FST 4.11 

(Ryan et al., 2011) 

Bread 
Lactobacillus plantarum LB1  

Lactobacillus rossiae LB5 
Penicillium roqueforti DPPMAF1 (Rizzello et al., 2011) 

Bread  

Panettone 
Lactobacillus rossiae LD108, and Lactobacillus 
paralimentarius PB12 

Aspergillus japonicus, Eurotium repens and 
Penicillium roseopurpureum 

(Garofalo et al., 
2012) 

Bread 

Lactobacillus sakei KTU05-6,  
Pediococcus acidilactici KTU05-7, 
Pediococcus pentosaceus KTU05-8,   
Pediococcus pentosaceus KTU05-9 and, Pediococcus 
pentosaceus KTU05-10 

Moulds 
(Cizeikiene et al., 
2013) 

Bread Lactobacillus amylovorus DSM19280 Moulds (Axel et al., 2015) 
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Table 3. (Continued) 

Food products Antifungal LAB Organism Reference 

Dairy products 

Yoghurt and 
Cheese surface 

Propionibacterium jensenii SM11, 
Lactobacillus paracasei subsp. paracasei SM20,  
Lactobacillus paracasei subsp. paracasei SM29,  
and Lactobacillus paracasei subsp. paracasei SM63 

Candida pulcherrima, Candida magnoliae, 
Candida parapsilosis and Zygosaccharomyces bailii 

(Schwenninger & 
Meile, 2004) 

Yoghurt 

Lactobacillus rhamnosus K.C8.3.1I, Lactobacillus 
paracasei K.C8.3.1Hc1, Lactobacillus zeae 
K.V9.3.1Ng and Lactobacillus harbinensis
K.V9.3.1Np

Debaryomyces hansenii, Kluyveromyces lactis, 
Kluyveromyces marxianus, Penicillium 
brevicompactum, Rhodotorula mucilaginosa and 
Yarrowia lipolytica 

(Delavenne et al., 
2013) 

Yoghurt Lactobacillus casei AST18 Penicillium sp. (Li et al., 2013) 

Cottage cheese Lactobacillus plantarum isolates Penicillium commune (Cheong et al., 
2014) 

Cheddar cheese Lactobacillus amylovorus DSM 19280 Penicillium expansum FST 4.22 (Lynch et al., 2014) 

Yoghurt Lactobacillus paracasei DGCC 2132 Penicillium sp. nov. DCS 1541 and, 
Penicillium solitum DCS 302 

(Aunsbjerg et al., 
2015) 
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In order to investigate the antifungal bio-preservation potential of Lb. 
plantarum IMAU10014 and a shuffled mutant strain F3A3, kumquats were 

infected with P. digitatum by Wang et al. (2013). The results revealed mycelia and 
spores on the control samples 2 treatment days. However, no mould growth was 

observed on the kumquats sprayed with the F3A3 strain, which is a promising bio-
preservative agent. Gosh et al. (2015) employed jackfruit to study the antifungal 

activity of LAB against R. stolonifer. To this end, harvested jackfruits were treated 
with Lactococcus lactis subsp. lactis followed by an application of fungal spores. 

Only 4-27% rot was observed on jackfruits after 15 days of treatment with the 
LAB.   

4.1.2.2 Bakery products 

Bakery products are a problem for the food industry since fungal development 

provokes high economic loss and health costs (Garofalo et al., 2012; Crowley et 
al., 2013). For this reason, Gerez et al. (2009) evaluated the ability of LABs to 

inhibit Aspergillus, Fusarium, and Penicillium in bread. In this case, LABs were used 
in the formulation of a mixed starter culture with Saccharomyces cerevisiae in 
bread making. Loaves of bread were surface-sprayed with a conidial suspension of 

Aspergillus niger. When the LAB was used, fungal growth was delayed for 5 days 
compared to the control samples. A similar methodology was employed with 

slices of bread to determine the antifungal activity of Lactobacillus amylovorus 
strains. The capacity of both Lb. amylovorus strains to inhibit the environmental 

mould outgrowth in an industrial bakery was studied (Ryan et al., 2011). 
Therefore, Lb. amylovorus sourdough bread delayed the outgrowth of the 

environmental fungi. Certainly, the maximum shelf life was obtained for the Lb. 
amylovorus sourdough bread tested against the mould flora obtained in the 

bakery (Table 3).  
Furthermore, bread slices of sourdough fermented wheat germ bread with 

Lb. plantarum LB1 and Lactobacillus rossiae LB5 were nebulised with Penicillium 
roqueforti DPPMAF1 to study their antifungal activity (Rizello et al., 2011). After 
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21 days of inoculation, mycelial growth was visible in slices of sourdough-
fermented wheat germ bread. The contamination score proposed by the authors 

suggested 10% contamination. 
Garofalo et al. (2012) investigated the antifungal effectiveness of Lb. rossiae 

LD108 and Lactobacillus paralimentarius PB127 against Aspergillus japonicus M1 
on biologically acidified dough prepared with sourdoughs to make bread and 

panettone. The sourdoughs inoculated with Lb. rossiae LD 108 were able to 
prolong the shelf life of this product by around 30 days compared to baker's yeast 

bread (11 days). On the contrary, the sourdoughs inoculated with Lb. 
paralimentarius PB127 prolonged shelf life by only 19 days compared with baker’s 

yeast bread which prolonged the shelf life of the sample 39 days. The results 
revealed that the antifungal activity of Lb. rossiae LD108 sourdough allowed 
fungal growth to be inhibited for over 4 months in panettone cakes contaminated 

with A. japonicus M1 spores.  
The antifungal activity of Pediococcus pentosaceus KTU05-9 used as a starter 

on wheat bread samples that contained sourdough, and the antifungal activity of 
Pediococcus acidilactici KTU05-7, P. pentosaceus KTU05-8 and KTU05-10, sprayed 

on the bread surface against moulds, was evaluated by Cizeikiene et al. (2013). 
Their results highlighted that the addition of sourdough prepared with P. 

acidilactici KTU05-7, P. pentosaceus KTU05-8 and KTU05-10 reduced fungal 
spoilage of bread better than the control samples. The P. acidilactici KTU05-7, P. 

pentosaceus KTUO5-8 and KTU05-10 single cell suspensions, sprayed on bread 
surfaces, inhibited the growth of fungi over an 8-day storage period, whereas the 

control bread exhibited visual fungi colonies. Recently, Axel et al. (2015) tested Lb. 
amylovorus DSM19280 antifungal activity as a starter culture in sourdough. 

Therefore, slices of bread were exposed to the bakery environment for 5 min on 
each side and were then packed in sterile bags. The addition of Lb. amylovorus 
DSM19280 prolonged the bread shelf life by 4 days compared to the control 

samples, where moulds were visible after 2 days. 
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4.1.2.3 Dairy products 

Dairy products are also susceptible to fungal attack and LABs could be used to 
prevent fungi contamination in cheese and yoghurt products (Table 3). On this 

view, Schwenninger and Meile (2004) tested the antifungal activity of 
Propionibacterium jensenii SM11 and Lactobacillus paracasei subsp. paracasei 

strain SM20, SM29 or SM63 against yeasts, on yoghurt and cheese surfaces. 
Yoghurts prepared with P.  jensenii SM11 and Lb. paracasei subsp. paracasei 

strains SM20, SM29 or SM63 were contaminated with Candida pulcherrima, 
Candida magnoliae, Candida parapsilosis and Zygosaccharomyces bailii. According 

to the authors, the samples treated with lactobacilli and propionibacteria at the 
108 CFU/ mL concentration showed a constant number of yeasts during the 

evaluation period at levels of 102 CFU/mL. Moreover, cheese samples, were 
permeated in a protective culture (P. jensenii SM11 and Lb. paracasei subsp. 

paracasei SM20, SM29 or SM63). Afterwards, samples were contaminated with C. 
pulcherrima, C. magnoliae, C. parapsilosis and Z. bailii. The cheeses formulated 

with P. jensenii SM11 and Lb. paracasei subsp. paracasei SM20 presented yeast 
development (4.11 log CFU/g on treatment day 21). Likewise, Delavenne et al. 
(2013), employed yoghurt formulated with Lactobacillus harbinensis K.V9.3.1Np, 

Lactobacillus rhamnosus K.C8.3.1I and Lb. paracasei K.C8.3.1Hc1 and Lactobacillus 
zeae K.V9.3.1Ng to evaluate their antifungal activity against Debaryomyces 

hansenii, Rhodotorula mucilaginosa, Yarrowia lipolytica, Penicillium 
brevicompactum, Kluyveromyces lactis and Kluyveromyces marxianus. Hence, the 

surface of yoghurts was contaminated by inoculating the target fungi. Only the Lb. 
rhamnosus K.C8.3.1I strain was able to inhibit R. mucilaginosa growth (<2 log 

CFU/g). Conversely, fungi strains were completely inhibited (<2 log CFU/g) in 

the samples formulated with Lb. harbinensis K.V9.3.1Np.  Similarly, Li et al. 

(2013) studied the antifungal potential of Lactobacillus casei AST18 to 

control spoilage of yoghurts from Penicillium sp. In this case, no fungal 
development was noted in the samples maintained at 4 °C, whereas the 
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samples stored at 30 °C exhibited mould development after 10 treatment days for 
the 2% and 4% AST18-added yoghurt samples. The samples that contain 6% and 

8% of Lb. casei AST18 presented mould growth after 14 days. Indeed, 18 days 
after beginning treatment, all the samples presented mould development. 

Cheong et al. (2014) tested the antifungal effect of Lb. plantarum isolates on 
cottage cheese against Penicillium commune. To this end, cheese samples were 

inoculated with LAB and incubated for 2 days at 24 °C. Cottage cheese samples 
treated with Lb. plantarum isolates started to show mould development 18 days 

after treatment, while the control samples displayed deterioration after 4 days. 
Another work focused on preventing the cheese spoilage produced by P. 

expansum FST 4.22, which was carried out by Lynch et al. (2014). Cheese was 
formulated using a starter mixed with Lb. amylovorus DSM 19280 as an adjunct 
culture. Lb. amylovorus DSM 19280 delayed fungi development compared to the 

control samples (from 8 to 12 days).  
Finally, Aunsbjerg et al. (2015) investigated the antifungal action of Lb. 

paracasei DGCC 2132 against Penicillium sp. nov. DCS 1541 and Penicillium solitum 
DCS 302. For this purpose, yoghurt samples were inoculated with the target fungi. 

The results revealed the antifungal properties of LAB against Penicillium sp. nov. 
DCS 1541 and P. solitum DCS 302 compared with the control samples after 4 days 

of treatment at 25 °C.  

4.2 Antagonistic yeasts 

The use of antagonistic yeasts as biopreservative microorganisms has been 
studied in depth because they possess some important features that increase 

their suitability as biocontrol agents. Many have simple nutritional requirements 
and are able to colonise dry surfaces and to grow on inexpensive substrates in 

bioreactors (Chanchaichaovivat et al., 2007). Yeast present on fruit surfaces 
represents the main yeast group used to manage postharvest diseases (Liu et al., 
2013). 
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4.2.1 Mode of action 

Numerous authors have suggested different modes of action of antagonistic 
yeasts against fungi, which seem to be related to: i) antifungal hydrolases (El 

Ghaouth et al., 2003); ii) production of pigments, which causes iron depletion in 
the cell environment (Sipiczki et al., 2006); iii) induction of some defence-related 

proteins attributed to the metabolism of proteins, defence response, 
transcription, energy metabolism and cell structure (Chan et al., 2007); iv) 
presence of enzymes associated with sugar metabolism (Chan et al., 2007); v) 

production of volatile organic compounds (Parafati et al., 2015); vi) tolerance to 
reactive oxygen species (ROS) (Liu et al., 2012); vii) induction of ROS production in 

host (Marcarisin et al., 2010); and viii) biofilm formation (Parafati et al., 2015).   

4.2.2 Incorporation into food systems 

Utilisation of antagonistic yeasts as biocontrol agents has been studied by 
different authors in apples, grapes, peaches, pears, and strawberries. Table 4 

presents the in vivo applications of antagonistic yeasts.  
El Ghaouth et al. (2003) determined the prevention of B. cinerea disease on 

apples treated with Candida saitoana.  No effect on lesion development was 
noted in the samples treated with the antagonistic yeast 1 day before B. cinerea 
contamination. Conversely, lesion development effectively reduced on the 

samples to which C. saitoana was applied 2 and 3 days prior to mould 
contamination.  In addition, the efficacy of Candida guillermondii and S. cerevisiae 

M25 on preserving apples from P. expansum was evaluated by Scherm et al. 
(2003). The lesion diameter was lower than 55% for the C. guillermondii-treated 

samples, but was under 30% for the S. cerevisiae M25-treated apples after 7 days 
of storage. However, all the control samples showed a lesion diameter of 100%.  

Li et al. (2011) studied the antagonistic activity of R. mucilaginosa against P. 
expansum and B. cinerea, which cause grey and blue mould in apples. For this 
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purpose, apples were wounded and pipetted with different yeast suspensions. 
The authors revealed that R. mucilaginosa inhibited P. expansum growth 

completely, while the disease incidence of the control samples was 97.2%. 
Indeed, B. cinerea decay and lesion diameter decreased by 97.1% and 56.1% in 

comparison with control samples. Likewise, the efficacy of Pichia guilliermondii 
strain M8 against B. cinerea using apples as a model was investigated by Zhang et 

al. (2011). These authors determined that P. guilliermondii M8 was able to lower 
B. cinerea incidence from 45% to 20% compared to the control samples.

Grapes have also been employed as models to describe the antifungal
potential of different antagonistic yeasts. S. cerevisiae and Schizosaccharomyces 

pombe strains were employed to prevent grey mould on grapes after harvesting 
(Nally et al., 2012). S. cerevisiae and Sch. pombe showed a reduction over 70%, 
whereas 100% of the control samples presented mould development. Calvo-

Garrido et al. (2013a) investigated the effectiveness of Candida sake CPA-1 
combined with Fungicover® against botrytis bunch decay in organic vineyards. The 

control samples had an incidence and severity of 90% and 22%, respectively. 
Similarly, the sour rot of grapes to be controlled by biological agents was 

described by Calvo-Garrido et al. (2013b). The combination of C. sake CPA-1 with 
Fungicover®, Ulocladium oudemansii, and chitosan was applied to organic 

vineyards, which reduced the severity of sour rot from 47% to 70%, compared 
with the control samples.  

Lutz et al. (2013) tested Cryptoccocus albidus NPCC 1248, Pichia membranifaciens 
NPCC 1250, Cryptoccocus victoriae NPCC 1263 and NPCC 1259 to prevent P. 

expansum and B. cinerea growth on pears. The results showed that C. albidus 
NPCC 1248, P. membranifaciens NPCC 1250 and C. victoriae NPCC 1263 were able 

to reduce P. expansum disease and lesion diameter was ≥ 50%, but was ≥ 30% for 
B. cinerea. The control samples had a disease incidence of 100% for both mould
strains, while lesion diameter was 35% and 80% for P. expansum and B. cinerea,

respectively.
Peaches are easily contaminated by R. stolonifer in some countries like China, 

where it is one of the most relevant postharvest problems. For this reason, Xu et 



Introduction 

37 

al. (2013) studied the effectiveness of Pichia caribbica (JSU-1) against R. stolonifer 
on peaches. The highest concentration of the antagonistic yeast employed in 

tests, showed the lower incidence (4%) and lesion diameter (26 mm) compared 
with the control samples (100% and 58 mm, respectively). 

Recently, the influence of strawberry preharvest spraying with Cryptococcus 
laurentii on the postharvest decay of fruits was tested against B. cinerea by Wei et 

al. (2014). The disease incidence of grey mould decay was higher than 70% at 4 °C 
and 20 °C in the control samples. On the contrary, the application on C. laurentii 

at 6, 3 and 0 days prior to harvesting gave the best results, and disease incidence 
was lower than 22% at both temperatures.  

Even though a wide variety of yeasts has been reported to be good 
postharvest biocontrol agents, very few yeasts that are considered to act as 
biocontrol products are available on the market (ShemerTM, CandifruitTM and Boni-

ProtectTM). ShemerTM (AgroGreen, Asgdod) is a fungicide based on Metschnikovia 
fructicola. It is registered for postharvest use in Israel, but not in Europe. 

CandifruitTM (SIPCAM INAGRA, S.A., Valencia, Spain) is based on C. sake, which has 
been commercially available only in Spain from 2008 for pome fruits against 

postharvest pathogens (Mari et al., 2010). Boni-ProtectTM (Bio-ferm, Germany) 
contains two strains of Aureobasidium pullulans, isolated from untreated apple 

trees. Both strains act competitively against fungal pathogens, which is why the 
development of resistances is not possible. Since 2002, Boni-ProtectTM has been 

used in field trials and can be incorporated without any pre-harvest interval 
before harvest, or even between picking dates. 
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Table 4. In vivo applications of antagonistic yeasts. 

Food products Antagonistic yeast Organism Reference 
Apple Candida saitoana Botrytis cinerea (El Ghaouth et al., 2003) 

Apple Candida guillermondii 
Saccharomyces cerevisiae M25 Penicillium expansum  (Scherm et al., 2003) 

Apple Rhodotorula mucilaginosa Penicillium expansum and Botrytis cinerea (Li et al., 2011) 
Apple Pichia guilliermondii M8 Botrytis cinerea (Zhang et al., 2011) 

Grapes Saccharomyces cerevisiae and  
Schizosaccharomyces pombe Botrytis cinerea (Nally et al., 2012) 

Grapes Candida sake CPA-1 Botrytis cinerea (Calvo-Garrido et al., 2013a) 

Grapes Candida sake CPA-1 and  
Ulocladium oudemansii  Botrytis cinerea (Calvo-Garrido et al., 2013b) 

Pear 

Cryptoccocus albidus NPCC 1248, 
Pichia membranifaciens NPCC 1250, 
Cryptoccocus victoriae NPCC 1263 and 
Cryptoccocus victoriae NPCC 1259 

Penicillium expansum and Botrytis cinerea (Lutz et al., 2013) 

Peaches Pichia caribbica JSU-1 Rhizopus stolonifer (Xu et al., 2013) 
Strawberries Cryptococcus laurentii 2.3803 Botrytis cinerea (Wei et al., 2014) 

Introduction 
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5. FUTURE TRENDS

Despite the promising potential of preventing fungal contamination of natural
compounds such as EOs, phenolic compounds and glucosinolates among others, 

they all have present some important limitations when applied to food products 
given their impact on the final product’s sensory profile (Perdones et al., 2012; 

Aloui and Khwaldia, 2016). The incorporation of these compounds into O/W 
emulsions, nanoemulsions, edible coatings and active packaging could overcome 
these drawbacks, but these techniques do not allow to completely mask the 

flavour of these antifungal agents. New studies now focus on studying the 
immobilisation of EOs on the surface of different materials. Immobilisation 

guarantees microbial action, while the natural agent’s volatility is suppressed 
(Chen et al., 2009; Gharbi et al., 2015; Higueras et al., 2015). The immobilisation 

process has being used to develop antimicrobial materials that contain peptides 
and enzymes (Yala et al., 2011; Hanušová et al., 2013), but further research should 

centre on the practical applications of these innovative systems, particularly on 
testing the fungicidal effect on packaged foodstuffs during the completely storage 

period. Toxicity studies should also be carried out to confirm the safety of these 
materials before being employed in food commodities. 

Recently, filters impregnated with silver nanoparticles have been used as 
antimicrobial agents, and have suggested that this technique can be further used 

by the food industry in a vast variety of liquid products thanks to its low cost and 
high efficiency (van Halem et al., 2009; van Erven Cabala et al., 2015; Fernández et 
al., 2016). These promising results offer new uses of antifungals such as EOs or 

glucosinolates immobilised on different materials and impregnated on 
biodegradable filters to preserve liquid food products.  

The persistence of antifungal activity during storage periods is another 
problem to solve. The efficacy of emulsions, edible coatings, and active packaging 

materials that contain active compounds diminishes with time when applied to 
food systems (Sung et al., 2013; Nguyen Van Long et al., 2016). To this end, 
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further studies that focus on developing new antifungal systems which can be 
restored against losses of active compounds are required. 

Regarding the use of biocontrol agents, only some antagonistic yeasts are 
commercially available. Many present poor performance and inconsistency in 

commercial circumstances as knowledge about their mode of action is scarce 
(Spadaro and Droby, 2016; Romanazzi et al., 2016). Future trends should focus on 

understanding the interactions among antagonistic yeasts, fungi, fruits and the 
microenvironment in order to develop economical and great formulations and 

operation processes. Antagonistic yeasts should be incorporated before 
pathogenic fungi establish on fruits to thus avoid their infection as a result of 

preventing propagules of pathogenic fungi on the host superficies (Romanazzi et 
al., 2016). Epiphytic microflora studies should be also considered since microbial 
communities present on fruit surfaces could affect disease control through their 

interaction with host fruits, the pathogenic fungi, and biocontrol agents (Massart 
et al., 2015).  

Interactions between plant or animal antifungals with the macromolecules 
present in food products and external factors should also be studied. This 

information will provide reliable data to producers and consumers about their 
advantages compared with chemical additives and fungicides.  

In addition, despite the number of works conducted on the laboratory, very 
few have been done on a large-scale. Hence, further studies conducted in 

industrial trials and field or greenhouse trials to test different antifungal 
emulsions, nanoemulsions, coatings and biocontrol agents are needed.  
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6. CONCLUSIONS

This review shows the main advantages of using different natural antifungals
to preserve food products from fungi spoilage. In general, plant EOs, chitosan and 

biocontrol agents have attracted growing interest of researchers for being used as 
food preservatives given their antifungal, antimycotic and pest control properties. 

New strategies are being studied to overcome the drawbacks of using some 
natural antifungals, such as sensory modifications, which essential oils, phenolic 
compounds, glucosinolates or other volatile compounds cause in food products. 

The protection or encapsulation of these natural agents into oil-in-water 
emulsions and nanoemulsions, their incorporation into edible films and active 

packaging systems, and their combination with other natural compounds, such as 
chitosan or phenolic extracts, improve their antifungal properties while reducing 

their doses. In the same way, use of microorganisms and/or their metabolites to 
control fungi spoilage is a good alternative to chemical additives for a wide variety 

of food products. 
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The general objective of this Doctoral Thesis iss to study the use of different 
antifungal systems as O/W emulsions and nanoemulsions and mesoporous silica 

particles, to control deterioration produced by moulds and yeasts in strawberry 
jam.  

In order to achieve the above-mentioned objective, the following specific 
objectives are established: 

 To evaluate the influence of the formulation of nanoemulsion on the in
vitro antifungal activity of the cinnamon leaf, lemon and bergamot oil

nanoemulsions against A. niger.
 To elucidate the effect of the clove and cinnamon leaf emulsion

formulations on the physico-chemical and antifungal activity against genera
Aspergillus and Penicillium; and to evaluate the impact of these emulsions
on the sensory profile of strawberry jam.

 To optimise the methodology used to prepare stable O/W emulsions in
order to reduce losses of EO during preparation.

 To analyse the feasibility of using cinnamon bark-xanthan gum emulsions to
control the deterioration of strawberry jam caused by A. flavus, A. niger, P.

expansum, Z. bailii and Z. rouxii, and the product’s sensory profile after
incorporating emulsions.

 To study the in vitro and in vivo antifungal properties of the stable O/W
emulsions prepared with different antifungal agents (cinnamon bark

essential oil, zinc gluconate and trans-ferulic acid) against A. niger, and their
sensory impact on strawberry jam.

 To evaluate the immobilisation of eugenol and thymol on the surface of
mesoporous silica particles to control the strawberry jam spoilage caused

by A. niger and Z. bailii, and to reduce the impact on the jam’s sensory
profile.
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Abstract 

Only exiguous data are currently available on the antifungal properties of 
essential oil (EO) nanoemulsions against spore-forming microorganisms. The aim 

of this work is to develop physically stable nanoemulsion-based delivery systems 
for different EOs (cinnamon leaf, lemon, and bergamot), to exploit their antifungal 

properties against Aspergillus niger. The inhibition of mycelial radial growth and 
spore germination were used as indicators of antifungal activity of the 
nanoemulsions, which were prepared at 3 wt% EO, using non-ionic Tween 80 

(T80) or anionic whey protein isolate (WPI) (1 wt%) as emulsifiers, and sunflower 
oil (1 wt%) as ripening inhibitor. The nanoemulsions were physically stable over 

seven days of accelerated aging at 35 °C. The minimal inhibitory concentrations of 
free cinnamon leaf and of both citrus EOs were 0.35 and 5.50 µg/g, respectively. 

The encapsulation of cinnamon leaf EO in nanoemulsions significantly enhanced 
the inhibiting effect against A. niger mycelial growth and spore germination, with 

respect to the free EO. In contrast, for citrus EOs, the encapsulation in 
nanoemulsions generally decreased the antifungal activity, likely because of the 

nanoemulsion acting as a hydrophobic sink for the main constituents of citrus 
EOs. The emulsifier played a fundamental role in the resulting antifungal activity, 

with WPI-based nanoemulsions being more effective in inhibiting the mycelial 
growth and the spore germination of A. niger than T80-based ones. The antifungal 

action was correlated to the morphological alterations observed in A. niger, such 
as the loss of cytoplasm in fungal hyphae and hyphal tip. The results of this study 
show the importance of nanoemulsions design in the development of efficient 

and stable natural antifungal agents for food applications. 

Keywords: Nanoemulsions; Essential oils; Tween 80; Whey protein isolate; 

Antifungal activity; Aspergillus niger 



Chapter 1. Section 1.1 

68 

1. INTRODUCTION

Food product deterioration during storage, caused by fungi, and especially by
moulds, is responsible for significant economic losses to the food industry. The 

most common mould genus is Aspergillus, which is a plant, animal, and human 
pathogen. It can contaminate agricultural products at different stages such as pre-

harvesting, harvesting, processing and handling. The changes associated with 
spoilage by Aspergillus species encompass the sensorial, nutritional and 
qualitative product properties. However, the most notable consequence of their 

presence is the contamination of food and feeds with mycotoxins (Perrone et al., 
2007).  

The use of chemical preservatives as antifungal agents to control fungal 
spoilage had become a common practice in the last decades. However, following 

the recent increasing consumers’ trends towards more natural and healthy food 
products, food processors have started to search for safer alternatives to replace 

synthetic additives. Plant products have been recognized and employed for food 
protection since many years (Rodriguez-Lafuente, Nerin de la Puerta, & Batlle, 

2009). Essential oils (EOs) belong to one of the most promising classes of natural 
antifungal preservatives (Varma & Dubey, 2001; Tian et al., 2011). However, 

despite their enormous potential of application, the use of EOs as food 
preservatives is strongly limited by their high volatility, low water-solubility and 

strong susceptibility to environmental conditions. The encapsulation of EOs in oil-
in-water (O/W) nanoemulsions significantly improves their water dispersibility, 
and, by providing large surface areas of contact with the microorganisms, also 

contributes to enhancing the antimicrobial effectiveness of EOs (Donsì & Ferrari, 
2016). 

The main purpose of this study is the investigation of the effects on the 
antifungal activity against Aspergillus niger of three different EOs (cinnamon leaf, 

lemon, and bergamot), when encapsulated in O/W nanoemulsions, formulated 
with two different emulsifiers of approved use in foods, such as T80 and WPI. In 

particular, the antifungal activity of the developed nanoemulsions is evaluated in 
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terms of the induced inhibition of fungal growth, of mycelial growth, and of spore 
germination, as well as of the morphological damages caused to fungal hyphae 

and hyphal tips. The T80, a non-ionic low-mass surfactant, is characterized by high 
surface activity, which translates in the quick absorption at O/W interfaces, 

efficiently preventing the coalescence of the droplets (Li et al., 2015). Negatively 
charged whey proteins are instead able to form a protective membrane around 

the oil droplets, which prevents droplet aggregation by steric hindrance and 
electrostatic repulsion (Hebishy, Buffa, Guamis, Blasco-Moreno, & Trujillo, 2015; 

Teo et al., 2016). 

2. MATERIALS AND METHODS

2.1 Microorganism, culture media, and reagents 

The strain of Aspergillus niger (CECT 20156) was supplied by the Spanish Type 
Culture Collection (CECT, Burjassot, Spain). For culture media, Potato Dextrose 

Broth and Potato Dextrose Agar were used, all provided by Scharlab (Barcelona, 
Spain).  

The EOs used in this work were cinnamon leaf (CEO), purchased from Sigma-
Aldrich (Milan, Italy), lemon (LEO) and bergamot (BEO), which were both supplied 

by CAPUA s.r.l. (Reggio Calabria, Italy). In some emulsion formulations, the EOs 
were mixed with sunflower oil purchased from Sagra (Lucca, Italy). T80 (Sigma-
Aldrich, Milan, Italy) and WPI (Volactive UltraWhey 90, Volac Socoor S.r.l., Italy) 

were employed as emulsifying agents. According to manufacturer specifications, 
T80 has a molecular weight of 1.31 kDa, whereas WPI, consisting of β-

lactoglobulin (50-60% w/w), glycomacropeptide (15-20% w/w), α-lactalbumin (15-
20% w/w), bovine serum albumin (1.0-2.0% w/w), immunoglobulin G (1.0-2.0% 

w/w), immunoglobulin A (0.1-1.0% w/w), and lactoferrin (0.1-0.5% w/w), had an 
average molecular weight of 18.2 kDa. 
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A. niger mycelial material and spores were fixed with a lactophenol-cotton
blue solution, purchased from Sigma-Aldrich (Milan, Italy). 

2.2 Characterization of free EOs 

2.2 1 Gas chromatography-mass spectrometry analysis 

Gas chromatography-mass spectrometry (GC-MS) analysis of CEO, LEO, and 

BEO was performed on a 6890/5975 inert GC-MS (Agilent Technologies, USA, 
equipped with a HP-5 fused silica capillary column (30 m x 0.25 mm x 0.25 µm) to 

determine the EOs composition. The oven temperature was held at 60 °C for 3 
min, then raised to 100 °C at 10 °C/min, to 140 °C at 5 °C/min, and finally to 240 °C 
at 20 °C/min. Helium gas was used as the carrier gas at a constant flow rate of 1 

mL/min. Injector and MS transfer line temperatures were set at 250 °C and 230 
°C, respectively. Parameters for MS analysis were EI Ion source, electron energy 

70 eV, solvent delay 3 min and m/z 40-550 amu. The identification of the EO 
components was performed by matching mass spectra with the standard mass 

spectra from the NIST MS Search 2.0 library. The results were expressed as the 
percentage of relative area (%) of two runs for each EO. 

2.2.2 Antifungal activity of free EOs 

2.2.2.1 Mycelial growth and Minimal Inhibitory Concentration 
assay 

The CEO, LEO, and BEO were individually examined against A. niger as 

described by Ribes, Fuentes, Talens, and Barat (2016). The mould was inoculated 
on Potato Dextrose Agar and incubated at 25 °C for 7 days. Subsequently, the 

spores were counted in a hemocytometer to achieve an inoculum density of 106 
CFU/mL.  
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Different EO concentrations were examined on the basis of previous studies 
(Sharma & Tripathi, 2008; Gemeda, Woldeamanuel, Asrat, & Debella, 2014): 0.10, 

0.25, 0.35, 0.50, 1.00, 1.50 and 2.00 µg/g for CEO; and 0.25, 0.50, 1.00, 1.50, 2.00, 
2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50 and 6.00 µg/g for LEO and BEO. The 

selected maximum concentrations are all below the solubilities in water of the 
main components, which are of 1.9 mol/mol for eugenol and of 1.0 mol/mol for 

D-limonene (Miller & Hawthorne, 2000), corresponding to 17.3 µg/g and 7.6 µg/g,
respectively. The EOs were added to aliquots of 15 g of Potato Dextrose Agar

containing 0.1 wt% T80, to ensure the even dispersion of the EOs, according to a
procedure previously described (Tao, Jia, & Zhou, 2014; Ribes et al., 2016), into

Petri dishes. The EOs were added to the culture medium at 50 °C. Control Petri
dishes, without EOs, were prepared following the same procedure. The centre of
each plate tested was inoculated with a Potato Dextrose Agar disc (7 mm

diameter) taken from the edge of zero-day-old fungi culture, previously spread
with 100 µL of the spore solution (106 CFU/mL). Each plate was sealed with

Parafilm® and incubated for 7 days at 25 °C.

At the end of the incubation period, the edge of the fungi culture was 
observed using a light microscope at 100×, 200× and 400× magnification. The 

mycelial material was fixed by using lactophenol-cotton blue solution. Growth 
inhibition of treatment against control was calculated using equation 1: 

(1) 

where C and T represented the mycelial growth (mm) in the control and 

treated plates, respectively. 
Furthermore, the Minimal Inhibitory Concentration (MIC) of the CEO, LEO, and 

BEO against A. niger was determined. The MIC was defined as the lowest 
concentration in the serial dilution of the antifungal agents, which resulted in the 

lack of visible growth after 7 days of incubation at 25 °C.  
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All tests were performed in duplicate, for each treatment, which was repeated 
twice. 

2.2.2.2 Spore germination assay 

Spores from seven-day-old A. niger culture were collected by adding 1 mL of 
sterile water containing 0.1 wt% T80 to each Petri plate and rubbing the surface 

with a sterile L-shaped spreader. The spores were transferred to a tube containing 
5 mL of sterile water and 0.1 wt% T80 and counted in a hemocytometer to 
achieve an inoculum density of 106 CFU/mL.  

The same EO concentrations used in the mycelial growth assay were 
examined. In this case, they were added to 5 mL of Potato Dextrose Broth with 0.1 

wt% of T80, to ensure the even dispersion of the EOs, and 100 µL of the inoculum 
density were added to each tube. Potato Dextrose Broth tubes with no EOs were 

used as controls. The tubes were incubated 24 h at 25 °C. At the end of the 
incubation period, germinated spores were observed using a light microscope at 

400× magnification. Each slide was fixed in lactophenol-cotton blue solution. The 
assay was run in duplicate and the efficacy of the EO treatments was evaluated by 

looking for the presence of germ tubes. Each treatment was repeated twice. 
Results were expressed in terms of the percentage of spore germination inhibition 

by comparing control and treated plates according to equation 2: 

(2) 

where sc and st are the average numbers of spores germinated in control 
plates and treated plates, respectively. 
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2.3  O/W emulsions and nanoemulsions 

2.3.1 Preparation and characterization 

O/W nanoemulsions with a total oil phase of 4 wt% and an aqueous phase of 

96 wt% were prepared using the High Pressure Homogenization (HPH) technique 
(Donsì, Sessa, & Ferrari, 2012b). The nanoemulsions were prepared with the oil 

phase consisting exclusively of the EO (4 wt% of total formulation), or of the EO 
mixed with sunflower oil (ripening inhibitor) at a 3:1 wt ratio, and hence with 3 

wt% of EO and 1 wt% of sunflower oil of total formulation. The oil phase consisted 
of EO, to which sunflower oil was eventually added as Ostwald ripening inhibitor. 

The aqueous phase contained 1 wt% of T80 or WPI. Primary emulsions were 
obtained by High Shear Homogenization (HSH) using an Ultra Turrax T25 (IKA 

Labortechnik, Germany) at 24,000 rpm for 4 min, maintaining the samples in an 
ice bath. The primary emulsions were then processed 3 times at 200 MPa by using 

an HPH system equipped with a 100 μm diameter orifice valve (model WS1973, 
Maximator JET GmbH, Schweinfurt, Germany). The inlet temperature was set at 5 

°C and the outlet temperature was reduced to 5 °C by using a heat exchanger 
immediately downstream of the homogenization valve. 

The mean droplet size and the ζ-potential of the samples were determined at 
25 °C using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK), 
equipped with dynamic light scattering and ζ-potential analyser. The samples 

were loaded in the thermostated cell of the system, with an equilibration time of 
5 min. Upon the analysis of the dynamic light scattering data and electrophoretic 

mobility, the software calculated the mean droplet size (dH) and the polydispersity 
index (PdI), using the Stokes-Einstein equation, and the ζ-potential using the 

Smoluchowsky model. The mean droplet size was measured on undiluted 
samples, whereas ζ-potential was measured on samples diluted 10-fold with 

bidistilled water. Accelerated ageing tests were carried out on samples stored at 
35 °C in a thermostated orbital shaker, with rotational speed set at 150 rpm. 
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All the primary emulsions and nanoemulsions prepared were subjected to pH 
measurement with a Mettler Toledo SevenEasy S20 pH meter (US). 

Each measurement was performed in triplicate. 

 

2.3.2 In vitro antifungal activity  

The study of the in vitro antifungal activity of the O/W emulsions and 
nanoemulsions was conducted on the basis of the results of the measurements of 

the antifungal activity of free EOs. 

 

2.3.2.1 Mycelial growth assay 

The methodology followed in the mycelial growth assay of the emulsions and 
nanoemulsions was the same previously described for the free EOs (Section 
2.2.2.1). The mycelial growth assay of the O/W emulsions and nanoemulsions was 

carried out using a final concentration of 0.25 µg/g of CEO and 4.0 µg/g of the 
citrus oils (LEO and BEO), which were proved to be sufficient to obtain a mycelial 

growth inhibition higher than 50% than control. Control samples were prepared 
with T80 or WPI, replacing the EOs with sunflower oil. 

The edge of the fungi culture was observed using a light microscope at 100×, 
200× and 400× magnification. The mycelial material was fixed by using 

lactophenol-cotton blue solution. 
Each treatment was repeated twice. Each assay was conducted in duplicate. 
 

2.3.2.2 Spore germination assay 

In order to evaluate the spore germination of A. niger, the same methodology 
followed in the spore germination test of free EOs was employed. In this case, the 

final concentrations of encapsulated EOs were 0.1 µg/g of CEO and 1 µg/g of the 
citrus oils (LEO and BEO) in 5 mL of Potato Dextrose Broth. Control tubes were 
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prepared with T80 or WPI, replacing the EOs with sunflower oil. The tubes were 
incubated 24 h at 25 °C. At the end of the incubation period, germinated spores 

were observed using a light microscope at 400× magnification.  
Each treatment was repeated twice. Each count of germinated spores was 

conducted in duplicate. 

2.4 Statistical analysis 

The results obtained in the physicochemical characterisation of the O/W 

emulsions and nanoemulsions and of their antifungal activity were analysed by a 
multifactor analysis of variance (multifactor ANOVA). The effect of EOs on the 

radial growth and spore germination inhibition (%) was evaluated by one-way 
ANOVA. The least significance procedure (LSD) was used for the means 

comparison at the 5% level of significance. Data were statistically processed by 
Statgraphics Centurion XVI. 

3. RESULTS AND DISCUSSION

3.1 Composition of the EOs 

The components of the different EOs (CEO, LEO, and BEO) were identified by 
GC-MS analysis (Table 1). The main compounds of the CEO were eugenol 

(83.04%), benzyl benzoate (3.84%), caryophyllene (3.04%) and aceteugenol 
(2.42%). Similar compositions have been identified by Singh, Maurya, de 

Lampasona and Catalan (2007). Eugenol has been reported to be an excellent 
fungicide against a wide range of fungi (Bakkali, Averbeck, Averberck, & Idaomar, 

2008). 
The main components of the LEO were D-limonene (68.56%), β-pinene 

(13.80%) and τ-terpinene (10.92%). The BEO exhibited a very similar composition, 
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with the main components being also D-limonene (49.69%), β-pinene (13.19%) 
and τ-terpinene (9.13%), together with β-linalool (14.56%). These compositions 

are in agreement with those reported by Franceschi, Grings, Frizzo, Oliveira, and 
Dariva (2004). Citrus EOs are typically complex mixtures of > 400 compounds, 

depending on the citrus cultivar, extraction and separation processes 
(Nannapaneni et al., 2009). Several authors have attributed the antifungal 

properties of citrus oils to components such as D-limonene, linalool, and citral 
(Sonboli, Babakhani, & Mehrabian, 2006; Tepe et al., 2006). 

3.2 Antifungal activity of free EOs 

3.2.1 Inhibition of mycelial growth 

The radial growth of A. niger after 7 days of incubation was 45 ± 3 mm. The 
addition of EOs in the culture media inhibited the mycelial growth in a 

concentration-dependent manner. The results of the mycelial growth inhibition 
(%) after 7 days of incubation at different EO concentrations have been 

summarized in Table 2. 
The CEO showed the highest antifungal activity, with the complete inhibition 

of the fungal mycelial growth being observed at concentrations >0.25 μg/g. The 
LEO and BEO exhibited a weaker activity, with the fungal development being 
completely inhibited at concentrations of LEO or BEO >5.00 μg/g. 

More specifically, the CEO caused a mycelial growth reduction of 76% at 0.25 
μg/g, and the complete growth inhibition at 0.35 μg/g, whereas both citrus EOs 

induced an inhibition of only 13% at 0.25 μg/g. The mycelial growth inhibition 
increased up to 50% for LEO and BEO concentration of 4.00 μg/g and to 100% for 

5.50 μg/g. 
The antimicrobial activity of a determined EO results from the combination of 

composition and concentration of each volatile compound, which in turn are 



Chapter 1. Section 1.1 

77 

governed by the plant variety, growing conditions and method of extraction of the 
EO (Salvia-Trujillo, Rojas-Graü, Soliva-Fortuny, & Martín-Belloso, 2015). 
Moreover, according to literature data, eugenol, the main compound in CEO, 
exhibits a stronger antifungal activity than D-limonene, which is attributed to the 

disturbance of the cytoplasmic membrane, causing the disruption of the proton 
motive force, electron flow, active transport and coagulation of cell content 

(Davidson, 1997). In contrast, D-limonene, the major component of both LEO and 
BEO, is a hydrophobic agent with a high susceptibility to oxidative degradation, 

which causes a loss of antifungal activity (Sun, 2007). Furthermore, according to 
previous studies on lemon, orange, and eucalyptus EOs, d-limonene is one of the 

weakest inhibitors of fungal growth among monoterpene compounds (Combrinck, 
Regnier, & Kamatou, 2011). 

In addition, the MIC value (no visible fungal growth after 7 days of plate 

incubation) of CEO resulted in being 0.35 μg/g, while the MIC value of both citrus 
EOs (LEO and BEO) resulted in being 5.50 μg/g. 
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Table 1. Chemical composition of the cinnamon leaf EO (CEO), lemon EO (LEO), 
and bergamot EO (BEO). Percentages of the relative areas (%) are the mean of 

two runs and were obtained from the integration of the peaks identified in the 
spectra by a selective mass detector. 

Compound CEO 
(% relative area) 

LEO 
(% relative area) 

BEO 
(% relative area) 

β-Phellandrene - 0.85 ± 0.00 4.74 ± 1.41 

Ocimene - - 0.32 ± 0.00 

β-Pinene - 13.80 ± 0.04 13.19 ± 0.01 

α-Phellandrene 0.89 ± 0.09 - - 

o-Cymene 0.47 ± 0. 19 0.29 ± 0.03 0.22 ± 0.02 

D-Limonene - 68.56 ± 0.20 49.69 ± 2.41 

β-trans-Ocimene - - 2.56 ± 0.07 

τ-Terpinene - 10.92 ± 0.02 9.13 ± 0 02 

Terpinolene 0.23 ± 0.06 0.39 ± 0.09 - 

2-Carene - - 0.36 ± 0.24 

β-Linalool 1.91 ± 0.06 - 14.56 ± 0.24

α-Terpineol 0.22 ± 0.03 0.14 ± 0.00 0.15 ± 0.01

β-Citral - 0.78 ± 0.02 - 

Citral - - 0.50 ±  0.05

α-Citral - 1.67 ± 0.05 - 

Cinnamaldehyde 0.92 ± 0.03 - - 

α-Terpineolacetate - - 0.26 ± 0 02 

Eugenol 83.04 ± 0.45 - - 

Geraniolacetate - 0.45 ± 0.04 2.24 ± 0.09 

Copaene 0.88 ± 0.02 - - 

Caryophyllene 3.04 ± 0.52 0.40 ± 0.02 0.39 ± 0.01 

α-Bergamotene - 0.93 ± 0.18 1.20 ± 0.71 

Cinnamylalcohol, acetate 1.09 ± 0.05  - - 

α-Caryophyllene 0.61 ± 0.01 - - 

β-Bisabolene - 0.83 ± 0.05 0.51 ± 0.01 

β-Guaiene 0.09 ± 0.04 - - 

Aceteugenol 2.42 ± 0.00 - - 

Caryophyllene oxide 0.34 ± 0.06 - - 

Benzyl Benzoate 3.84 ± 0.06 - - 
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3.2.2 Inhibition of spore germination 

The results of the spore germination assay of the CEO, LEO and BEO are also 
reported in Table 2. A remarkable sporicidal activity against A. niger was observed 

for the EOs employed in this study. In general, there was a positive correlation 
between EO concentrations and the inhibition of spore germination, with similar 

trends to what was observed for mycelial growth inhibition. At a CEO 
concentration of 0.10 μg/g, 46% of the spore germination was inhibited, whereas 
complete inhibition was observed at 0.35 μg/g. The effect of the CEO can be 

explained in terms of the interference with the process of spore germination, 
either through the denaturation of the enzymes or the obstruction of the 

aminoacids involved in germination (Tian et al., 2012). In the case of the LEO and 
BEO, higher concentrations than CEO were needed to inhibit spore germination. 

About 50% inhibition was observed at 1.00 μg/g, whereas complete inhibition was 
reached at concentrations ≥5.5 μg/g of both LEO and BEO. However, for 

concentrations comprised between 3.5 μg/g and 5.0 μg/g, LEO exhibited a slightly 
but significantly higher inhibition of spore germination than BEO. Therefore, oil 

composition appears to affect significantly the resistance of A. niger spores to EO 
treatments. 

3.2.3 Morphological characterization of A. niger upon exposure 

to free EOs 

The effect of the three EOs on A. niger was examined by light microscopy. 
The micrographs of the control and treated samples under conditions of 

significant but not complete inhibition (0.25 μg/g CEO, 3.5 μg/g BEO, and 3.5 μg/g 
LEO) are shown in Fig. 1. Microscope examination of the control samples (Fig. 1A) 
exhibited regular and homogenous mycelial hyphae with cylindrical principal axes, 

and the cytoplasmic content clearly distinguishable. Samples treated with 3.5 μg/g 
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of the BEO (Fig. 1D) presented a clear decrease in cytoplasmic content, with a 
visible separation of cytoplasm from the cell wall in the hyphae. 

Furthermore, the hyphae of treated samples were thinner than for control 
samples, due to the cytoplasmic coagulation. Budding of the hyphal tip and 

anomalous apex bifurcations were also observed after the CEO and LEO exposure 
(Fig. 1B and C, respectively). The observed effects on the A. niger morphology 

were similar to those previously reported by Sharma and Tripathi (2008) and by 
Tian et al. (2011). 
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Fig. 1. Bright field micrographs of Aspergillus niger treated by free EOs and EO 
emulsions and nanoemulsions. A) Control samples showing the normal growth of 
A. niger. B, C, D) Anomalies (AN), apex bifurcations (AP) and the decrease in 

cytoplasmic content (CC) are visible after exposure to free cinnamon leaf EO 
(CEO), lemon EO (LEO), and bergamot EO (BEO), respectively. 
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Table 2. Effect of the concentration and type of EOs on the inhibition of the radial fungal growth and the spore 
germination of Aspergillus niger after 7 days of incubation at 25 °C. Mean values (n=2) ± SD. 

Concentration 
of EO (µg/g) 

Radial growth 
inhibition (%) of 

CEO 

Spore 
germination 

inhibition (%) of 
CEO 

Radial growth 
inhibition (%) 

of LEO 

Spore 
germination 

inhibition (%) 
of LEO 

Radial growth 
inhibition (%) of 

BEO 

Spore 
germination 

inhibition (%) of 
BEO 

Control - - - - - -
0.10 26.7 ± 9.4a 45.9 ± 8.0a - - - -
0.25 75.6 ± 3.1b 84.7 ± 2.6b 13.3 ± 3.1a 38.0 ± 1.8a 13.3 ± 3.1a 11.2 ± 14.3a 
0.35 100.0 ± 0.0c 100.0 ± 0.0c - - - -
0.50 100.0 ± 0.0c 100.0 ± 0.0c 18.9 ± 1.6ab 42.3 ± 3.5ab 15.6 ± 6.3a 44.7 ± 3.0a 
1.00 100.0 ± 0.0c 100.0 ± 0.0c 27.8 ± 7.9bc 55.5 ± 1.6bc 33.3 ± 6.3b 45.9 ± 11.3b 
1.50 100.0 ± 0.0c 100.0 ± 0.0c 26.7 ± 9.4bc 54.8 ± 2.6bc 40.0 ± 9.4bcd 56.5 ± 3.1bcd 
2.00 100.0 ± 0.0c 100.0 ± 0.0c 34.4 ± 11.0c 83.9 ± 2.6c 37.8 ± 6.3bc 73.2 ± 6.3bc 
2.50 - 35.6 ± 3.1cd 90.0 ± 3.4cd 48.9 ± 6.3cd 90.3 ± 2.6cd 
3.00 - 46.7 ± 3.1de 98.7 ± 0.6de 46.7 ± 3.1bcd 92.0 ± 0.0bcd 
3.50 - 47.8 ± 4.7e 98.3 ± 1.0e 47.8 ± 4.7cd 95.2 ± 1.0cd 
4.00 - 53.3 ± 3.1e 99.1 ± 0.0e 52.2 ± 14.1d 96.7 ± 1.4d 
4.50 - 72.2 ± 7.9f 99.1 ± 0.5f 72.2 ± 1.6e 98.0 ± 0.5e 
5.00 - 82.2 ± 3.1f 99.4 ± 0.4f 82.2 ±  3.1e 99.2 ± 0.4e 
5.50 - 100.0 ± 0.0g 100.0 ± 0.0g 100.0 ± 0.0f 100.0 ± 0.0f 
6.00 - 100.0 ± 0.0g 100.0 ± 0.0g 100.0 ± 0.0f 100.0 ± 0.0f 

a , b, c , d, e, f, g Different superscripts indicate significant (p < 0.05) differences among EOs concentration (µg/g)
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3.3 Antifungal activity of EO nanoemulsions 

3.3.1 Nanoemulsion formulation and physical stability 

The composition of the disperse oil phase of nanoemulsions significantly 

influences both the efficiency of the emulsification process (especially through 
disperse phase viscosity and interfacial tension) and the physical stability of the 

nanoemulsions. In particular, the appreciable solubility in water of EOs induces 
peculiar coalescence phenomena, known as Ostwald ripening, which consists in 

the molecular diffusion of EOs through the continuous phase, driven by the higher 
local oil solubility around smaller droplets than larger ones. Ostwald ripening 

hence results in the growth of larger droplets at the expense of the smaller ones, 
reducing the physical stability of EO nanoemulsions (Donsì, Annunziata, Sessa, & 

Ferrari, 2011). The addition of ripening inhibitors, compounds with negligible 
water solubility such as long chain triglycerides oils, generating an entropy of 

mixing effect that counteracts the imbalance of droplet size effect (Chang, 
McLandsborough, & McClements, 2015), is reported to efficiently contrast the 

occurrence of Ostwald ripening (Donsì & Ferrari, 2016). 
In this work, on the basis of previously investigated formulations (Donsì, 

Cuomo, Marchese, & Ferrari, 2014), the nanoemulsions were prepared with the 
oil phase consisting only of EO, or of EO mixed with sunflower oil (ripening 
inhibitor) at a 3:1 wt ratio. 

The results are reported in Fig. 2 in terms of mean droplet size dH of the 
nanoemulsions, measured immediately after preparation and after 7 days of 

accelerated ageing in an orbital shaker at 35 °C, using either T80 (Fig. 2A) or WPI 
(Fig. 2B) as emulsifiers. Remarkably, the addition of sunflower oil has two 

significant advantages: (a) it improves the emulsification process by HPH, 
contributing to reduce the attainable dH value, and (b) reduces the physical 

instability phenomena. In particular, the nanoemulsions containing sunflower oil 
exhibited always smaller dH values, which remained constant during the entire 
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observation period, without showing any sign of incipient coalescence. In 
contrast, when the nanoemulsions were prepared with pure EOs, the dH values 

exhibited measurable variations already after one week of storage. For example, 
in the case of LEO, the nanoemulsions with EO alone exhibited dH values of 160 

and 430 nm for T80 and WPI, respectively, which increased to 180 and 670 nm 
after one week, whereas, when sunflower oil was added, the nanoemulsions 

exhibited dH values of 140 and 300 nm for T80 and WPI, respectively, which did 
not significantly vary after one week. 

It can hence be concluded that the nanoemulsions formulated with the blend 
of EOs and sunflower oil (3:1 wt ratio) resulted stable under the accelerated 

ageing tests conducted at 35 °C, and were therefore used in the subsequent 
fungitoxic experiments. 

3.3.2 Physicochemical characterization 

The mean droplet size (dH) and polydispersity index (PdI) of the 
nanoemulsions, containing the EOs blended with sunflower oil (3:1 wt ratio), and 

obtained by HPH are reported in Table 3, in comparison with the primary 
emulsions obtained by HSH. The results show that the type of emulsifier and the 

emulsification process significantly affected both dH and PdI. 
The use of WPI as emulsifier led to significantly (p < 0.05) higher values of 

both dH and PdI than the use of T80, in agreement with a previous study (Tastan, 
Ferrari, Baysal, & Donsì, 2016), due to the different O/W interfacial tensions and 

dynamics of absorption and reorganization at O/W interfaces, which makes T80 
more surface active (Donsì, Sessa et al., 2012). Coherently, the effect of HPH 

processing was more evident for WPI than for T80. 
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Fig. 2. Mean droplet size dH of nanoemulsions prepared using T80 (A) or WPI (B) 

as emulsifiers, and measured immediately after preparation (0 d) or after seven 
days of storage at 4 °C (7 d). The oil phase was maintained constant at 4 wt%, and 

consisted either of cinnamon leaf EO (CEO), lemon EO (LEO), and bergamot EO 
(BEO) alone (4%) or of the EO mixed with sunflower oil at 3:1 wt ratio (3%). 

Asterisks denote significant differences (p < 0.05) within the fresh and aged 
nanoemulsions containing the same EO. 
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In the case of T80, the dH values of primary emulsions obtained by HSH 
emulsification, which were 84, 311 and 240 nm for CEO, LEO, and BEO, 

respectively, were significantly (p < 0.05) reduced to 79, 143 and 133 nm 
respectively by HPH processing. 

Instead, in the case of WPI, the dH values of the primary emulsions were in the 
micrometric range (1.6, 2.5 and 1.3 μm for emulsions containing the CEO, LEO, or 

BEO, respectively), and were significantly (p < 0.05) reduced to submicrometric 
sizes (212, 296 and 266 nm for the CEO, LEO, and BEO) by HPH emulsification 

(Table 3). Several factors relating to the emulsion formulation affect the final 
mean droplet size achievable by HPH emulsification, and in particular (a) those 

influencing the break-up phenomena, such as the viscosity of the disperse and 
continuous phase and the interfacial tension, and (b) those controlling the 
recoalescence phenomena, such as emulsifier affinity for and interaction with 

newly formed interfaces (Donsì et al., 2011, Donsì et al., 2012a and Donsì et al., 
2012b). In the present case, the EO represents 75 wt% of the oil phase, with an 

expected significant impact on the properties of the disperse phase, including the 
viscosity, the interfacial tension, as well as and the affinity for the emulsifier and 

the formation of molecular interactions with it. 
Emulsification process and surfactant type significantly affected also the PdI 

values, which measure the spread of the particle size distribution, being 0 the 
smallest possible value and 1 the largest, and with smaller values indicating 

narrower size distributions (Jo & Kwon, 2014). The samples prepared with T80 
exhibited, after HPH treatment, PdI values ranging from 0.11 to 0.15. In the case 

of WPI, higher PdI values were observed after HPH, ranging from 0.32 to 0.45, 
likely because of the macroscopic changes in protein agglomeration induced by 

HPH processing (Donsì, Senatore, Huang, & Ferrari, 2010). 
Fig. 3 and Fig. 4 show the micrographs of the different primary emulsions and 

nanoemulsions prepared with T80 and WPI, respectively, highlighting the 

contribution of HPH processing in obtaining finer and more homogeneous size 
distributions, especially in the case of WPI. Concerning the T80 formulations, a 



Chapter 1. Section 1.1 

86 

large fraction of the emulsion droplets falls below the observability limits of the 
optical microscope and can not be detected in the micrographs. 

Despite the formulation and processing conditions of the nanoemulsions were 
identical, the T80 nanoemulsions always exhibited significantly smaller mean 

droplet sizes than the WPI nanoemulsions. Previous studies have shown that low-
molecular-mass surfactants (i.e. Tween 20, Tween 80, SDS) lead to the formation 

of smaller droplets than proteins (i.e. WPI, β-lactoglobulin, caseinate, pea 
proteins), because of their ability to quickly absorb onto the new droplets surfaces 

and rearrange in a protective layer, reducing the extent of recoalescence during 
HPH emulsification (Donsì et al., 2012b and Qian and McClements, 2011). The 

results of Table 1 confirm that, independently on the formulation, the use of T80 
(Mw of 1.31 kDa) led to emulsions significantly finer in size than the use of WPI 
(Mw of 18.4 kDa). 

However, it must be remarked that also other factors might affect the 
efficiency of the HPH emulsification process. For example, the differences 

between low-molecular-mass surfactants and macromolecules become smaller at 
higher emulsifier concentrations, where larger driving forces increase the mass 

transfer also of macromolecules to the oil-water interface. At concentrations of 6 
wt% for both oil phase and emulsifier, the use of WPI led to the formation of 

nanoemulsions with a comparable mean droplet size of emulsions formed by the 
combined use of Tween 20 and monoolein (Tastan et al., 2016). Moreover, also 

the charge of the emulsifier and its interaction with the oil phase appear to play a 
significant role in the final emulsion droplet size (Silva, Cerqueira, & Vicente, 

2015). 
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Table 3. Droplet size (dH) (nm), polydispersity index (PdI), ζ-potential, and pH of the different emulsions formulated with 
CEO, LEO, BEO and T80 or WPI and produced by high shear homogenization (HSH) or high pressure homogenization 

(HPH) (The EOs:sunflower oil ratio used in emulsions and nanoemulsions formulation was 3:1). Values are expressed as 
mean (n=3) ± SD. 

Emulsifier 

System 

CEO-HSH CEO-HPH LEO-HSH LEO-HPH BEO-HSH BEO-HPH 

dH 

(nm) 

T80 83.5 ± 0.3 a x 79.0 ± 1.0 a x 311.0 ± 7.6  c x 143.4 ± 2.3 a x 240.1 ± 0.6 b x 133.4 ± 1.7 a x 

WPI 1601.7 ± 17.0 d y 212.7 ± 2.7 a y 2490.0 ± 174.9 e y 296.4 ± 4.5 c y 1264.3 ± 12.7 d y 266.1 ± 0.9 b y 

PdI 

(-) 

T80 0.089 ± 0.016 a x 0.106 ± 0.004 a x 0.456 ± 0.033 c x 0.150 ± 0.006 a x 0.273 ± 0.010 b x 0.146 ± 0.018 a x 

WPI 1.000 ± 0.000 d y 0.316 ± 0.020 b y 0.969 ± 0.054 d y 0.432 ± 0.026 c y 0.895 ± 0.091 d y 0.454 ± 0.021 c y 

ζ-
potential 

(mV) 

T80 -7.2 ± 0.6 a x -8.9 ± 0.4 b x -16.0 ± 0.6 c x -16.8 ± 0.7 c x -6.7 ± 0.2 a x -9.2 ± 0.4 b x

WPI -40.1 ± 0.5 d y -32.3 ± 0.2 b y -42.6 ± 0.4 e y -40.8 ± 0.4 d y -30.8 ± 0.4 a y -37.3 ± 0.4 c y

pH 
T80 6.7 ± 0.1 a x 6.6 ± 0.1 ab x 6.4 ± 0.2 b x 6.3 ± 0.1 b x 6.4 ± 0.2 b x 6.4 ± 0.1 b x 

WPI 6.7 ± 0.3 a x 6.6 ± 0.3 a x 6.4 ± 0.2 a x 6.5 ± 0.4 a x 6.5 ± 0.2 a x 6.3 ± 0.1 b x 

 a, b, c, d, e Different superscripts indicate significant differences among systems (p<0.05) 
 x, y Different superscripts indicate significant differences between emulsifiers (p<0.05) 
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Fig. 3. Bright field micrographs of primary emulsions (A, C, E) and nanoemulsions 

(B, D, F) prepared with T80 and cinnamon leaf EO (A, B), lemon EO (C, D), and 
bergamot EO (E, F). 
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Fig. 4. Bright field micrographs of primary emulsions (A, C, E) and nanoemulsions 

(B, D, F) prepared with WPI and cinnamon leaf EO (A, B), lemon EO (C, D), and 
bergamot EO (E, F). 
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The average ζ-potential values of all the formulations are also reported in 
Table 3. The ζ-potential is an indirect measurement of the electrical charge of the 

colloidal particles, which gives indications on their stability during storage. 
Absolute ζ-potential value > 30 mV indicates that electrostatic repulsion among 

droplets likely contributes to preventing their aggregation. The average ζ-
potential values of emulsions prepared with the non-ionic T80 were slightly 

negative (around −8.0 mV for the CEO and BEO samples, and around −16.4 mV for 
the LEO emulsion), suggesting a preferential stabilization mechanism by steric 

hindrance. It is possible that the anionic species from the free fatty acids used in 
the emulsions formulation (in sunflower oil and in EOs) are preferentially located 

near the droplet surfaces, affecting the surface charge. 
In contrast, the ζ-potential values observed in the case of WPI-based EO 

nanoemulsions ranged from −30 to −43 mV, suggesting that electrostatic repulsive 

forces might significantly contribute to the droplet stabilization, similarly to what 
previously reported for submicron peanut O/W emulsions (Benzaria et al., 2013). 

The differences observed in the ζ-potential of the emulsions prepared with 
different EOs and the same surfactant could be attributed to the differences in 

the dissociation degree and the number of ionizable compounds of the EOs 
(Salvia-Trujillo et al., 2015). 

Furthermore, HPH processing also induced some minor changes in the surface 
charge of the particles, which, in the case of WPI, have been explained in terms of 

the interactions between the lipid phase and proteins in the emulsions (Lee, 
Lefèvre, Subidare, & Paquin, 2009). 

The pH of the primary emulsions and nanoemulsions were always comprised 
between 6.3 and 6.7. 
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3.3.3 Inhibition of mycelial growth 

The radial growth inhibition of A. niger after 7 days of incubation in the 
presence of EO nanoemulsions is shown in Fig. 5, in comparison with the free EOs 

and the corresponding primary emulsions, prepared by HSH. The CEO 
nanoemulsions exhibited significantly higher antifungal properties than free CEO. 

In particular, at a CEO final concentration of 0.25 μg/g, the radial mycelial growth 
was completely inhibited by using the nanoemulsions, whereas free CEO at the 
same concentration reached only 75% inhibition. The nanoemulsions likely 

contributed to improving CEO dispersibility and stability in water, as well as 
ameliorating the contact with the fungi and extending over time the EO antifungal 

properties. 
Interestingly, LEO and BEO nanoemulsions, at an EO final concentration of 

4.0 μg/g, exhibited a reduction of antifungal activity with respect to free EOs: the 
inhibition of the radial mycelial growth induced by the nanoemulsions was always 

lower than by free EOs. The sustained release over time of the EOs from the 
nanoemulsion droplets, driven by EO partition between the oil droplets and the 

aqueous phase, is likely to control the antimicrobial activity of EOs (Donsì, 
Annunziata et al., 2012). Eugenol is reported to have an octanol-water partition 

coefficient log P comprised between 2.5 (Fujisawa & Masuhara, 1981) and 2.6 (Li, 
Fabiano-Tixier, Ginies, & Chemat, 2014), whereas the log P value of d-limonene is 

reported between 4.4 (Li et al., 2014) and 4.6 (El-Kattan, Asbill, Kim, & Michniak, 
2001). 
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Therefore, based on the log P values of their main components, it can be 
hypothesized that CEO tends to dissolve in the aqueous phase at significantly 

higher (>2 orders of magnitude) concentrations than LEO and BEO, supporting the 
observation that in the case of citrus oil nanoemulsions, the limited driving forces 

towards the oil release to the aqueous phase reduces the resulting antimicrobial 
activity. However, despite an initial lower inactivation rate of encapsulated EOs 

than free EOs, some authors reported that, over prolonged periods of time, 
emulsions and nanoemulsions, by ensuring a sustained release, can significantly 

prolong the antimicrobial activity (Majeed et al., 2016). 
Therefore, it can be concluded that, among the different mechanisms 

intervening to limit the fungitoxic action of d-limonene, the presence of the 
ripening inhibitor (sunflower oil in the present case) acting as a hydrophobic sink 
(Chang, McLandsborough, & McClements, 2013) is likely to play a fundamental 

role. 
The data of Fig. 5 also show that WPI-based nanoemulsions exhibit a higher 

inhibition of mycelial growth than T80 based ones. Several mechanisms appear to 
be involved in the antimicrobial action of EO nanoemulsions, including (a) the 

internalization of the oil droplets in the microbial cells, owing to the passive 
transport through the cell membrane, and hence depending primarily on the 

mean droplet size, (b) the fusion of the emulsion droplets with the cell 
membrane, which promotes the targeted release of the EOs at the desired sites, 

and depends strongly on the type of emulsifier used, (c) the sustained release 
over time of the EOs from the nanoemulsion, driven by EO partition between the 

oil and the aqueous phase, and hence depending on oil phase composition, and 
(d) the electrostatic interaction of positively charged nanoemulsion droplets with

negatively charged microbial cell walls, which increases the concentration of EOs
in the vicinity of microbial cells, depending on emulsion formulation and
emulsifier charge (Donsì & Ferrari, 2016). The larger mean droplet size of WPI

nanoemulsions is expected to limit their extent of internalization with respect to
T80 nanoemulsions, and, similarly, their prevalent negative charge is expected to

cause a higher electrostatic repulsion from the highly anionic surface of fungi cells
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(due to their membrane composition, based on glucan, chitin, and glycoproteins) 
than nanoemulsions based on non-ionic T80. Furthermore, a slower release of EO 

would be expected from WPI nanoemulsions with respect to T80 nanoemulsions, 
for which the formation of T80 surfactant micelles might promote the EO 

solubilisation. Therefore, the observation that the inhibition of the mycelial 
growth was higher for WPI nanoemulsions suggests that the fusion of the 

emulsion droplets with the cell membrane might be the dominating factor in the 
present case. This hypothesis is supported by previous studies, which show that 

the complex surface composition of fungal cells might offer a large number of 
suitable interaction sites with the emulsifier, hence driving the targeted release of 

the EOs (Ziani, Chang, McLandsborough, & McClements, 2011). 
The effect of mean droplet size on emulsion fungitoxic activity was also 

studied, by comparing the mycelial growth inhibition of nanoemulsions with that 

of primary emulsions, showing that finer and more homogeneous droplet size 
distributions, in addition to improving the physical stability of the nanoemulsions, 

also significantly increased (p < 0.05) the antifungal activity of the EOs against A. 
niger. This behavior is clearly visible in the case of the LEO samples. The LEO 

emulsions formulated with T80 and prepared by HSH exhibited a mycelial growth 
inhibition of 18%, whereas the nanoemulsions exhibited an inhibition of 24%. 

Similarly, the mycelial growth inhibition for the LEO samples formulated with WPI 
showed a significant increase (p < 0.05) in the spore germination inhibition from 

28% to 40%. Owing to their sub-micrometric droplet size, O/W nanoemulsions can 
penetrate more easily through the fungi membrane than micrometric emulsion 

droplets, leading to a marked increase in antifungal activity. In 



Chapter 1. Section 1.1 

94 

Fig. 5. Radial growth inhibition of Aspergillus niger after 7 days of direct exposure 
to EO nanoemulsions in comparison with free EO and EO emulsions prepared by 

high shear homogenization (HSH): A) cinnamon leaf EO (CEO) formulations, B) 
lemon EO (LEO) formulations, and C) bergamot EO (BEO) formulations. Mean 

value (n = 2) ± SD. Different letters (a, b, c, d) indicate significant differences 
among systems; and (x, y, z) indicate significant differences among samples with 

and without emulsifiers (p < 0.05). 
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agreement with these results, several previous research papers report the 
significant improvement of the antimicrobial activity, when encapsulated in 

submicrometric emulsions, of different EOs, such as limonene (Donsì et al., 2011), 
thyme (Chang, McLandsborough, & McClements, 2012) and peppermint EOs 

(Liang et al., 2012) among others. 

3.3.4 Inhibition of spore germination 

The inhibition of spore germination of A. niger by exposure to the EO 

nanoemulsions is shown in Fig. 6. In comparison with the inhibition of mycelial 
growth, the role played by nanoemulsions on the inhibition of spore germination 

exhibits some differences. 
The inhibition of spore germination showed a statistically significant (p < 0.05) 

enhancement upon emulsification for CEO (both T80 and WPI) and BEO (only 
WPI), whereas in the case of LEO (both T80 and WPI) and BEO (only T80) a 

decrease was observed. The differences with respect to the effect on mycelial 
growth likely depend on the different mechanisms involved in the inhibition of 

spore germination, which is based on the denaturation of the enzymes or in the 
obstruction of the aminoacids implicated in the germination process, interfering 

with their normal activity (Tian et al., 2012). 
Similarly, to the inhibition of mycelial growth, the WPI-based nanoemulsions 

were more effective in inhibiting the spore germination than T80-based ones, 
which can also be explained in terms of the larger number of sites suitable for 
interaction with WPI than with T80 also on the spore surface. 
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Fig. 6. Spore germination inhibition of Aspergillus niger after 7 days of direct 

exposure to EO nanoemulsions in comparison with free EO and EO emulsions 
prepared by high shear homogenization (HSH): A) cinnamon leaf EO (CEO) 

formulations, B) lemon EO (LEO) formulations, and C) bergamot EO (BEO) 
formulations. Mean value (n = 2) ± SD. Different letters (a, b, c) indicate significant 

differences among systems; and (x, y, z) indicate significant differences among 
samples with and without emulsifiers (p < 0.05). 
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No clear dependence of spore germination inhibition on mean droplet size 
could be identified, with no significant difference between primary emulsions and 

nanoemulsions in the case of CEO and BEO, and significantly (p < 0.05) lower 
inhibition for nanoemulsion in the case of LEO. It can be speculated that the 

mechanisms of action of the different EOs, which result in different levels of spore 
inhibition at the examined concentrations because of the different constituents, 

with the main component of CEO, eugenol, being more active than D-limonene, 
the main component of both LEO and BEO (Combrinck et al., 2011 and Davidson, 

1997), are affected at different extent by the delivery system. However, further 
studies are needed to clarify this aspect. 

3.3.5 Morphological characterization of A. niger upon exposure 

to encapsulated EOs 

The effect of the EO encapsulation systems was also examined by light 

microscopy. The results of the control and treated samples (LEO and BEO 
formulations) are presented in Fig. 7. Control samples, comprising fungi treated 

with blank emulsions (Fig. 7A and B) and with blank nanoemulsions (Fig. 7C and 
D) exhibited large and globular conidial heads, with the conidiophore being clearly

visible. Mycelial hyphae showed a tubular shape and a regular structure, where
the cytoplasmic content could be unequivocally distinguished. The EO emulsions

(Fig. 7E–H) and nanoemulsions (Fig. 7I–L) caused a decrease in the cytoplasmic
content, with a separation of the cytoplasm from the cell wall in the hyphae,

independently on the surfactant used. According to Sharma and Tripathi (2008),
the O/W emulsions containing citrus EOs could interfere with enzymatic reactions

of wall synthesis, affecting fungal morphogenesis and growth.
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Fig. 7. Bright field micrographs of Aspergillus niger treated by EO emulsions and 
nanoemulsions. A, B) Normal growth of A. niger after the treatment with blank 

emulsions prepared with T80 and WPI, respectively. C, D). Normal growth of A. 
niger in samples treated with blank nanoemulsions prepared with T80 and WPI, 

respectively. E, F, G, H) Clear decrease in the cytoplasmic content (CC) and 
cytoplasmic retraction (CR) after the treatment with high shear homogenization 

(HSH) emulsions formulated with lemon EO (LEO) and T80 and WPI, and with 
bergamot EO (BEO) and T80 and WPI, respectively. I, J, K, L) Decrease in the 
cytoplasmic content (CC) with a separation of the cytoplasm (CS) from cell wall in 

hyphae after the treatment with high pressure homogenization (HPH) 
nanoemulsions formulated with LEO and T80 and WPI, and with BEO and T80 and 

WPI, respectively. 
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4. CONCLUSIONS

The cinnamon leaf, lemon and bergamot oils possess strong fungitoxic
activities, but their use is limited by their scarce water solubility. The EOs were 

encapsulated in nanoemulsions formulated with sunflower oil as ripening 
inhibitor (at a 1:3 wt ratio with the EO) and T80 or WPI as emulsifiers, to obtain 

physically stable nanoemulsions at a final EO concentration of 3 wt%, which have 
been investigated to inhibit the mycelial growth and the spore germination of A. 

niger, in comparison with free EOs. 
In the case of cinnamon leaf oil, the nanoemulsions always showed 

significantly better antifungal properties than the free EO. On the contrary, in the 
case of citrus EO, the encapsulation in nanoemulsions, in comparison with the 

free EOs, did not induce any significant improvement of the antifungal activity, for 
bergamot EO, or had an antagonistic effect, in the case of lemon EO. The different 

composition of the EOs, with eugenol being the main component of cinnamon 
leaf oil and D-limonene being the main component of citrus oils, and their 

different interaction with the nanoemulsion ingredients, likely explain the 
different contribution of the nanoemulsions. 

Remarkably, the nanoemulsions based on WPI always exhibited better 

antifungal activity than those based on T80, likely due to the larger numbers of 
sites of interaction with the WPI than with T80 available on the surface of fungal 

cells and spores. 
The results, therefore, demonstrate the promising advantages of using 

nanoemulsions as physically stable antifungal agents to control A. niger growth 
and spore germination. However, further studies are needed to better elucidate 

some key aspects in the design of EO nanoemulsion, such as the role played by 
formulation and morphology on the specific mechanisms of action of the EO 

components, on the interaction with the microorganism target sites, and the in 
product behavior. 
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Abstract 

This work aimed to control the fungal deterioration of strawberry jams. The 
antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils 

and their effectiveness in oil-in-water emulsions were evaluated. According to the 
results obtained, only clove and cinnamon leaf oils were selected to prepare 

emulsions. All the tested emulsions were stable, independently the amount of 
polymer and essential oil used. Essential oil loss was affected by the amount of 

polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0 
mg/g xanthan gum, and with 0.55 mg/g clove or 0.65 mg/g cinnamon leaf 

essential oil, were used for the in vivo tests. The jams prepared with the oil-in-
water emulsions showed a lower fungal decay compared with jams without 

emulsion. The present work demonstrated that emulsions can be employed to 
prevent strawberry jam mould spoilage. 

Keywords: Essential oils; Oil-in-water emulsion; Strawberry jam; Aspergillus 

flavus; Aspergillus niger; Penicillium expansum 
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1. INTRODUCTION

Fungal contamination is a serious problem in the food industry because it has
negative impacts on final products. Fungi are the most important microorganisms 

to contaminate fruit and berry concentrates, like jams with low water activity. 
Fungal spores present in the raw materials of jams are inactivated while jams are 

cooked. However, the large jam containers used in the food industry may be re-
contaminated by spores of indoor fungi; e.g. during partial container depletion 
(Nieminen et al., 2008). 

There are thousands of known species of moulds, and the commonest genera 
are Aspergillus and Penicillium. Moulds are difficult to inhibit because of their 

complex structure, and using chemical agents is one of the main techniques 
resorted for controlling their growth. However, consumer concern about human 

health has forced the food industry to search for new strategies as alternatives to 
chemical additives in order to control food spoilage caused by moulds. 

Essential oils (EOs) extracted from many plants and fruits are used as 
antimicrobial agents against bacteria, moulds and yeasts (Perdones et al., 2012 

and Salvia-Trujillo et al., 2014). Their natural character renders them desirable for 
use in food products. Many EOs have been recognised as safe (GRAS) by the FDA 

in 21 Code of Federal Regulation part 182.20 (CFR, 2014), and they are widely 
accepted by consumers (Burt, 2004). 

The antimicrobial activity of EOs is attributed mainly to their content in 
volatile compounds. Eugenol (4-allyl-2-methoxyphenol) is the main compound in 
cinnamon leaf EO (75–95% (w/w)) (Vangalapati, Satya, Prakash, & Avanigadda, 

2012). This EO has demonstrated potent antioxidant and antibacterial activity 
(Bakkali, Averbeck, Averbeck, & Idaomar, 2008). Eugenol is a naturally-occurring 

phenol extracted from cloves. Different studies have demonstrated the 
bactericidal and antifungal activity of clove EO and eugenol (Hua et al., 2014, 

Jayashree and Subramanyamm, 1999, Liang et al., 2015 and Velluti et al., 2003). 
The antimicrobial activity of EO from citrus fruits has been widely demonstrated 
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against mould, yeast and bacteria (Belletti et al., 2010, Espina et al., 2011 and 
Viuda-Martos et al., 2008). 

The volatile compounds present in EOs are highly insoluble in water because 
of their lipophilic nature, whose contact with microorganisms in high moisture 

content foods may be limited (Kalemba & Kunicka, 2003). One way to avoid this 
problem and to enhance their aqueous solubility and stability is to incorporate 

essential oils into oil-in water (O/W) emulsions. In this case, their sensory impact 
on food products could reduce and their water solubility could increase for the 

contact with microorganisms to suffice and to improve antimicrobial effectiveness 
(Hill, Gomes, & Taylor, 2013). 

The objective of this study was to evaluate the mould decay of strawberry 
jams by using natural preservatives. For this purpose, the in vitro antifungal 
activity of different EOs and O/W emulsions, and the effectiveness of these 

emulsions when incorporated into strawberry jams were evaluated. 

2. MATERIALS AND METHODS

2.1 Screening the antifungal activity of EOs 

Clove, cinnamon leaf, lemon and mandarin EOs (Sigma-Aldrich, St. Louis, USA) 
were individually tested against Aspergillus flavus (CECT 2685), Aspergillus niger 
(CECT 20156) and Penicillium expansum (CECT 20140). The method described by 

Viuda-Martos et al. (2008) was employed with minor modifications. The stock 
cultures of fungi were supplied by the Spanish Type Culture Collection (CECT, 

Burjassot, Spain). 
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The fungi were inoculated on Potato Dextrose Agar (PDA, Scharlab, Barcelona, 
Spain) and incubated at 25 °C for 7 days. Afterwards, spores were counted in a 

hemocytometer to achieve an inoculum density of 106 CFU/mL. Different EO 
concentrations were tested after taking into account previous studies (Omidbeygi 

et al., 2007, Perdones et al., 2012 and Viuda-Martos et al., 2008). The 
concentrations of tested EOs were: 0.40, 0.45, 0.50 and 0.55 mg/g for clove oil; 

0.50, 0.55, 0.60 and 0.65 mg/g for cinnamon leaf oil; 10, 12.50, 15 and 17.50 mg/g 
for lemon oil; 27.50, 30, 32.50 and 35 mg/g for mandarin oil. Aliquots of 15 g of 

PDA with the EOs and 0.1% (w/w) Tween 80 (Scharlab, Barcelona, Spain) were 
poured into Petri dishes. EOs were added to the culture medium at 50 °C and 

Tween 80 was added to the medium to ensure good EO distribution. The petri 
dishes without EO were used as control samples. The centre of each plate was 
inoculated with a PDA disc (7 mm diameter) taken from the edge of 0-day-old 

fungi culture, previously spread with 100 μL of the spore solution (106 CFU/mL). 
Each plate was sealed with Parafilm® and incubated for 7 days at 25 °C. Radial 

mycelial growth was evaluated daily for 7 days by measuring the diameter of each 
fungus. Values were expressed in mm diameter/day. All tests were run in 

duplicate. 

2.2  Study of O/W emulsions 

2.2.1 Emulsion preparation 

Xanthan gum (XG, Satiaxane™ CX 911, Cargill, Barcelona, Spain) was dispersed 
in distilled water at 2.5, 5.0 and 7.5 mg/g, and stirred overnight at room 

temperature. After biopolymer dissolution, the clove and cinnamon leaf EOs were 
added to reach the final concentrations of 0.55, 0.65, 0.75 mg/g and 0.65, 0.75, 
0.85 mg/g, respectively. The mixture was emulsified in a rotor-stator homogeniser 

(Ultraturrax, IKA®, Germany) at 10,000 rpm for 1 min and 20,000 rpm for 3 min. 
These emulsions were degasified at room temperature with a vacuum pump. 
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2.2.2 Physico-chemical characterisation of O/W emulsions 

The particle size was determined with a laser diffractometer (Mastersizer 
2000, Malvern Instruments, Worcestershire, UK). Emulsions were diluted in 

deionised water at 2,000 rpm until an obscuration rate of 10% was obtained. The 
Mie theory was applied by considering a refractive index of 1.50 and absorption of 

0.01. 
The ζ-potential was carried out according to Sánchez-González, Cháfer, Chiralt, 

and González-Martínez (2010), using a Zetasizer nano-Z (Malvern Instruments, 

Worcestershire, UK). 
The rheological behaviour of emulsions was analysed by a rotational 

rheometer (Haake Rheostress 1, Thermo Electric Corporation, Karlsruhe, 
Germany) with a type Z34DIN Ti sensor system of coaxial cylinders, assessed as 

described by Sánchez-González et al. (2010). Shear stress (τ) was measured as 

according to shear rate (  from 0 to 512 s−1. Apparent viscosity values were 

calculated at 100 s−1. 

2.2.3 GC-MS analysis 

The clove and cinnamon leaf EOs and O/W emulsions composition were 

analysed by GC-MS. Two grams of the EO or O/W emulsions were suspended in a 
tube that contained 15 mL of n-hexane. The mixture was shaken gently and 

filtered through filter paper. n-Hexane was evaporated at 40 °C in a rota-vapour, 
and the obtained extracts were added to 2 mL of n-hexane and analysed by GC–

MS. 
The GC/MS analysis of the EOs was performed in a 6890/5975 inert GC–MS 

(Agilent Technologies, Santa Clara, CA, US), equipped with a HP-5 fused silica 
capillary column (30 m × 0.25 mm × 0.25 μm). The oven temperature was held at 

60 °C for 3 min, and then raised to 100 °C at 10 °C/min, to 140 °C at 5 °C/min, and 
finally to 240 °C at 20 °C/min. Helium gas was used as the carrier gas at a constant 
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flow rate of 1 mL/min. The injector and MS transfer line temperatures were set at 
250 °C and 230 °C, respectively. The parameters for the MS analysis were EI Ion 

source, electron energy 70 eV, solvent delay 3 min and m/z 40–550 amu. EO 
components were identified by matching mass spectra with the standard mass 

spectra from the NIST MS Search 2.0 library. 

2.2.4 Antifungal activity of O/W emulsions 

The antifungal activity of the clove and cinnamon leaf emulsions against A. 

flavus, A. niger and P. expansum was determined by the methodology described 
in Section 2.1. In this case, 0.5 g of each O/W emulsion was added to 49.5 g of 

PDA at 50 °C. Next, aliquots of 15 g of PDA with the emulsions were poured into 
Petri dishes. The PDA with a dispersion prepared with distilled water and XG was 

used as a control. A disc of mycelial material was placed in the center of each 
plate and then incubated. Radial mycelial growth was evaluated daily for 7 days. 

The results were expressed in mm diameter/day. All tests were run in duplicate. 

2.3  Study of O/W emulsions in strawberry jam 

2.3.1 Emulsion preparation 

Jam preparation was adapted from Igual, Contreras, and Martínez-Navarrete 
(2010). Strawberry jam was obtained by mixing fruit and sugar in a ratio of 65:35 
and cooked at 100 °C for 30 min to reach a 60 °Brix in the product as described in 

the Spanish quality regulation for fruit jam (BOE, 2003). This process was carried 
out in an electrical food processor (Thermomix TM 31, Vorwerk M.S.L, Spain). The 

amount of emulsions added to strawberry jam was established to achieve a 
concentration of 1 g of the O/W emulsion in 100 g of jam in the final product. 
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2.3.2 Evaluation the antifungal activity of O/W emulsions in 

strawberry jams 

Fifteen grams of strawberry jam that contained the O/W emulsions were 

inoculated with 100 μL of the spore solution (106 CFU/mL). Jams were poured into 
Petri dishes and incubated for 63 days at two different temperatures: 4 °C to 

simulate product cold storage after opening the jam container, and at 25 °C, the 
optimum growth temperature of fungi. Three Petri dishes were prepared per 

temperature condition, microorganism and day of analysis (n=54). Mould counts 
were done in PDA plates after a 72-hour incubation at 25 °C (Pascual & Calderón, 

2000). All assays were performed in duplicate. 

2.3.3. Sensory analysis 

A sensory analysis was carried out by 30 non-expert untrained assessors. The 
group of assessors was composed of 12 men and 18 women, and panellists’ ages 

ranged from 21 to 50 years. Tests were done on a structured 9-point hedonic 
scale (9=very much like and 1=very much dislike) (UNE-ISO 4123), by which the 

colour, aroma, taste, consistency and overall acceptance attributes were 
evaluated. All the samples were presented to the panellists at room temperature 

in a transparent plastic glass coded with three random numbers. 
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2.4 Statistical analysis 

The results obtained in the physico-chemical characterisation of the O/W 
emulsions, and the antifungal evaluation of the EO and O/W emulsions, were 

analysed by a multifactor analysis of variance (multifactor ANOVA). The effect of 
incorporating the O/W emulsion into the sensory attributes of strawberry jam was 

evaluated by a one-way ANOVA. The least significance procedure (LSD) was used 
to test for any differences between averages at the 5% level of significance. Data 
were statistically processed by Statgraphics Centurion XVI. 

3. RESULTS AND DISCUSSION

3.1 Screening the antifungal activity of EOs 

The clove, cinnamon leaf, lemon and mandarin EOs all at the tested 
concentrations had the capacity to reduce or inhibit the growth of A. flavus, A. 

niger and P. expansum (Fig. 1) since fungi showed slightly retarded growth 
compared with the control plates, even for the lowest EO concentrations. This 

behaviour suggests that the active compounds of the EOs could affect initial 
mould development, and could cause a delay in mould growth, which would 

confirm their fungistatic effect (Manso, Cacho-Nerin, Becerril, & Nerín, 2013). 
The clove, cinnamon leaf and lemon EOs at all the tested concentrations 

increased the Lag phase of A. flavus, A. niger and P. expansum, with a diminution 
of the germination rate. The clove EO provoked a higher delay in mould growth 

compared to the other EOs tested. The clove EO at the lowest concentration 
managed to reduce mycelial growth more than 78% for all the studied moulds. 

The clove, cinnamon leaf and lemon EOs inhibited growth of moulds at the 
assayed highest concentrations (0.55 and 17.5 mg/g, respectively) during the 

whole study period, except for the cinnamon leaf EO tested against P. expansum, 
for which mycelial growth reduced, but was not inhibited. The high lemon EO 
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concentration needed to inhibit fungi development could be due to D-limonene’s 
susceptibility to oxidative degradation, which could cause loss of activity (Sun, 

2007). 
The mandarin EO caused the lowest percentage of mycelial reduction in all the 

studied moulds (Fig.1). The highest mandarin EO concentration tested achieved 
only percentage reductions of 62%, 61% and 73% for A. flavus, A. niger and P. 

expansum, respectively. 

3.2 Study of O/W emulsions 

3.2.1 Physico-chemical characterisation of O/W emulsions 

Table 1 shows the d3,2 and d4,3 values for the particle size analysis, the ζ-

potential and the rheological parameters for the various emulsions. 

Oil content and XG concentration had a significant impact on d3,2 and d4,3. 

Regarding oil content, the clove emulsions at the lowest assayed EO 
concentration (0.55 mg/g) exhibited a d3,2 of 5.19±0.05 μm when the XG 

concentration was 2.5 mg/g, whereas an increased droplet mean diameter was 
observed (7.32±0.21 μm) at the highest EO concentration (0.75 mg/g) (Table 1).
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Fig. 1. Antifungal activity of the clove, cinnamon leaf, lemon and mandarin 

EOs against (A) Aspergillus flavus, (B) Aspergillus niger and (C) Penicillium 

expansum at 25 °Cfor 7 days. Diameter of mycelial growth (mean value and 

standard deviation (n=2)). 
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The same behaviour was observed for d4,3 when 2.5 mg/g of XG was used. The 
mean size values increased from 10.4±2.6 to 17.5±0.7 μm when larger amounts of 

the clove EO were employed. Generally, the cinnamon leaf O/W emulsions 
exhibited the same tendency for the d3,2 and d4,3 values observed in the emulsions 

formulated with the clove EO. 
As observed, the higher the oil content in the emulsions, the bigger particle 

size became. This could be due to the increase in the dispersed phase 
concentration, which could facilitate the droplet flocculation rate and therefore 

the reduction in the ratio between the interfacial stabilising material and the 
dispersed phase (McClements, 2005). Similar results have been reported by 

Sánchez-González et al. (2010) in emulsions of bergamot EO and chitosan aqueous 
systems. 

Regarding polymer concentration, the increase in the XG concentration led to 

a reduction in the droplet mean diameter of emulsions with significant differences 
(p<0.05) (Krstonošić, Dokić, Dokić, & Dapčević, 2009). The cinnamon leaf 

emulsions prepared with the lowest EO concentration gave d3,2 values of around 
8.36±0.04 μm when the polymer concentration was 2.5 mg/g. However, a smaller 

droplet mean diameter was observed when 7.5 mg/g of XG was used at the same 
EO concentration (6.33±0.29 μm) (Table 1). This could be due to the ability of 

particles to cover the surface of droplets and to produce a thick interfacial layer 
around them (Frelichoswska, Bolzinger, & Chevalier, 2009). In contrast, the clove 

emulsions presented similar d3,2 values despite the increase in the XG 
concentration (Table 1). This suggested that the clove EO amphiphilic components 

could have greater surfactant activity, and could thus contribute to reduce the 
droplet particle size under equal homogenisation conditions. This trend has also 

been observed by Bonilla, Atarés, Vargas, and Chiralt (2012) when they used 
thyme oil in chitosan-based films. 

The effect produced by incorporating larger amounts of polymer was less 

marked for the d4,3 values, for both types of O/W emulsions. 
The surface charge of oil droplets in the emulsions prepared with the EOs is 

shown in Table 1. According to McClements (2005), if the electrical charge of 
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droplets is high enough, the emulsion may be stable against aggregation due to 
repulsive forces between droplets. Generally, particles with a ζ-potential that is 

more positive than +30 mV, or more negative than −30 mV, are considered stable. 
The electrical charge of the lipid droplets of the emulsions were between 

−67.0±0.6 and −72.0±1.9 for the clove EO emulsions, and between −64.5±1.1 and 
70.7±0.9 for the cinnamon leaf EO emulsions. Therefore, it can be stated that 

both types of O/W emulsions are stable. In the present work, the strong negative 
ζ-potential observed in the emulsions was due to the presence of XG, which is an 

anionic hydrocolloid. The polymer was used as an emulsion stabiliser as these 
stabilisers can absorb into the interfacial layer (Dickinson, 2009). In addition, the 

stabilisation action of hydrocolloids was due to the viscosity modification in the 
continuous phase by lowering the rate of creaming and coalescence (Dickinson, 
2009 and Garti and Leser, 2001). 

Regarding rheological characteristics, all the emulsions showed a shear 
thickening behaviour with flow behaviour index (n) values at around 0.47. No 

thixotropic effects were observed from the comparison made of the up and down 
curves. The curves were predicted by the Ostwald de Waele model. Table 1 shows 

the consistency index (k), the flow behaviour index (n) and the apparent viscosity 
values calculated at 100 s−1, which is the typical shear rate of different unit 

operations, such as mastication (McClements, 2005). 
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Table 1. Polymer (mg/g) and EO concentration (mg/g), particle size (d3,2 and d4,3), ζ-potential, Ostwald de Waele model 
parameters (n, k) and apparent viscosity (ηap at 100 s-1) of the O/W emulsions prepared with the clove and cinnamon 

leaf EOs. Mean values (n=3) and standard deviation. 
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The incorporation of EOs into the XG dispersions did not produce significant 
changes in the rheological characteristics of the emulsions. Notwithstanding, an 

increase in the XG concentration in the emulsions resulted in significant increases 
(p<0.05) in the consistency index (k), which led to more consistent fluids and is 

related to the apparent viscosity (ηap) of the emulsions. The clove emulsions 
formulated with 2.5 mg/g of XG obtained k values of 0.127±0.007 Pa s. The same 

emulsions prepared with 7.5 mg/g of polymer gave k values of 1.327±0.080 Pa s 
(Table 1). The same tendency was observed for the emulsions formulated with 

cinnamon leaf EOs. 
As shown in Table 1, the apparent viscosity values increased significantly 

(p<0.05) when larger amounts of XG were incorporated. These values oscillated 
between 0.02 and 0.08 Pa s for the clove emulsions, and from 0.05 to 0.10 Pa s for 
the cinnamon leaf emulsions. It is well-known that even at low polymer 

concentrations, XG dispersions exhibit high viscosities (Laneuville, Turgeon, & 
Paquin, 2013). Nevertheless, in the samples with the same amount of XG, the nap 

values remained constant in spite of using higher EO concentrations. This could be 
explained by the promotion of the EO-polymer interactions and the complex 

structure of the network formed by XG, which could cushion the impact of the 
EOs concentration on ηap. This agrees with previously reported results (Martínez-

Padilla, García-Rivera, Romero-Arreola, & Casas-Alencáster, 2015) on foams with 
whey protein concentrate and XG. 
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3.2.2 GC–MS analysis 

Screening the antifungal activity of EOs indicated that the clove and cinnamon 
leaf oils were more interesting for controlling mould growth in food products. 

Components of these EOs were identified by the GC–MS analysis. In both EOs, 
eugenol (ca. 86%) was the main compound (Table 2), and similar results have 

been reported by different authors (Espina et al., 2011 and Singh et al., 2007). The 
main compound of cinnamon EO from leaves is usually eugenol and, in some 
cases, there is a small amount of cinnamaldehyde (Tzortzakis, 2009 and 

Vangalapati et al., 2012). The clove and cinnamon leaf extracts and their main 
compound, eugenol, have been reported as one of the most effective natural 

antimicrobial agents (Amiri et al., 2008, Hill et al., 2013, Omidbeygi et al., 2007 
and Singh et al., 2007). 

Despite the similar amount of eugenol in both EOs, significant differences in 
terms of their antifungal activity have been previously observed. The clove EO has 

marked antifungal activity at the highest tested concentration (0.55 mg/g), 
whereas the cinnamon leaf EO inhibited the growth of A. flavus and A. niger, and 

reduced the growth of P. expansum at 0.65 mg/g. These results could suggest 
synergistic interactions between eugenol and sesquiterpene hydrocarbons 

(caryophyllene, β-caryophyllene and δ-cadinene) against the evaluated fungi 
strains. Some studies have reported the antifungal activity of sesquiterpens 

constituents against several damping-off, root pathogens, etc. (Chang et al., 2008 
and Kumar et al., 2014). The sum of the relative areas of eugenol and the 
sesquiterpene hydrocarbons were 94.67% and 87.76% for the clove and cinnamon 

leaf EOs, respectively. 
Emulsions were also analysed and the EOs losses during emulsion preparation 

were determined. Estimated EOs losses were referred to eugenol, the main 
component of both EOs. Eugenol losses after emulsions preparation came close to 

40% in all cases. EOs losses could be attributed to stress applied to samples and to 
the heating achieved during the homogenisation process. Depending on the type 

of EO employed for emulsion preparation, non-significant differences were 



Chapter 1. Section 1.2 

122 

observed. However, EO losses were affected by the amount of XG employed to 
prepare the O/W emulsions; for instance, 2.5 mg/g of XG led to the greatest 

eugenol loss compared to 5.0 and 7.5 mg/g XG, while no significant differences 
were observed between these samples. The lower viscosity of the samples 

formulated with 2.5 mg/g of XG, compared with the emulsions that contained 5.0 
and 7.5 mg/g of XG, could cause the diffusion of EOs to the surface of the 

emulsions to facilitate evaporation and its subsequent loss (Perdones, Escriche, 
Chiralt, & Vargas, 2016). The greater the viscosity of the samples, the greater the 

immobilisation of oil droplets. 

3.2.3 Antifungal activity of O/W emulsions 

As previously mentioned, only the clove and cinnamon leaf EOs were selected 
and their concentrations in emulsions were established by considering the results 

of the in vitro evaluation. As a result, the assayed EO concentrations were 0.55, 
0.65 and 0.75 mg/g for clove and 0.65, 0.75 and 0.85 mg/g for cinnamon leaf. No 

mycelial growth was observed for any tested condition (data not shown), which 
indicated that the O/W emulsions with 0.55 mg/g of clove and 0.65 mg/g of 

cinnamon leaf sufficed to inhibit A. flavus, A. niger and P. expansum growth over 7 
days. 
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Table 2. Chemical composition of the cinnamon leaf and clove EOs. Percentages 
of relative area (%) are the mean of two runs and were obtained from electronic 

integration measurements using selective mass detector. 

Compound Cinnamon leaf EO 
(% relative area) 

Clove EO (% 
relative area) 

R-α-Pinene 0.71 ± 0.40 - 
Camphene 0.23 ± 0.22 - 
β-Pinene 0.18 ± 0.25 - 
α-Phellandrene 0.77 ± 0.60 - 
o-cymene 0.48 ± 0.26 - 
D-Limonene 0.90 ± 0.50 - 
Eucalyptol 0.04 ± 0.40 - 
β-Linalool 1.10 ± 0.32 - 
Borneol 0.10 ± 0.94 - 
1-Terpinen-4-ol 0.30 ± 0.12 - 
Thymol 0.10 ± 0.55 - 
α-Terpineol 0.10 ± 0.00 - 
Cinnamaldehyde 0.50 ± 0.00 - 
Safrene 1.29 ± 0.22 - 
Eugenol 84.51 ± 4.16 84.48 ± 1.09 
Caryophyllene  3.09 ± 0.19 9.90 ± 0.21 
Cinnamylacetate 0.70 ± 0.92 - 
β-Caryophyllene 0.57 ± 0.18 2.83 ± 0.18 
δ-Cadinene 0.16 ± 0.14 0.39 ± 0.00 
Aceteugenol 1.66 ± 0.36 2.40 ± 0.34 
Caryophyllene 
oxide 0.10 ± 0.41 - 

Benzyl Benzoate 3.41 ± 0.00 -
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According to the EO losses which occurred during emulsion preparation, the 
final clove and cinnamon leaf EO content in their O/W emulsions was 0.34 mg/g 

and 0.39 mg/g, respectively. When comparing the results with those obtained in 
the in vitro tests, an increased antifungal activity was noted. This could be 

attributed to improved water solubility of the encapsulated compounds by 
enhancing the EOs diffusion rate and, therefore, antifungal activity at the tested 

concentrations against A. flavus, A. niger and P. expansum. 
According to these results, and to those obtained in the physico-chemical 

characterisation of the O/W emulsions, the suitable amount of polymer and EO to 
be employed in strawberry jams was established. The emulsions prepared with 

0.55 and 0.65 mg/g of the clove and cinnamon leaf EO, respectively, and with 5.0 
mg/g of XG, were added to strawberry jam. Considering this formulation, the final 
concentration of clove and cinnamon leaf EO in the strawberry jams was 0.34 

mg/g and 0.39 mg/g, respectively. 

 

3.3 Study O/W emulsions in strawberry jam 

3.3.1 Evaluation of the antifungal activity of O/W emulsions in 

strawberry jam 
 

In order to evaluate the influence of temperature and the effectiveness of the 
O/W emulsion on mould growth, samples were stored at 4 °C and 25 °C for 63 

days (Fig. 2). In the control samples, the mycelial growth rate was affected by 
storage temperature for all the tested moulds. 



Chapter 1. Section 1.2 

125 

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

A.1)

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

A.2)

Control

Cinnamon leaf EO

Clove EO

4°C 25°C

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

B.1)

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

B.2)

Control 

Cinnamon leaf EO

Clove EO

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

C.1)

0
1
2
3
4
5
6
7
8

0 7 14 21 28 35 42 49 56 63

lo
g 

CF
U

/g

Storage (days)

C.2)

Control

Clove EO

Cinnamon leaf EO

Fig. 2. Effect of the oil-in-water emulsions on the growth of (A) Aspergillus flavus, 
(B) Aspergillus niger, (C) Penicillium expansum on strawberry jams stored at 4 °C
and 25 °C for 63 days. Mean value and standard deviation (n = 2).
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The jams prepared with the O/W emulsions inoculated with A. flavus and 
stored at 4 °C showed no fungal growth during the evaluation period. EO type 

significantly affected (p<0.05) the antifungal activity of the O/W emulsions. At 
refrigeration temperature, the clove and cinnamon O/W emulsions took longer to 

inhibit A. niger and P. expansum growth compared with A. flavus. The inhibitory 
effect was stronger when cinnamon leaf O/W emulsion was added to the 

strawberry jams, compared to clove emulsions. In this regard, no fungal growth 
was inhibited at days 21 and 28 for A. niger and P. expansum, respectively when 

cinnamon leaf was used; however, the clove emulsions inhibited fungal growth at 
day 49. 

Inhibition of A. flavus on the samples that contained clove emulsions took 
place during the first 7 storage days at 25 °C, whereas inhibited fungi growth was 
observed on day 14 when the cinnamon leaf EO was used. Unexpectedly, the 

opposite behaviour was observed for P. expansum, whose inhibition at 25 °C was 
faster than at 4 °C independently of the EO type employed. 

Despite the oil content in jam samples being the same as that tested in agar 
media, the time needed to observe the effectiveness of EOs against moulds in 

jams was longer. This could be related to the different diffusions of the active 
compounds, which could be easier in agar media than in jam, or could be due to 

the fact that the antifungals lost through evaporation throughout the storage 
period were limited since the matrix structure differed and the mass transfer 

process occurred differently (Perdones et al., 2012). This behaviour could also be 
explained by the low water content in food compared to agar media, which could 

hinder the transfer of EO to the active site in the microbial cell (Omidbeygi et al., 
2007). Other crucial factors must be taken into account, such as antagonistic 

interactions with other ingredients (e.g. proteins or carbohydrates) (Pitt & 
Hocking, 2009). 
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3.3.2 Sensory analysis 

A sensory analysis was run to check the acceptability of the strawberry jams 
that contained the O/W emulsions. The samples tested by panellists consisted in 

jams with the clove and cinnamon leaf O/W emulsions at the established 
concentrations, and a jam sample with no EO added, which was used as a control. 

The average scores marked by the assessors for all the evaluated attributes are 
shown in Fig. 3. 

The strawberry jams with the added O/W emulsions obtained lower scores for 

the aroma, taste and overall acceptance attributes compared with the control 
samples. The consistency and colour attributes did not significantly differ (p>0.05) 

from the control samples. The lowest scores were found in the jams with the 
cinnamon leaf O/W emulsions because of the higher EO content used and the 

strong impact of this EO on the typical strawberry jam flavour. However, the 
incorporation of the O/W emulsions into jams did not affect their texture and 

colour evaluations. 
Further studies should be carried out to obtain a good relation between the 

antimicrobial effectiveness of the active compounds and their sensory impact on 
the final product. 
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Fig. 3. Sensory profile of strawberry jams. *Indicates 95% significant differences 

according to the ANOVA test (n = 30). 

4. CONCLUSION

The clove and cinnamon leaf EOs showed the highest antifungal properties.
The physic-chemical characterisation of the different O/W emulsions prepared 

with these EOs revealed that the EO concentration in the emulsion brings about 
changes in particle size. XG contributes to the stability of emulsions by adsorption 

on the oil droplet surface. Indeed, the higher the polymer content, the shorter the 
droplet mean diameter. The main compound of the clove and cinnamon leaf EOs 
was eugenol, which is responsible, together with sesquiterpene hydrocarbons, for 

their antifungal activity. The O/W emulsions preparation led to EO losses of about 
40%, and such losses were affected by the amount of XG employed, and was not 

due to the EO type. The antifungal activity of the clove and cinnamon leaf O/W 
emulsions against several strains, such as A. flavus, A. niger and Penicillium 

expansum, was evidenced in the in vitro and in vivo tests. 
The incorporation of the O/W emulsions into strawberry jam did not modify 

the texture or colour of the product, but negatively affected aroma, taste and the 
overall acceptance of jam. 
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The combined results demonstrate the promising advantages of using 
emulsions as natural additives to preserve and/or extend the shelf life of 

strawberry jams. Nevertheless, further studies are needed to reduce the sensory 
impact on final products, such as high pressure homogenisers to reduce the oil 

droplet’s particle size, increasing the interfacial area exposed to microbial cells, or 
combining different natural agents in order to improve synergistic effects in 

foodstuff. 
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Abstract 

The objective of the work was to evaluate the use of cinnamon bark-xanthan 
gum emulsions to preserve strawberry jam. The optimisation of the methodology 

used to prepare the emulsions and, the evaluation of their antimicrobial activity in 
culture media and in the strawberry jam were investigated. Emulsions were 

prepared in either a rotor-stator homogeniser or a magnetic stirrer combined 
with a high pressure homogeniser. Microorganism suspensions (103 and 106 

CFU/mL), essential oil concentration and microbial sensitivity were decisive in the 
emulsions’ antimicrobial activity. The high stress applied to samples and their 

heating during homogenisation caused essential oil content losses. The jams 
prepared with the oil-in-water emulsions inoculated with Aspergillus flavus, 

Penicillium expansum, Zygosaccharomyces rouxii and Zygosaccharomyces bailii 
exhibited no growth during the 28 days of analysis. The obtained results indicated 

the suitability of cinnamon bark oil-xanthan gum emulsions for preserving 
strawberry jam. 

Keywords: Natural agents; cinnamaldehyde; oil-in-water emulsions; preservation; 
strawberry jam 
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1. INTRODUCTION

Jams are defined as mixtures, with a suitable gelled consistency, of sugars,
pulp and/or purée of one or more fruits and water. Despite jam is a stable product 

due to its high sugar level (69%, USDA, 2016), there are particular 
microorganisms, such as moulds and yeasts, which are able to grow in products 

with an elevated amount of sugar.  
The use of chemical additives is very effective to prevent food spoilage owing 

to moulds and yeasts proliferation. Nevertheless, consumers have become more 

concerned about the adverse impact of synthetic additives on human health 
(Stević, Berić, Šavikin, Soković, Godevac, Dimkić & Stanković, 2014). In this sense, 

natural preservatives such as essential oils (EOs) had been extensively used during 
the last years due to its antioxidant and antimicrobial properties (Perdones, 

Sánchez-González, Chiralt, & Vargas, 2012).  
EOs are categorised as flavourings in Europe (Official Journal of the European 

Communities, Commission Decision 2002/113/EC, notified under document 
number C (2002) 88) and their constituents are categorised as GRAS (Generally 

Recognized as Safe) by the U.S Food and Drug Administration. Cinnamon EO has 
demonstrated a strong antimicrobial activity but few reports show the behaviour 

versus moulds and yeasts (Manso, Becerril, Nerín, & Gómez-Lus, 2015). EOs 
contain volatile compounds and they are highly insoluble in water because of 

their lipophilic nature, and may have limited contact with microorganisms in high 
moisture content foods (Kalemba & Kunicka, 2003). This problem can be 
successfully overcome by using oil-in-water (O/W) emulsions, improving the water 

solubility of EOs, ensuring sufficient contact with microorganisms and enhancing 
their antimicrobial effectiveness (Hill, Gomes, & Taylor, 2013). O/W emulsions can 

be obtained by a two-step process (McClements, 2005). A coarse emulsion, or 
premix, is firstly obtained by employing a rotor-stator type device. Then the 

premix is processed in a high pressure homogeniser. High pressure 
homogenisation (HPH) reduces particle droplet size and is used to produce 



Chapter 1. Section 1.3 

137 

emulsions with uniform composition and greater stability (Lee, Lefèvre, Subirade, 
& Paquin, 2009). 

The main objective of this work was to study the use of cinnamon bark oil-in-
water emulsions to preserve strawberry jams from fungi contamination. The 

optimisation of the methodology employed to prepare the emulsions by reducing 
active compounds losses, and their antimicrobial potential against moulds and 

spoilage yeasts in strawberry jam were investigated. 

2. MATERIALS AND METHODS

2.1 Microorganism, culture media and reagents 

Strains of Aspergillus flavus (CECT 20156), Aspergillus niger (CECT 20156), 

Penicillium expansum (CECT 20140), Zygosaccharomyces rouxii (CECT 1229) and 
Zygosaccharomyces bailii (CECT 12001) were supplied by the Spanish Type Culture 

Collection (CECT, Burjassot, Spain). For culture media, Potato Dextrose Agar 
(PDA), Yeast Peptone Dextrose broth (YPDB) and agar were used, all provided by 

Scharlab (Barcelona, Spain). 
In the emulsions formulation, the cinnamon bark EO (CBEO) was supplied by 

Ernesto Ventós S.A. (Barcelona, Spain) and the xanthan gum (XG, SatiaxaneTM CX 
911) by Cargill (Barcelona, Spain). Trans-cinnamaldehyde 99% was supplied by

Sigma-Aldrich (St. Louis, USA) and n-Hexane by Scharlau (Barcelona, Spain).

2.2 Screening the antimicrobial activity of the CBEO 

The CBEO was individually tested against A. flavus, A. niger and P. expansum 

following the methodology proposed by Ribes, Fuentes, Talens, and Barat (2016). 
Moulds were inoculated on PDA and incubated at 25 °C for 7 days. The spore 

solutions (103 and 106 CFU/mL) harvested from a 7-day-old PDA were prepared in 
NaCl 0.7% with a haemocytometer. Next 100 µL of each fungal suspension were 
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spread on the surface of a PDA Petri dish and an agar plug of this dish (7 mm 
diameter) was transferred to the centre of 15 g PDA’s Petri dishes with different 

EO concentrations, which were established by considering previous studies 
(Kocevski, Du, Kan, Jing, & Pavlović, 2013; Manso et al., 2015). The tested EO 

concentrations were: 0.03, 0.04, and 0.05 mg/g. To secure EO distribution, 0.1% of 
Tween 80 was added to the medium. The controls with the same amount of 

Tween 80 were added to the test. Each dish was sealed with Parafilm® and 
incubated for 7 days at 25 °C. 

Radial mycelial growth was determined after 1, 3, 5 and 7 days of incubation 
by measuring the diameter of the fungal colony. Values were expressed as mm 

diameter/day. 
The Minimal Inhibitory Concentration (MIC) and the Minimal Fungicidal 

Concentration (MFC) of the CBEO were evaluated by observing the revival or 

growth of the inhibited mycelial disc transferred to the untreated PDA for 7 days. 
The dishes that showed no growth were taken as the MFC value, whereas those 

with mycelial growth indicated the MIC value.  
The antimicrobial activity of the CBEO against Z. rouxii and Z. bailii was also 

evaluated by the methodology adapted from Tyagi, Gottardi, Malik, and Guerzoni 
(2014). Yeast strains were grown in YPD broth medium at 25 °C for 48 h in an 

orbital shaking incubator at 120 rpm. Cells were counted in a haemocytometer to 
obtain an inoculum density of 103 and106 CFU/mL. 

The tested CBEO concentrations were the same as those previously described, 
and they were established by considering previous works (Tzortzakis, 2009; 

Kocevski et al., 2013). Aliquots of 15 g of YPD agar with the EO and 0.1% Tween 80 
were poured into Petri dishes. Next 100 µL of the cell solution were spread on the 

surface of the YPD agar media dishes. As controls, the YPD agar dishes were 
supplemented with the same amount of Tween 80. The inoculated plates were 
incubated at 25 °C for 48 h. The MIC values were determined at the lowest EO 

concentration with non-visible growth. All the tests were run in triplicate. 
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2.3 Study of O/W emulsions 

2.3.1 Emulsions preparation 

The CBEO (0.06, 0.08, 0.10, 0.12 mg/g) was used as a lipid phase. To prepare 
the aqueous phase, 5 mg/g of XG were dispersed in distilled water and stirred 

overnight at room temperature. Primary emulsions were obtained following 
different steps: i) using a rotor-stator homogeniser (Ultraturrax, IKA®, Germany) 

at 10,000 rpm for 1 min and 20,000 rpm for 3 min; or ii) using a magnetic stirrer 
for 15 min. In both cases, primary emulsions were subjected to HPH in a Panda 

Plus 2000 (Gea Niro Soavi S. p. A., Parma, Italy) at 40 or 80 MPa. 

2.3.2 Gas chromatography-mass spectrometry analysis 

The final EO content in the CBEO emulsions was quantified according to the 
methodology employed for emulsion preparation: rotor-stator device and/or a 

high pressure homogenisation at 40 and 80 MPa. For this purpose, 5 mg/g of the 
XG were dispersed in distilled water and stirred overnight at room temperature. 
After biopolymer dissolution, the CBEO was added to reach a final concentration 

of 0.50 mg/g.  
After preparing the O/W emulsions, and independently of the process used, 

the EO was extracted by adding 15 mL of n-hexane to 2 g of the O/W emulsion, 
followed by 2-minute vortex agitations. The mixture was shaken gently and 

filtered through filter paper. The n-hexane was evaporated at 40 °C in a rota-
vapour. The obtained extracts were added to 2 mL of n-hexane and analysed in 

the 6890/5975 inert GC-MS (Agilent Technologies, USA), equipped with a HP-5 
fused silica capillary column (30 m x 0.25 mm x 0.25 µm). The oven temperature 

was held at 60 °C for 3 min, and then raised to 100 °C at 10 °C/min, to 140 °C at 5 
°C/min, and finally to 240 °C at 20 °C/min. Helium gas was used as the carrier gas 

at a constant flow rate of 1 mL/min. The injector and MS transfer line 
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temperatures were set at 250 °C and 230 °C, respectively. The parameters for the 
MS analysis were EI Ion source, electron energy 70 eV, solvent delay 3 min and 

m/z 40–550 amu. EO components were identified by matching mass spectra with 
the standard mass spectra from the NIST MS Search 2.0 library (Ribes et al., 2016).  

The analysis was repeated three times for each sample. 
According to the results obtained in this part of the study, and those obtained 

while evaluating the antimicrobial activity of the CBEO, the concentration of the 
EOs in the emulsions (0.06, 0.08, 0.10, 0.12 mg/g) and the methodology for 

preparing emulsions (use of magnetic stirrer for 15 min and HPH process) were 
established. 

 

2.3.3 Physico-chemical characterisation of the O/W emulsions 

The pH of the emulsions was measured by a Crison Basic 20+ pH meter (Crison 
S.A. Barcelona, Spain), and density was determined in a pycnometer. 

Particle size was determined in a laser diffractometer (Mastersizer 2000, 
Malvern Instruments, Worcestershire, UK) following the methodology described 

by Ribes et al. (2016).  
The ζ-potential was determined according to Ribes et al. (2016) with a 

Zetasizer nano-Z (Malvern Instruments, Worcestershire, UK). All the analyses were 
run in triplicate. 
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2.3.4 Antimicrobial activity of the O/W emulsions  

The antifungal activity of the CBEO emulsions against A. flavus, A. niger and P. 
expansum was determined by the methodology described in Section 2.2. In this 

case, 0.50 g of each emulsion (0.06, 0.08, 0.10, 0.12 mg/g of the CBEO and 5 mg/g 
of XG) was added to 49.50 g of PDA at 50 °C. The controls with a dispersion 

prepared with distilled water and XG were added to the test. Each Petri dish was 
sealed with Parafilm® and incubated for 7 days at 25 °C. Radial mycelial growth 
was determined after 1, 3, 5 and 7 days. Values were expressed as mm 

diameter/day. The MIC or MFC values of the O/W emulsions were studied. 
The antimicrobial action of the CBEO emulsions against Z. rouxii and Z. bailii 

was also assessed by the previously described methodology. 100 µL of the cell 
solution (103 or 106 CFU/mL) was spread on the surface of each dish that 

contained YPD agar with emulsion. The YPD agar with the dispersion prepared 
with distilled water and XG was used as a control. The inoculated plates were 

stored at 25 °C for 48 h. The MIC values were determined. All the tests were run 
in triplicate. 

 

2.4 Study of the O/W emulsions in strawberry jam 

2.4.1 Jam preparation 

Strawberry jam was prepared according to Ribes et al. (2016). The O/W 
emulsions were added to jam after cooling the product at ambient temperature 

and then homogenising. The amount of emulsions added to strawberry jam was 
established in order to achieve a concentration of 1 g of the O/W emulsion in 100 

g of jam in the final product. 
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2.4.2 Sensory analysis 

A sensory analysis was carried out by a semi-trained panel. The group of 
assessors was formed by 11 men and 19 women, whose ages ranged from 21 to 

50 years. They were recruited due to their interest and availability, following the 
general guidelines UNE-ISO 8586:2012. Training sessions were carried out in order 

to introduce the panellists to the sensory analysis and to identify and score the 
quality attributes which describes the samples. Tests were run on a structured 9-
point hedonic scale (9=like very much and 1=dislike very much) (UNE-ISO 4121), 

by which colour, aroma, taste, consistency and overall acceptance attributes were 
evaluated. All the samples were presented to panellists at room temperature 

under normal lighting conditions in a transparent plastic cup coded with random, 
three-digit numbers. Bread pieces and spoons were provided to the panellists; 

drinking water was also provided for oral rinsing. 

2.4.3 Shelf-life of inoculated strawberry jam 

Fifteen grams of strawberry jam that contained the O/W emulsions (0.08 and 
0.10 mg/g of EO and 5 mg/g of XG, homogenised at 40 MPa) were inoculated with 

100 µL of the spore and cell solution (103 CFU/ mL). Plates were incubated at 25 °C 
for 28 days. Three Petri dishes were prepared per EO concentration, 
microorganism and analysis day (n=150). Moulds and yeast counts were taken in 

PDA plates after 72 h of incubation at 25 °C (Pascual & Calderón, 2000). All the 
assays were performed in triplicate. 

2.5 Statistical analysis 

The results obtained in the physico-chemical characterisation of the O/W 

emulsions and the antifungal evaluation of the EO and O/W emulsions were 
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analysed by a multifactor analysis of variance (multifactor ANOVA). The effect of 
incorporating the O/W emulsion on the sensory attributes of strawberry jam was 

evaluated by a one-way ANOVA. The least significance procedure (LSD) was used 
to test for any differences between averages at the 5% level of significance. Data 

were statistically processed by Statgraphics Centurion XVI. 

3. RESULTS AND DISCUSSION

3.1 Antimicrobial activity of the CBEO 

The results obtained while screening the antifungal activity of the CBEO are 

found in Fig. 1. The CBEO increased the Lag phase of all the moulds evaluated, 
with a diminution on the germination rate for both fungal suspensions (103 

CFU/mL and 106 CFU/mL). At the highest EO concentration (0.05 mg/g), mycelial 
growth was totally inhibited in all the studied moulds, irrespectively of the fungal 

concentration employed. The use of 0.03 and 0.04 mg/g of the CBEO reduced the 
growth of A. flavus, A. niger and P. expansum, regardless of the evaluated fungal 

suspension. 
The inoculum concentration affects the degree of inhibition. In the most 

diluted suspension (103 CFU/mL), the CBEO caused the total inhibition of P. 
expansum, independently of the EO concentration employed. Furthermore, A. 
flavus and A. niger were totally inhibited when 0.04 and 0.05 mg/g of the CBEO 

was used, respectively. This behaviour reflects the greater resistance of A. niger 
and the highest sensitivity of P. expansum to CBEO exposure. The highest 

assessed fungal concentration showed 100% mycelial growth inhibition when 0.05 
mg/g of the CBEO was incorporated into the media. 

Antifungal activity could be the result of different activity sites on microbial 
cells, such as damage of the enzymatic cell systems that correlate with the energy 

production or structural compounds of EOs, or even the denaturation of the 
enzymes involved in spore germination (Gutiérrez, Batlle, Sánchez, & Nerín, 
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2010). The efficacy of cinnamaldehyde, the main CBEO compound, to inhibit 
growth of the fungi of genera Penicillium and Aspergillus has been demonstrated 

by López, Sánchez, Batlle, and Nerín (2007). They found that P. islandicum and A. 
flavus were completely inhibited by 4.36 μL/L and 34.9 μL/L, respectively, of a 

cinnamaldehyde-fortified cinnamon EO in the vapour phase, and reported the 
MIC of cinnamaldehyde against A. flavus to be 21.8 μL/L. 

The MFC values for P. expansum, A. flavus and A. niger were 0.03, 0.04 and 
0.05 mg/g, respectively, at the most diluted spore suspension. However, 0.05 

mg/g of the CBEO was the MIC at 106 CFU/mL for the three strains. These results 
indicate the relation between the EO concentration and spore solution, and 

confirm that the concentration of fungal suspensions plays an important role in 
fungal development (Manso, Cacho-Nerin, Becerril, & Nerín, 2013). 

The MIC of the CBEO was determined against different yeast strains (Z. rouxii 

and Z. bailii) at the 103 and 106 CFU/mL cell suspensions. The EO exhibited 
concentration-dependent inhibition of growth, and the MIC of the CBEO varied 

from 0.04 to 0.05 mg/g. The results indicated greater antimicrobial activity of the 
CBEO against Z. rouxii than against Z. bailii, with a MIC value of 0.04 mg/g. The 

highest MIC value (0.05 mg/g) at 103 cells/mL was shown against Z. bailii (data not 
shown). The same trend was observed for the MIC value when the highest cell 

suspension was used (106 CFU/mL). The obtained data indicated that the yeast 
suspension concentration plays a key role in reducing yeast spoilage. Similar 

results were obtained by Monu, Techathuvanan, Wallis, Critzer, and Davidson 
(2016) when determining the MIC of cinnamon bark and trans-cinnamaldehyde 

against Z. bailii. 
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3.2 Study of the O/W emulsions  

3.2.1 Gas chromatography-mass spectrometry analysis 

The CBEO components were identified by a GC-MS analysis (Table 1). The 

main EO compounds were trans-cinnamaldehyde (74.56%), caryophyllene (6.5%), 
eugenol (5.14%), cinnamylacetate (2.83%) and β-linalool (2.62%). Similar results 

have been reported by different authors (Fei, Yi-cheng, Xing-qian, & Yu-ting, 2011; 
Mazzarrino et al., 2015). The antifungal properties of the CBEO and their main 

component, trans-cinnamaldehyde, have been demonstrated by several authors 
(Manso et al., 2013). Some research works have attributed the antifungal 

properties of cinnamaldehyde to the high electrophilic properties of the carbonyl 
group adjacent to the double bound, which render it reactive with the 

nucleophiles present in microorganisms (Gill & Holley, 2004). 
Given the volatility of EOs, it is important to quantify the EO retained by O/W 

emulsions, and to, therefore, adjust the EO content to be used in emulsion 
formulations. These results are useful for optimising the methodology to prepare 

O/W emulsions. Emulsions were analysed by a GC-MS analysis, and losses of EOs 
while being prepared using different treatments (rotor-stator homogenisation 

and/or HPH process) were determined. EO losses were referred to trans-
cinnamaldehyde. 

Trans-cinnamaldehyde losses in the O/W emulsions prepared with the rotor-

stator device were around 40%, and became higher in combination with HPH (Fig. 
2). In contrast, the % of trans-cinnamaldehyde losses in the emulsions obtained by 

magnetic stirring, and subjected to 40 and 80 MPa of pressure, were 6.80±1.29 
and 15.27±2.21, respectively. The emulsion subjected to high pressure showed a 

significant (p<0.05) reduction in the % of trans-cinnamaldehyde losses compared 
with the emulsion obtained in the rotor-stator type device. This could be caused 

by the high stress applied to samples and their heating during the homogenisation 
process, which would promote the degradation of constituents. Indeed, the 

higher the pressure applied during the homogenisation process, the greater the 



Chapter 1. Section 1.3 

146 

degradation of the EO compounds. These results agree with those reported by 
Donsì, Annunziata, Sessa and Ferrari (2011) for a terpenes mixture, who observed 

the degradation of different active compounds, due to the stress that samples had 
to withstand during high shear homogenisation and HPH. 

3.2.2 Physico-chemical characterisation of stable O/W 

emulsions  

Different formulations and pressures were used to obtain stable emulsions. 
The pH, density, d3,2, d4,3 and ζ-potential values for the different emulsions are 

summarised in Table 2. 
The pH values of the emulsions prepared at 40 MPa varied between 6.56±0.02 

and 7.30±0.05 at ambient temperature, and the values obtained from the 
emulsions prepared at 80 MPa varied between 6.80±0.02 and 7.37±0.02. The pH 
decrease may be related with the acid nature and dissociation in the aqueous 

solution of some CBEO compounds. Similar results were reported by Sánchez-
González, Vargas, González-Martínez, Chiralt, and Cháfer (2009) and Sánchez-

González, Chiralt, González-Martínez, and Cháfer (2011) when incorporating 
different EOs into hydroxypropylmethylcellulose film-forming dispersions. 

No changes were observed for density when EO content increased. 
As can be observed in Table 2, the higher the oil content in emulsions, the 

bigger particle size becomes. This could be due to an increase in the dispersed 
phase concentration, which facilitates the droplet flocculation rate, as well as the 

reduction in the ratio between the interfacial stabilising material and the 
dispersed phase (McClements, 2005). 
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Fig. 1. Antimicrobial activity of the CBEO against (A) Aspergillus flavus, (B) Aspergillus niger and (C) Penicillium expansum 

after 7 days of incubation at 25 °C (fungal suspensions: 103 and 106 CFU/mL). Media values (n=3) ± SD. 
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Similar results have been reported by Sánchez-González, Cháfer, Chiralt, and 
González-Martínez (2010) in emulsions of bergamot EO and chitosan aqueous 

systems. Only for the emulsions prepared with 0.10 mg/g and 0.12 mg/g of the 
CBEO a significant (p<0.05) impact on d3,2 was observed. The mean size values 

lowered from 3.397±0.127 to 3.112±0.228 µm in the emulsions prepared using 
0.10 mg/g of the CBEO at 40 and 80 MPa, respectively. The reduction in the mean 

size values for the emulsions formulated 

Table 1. Chemical composition of CBEO. Percentages of relative area (%) are the 
mean of three runs and were obtained from electronic integration measurements 

using selective mass detector. 

Compound CBEO  (% 
relative area) 

α-Phellandrene 0.91 ± 0.03 
2-Carene 0.45 ± 0.01 
o-cymene 1.21 ± 0.03 
D-Limonene 0.44 ± 0.00 
β-Phellandrene 1.77 ± 0.05 
β-Linalool 2.62 ± 0.05 
1-Terpinen-4-ol 0.21 ± 0.01 
α-Terpineol 0.59 ± 0.00 
Trans-cinnamaldehyde 74.56 ± 0.09 
Eugenol 5.14 ± 0.13 
Copaene 0.86 ± 0.04 
Caryophyllene 6.54 ± 0.07 
Cinnamylacetate 2.83 ± 0.01 
α-caryophyllene 1.17 ± 0.02 
Caryophyllene oxide 0.69 ± 0.03 
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Fig. 2. Percentage (%) of trans-cinnamaldehyde loss from the CBEO emulsions 

with different treatments (rotor-stator and/or HPH at 40 or 80 MPa). Mean values 
(n=3) ± SD. 

with 0.12 mg/g of the EO was more marked, and the mean size values lowered 
from 3.397±0.127 to 2.949±0.073 µm in the emulsions subjected to 40 and 80 
MPa, respectively. In contrast, the primary emulsions formulated with 0.06, 0.10 

and 0.12 mg/g of the EO and subjected to high pressure had a significant (p<0.05) 
impact on d4,3, and showed a reduction around 1.5 µm. Only in case of the 

emulsion with 0.08 mg/g of the CBEO the impact of HPH on d4,3 did not affect 
significantly (Table 2). 

According to McClements (2005), if the electrical charge of droplets was 
sufficiently high, the emulsion could become stable against aggregation due to 

repulsive forces between droplets. 
Generally, particles with a more positive ζ-potential than +30 mV, or a more 

negative one than -30 mV, are considered stable (Heurtault, Saulnier, Pech, 
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Proust, & Benoit, 2003). The electrical charge of oil droplets in emulsion is shown 
in Table 2. A strong negative ζ-potential was observed in emulsions. The increase 

in pressure applied during the homogenisation procedure of emulsions 
diminished the surface charge of particles with significant differences (p<0.05). 

The decrease in their ζ-potential values was more negative than -45.0 mV. The 
mechanical stress during HPH can break up the XG, and thus increase the number 

of molecules to be potentially adsorbed on the O/W interface. This would explain 
the observed ζ-potential strengthening (Salvia-Trujillo, Rojas Graü, Soliva Fortuny, 

& Martín Belloso, 2015).  
The obtained O/W emulsions were stable regardless of the effect caused in 

the electrical charge of droplets by HPH. 

3.2.3 Antimicrobial activity of the O/W emulsions 

According to the results obtained in the Section 3.1 and the % of trans-

cinnamaldehyde losses, the concentrations of the tested EO were 0.06, 0.08, 0.10, 
0.012 mg/g. 

The antifungal activity of the CBEO emulsions obtained at 40 and 80 MPa 
against A. flavus, A. niger and P. expansum for 7 days by using 103 and 106 CFU/mL 

is shown in Fig. 3. The O/W emulsions under the tested conditions increased the 
Lag phase of all the tested moulds, and the germination rate lowered. The O/W 

emulsions prepared with 0.08 mg/g of the CBEO at 40 MPa for the lowest assayed 
spore solution (103 CFU/mL) had a significant antifungal effect (p<0.05) on all the 

studied moulds. These emulsions inhibited the growth of A. flavus, A. niger and P. 
expansum for 7 days. 
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Table 2. Mean values (n=3) ± SD of pH, density (g/cm3), particle size (d3,2 and d4,3), and ζ-potential of cinnamon 
bark-xanthan gum O/W emulsion.  

Pressure (MPa) 0.06 mg/g EO 0.08 mg/g EO 0.10 mg/g EO 0.12 mg/g EO 

pH 
40 7.30 ± 0.05 c x 7.28 ± 0.02 c x 6.79 ± 0.02 b x 6.56 ± 0.05 a x 

80 7.37 ± 0.02 c x 7.34 ± 0.02 c y 6.95 ± 0.01 b x 6.80 ± 0.02 a y 

ρ (g/cm3) 
40 1.001 ± 0.001 a x 1.001 ± 0.001 ax 1.001 ± 0.000 a x 1.001 ± 0.001 ax 

80 1.002 ± 0.001 a x 1.001 ± 0.001 ax 1.001 ± 0.000 a x 1.001 ± 0.002 ax 

d3,2 (µm) 
40 2.520 ± 0.018 a x 3.215 ± 0.144 bx 3.397 ± 0.127 bcy 3.532 ± 0.101 cy 

80 2.501 ± 0.063 a x 3.112 ± 0.228 bx 2.949 ± 0.073 bcx 3.226 ± 0.138 cx 

d4,3 (µm) 
40 6.921 ± 0.426 a y 7.547 ± 0.114 ax 8.666 ± 0.255 b y 9.712 ± 0.597 cy 

80 5.571 ± 0.071 b x 7.490 ± 0.543 bx 7.438 ± 0.198 b x 7.008 ± 0.541 bx 

ζ-potential (mV) 
40 - 51.9 ± 1.7 a x - 47.5 ± 0.5 b x - 47.0 ± 1.5 bc x - 45.1 ± 0.6 c x

80 - 54.9 ± 1.1 a y - 53.4 ± 1.4 a y - 53.8 ± 0.6 a y - 51.0 ± 0.4 b y

a, b, c, d, Different superscripts indicate significant differences among EO concentrations (p<0.05). 

x, y Different superscripts indicate significant differences among different pressure (p<0.05). 
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The assays in which the fungal suspension was 106 CFU/mL obtained an 
increased mycelia growth rate for the three evaluated fungi. These results once 

again confirmed the relevance of the initial fungal concentrations on fungal 
development (Manso et al., 2013). Under these conditions, the O/W emulsions 

prepared with 0.08 mg/g of the CBEO at 40 MPa were able to inhibit the total 
growth of A. flavus, A. niger and P. expansum. On the contrary, when the EO 

concentration rose above 0.08 mg/g and the pressure applied to the primary 
emulsions was 80 MPa, A. niger development on culture media occurred. 

A similar trend in the growth rate was observed for both fungal suspensions 
when the pressures applied to the primary emulsions increased. The O/W 

emulsions formulated with 0.06 mg/g of the CBEO at 80 MPa showed higher 
mycelial growth than the same emulsions prepared at 40 MPa. This finding could 
be related with the % of trans-cinnamaldehyde losses, which could diminish the 

antifungal effectiveness of the O/W emulsions. 
The MIC and MFC values of the O/W emulsions formulated with 0.08 mg/g of 

the CBEO at 40MPa and 0.10 mg/g of CBEO homogenised at 40 and 80 MPa were 
also evaluated. The MFC of the O/W emulsions process at 40 MPa was 0.08 mg/g. 

The MIC of the O/W emulsions was also determined against Z. rouxii and Z. 
bailii at different cell suspensions (103 and 106 CFU/mL). The lowest MIC (0.06 

mg/g) value was obtained at 103 CFU/mL for both strains by subjecting the 
primary emulsions to 40 MPa. In contrast at 106 CFU/mL, a remarkable 

antimicrobial effect was observed for Z. rouxii. At this cell suspension, the 
emulsion’s MIC values for Z. rouxii and for Z. bailii were 0.06 and 0.08 mg/g of the 

CBEO, respectively, when applying 40 MPa of pressure (data not shown). As 
previously mentioned, the higher the pressures applied in homogenisation, the 

bigger the % trans-cinnamaldehyde losses. This fact affected yeast growth 
inhibition, which became less effective due to loss of active compounds. 
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Fig. 3. Antimicrobial activity of the O/W emulsions obtained at 40 and 80 MPa against (A) Aspergillus flavus, 

(B) Aspergillus niger and (C) Penicillium expansum, after 7 days of incubation at 25 °C. Fungal suspensions: 103 and 

106 CFU/mL. Media values (n=3) ± SD. 



Chapter 1. Section 1.3 

154 

3.3 Study of the O/W emulsions on strawberry jam 

3.3.1 Sensory analysis 

A sensory analysis was carried out to check the acceptability of the strawberry 

jam that contained the O/W emulsions. The samples tested by panellists consisted 
of the jam with the CBEO emulsions at the established concentrations. One jam 

sample with no EO was used as a control. The strawberry jam with the O/W 
emulsions scored lower for the aroma, taste and overall acceptance attributes 

compared with the control samples. No significant differences were observed 
between EO concentrations. Consistency and colour attributes did not 

significantly differ (p>0.05) from the control samples (Fig. 4). 

3.3.2 Study of the O/W emulsions on strawberry jam 

The emulsions prepared with 0.08 and 0.10 mg/g of the CBEO and 
homogenised at 40 MPa, were added to strawberry jam. Jams were inoculated to 

simulate a possible product contamination and samples with no inoculation were 
used as controls. 

Microbial development on the strawberry samples that contained the O/W 
emulsions for 28 days at 25 °C was studied (Fig. 5).  The jams prepared with the 

O/W emulsions inoculated with A. flavus, P. expansum, Z. rouxii and Z. bailii 
showed no growth throughout the study. For A. niger, a reduction of around 1 log 
was observed between the control plates and the samples. These results agree 

with those reported above. A. niger showed the greatest resistance against the 
CBEO treatment and the O/W emulsions added to strawberry jam. 
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Fig. 4. Sensory profile of strawberry jam. *Indicates 95% significant differences 
according to the ANOVA test (n=30). 

Strawberry is sensitive to pathogens, and fungal contamination is common in 

this product. Major threatening fungi that reduce the post-harvest storage life of 
strawberries include Botrytis, Aspergillus, Rhizopus and Penicillium (Lazar, Jobling, 

& Benkeblia, 2010; Sharma, 2014). Various reports have demonstrated that A. 
niger species members are responsible for the post-harvest decay of fresh fruits 

like apples, peaches, citrus, grapes, strawberries and tomatoes, among others 
(Perrone et al., 2007). This opportunistic effect could suggest the greater 

resistance of A. niger to the O/W emulsions incorporated into strawberry jam. 
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Fig. 5. Effect of the O/W emulsions on growth of A) Aspergillus flavus, B) Aspergillus niger, C) Penicillium expansum, D) 
Zygosaccharomyces rouxii and E) Zygosaccharomyces bailii on the strawberry jam stored at 25 °C. Inoculum density: 103 

CFU/mL. Mean values (n=3) ± SD. 
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4. CONCLUSIONS

The optimisation of the methodology to prepare cinnamon bark-xanthan gum
emulsions achieves a trans-cinnamaldehyde losses around 40%, which are higher 

in combination with high pressure homogenisation. Nevertheless, the losses of 
the emulsions obtained by magnetic stirring, and subjected to 40 and 80 MPa of 

pressure, are below 16%. Moreover, the antimicrobial activity of the emulsions 
was determined by fungal suspension, essential oils concentration and microbial 
sensitivity to essential oils. 

The incorporation of emulsions containing 0.08 mg/g of cinnamon bark oil into 
strawberry jam allows their preservation against Aspergillus flavus, Penicillium 

expansum, Zygosaccharomyces rouxii and Zygosaccharomyces bailii during the 
whole evaluation period. Furthermore, this incorporation does no modify product 

texture or colour, but negatively affects the aroma, taste and overall acceptance 
of jam. 

Although, the obtained results suggest some advantages in the use of the 
cinnamon bark emulsions as natural preservatives in strawberry jam, more studies 

are needed to reduce the sensory impact of essential oils. The combination of 
different natural antifungal agents such as phenolic compounds or zinc salts could 

be a promising alternative to reduce or suppress the changes produced in foods 
due to the strong flavour of essential oils. 
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Abstract 

The aim of this work is to evaluate the combination of several antifungal 
agents (cinnamon bark oil, zinc gluconate and trans-ferulic acid) in oil-in-water 

emulsions to control the fungal spoilage of strawberry jams Furthermore, the 
effect of these oil-in-water emulsions on the sensory profile of samples was 

investigated. The in vitro assays of the free antifungal agents were carried out 
against five fungal strains. Nevertheless, the effectiveness of the oil-in-water 
emulsion was tested against Aspergillus niger given its strong in vitro resistance 

and its relevance in strawberry products. The emulsions formulated with 0.08 
mg/g of cinnamon bark essential oil were able to inhibit mould growth after the 

incubation period. Indeed, the emulsions formulated with 0.06 mg/g of cinnamon 
bark essential oil and with different zinc gluconate concentrations (1, 2, 4 and 6 

mg/g) inhibited the mycelial growth for 7 days. The mycelial growth inhibition was 
also achieved when 0.06 mg/g of cinnamon bark essential oil and 1 mg/g of trans-

ferulic acid were employed in the emulsion formulation. Furthermore, the 
emulsion formulated with the three active agents was used for an in vivo assay, 

and exhibited less fungal spoilage compared with the control jam (without 
emulsion). Incorporation of emulsion into strawberry jam did not modify its 

sensory characteristics. The present work demonstrates that the cinnamon bark 
essential oil, zinc gluconate and trans-ferulic acid combination in oil-in-water 

emulsions can be used to preserve strawberry jam from fungal spoilage. 

Keywords: Essential oil; zinc gluconate; trans-ferulic acid; antifungal agent; 

strawberry jam 
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1. INTRODUCTION

Numerous techniques, including heat treatment, acidification, drying,
incorporation of additives, or their combinations, have been used by the food 

industry to prevent fungal growth and spoilage (Davidson and Taylor, 2007; 
Farkas, 2007). Using synthetic additives to control fungi is the most effective 

method, but negative consumer perception has forced the food industry to find 
other natural alternatives (Ribes, Fuentes, Talens, & Barat, 2016).  

In the last few years, plant essential oils (EOs) have attracted interest in both 

academia and food industry fields thanks to their antifungal properties (Manso, 
Cacho-Nerin, Becerril, & Nerín, 2013; Perdones, Sánchez-González, Chiralt, & 

Vargas, 2012). However, the use of plant EOs for preserving food commodities 
has some limitations due to their intensive aroma, difficult dispersion in the food 

matrix and possible interactions with other ingredients. Some authors have 
proposed the use of oil-in-water (O/W) emulsions to overcome these problems 

(Chang, McLandsborough, & McClements, 2012; Perdones et al., 2012; Weiss, 
Gaysinksy, Davidson, & McClements, 2009). Combining EOs with other antifungal 

agents, such as zinc salts and phenolic compounds, could help to reduce the 
amount of EOs needed to prevent fungi from growing.  

Cinnamon bark EO has demonstrated a strong antimicrobial activity against 
foodborne pathogens but few reports show the behaviour versus moulds and 

yeasts (Manso, Becerril, Nerín, & Gómez-Lus, 2015; Manso et al., 2013). The main 
constituent of this EO is trans-cinnamaldehyde (Ribes, Fuentes, Talens, & Barat, 
2017a). Indeed, cinnamon is broadly employed as a natural preservative and 

flavouring substance by the food industry to extend the shelf life of foods 
(Ribeiro-Santos et al., 2017). 

Zinc (Zn) is an important essential mineral for humans given its activity in the 
metabolism of nutrients that form part of enzyme systems (Hess & Brown, 2009). 

Zinc deficiency affects children’s growth and increases the risk and severity of 
different infections (Bautista-Gallego, Moreno-Baquero, Garrido-Fernández, & 

López-López, 2013). This mineral is also used in the food industry given its ability 
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to form green colour complexes with chlorophyll derivates, especially at high 
temperature (Ngo & Zhao, 2007). Zinc exhibits cytotoxic activity when used 

above a threshold concentration (Romero-Gil, Rejano-Zapata, Garrido-Fernández, 
& Arroyo-López, 2016). Recently, zinc salts have been used as antifungals in table 

olives to reduce yeast growth (Bautista-Gallego, Arroyo-López, Garrido-
Fernández, García-García, López-López, &  Rodríguez-Gómez, 2010), and also in 

cracked table olives where presence of zinc salts, e.g., ZnCl2, more markedly 
reduced the yeast population during shelf life than other traditional preservatives 

(Bautista-Gallego, Arroyo-López, Romero-Gil, Rodríguez-Gómez, & Garrido-
Fernández, 2011). Among the different zinc salts available, the use of zinc 

gluconate (ZG) is authorised in the EU to fortify food products (Directive 
2002/46/CE), and the Food and Drug Administration (FDA) has recognised zinc 
gluconate as being safe (GRAS) in Code 21 of Federal Regulations, part 182.8988 

(CFR, 2015).  
Ferulic acid (FA) is a phenolic compound present in fruits and vegetables. FA 

exhibits strong antioxidant activity, and acts as a scavenger against hydroxyl and 
peroxyl radicals (Kansi, Aksenova, Stoyanova, & Butterfield, 2002). It also acts as 

an inhibitor of fungal enzymes (Daglia, 2012), and many authors have reported its 
in vivo and in vitro antifungal activity (Ferrochio, Cendoya, Farnochi, Massad, & 

Ramirez, 2013; Zabka & Pavela, 2013). Other FA effects on human metabolism 
have been explored, e.g., anti-inflammatory, anti-thrombosis, UV-protector and 

anticancer properties (Lima, Flores, Santana-Cruz, Leyva-Gómez, & Krötzsch, 
2013). As a result of its antioxidant and antimicrobial activity, and also of its 

health benefits and low toxicity, FA is used as a food additive in food 
commodities, beverages and cosmetics in Japan (Lima et al., 2013). Nevertheless, 

its solubility in aqueous solutions is low (Mota, Queimada, Pinho, & Macedo, 
2008), and it is susceptible to light exposure. Nonetheless, all these drawbacks 
can be solved by incorporating it into O/W emulsions. 

The main objectives of this work were to: i) evaluate the in vitro antifungal 
activity of cinnamon bark essential oil, zinc gluconate and trans-ferulic acid 

against Aspergillus flavus, Aspergillus niger, Penicillium expansum, 
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Zygosaccharomyces rouxii and Zygosaccharomyces bailii; ii) investigate the 
combination of these compounds in O/W emulsions to control the spoilage of 

strawberry jams against Aspergillus niger; iii) evaluate the effect of emulsion 
incorporation on the sensory acceptance of strawberry jam.  

2. MATERIAL AND METHODS

2.1 Strains, media and chemicals 

Strains Aspergillus flavus (CECT 20156), Aspergillus niger (CECT 20156), 
Penicillium expansum (CECT 20140), Zygosaccharomyces rouxii (CECT 1229) and 

Zygosaccharomyces bailii (CECT 12001) were supplied by the Spanish Type Culture 
Collection (CECT, Burjassot, Spain). Potato Dextrose Agar (PDA), Yeast Peptone 

Dextrose broth (YPDB), agar and n-hexane were purchased from Scharlab 
(Barcelona, Spain). While preparing emulsions cinnamon bark essential oil (>60%) 

(CBEO) (Ernesto Ventós S.A., Barcelona, Spain), xanthan gum (XG) (Cargill, 
Barcelona, Spain), zinc gluconate (ZG) (Guinama, Valencia, Spain) and trans-ferulic 

acid (FA), and Tween 80 (Sigma-Aldrich, Madrid, Spain) were used. Trans-
cinnamaldehyde (99%) was supplied by Sigma-Aldrich (Madrid, Spain). 

2.2 Antifungal properties of CBEO, ZG and FA: in vitro 

conditions 

CBEO, ZG and FA activity against A. flavus, A. niger and P. expansum was 
examined according to Ribes et al. (2016). Moulds were inoculated on PDA and 

incubated at 25 ºC for 7 days, and the spores were counted in a haemocytometer 
to achieve an inoculum density of 106 CFU/mL. Next 100 µL of the fungal 

suspension were spread on the surface of a PDA plates. An agar plug of this dish 
(7 mm diameter) was transferred to the centre of 15 g PDA’s Petri dish with 
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different antifungal concentrations: 0, 0.02, 0.04 and 0.06 mg/g for CBEO, 0, 1, 2, 
3, 4, 5, 6 and 7 mg/g for ZG, and 0, 1, 2, 3, and 4 mg/g for FA. The antifungal 

agents were added to the culture medium, containing 10 mg/g of Tween 80 to 
ensure their dispersion, at 50 °C. The control sets, with no natural agents, were 

prepared by the same procedure. Each plate was incubated at 25 °C for 7 days. 
Growth inhibition of treatment against the control samples was calculated with 

Equation 1 (Ribes, Fuentes, Talens, Barat, Ferrari, & Donsì, 2017b): 

Mycelial growth inhibition (%) = (C-T/C) x 100  (1) 

where C and T represent mycelial growth (mm) in the control and treated 
plates, respectively. 

The minimal inhibitory concentration (MIC) and the minimal fungicidal 
concentration (MFC) of CBEO, ZG, and FA were evaluated by observing the revival 

or growth of the inhibited mycelial disc transferred to PDA for 7 days. The dishes 
that showed no visual growth were taken as the MFC value, whereas those with 

mycelial growth indicated the MIC value.  
The antifungal effectiveness of natural preservatives (CBEO, ZG, and FA) 

against Z. rouxii and Z. bailii was evaluated by the methodology adapted from 
Ribes et al. (2016). The tested CBEO, ZG, and FA concentrations were the same as 
those previously described. A suspension of yeast strains, 100 µL of 106 CFU/mL 

counted by a haemocytometer, grown in 50 mL of YPD broth at 25 °C for 48 h, was 
spread on 15 g of YPD agar that contained the natural preservatives and Tween 80 

(10 mg/g). The control Petri dishes, with no antifungal agents, were prepared 
following the same procedure. Plates were incubated at 25 °C for 48 h. 

The lowest CBEO, ZG or FA concentration that achieved the visual inhibition of 
yeast growth was the MIC.  

All the tests were run in triplicate. 
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2.3 O/W emulsions 

2.3.1 Preparation  

The O/W emulsions that contained the different natural agents (CBEO, ZG and 

FA), 10 mg/g of Tween 80 and 5 mg/g of XG were prepared by using a magnetic 
stirrer, which operated for 15 min. The concentrations of each antifungal 

compound tested during emulsion preparation were: 0.02, 0.04, 0.06 and 0.08 
mg/g of CBEO; 1, 2, 4 and 6 mg/g of ZG and; 1, 2.5 and 4 mg/g of FA. 

Furthermore, the concentrations of the Tween 80 and the XG were defined taking 
into consideration previous works (Ribes et al., 2016; Salvia-Trujillo, Rojas-Graü, 

Soliva-Fortuny, & Martín-Belloso, 2013). Afterwards, the O/W emulsions were 
processed one time at 40 MPa by a high pressure homogenisation (HPH) system 

(Panda Plus 2000, Gea Niro Soavi S.p.A., Parma, Italy).  

2.3.2 Determination of CBEO losses by gas chromatography-

mass spectrometry analysis 

Determination of CBEO losses after preparing emulsions, which were 
subjected to HPH fluid dynamic stresses, was analysed by a GC-MS analysis. These 

losses are referred to as trans-cinnamaldehyde, which is the main CBEO 
compound (Ribes et al., 2017a). To this end, 5 mg/g of XG were dispersed in 

distilled water and stirred overnight at room temperature. 



Chapter 2 

171 

Next CBEO was incorporated to achieve a final concentration of 0.50 mg/g. 

CBEO was extracted by incorporating 15 mL of n-hexane into 2 g of the emulsion, 
followed by 2-minute vortex agitations. The mixture was filtered through filter 

paper and n-hexane was evaporated at 40 °C in a rota-vapour. The resulting 
extracts were incorporated into 2 mL of n-hexane and analysed in a 6890/5975 

inert GC/MS (Agilent Technologies, USA), equipped with an HP-5 fused silica 
capillary column (30 m x 0.25 mm x 0.25 μm). The methodology followed was that 
described by Ribes et al. (2016). The analysis was repeated 3 times for each 

sample. 

2.3.3 Antifungal properties of the O/W emulsions against 

Aspergillus niger: in vitro conditions 

The study of the in vitro antifungal activity of the CBEO, ZG, and FA emulsions 
was conducted by considering the results obtained above. A. niger was selected as 

the target microorganism for both its resistance in vitro and its prevalence in the 
post-harvest storage life of strawberry products (Farzaneh, Kiani, Sharifi, Reisi, & 

Hadian, 2015; Jensen et al., 2013; Nieminen, Neubauer, Sivelä, Vatamo, 
Silfverberg, & Salkinoja-Salonen, 2008).  

2.3.3.1 Antifungal properties of the CBEO emulsions 

The antifungal properties of the O/W emulsions formulated with CBEO were 

evaluated according to Ribes et al. (2016), with minor modifications. Moulds were 
inoculated and incubated on PDA at 25 °C for 7 days. Next the spores were 

counted in a haemocytometer to obtain an inoculum density of 106 CFU/mL. The 
CBEO content in the emulsions formulation was 0.06 and 0.08 mg/g. Each 

emulsion (0.50 g) was added to media (49.5 g of PDA) at 50 °C. Then a PDA disc, 
spread previously with 100 µL of the spore solution (106 CFU/mL), was placed in 
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the centre of each plate. Positive controls were prepared with a dispersion of 
distilled water, Tween 80 and XG. Plates were incubated at 25 °C for 7 days. 

Growth inhibition was calculated as described in Section 2.2. 
The MIC and MFC of the emulsions were evaluated as previously described. 

Each assay was conducted in triplicate.  

2.3.3.2 The O/W emulsions formulated by combining CBEO, ZG, and FA 

Emulsions were formulated using the CBEO combined with ZG and/or FA. The 
method followed to test their antifungal activity is defined in Section 2.3.3.1. For 

the combination with ZG, the used amounts of CBEO were 0.02, 0.04, 0.06 and 
0.08 mg/g, and the employed ZG concentrations were 1, 2, 4 and 6 mg/g. For the 

combination with FA, the employed CBEO concentrations were 0.02, 0.04 and 
0.06 mg/g, and the concentrations of tested FA were 1, 2.5 and 4 mg/g. These 

concentrations were established by considering the results of the in vitro 
antifungal effect of: i) free FA and ii) the O/W emulsions formulated with CBEO 

and ZG. For the triple combination, 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 mg/g 
of FA were used. Each assay was conducted in triplicate. 

2.3.4 Characterisation of the O/W emulsions 

According to the in vitro results of the antifungal properties of the different 

O/W emulsions prepared with various agents, the final characterised formulations 
are described in Table 1.  

The pH of the emulsions was measured by a Crison Basic 20+ pH meter (Crison 
S.A. Barcelona, Spain). Particle size was determined by a laser diffractometer 
(Mastersizer 2000, Malvern Instruments, Worcestershire, UK), as described by 

Ribes et al. (2016), by applying the Mie theory (refractive index of 1.50, 
absorption index of 0.01). The ζ-potential was carried out according to Ribes et al. 

(2016) using a Zetasizer Nano-Z (Malvern Instruments, Worcestershire, UK), and 
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the Smoluchowsky mathematical model was employed to transform the 
electrophoretic mobility measures into ζ-potential values. Each measurement was 

taken in triplicate. 

Table 1. Formulations of the different tested O/W emulsions (CBEO: cinnamon 
bark essential oil; ZG: zinc gluconate; FA: trans-ferulic acid). 

Code CBEO (mg/g) ZG (mg/g) FA (mg/g) 

CBEO 0.06 - - 

CBEO-ZG 0.06 1 - 

CBEO-FA 0.06 - 1

CBEO-ZG-FA 0.06 1 1 

2.4 Effect of using O/W emulsions on strawberry jam 

2.4.1 Jam preparation 

Strawberry jam was prepared by mixing fruit and sugar in a ratio of 65:35, and 
cooked at 100 °C for 30 min to reach a 60 °Brix in the product as described in the 
Spanish quality regulation for fruit jam (BOE, 2003) (Ribes et al., 2016). The CBEO-

ZG, CBEO-FA and CBEO-ZG-FA emulsions were added to jam after cooling at 25 °C, 
and then homogenised. The amount of emulsions incorporated to strawberry jam 

was defined to achieve a concentration of 1 g of the O/W emulsion in 100 g of jam 
in the final product.  
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2.4.2 Strawberry jam spoilage by A. niger 

Fifteen grams of strawberry jam with the O/W emulsions were inoculated 

with 100 µL of the A. niger solution (106 CFU/ mL). Plates were incubated at 25 °C 
for 28 days. Ten grams of each sample were placed in sterile plastic bags 

containing 90 mL of tryptone phosphate water and homogenised for 1 min in a 
Stomacher blender (Masticator IUL, S.A. Instruments, Germany). Serial dilutions 

were prepared and 0.1 mL were spread on the surface of the PDA plates.  
Three Petri dishes were prepared per formulation and analysis day, plus the 

control samples (n=60). Mould counts were made on PDA plates after 72 h of 
incubation at 25 °C (Pascual & Calderón, 2000). All the assays were conducted in 

triplicate. 

2.4.3 Sensory evaluation 

To test the sensory acceptance of the strawberry jam with the emulsion 
(CBEO-ZG-FA), a semi-trained panel composed of 13 men and 17 women, whose 

ages ranged between 22 and 50 years, made a sensory evaluation. Tests were run 
on a 5-point hedonic scale (1=dislike very much, 5=like very much) (UNE-ISO 

4121:2003). The following sensory parameters were evaluated: visual aspect, 
aroma, taste, unctuousness, mouth texture and overall acceptance. Each sample 

was given to panelists at room temperature in a transparent plastic glass, and was 
coded with three arbitrary numbers. 

2.5 Statistical analysis 

The results of the in vitro antifungal evaluation of the natural agents and CBEO 

emulsions, the physico-chemical analysis of the O/W emulsions, and the effect of 
incorporating the O/W emulsion into strawberry jam on the sensory attributes of 

the samples were evaluated by a one-way ANOVA. The results obtained in the in 
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vitro antifungal activity of the CBEO-ZG emulsions and the CBEO-FA emulsions and 
the in vivo antifungal activity of the O/W emulsions were analysed by a 

multifactor analysis of variance (multifactor ANOVA). The least significance 
procedure (LSD) was used to test for any differences between averages at the 5% 

level of significance. Data were statistically processed by Statgraphics Centurion 
XVI. 

3. RESULTS AND DISCUSSION

3.1 Antifungal properties of CBEO, ZG and FA: in vitro 

conditions

The CBEO mycelial growth inhibition (%) of A. flavus, A. niger, and P. 

expansum, compared with the control samples, after 7 days of incubation is 
summarised in Figure 1A. Incorporation of the CBEO into the media reduced 

mycelial growth in a dose-dependent manner. The lowest tested CBEO 
concentration achieved mycelial growth inhibitions of 26%, 29% and 37% for A. 

flavus, A. niger and P. expansum, respectively. Fungal development was inhibited 
when the CBEO concentration was above 0.04 mg/g. The MFC values of CBEO 
against the three tested moulds were 0.06 mg/g.  

The MIC of the CBEO was 0.04 and 0.06 mg/g for Z. rouxii and Z. bailii, 
respectively (data not shown). Previous studies available in the literature have 

reported the antifungal effectiveness of CBEO against the Zygosaccharomyces 
genus. Monu, Techathuvanan, Wallis, Critzer, and Davidson (2016) reported the in 

vitro effectiveness of CBEO and its main compound, trans-cinnamaldehyde, 
against Z. bailii, which gave a MIC value of 50 mg/L. Indeed, Bang, Lee, Park, and 

Rhee (2000) tested the antifungal activity of trans-cinnamaldehyde against 
Saccharomyces cerevisiae and attributed its activity to the effect on cell 

membrane integrity.  
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The antifungal action of ZG and FA is shown in Figure 1B and C. ZG brought 
about mycelial growth inhibition of up to 50% at concentrations above 1 mg/g for 

A. flavus and P. expansum. Mould growth inhibition using ZG was observed at
concentrations above 5 mg/g against A. flavus and P. expansum, whereas the

highest ZG concentration employed only induced 31% inhibition for A. niger.
These differences could be due to the distinct sensitivity of the moulds, being A.

niger the most resistant against ZG.

In the case of A. flavus and P. expansum, the MFC value was established at 6 

mg/g (Figure 1 B).  

Additionally, the MIC of ZG was determined against Z. rouxii and Z. bailii. 

These values were 4 and 3 mg/g for Z. rouxii and Z. bailii, respectively (data not 
shown). No studies that report the activity or mode of action of this zinc salt 
against Z. rouxii and Z. bailii are encountered in the literature. However, Pagani, 

Casamayor, Serrano, Atrian, and Ariño (2007) investigated the disruption of iron 
homeostasis in S. cerevisiae by zinc chloride. Exposure to high Zn concentrations 

(6 mM ZnCl2) generated reactive oxygen species, and reduced glutathione and 
iron content. The authors suggested that an excess Zn concentration could alter 

the function of iron sulphur-containing proteins.  
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Figure 1. Mycelial growth inhibition (%) of A) cinnamon bark EO (CBEO), B) zinc gluconate (ZG) and C) trans-ferulic acid (FA) 

at different concentrations against Aspergillus flavus, Aspergillus niger and Penicillium expansum after 7 days of incubation at 

25 °C. Mean value (n=3) ± SD. Different letters (a, b, c, d) indicate significant differences among the preservative concentrations 

(p<0.05). 
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In general, greater antifungal activity of the phenolic compound, compared 
with that obtained when using ZG, was observed in the in vitro assays of FA 

against A. flavus, A. niger and P. expansum, (Figure 1C). Mycelial growth inhibition 
of up to 60% was exhibited at concentrations higher than 1 mg/g of FA for A. 

flavus and P. expansum, whereas 2 mg/g of FA were needed to accomplish 
inhibition of up to 50% in A. niger. Total inhibition was observed at 3 and 4 mg/g 

of FA for the Penicillium genus and the Aspergillus genus, respectively. 
Mohapotrea, Pati, and Ray (2000) suggested that concentrations of phenols that 

ranged from 3 to 5 µg/mL were required for normal fungi metabolism, but 
concentrations up to 5 µg/mL were inhibitory. Nesci and Etcheverry (2006) found 

that A. flavus and A. parasiticus growth and aflatoxin B1 levels decreased in 
comparison with the controls, which suggests that FA can be considered an 
effective fungitoxicant for both Aspergillus species. 

Studying the effect of FA on Z. rouxii and Z. bailii growth revealed that high FA 
concentrations inhibited yeast growth. The MIC values were 2 and 3 mg/g for Z. 

bailii and Z. rouxii, respectively (data not shown). Pastorkova, Zakova, Landa, 
Novakova, Vadlejch, and Kokoska (2013) demonstrated that p-coumaric and FA 

exhibited selective inhibitory effects on Z. rouxii with MICs higher than or equal to 
256 µg/mL. Recently, Rojo, Arroyo López, Lerena, Mercado, Torres, and Combina 

(2015) showed FA to be the most effective phenolic compound to prevent Z. 
rouxii growth in high sugar media at a low pH. In this study, no data about MIC 

were reported by the authors because total Z. rouxii inhibition was not achieved 
at the maximal concentration of the assayed antimicrobial compound (22 mM).  
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3.3 O/W emulsions analysis 

3.3.1 Determination of CBEO losses by GC-MS analysis 

CBEO losses, referred to as trans-cinnamaldehyde, after preparing O/W 

emulsions were 7%. These losses could be due to the high fluid dynamic stress 
applied to the emulsions by the HPH during the preparation procedure, which 

would display the degradation of EO constituents. The results obtained in this 
work agreed with those reported by Donsì Annunziata, Sessa, and Ferrari (2011), 

who highlighted the degradation of different active agents, such as α-
phellandrene, terpinolene, p-cymene and thujene, among others, as a result of 

the fluid dynamic stress suffered by samples during high shear homogenisation 
and HPH. 

3.3.2 Antifungal properties of O/W emulsions against A. niger: 

in vitro conditions 

3.3.2.1 CBEO emulsions 

The effectiveness of CBEO emulsions, prepared by 0.06 and 0.08 mg/g of the 
EO, against A. niger at 25 °C for 7 days was tested (data not shown). Only the 

samples that contained 0.08 mg/g of the antifungal agent did not show growth, 
and this value corresponded to its MFC.  

Loss of effectiveness was observed when comparing the results obtained and 
while evaluating the antifungal properties of CBEO and CBEO emulsions. The use 
of 0.06 mg/g and 0.08 mg/g of CBEO as antifungal agents inhibited A. niger 

growth, whereas the emulsions that contained 0.06 mg/g of CBEO did not inhibit 
it. The results obtained when evaluating CBEO losses while preparing emulsions 

could be attributed to the EOs losses brought about by the mechanical stress 
applied to samples during the homogenisation process which, in turn, could 

reduce the antifungal activity.  
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3.3.2.2 The O/W emulsions formulated with CBEO and ZG 

O/W emulsions were formulated by combining bioactive agents to lower the 
employed EO concentration and to improve the antifungal action of emulsions 

against A. niger.  
The antifungal activity of the emulsions formulated at different CBEO 

concentrations (0.02, 0.04, 0.06 and 0.08 mg/g) and combined with ZG (1, 2, 4 and 
6 mg/g) against A. niger is shown in Figure 2. The CBEO and ZG combination 

enhanced their antifungal action compared to the antifungal properties of free ZG 
and CBEO. Mycelial growth was inhibited when 0.06 mg/g of CBEO was 

incorporated into media, even at the lowest ZG concentration (1 mg/g), over 7 
days. These results suggest possible synergistic interactions between CBEO and 

ZG.  
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Figure 2. Mycelial growth inhibition (%) of cinnamon bark EO (CBEO) mixed with 
zinc gluconate (ZG) at different concentrations against Aspergillus niger at 25 °C 

for 7 days. Mean value (n=3) ± SD. Different letters (a, b, c) indicate significant 
differences among the CBEO concentrations (p<0.05), and (A, C, C) indicate 

significant differences among the ZG concentrations (p<0.05). 
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3.3.2.3 The O/W emulsions formulated with CBEO and FA 

Figure 3 shows the antifungal activity of the emulsions prepared with CBEO 
and FA at different concentrations against A. niger. When 0.04 and 2.5 mg/g of 

CBEO and the FA were, respectively, combined, 72% mycelial growth inhibition 
was observed. Total mycelial growth inhibition was achieved when 0.06 of CBEO 

was used, regardless of FA content. However, FA alone achieved only total A. 
niger inhibition when the 4 mg/g concentration was tested (Figure 1C).  
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Figure 3. Mycelial growth inhibition (%) of cinnamon bark EO (CBEO) mixed with 

trans-ferulic acid (FA) at different concentrations against Aspergillus niger 
incubated at 25 °C for 7 days. Mean value (n=3) ± SD. Different letters (a, b, c) 

indicate significant differences among the CBEO concentrations (p<0.05) and (A, 
B, C) indicate significant differences among the FA concentrations (p<0.05). 
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3.3.2.4 The O/W emulsions formulated with CBEO, ZG and FA 

The antifungal activity of the O/W emulsions prepared with 0.06 mg/g of 
CBEO, 1 mg/g of ZG and 1 mg/g of FA was tested against A. niger. No mycelial 

growth was observed for the tested formulation. This result highlighted that this 
emulsion was sufficient to inhibit A. niger growth for 7 days (data not shown).  

These results suggested that the synergistic activity among the different 
natural preservatives incorporated into media allowed in vitro A. niger growth 

inhibition. 

3.3.3 Physico-chemical characterisation 

Table 2 shows the pH, d3,2, d4,3 and the ζ-potential values for the O/W 

emulsions prepared with different antifungal compounds (Table 1).  
The pH values of the different formulated emulsions were between 6.75 and 

7.15. The CBEO and CBEO-FA emulsions obtained the lowest pH values (6.73-
6.75). Similar results have been obtained by Harwansh, Mukherjee, Bahadur, and 

Biswas (2015) in FA-loaded nanoemulsions. 
As observed, the higher the total preservative concentration in the emulsion, 

the bigger particle size becomes. The emulsions that contained only CBEO 

exhibited a d3,2 of 2.149±0.043 µm, whereas an increased droplet mean diameter 
was noted (2.449±0.038 µm) at the highest final concentration of the 

preservatives used in the emulsion formulation (CBEO-ZG-FA) (Table 2). The same 
trend occurred with the d4,3 values. The mean size values significantly (p<0.05) 

increased from 5.649±0.594 to 6.612±0.683 µm when larger amounts of 
antifungal agents were employed while preparing emulsions. Interestingly, among 

the emulsions that contained two antifungal compounds, the larger particle size 
values (d3,2 of 2.409±0.027 µm and d4,3 of 6.326±0.161 µm) were observed when 

CBEO and FA were used for emulsion preparation. This could be due to the 
characteristics of the dispersed phase, which could facilitate the droplet 
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flocculation rate, as well as the reduction in the ratio between the interfacial 
stabilising material and the dispersed phase (McClements, 2005).  

The ζ-potential values of all the formulations are also reported in Table 2. The 
ζ-potential is an indirect measure of the electrical charge of colloidal particles, 

which provides an indication as to their stability during storage. ζ-potential values 
of > 30 mV or < -30 mV indicated that the electrostatic repulsion among droplets 

likely contributed to prevent their aggregation (Harwansh et al., 2015). The 
electrical charge of the lipid droplets of the emulsions was negative, and values 

were within a range from - 44.3±3.0 to -58.9±1.5 mV. This result indicated the 
excellent stability of the emulsions. However, it is worth mentioning that the 

increment in the number of antifungal compounds, in the formulation of the 
emulsions, increased the mean particle size and decreased the ζ-potential of the 
samples. This effect could be explained by the differences found between the 

adsorption of the surface-active compounds at the oil-water interface (Salvia-
Trujillo, Rojas-Graü, Soliva-Fortuny, & Martín-Belloso, 2015). Similar results have 

been obtained by Harwansh et al. (2015) and Salvia-Trujillo et al. (2015) in FA-
loaded nanoemulsions-based gel and in nanoemulsions with different 

incorporated EOs, respectively.  
The strong negative charge of the different O/W emulsions noted in the 

present study was probably influenced by XG, which is an anionic biopolymer 
(Ribes et al., 2016). 
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Table 2. Mean  values  (n=3)  ±  SD  of pH, particle size (d3,2 and d4,3), and the ζ-potential of O/W emulsions (CBEO: 
cinnamon bark EO; ZG: zinc gluconate; FA: trans-ferulic acid). 

a, b, c, d, Different superscripts indicate significant differences among the EO concentrations (p<0.05).

Samples pH d3,2 (µm) d4,3 (µm) ζ-potential (mV) 

CBEO 6.73 ± 0.04 a 2.149 ± 0.043 a 5.649 ± 0.594 a -58.9 ± 1.5 c

CBEO- ZG 7.15 ± 0.05 c 2.196 ± 0.030 a 5.705 ± 0.383 a -52.1 ± 1.6 b

CBEO- FA 6.75 ± 0.03 a 2.409 ± 0.027 b 6.326 ± 0.161 b -51.3 ± 1.5 b

CBEO- ZG- FA 6.93 ± 0.04 b 2.449 ± 0.038 b 6.612 ± 0.683 c -44.3 ± 3.0 a

Chapter 2 
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3.4 Effect of using O/W emulsions on strawberry jam 

3.4.1 Strawberry jam spoilage by A. niger 

The in vivo antifungal activity of emulsions CBEO-ZG, CBEO-FA and CBEO-ZG-

FA (Table 1) against A. niger at 25 °C for 28 days is shown in Figure 4.  
Strawberry jams prepared with either the CBEO-ZG or the CBEO-FA emulsion 

did not show any fungicidal activity compared to the control samples. Marked 
fungicidal activity was observed in the sample that contained emulsion CBEO- ZG-

FA. In this case, a reduction of 2 log-cycles after 7 days of A. niger inoculation took 
place. The fungicidal effect could be the result of the interactions between the 

main and minor EO compounds, ZG and FA. This synergistic effect allowed mould 
growth to lower to 1 log CFU/g after 28 days. The limit of microbiological growth 

employed to determine the shelf life of samples was one of the most restrictive 
found in food products: the total count of yeast and moulds was 102 CFU/g 

(Pascual & Calderón, 2000). However, total fungi inhibition could interfered with 
the complex growth environment in food products (Omidbeygi, Barzegar, Hamidi, 

& Naghdibadi, 2007), which could protect microbial cells from antifungal 
products. The factors present in complex food commodities, like fat content, 
proteins, sugar, water, pH and enzymes, could reduce the antifungal effectiveness 

of EOs (Firouzi, Shekarforoush, Nazer, Borumand, & Jooyandeh, 2007; Friedly, 
Crandall, Ricke, Roman, O'Bryan, & Chalova, 2009) and interfere with the 

fungicidal effect of these antifungal compounds.  
Finally, the emulsion prepared with 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 

mg/g of FA offered the best mould growth reduction results. This formulation was 
selected to carry out the sensory evaluation in strawberry jam.  
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Figure 4. Effect of O/W emulsion on growth against Aspergillus niger incubated at 

25 °C for 7 days. Mean value (n=3) ± SD (CBEO: cinnamon bark EO; ZG: zinc 
gluconate; FA: trans-ferulic acid). 

3.4.2 Sensory evaluation 

The sensory evaluation results of the control strawberry jams and the samples 
treated with antifungal agents (CBEO-ZG-FA) are shown in Figure 5. Incorporation 

of the O/W emulsion into strawberry jam did not alter samples’ aspect, aroma, 
taste, unctuousness and overall acceptance compared with the control jam. Only 

mouth texture was the attribute that exhibited a significant difference (p>0.05) 
compared to the control sample. These results indicated that incorporating the 

O/W emulsion into strawberry jam did not modify its sensory acceptance. These 
results were especially satisfactory since the main study objective was to develop 

a new strategy to reduce the impact of EOs on the food sensory profile given their 
strong aroma and taste.  
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Acosta-Estrada, Lazo-Vélez, Nava-Valdez, Gutiérrez-Uribe, and Serna-Saldívar 
(2014) developed a new additive based on nejayote solids from the wastewater of 

the alkaline-cooking of maize, with large amounts of dietary fibre, calcium and FA. 
Bread that contained this additive showed no significant colour and texture 

differences. Nevertheless, increasing amounts of nejayote lowered the bread’s 
scored flavour and odour. This negative effect was not observed in our study. 
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Taste
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Mouth texture

Overall acceptance

Control 0.06 mg/g CBEO-1 mg/g ZG and FA

*

Figure 5. Average score of the different attributes evaluated in the control 

strawberry jam and the strawberry jam with O/W emulsion samples. 0: very 
unpleasant and 5: very pleasant. *Indicates significant differences between 

samples (p<0.05) (n=30). (CBEO: cinnamon bark EO; ZG: zinc gluconate; FA: trans-
ferulic acid). 
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4. CONCLUSIONS

Cinnamon bark essential oil, zinc gluconate and trans-ferulic acid exhibit
antifungal activity against Aspergillus flavus, Penicillium expansum, 

Zygosaccharomyces rouxii and Zygosaccharomyces bailii. The physico-chemical 
characterisation of oil-in-water emulsions reveals changes in particle size and the 

ζ-potential values associated with the number of natural agents embedded. 
Higher final preservative content leads to larger particle sizes. The differences in 
the ζ-potential values among formulations are probably due to differences 

between the adsorption of surface-active compounds at the oil-water interface. 
The combination of cinnamon bark essential oil, zinc gluconate and trans-ferulic 

acid allows to increase the effectiveness of O/W emulsion against Aspergillus 
niger. 

The combination of cinnamon bark essential oil, zinc gluconate and trans-
ferulic acid in emulsions is a new approach to control strawberry jam spoilage, 

and one that does not bring about any changes in its sensory characteristics. 
Nevertheless, more studies should be conducted to achieve complete fungi 

growth inhibition, and to investigate antifungal effectiveness against moulds and 
yeasts in other food commodities. 
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Abstract 

Essential oils and their main compounds have been studied in-depth for their 
antifungal properties against a wide variety of microorganisms. However, the 

strong odour emitted by them, even at low concentrations, makes their 
incorporation into food matrices difficult. Immobilisation of antimicrobial 

compounds on solid surfaces could be a strategy to reduce their odour impact. 
The antifungal effectiveness of eugenol and thymol bioactive agents, free and 

immobilised on mesoporous silica microparticles (MCM-41 family), and their 
impact on the final aroma and fungal decay of strawberry jam, were evaluated 

herein. Free eugenol and thymol exhibited good antifungal properties against the 
fungi strains tested, and thymol proved more effective. The antifungal activity of 

immobilised eugenol and thymol displayed greater antifungal activity for 
immobilised eugenol. The jams prepared with immobilised eugenol on MCM-41 

microparticles exhibited no mould and yeast development during the studied 
storage time. The sensory evaluation confirmed that eugenol and thymol 

immobilisation reduced their typical strong impact on strawberry jam flavour. This 
work demonstrates the promising use of immobilised eugenol on mesoporous 
silica microparticles to control strawberry jam decay.  

Keywords: Antifungal activity, thymol, eugenol, mesoporous silica support, 

strawberry jam. 
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1. INTRODUCTION

Yeasts and moulds can grow on raw and processed foods where the
environmental conditions for most bacteria are unfavourable (Krisch et al., 2011). 

These microorganisms are broadly distributed and able to decay different food 
commodities, such as wine, cheese, vinegar, juices, fruits, sugar and meat 

(Gammariello et al., 2014). Chemical preservatives have been extensively used in 
recent years to control fungi development. Nevertheless, their negative consumer 
perception and changes in national regulations have forced food manufacturers to 

produce food commodities free of chemical additives (Ribes et al., 2016).  
Essential oils (EOs) are natural volatile compounds from aromatic plants with a 

strong odour (Burt, 2004). Many EOs have been generally recognised as safe 
(GRAS) by the Food and Drug Administration (FDA) in 21 Code of Federal 

Regulations 182.20 (CFR, 2015). Their high content in phenolic derivatives, e.g., 
eugenol and thymol, etc. (Zabka and Pavela, 2013; Abbaszadeh et al., 2014), make 

the antifungal properties of EOs a good alternative to synthetic chemical 
preservatives. Eugenol is a naturally-occurring phenol extracted from buds and 

leaves of clove (Ribes et al., 2016) that is effective against fungi due to 
cytoplasmic membrane disturbance (Mihai and Popa, 2015). Thymol is the main 

monoterpene phenol found in the EOs extracted from Lamiaceae family plants, 
with strong antifungal activity against a wide range of fungal microorganisms, 

including Aspergillus and Penicillium species, among others (Klarić et al., 2006). 
However, the concentration of both compounds required to control fungal decay 
in foods modifies the food product’s sensory profile given their strong flavour. For 

this reason, research that seeks for alternatives to minimise the sensorial impact 
of EOs on food products that do no diminish their antimicrobial effectiveness are 

very important. A potential approach is the immobilisation bioactive compounds 
from EOs on surfaces. 

Among the potential supports to immobilise active molecules, siliceous 
materials like mesoporous silica particles are very promising thanks to their 

unique features, such as stability, biocompatibility and large load capacity 
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(Bernardos and Kourimska, 2013). In this context, MCM-41 (Mobil Composition of 
Matter) is a member of the mesoporous materials’ family according to the IUPAC 

(International Union of Pure and Applied Chemistry) classification (Dünder-
Tekkaya and Yürüm, 2016), known to have a large specific surface and specific 

volume, and is easy to functionalise and highly stable. MCM-41-based materials 
have also been reported to resist harsh conditions of the stomach, acid matrices 

and microbial action (Pérez-Esteve et al., 2015b). The chemical formula for MCM-
41 is SiO2, which is a common additive (E551) in the food industry (Barahona et 

al., 2016). Given their easy preparation and properties, MCM-41 particles have 
been used in the present work as promising silica supports where bioactive agents 

can be immobilised. 
The main purpose of this work was to investigate the feasibility of immobilised 

eugenol and thymol on mesoporous silica particles (MCM-41 family) as an 

antifungal system, and to study their antifungal effectiveness and sensory impact 
of the materials on strawberry jam. 

2. MATERIALS AND METHODS

2.1 Microbial strains, culture media and chemicals 

Strains Aspergillus flavus (CECT 20156), Aspergillus niger (CECT 20156), 

Penicillium expansum (CECT 20140), Zygosaccharomyces rouxii (CECT 1229) and 
Zygosaccharomyces bailii (CECT 12001) were used as test microorganisms, and 

were supplied by the Spanish Type Culture Collection (CECT, Burjassot, Spain). For 
mould species, potato dextrose agar (PDA) and potato dextrose broth (PDB) were 

used, while yeast peptone dextrose broth (YPDB) and agar were employed for the 
yeast species. All the culture media were purchased from Scharlab (Barcelona, 
Spain).  

Eugenol (99% w/w) and thymol (≥ 99% w/w) were provided by Sigma-Aldrich 
(Madrid, Spain). For the synthesis of MCM-41 microparticles and the 

derivatisation and immobilisation of the antifungal compounds, N-
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cetyltrimethylammonium bromide (CTABr), sodium hydroxide (NaOH), 
triethanolamine (TEAH3), tetraethylorthosilicate (TEOS), (3-

Aminopropyl)triethoxysilane (APTES), trimethylamine, paraformaldehyde, diethyl 
ether, chloroform,  n-butanone, dimethyl sulfoxide (provide all of them by Sigma-

Aldrich, Madrid, Spain), acetonitrile, hydrochloric acid (HCl), magnesium sulphate 
(MgSO4), potassium hydroxide (KOH) and sulfuric acid (H2SO4) (Scharlab, 

Barcelona, Spain) were employed.  

2.2 Antifungal activity of free eugenol and thymol 

Free bioactive compounds eugenol and thymol were individually examined 
against A. flavus, A. niger and P. expansum, as described by Manso et al. (2013) 

with minor modifications. Spore suspensions of 106 CFU/mL were prepared in 
NaCl (0.7% w/v) and Tween 80 (0.1% w/v), and confirmed using a 
hematocytometer. MIC (Minimal Inhibitory Concentration) values were obtained 

by macrodilution in Erlenmeyer flasks that contained 15 mL of PDB and 1% (w/v) 
of Tween 80 to secure the total active compounds dispersions. A solution of 1,000 

mg/kg of thymol was obtained by dissolving the appropriate amount in dimethyl 
sulfoxide. Different concentrations of bioactive compounds were tested: 0.1, 0.2, 

0.3 and 0.4 mg/mL. The control samples, with no antifungal agents, were 
prepared following the same procedure. Each Erlenmeyer flask that contained 

free eugenol and thymol were inoculated with 100 µL of the spore suspension and 
incubated under orbital stirring (180 rpm) at 25 °C for 72 h. The results were 

expressed as log CFU/mL. 
After incubation, the lowest eugenol and thymol non-growth concentration 

was established as the MIC. To determine the minimal fungicidal concentration 
(MFC), 100 µL of the non-growth suspensions were seeded onto Petri plates 

prepared with 15 g of PDA. MFC was defined as the lowest concentration at which 
no colonies developed after 72 h of incubation at 25 °C.  
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The antifungal effectiveness of free eugenol and thymol against Z. rouxii and 
Z. bailii was also evaluated, for which the methodology followed was similar to

that described in the mould assays. Cell suspensions of 106 CFU/mL were
prepared in Tween 80 (0.1 % w/v), and confirmed using a hematocytometer. The

MIC values were obtained by macrodilution in Erlenmeyer flasks that contained
15 mL of YPDB and 1% (w/v) of Tween 80 to secure the total bioactive compounds

dispersions. The preparation of the thymol solution and the control samples, and
the concentration of the tested bioactive agents, were the same as those

previously described. Each Erlenmeyer flask that contained free eugenol and
thymol was inoculated with 100 µL of 106 CFU/mL, and incubated under orbital

stirring (180 rpm) for 48 h at 25 °C. The results were expressed as log CFU/mL.
After incubation, the MIC and the MFC values were determined as described 

above for moulds, but by employing YPD agar as the culture media. All the tests 

were conducted in triplicate. 

2.3 Study of mesoporous silica particles 

2.3.1 Synthesis of MCM-41 microparticles 

Synthesis of the mesoporous MCM-41 microparticles was carried out using 
the so-called “atrane route” described by Pérez-Esteve et al. (2015a). To this end, 
52.4 g of TEAH3 and 0.98 g of a NaOH solution were stirred vigorously at 120 °C. 

After lowering the temperature to 70 °C, 22 mL of TEOS were slowly added to 
control silica condensation, and stirred to reach 118 °C. Afterwards, 9.36 g of 

CTABr were added to the solution until completely dissolved, which allowed the 
incorporation of 180 mL of deionised water, which was vigorously stirred at 70 °C. 

This step led to the formation of a white suspension, which was aged at 100 °C for 
24 h. The obtained solid was washed with deionised water and ethanol until pH 7, 

and then dried at 70 °C. Finally, the as-synthesised solid was calcined at 550 °C for 
5 h to remove the surfactant molecules. 
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2.3.2 Derivatisation of the bioactive compounds 

Eugenol and thymol aldehydes were prepared by preserving the presence of 
their hydroxyl group given the important role that these hydroxyl moieties play in 

antifungal activity (Rao et al., 2010; Ahmad et al., 2011). The eugenol aldehyde 
was obtained by a Reimer-Tiemann reaction. For this purpose, 150 mL of water at 

80 °C were used to dissolve 3.39 g of eugenol. Afterwards, the temperature was 
lowered to 60 °C, and 22.4 g of KOH and 7 mL of chloroform were added. The last 
reagent was incorporated at a ratio of 1 mL/h for 7 h due to the exothermic 

character of this reaction. The reaction mixture was kept at 60 °C for 8 h. Finally, 
50 mL of H2SO4 (10% v/v) were added and the mixture was extracted using n-

butanone. The organic phase was rotavapored at reduced pressure to obtain the 
eugenol aldehyde. 

The thymol aldehyde was synthesised by mixing 6 g of thymol, 150 mL of 
acetonitrile, 20.9 mL of trimethylamine and 3.81 g of MgSO4. This mixture was 

stirred for 15 min at room temperature in an argon atmosphere. Then 8.1 g of 
paraformaldehyde were added to the mixture and refluxed for 3.5 h at 83 °C. 

After cooling the solution, it was acidified using 320 mL of HCl (5% v/v) and stirred 
for 15 min at room temperature in an argon atmosphere. The organic phase was 

extracted using diethyl ether, and then removing the volatiles at reduced 
pressure. The reaction yield was calculated by 1H NMR in a Bruker AV400 

spectrometer (Bruker Daltonik GmbH, Bremen, Germany) which operated at room 
temperature. 
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2.3.3 Immobilisation of the bioactive compounds on the surface 

of MCM-41 microparticles  

The immobilisation of the eugenol and thymol aldehydes on the surface of 

MCM-41 microparticles was carried out through the synthesis of the
corresponding alkoxysilane derivatives. The eugenol or thymol aldehyde was

mixed with 20 mL of dichloromethane, 3.08 mL of APTES and 0.5 g of MgSO4.  The
solution was stirred for 1 h at 38 °C in reflux. The mixture was filtered and the
organic phase was removed at reduced pressure to obtain the corresponding

eugenol or thymol alkoxysilane derivative. Then 2 g of the MCM-41, 60 mL of
acetonitrile and 4 mL of the corresponding alkoxysilane derivatives were stirred

for 5.5 h at room temperature. Solids were filtered, washed with acetonitrile and
dried for 24 h at low pressure.

2.3.4 Characterisation of MCM-41 microparticles 

The characterisation of the microparticulated MCM-41 (bare and 
functionalised with eugenol and thymol) was performed by particle size 

distribution, ζ-potential, field emission scanning electron microscopy (FESEM), 
thermogravimetric analyses (TGA) and an elemental analysis.  

Particle size distribution was determined in deionised water using a laser 
diffractometer (Mastersizer 2000, Malvern Instruments, Worcestershire, UK), and 

applying the Mie theory (refractive index of 1.45, absorption index of 0.1). The ζ-
potential analysis was run in a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). Samples were diluted with deionised water (1 mg/mL) and 
sonicated before being measured. The Smoluchowsky mathematical model was 

used to convert the electrophoretic mobility measurements into ζ-potential 
values.
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Particle size distribution and the ζ-potential analysis were performed in triplicate. 
FESEM images were obtained by a Zeiss Ultra 55 (Carl Zeiss NTS GmbH, 

Oberkochen, Germany) and observed in the secondary electron mode. 
Thermogravimetric analyses were carried out on a TGA/SDTA 851e balance 

(Mettler Toledo, Columbus, USA), from 25 to 1,000°C with a heating rate of 10 
°C/min in an oxidant atmosphere (air, 80 mL/min). An elemental analysis for C, H, 

and N was performed by a combustion analysis in a CHNOS model Vario EL III 
(Elemental Analyses System GMHB, Langenselbold, Germany).  

2.3.5 Antifungal activity of eugenol and thymol immobilised on 

the surface of MCM-41microparticles 

The evaluation of the antifungal activity of MCM-41 with the bioactive agents 

against A. flavus, A. niger, P. expansum, Z. rouxii and Z. bailii was made by the 
methodology described in Section 2.2. The concentration of the MCM-41 

microparticles functionalised with eugenol or thymol was established based on 
the thermogravimetric and elemental analyses to add equal amounts of eugenol 

and thymol (0, 0.1, 0.2, 0.3 and 0.4 mg/mL) to the media than in the case of the 
free bioactive agents. By these means, the comparison of the antifungal activity 

between the pure and immobilised bioactive agents was made. 
The elemental analysis data revealed that the content of the eugenol and 

thymol immobilised on the surface of MCM-41 microparticles was 65 mg/g and 76 
mg/g, respectively. These values were used to determine that the concentrations 
of the eugenol and thymol immobilised on the MCM-41 surface incorporated into 

the media corresponded to 0.1, 0.2, 0.3 and 0.4 mg/mL of the free bioactive 
compound. Positive controls were prepared with bare MCM-41 and 1% (w/v) of 

Tween 80. The results were expressed as log CFU/mL. Each assay was performed 
in triplicate. 
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2.4 Studying the MCM-41 microparticles with eugenol 

and thymol in strawberry jam 

To evaluate the in vivo antifungal effect of the bioactive agents immobilised 

on the surface of MCM-41 microparticles, strawberry jams were prepared and 

inoculated with two representative microorganisms. A. niger was selected as a 

mould for its frequent isolation in strawberries, while Z. bailii was used as a target 

yeast for its ability to grow in high sugar products (60% w/w) and at a low pH 

(Stratford et al., 2013). The concentrations of the free and immobilised eugenol 

and thymol on MCM-41 were selected according to the MFCs determined in the in 
vitro assays.  

2.4.1 Jam preparation 

Jam preparation was obtained according to the procedure reported by Ribes 

et al. (2016). Strawberry jam was obtained by mixing fruit and sugar in a ratio of 

65:35 and cooked at 100 °C for 30 min to reach a 60  °Brix in the product 

as described in the Spanish quality regulation for fruit jam (BOE, 2003). This 

process was carried out in an electrical food processor (Thermomix TM 31, 

Vorwerk M.S.L, Spain). The free and immobilised eugenol and thymol, as well as 

the bare MCM-41 microparticles, were added to 15 g of strawberry jams, once 

suspended in Tween 80 in order to ensure the complete distribution of 

the agents, at ambient temperature and then homogenising adequately by 

using a sterilised spatula.  

2.4.2 Antifungal effectiveness in strawberry jam 

The in vivo antifungal effectiveness of the free and immobilised 

bioactive agents against A. niger and Z. bailii was examined by the methodology 

described by Ribes et al. (2016). Fifteen grams of strawberry jam (control, control 

with bare MCM-41 microparticles, free bioactive agents and bioactive agents 

immobilised
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on MCM-41) were inoculated with 100 µL of the fungi solution (106 CFU/mL) and 
incubated at 25 °C for 28 days.  

At each analysis day, 10 grams of every sample were placed in sterile plastic 
bags containing 90 mL of tryptone phosphate water and homogenised for 1 min in 

a Stomacher blender (Masticator IUL, S.A. Instruments, Germany). Serial dilutions 
were prepared and 0.1 mL were spread on the surface of the agar plates. Three 

Petri dishes were prepared per formulation, microorganism and analysis day, plus 
the control samples (n=120). A. niger and Z. bailii counts were done on PDA and 

YPD agar plates, respectively, after a 72-hour incubation at 25 °C (Pascual and 
Calderón, 2000). All the assays were performed in triplicate. 

2.4.3 Sensory evaluation 

A sensory analysis was carried out to evaluate the feasibility of immobilisation 

to reduce the impact provoked by eugenol and thymol on strawberry jam (ISO 
4121: 2003). For this purpose, a panel of 12 trained judges participated in this 

study. Panellists were trained during preliminary sessions to identify the typical 
aromas of eugenol and thymol, calibrated using aqueous solutions of these 
compounds at different concentrations (0, 0.1, 0.2, 0.3 and 0.5 mg of the bioactive 

compound per g of solution) (ISO 8586: 2012). During the assessment, a 5-point 
aroma intensity scale was used: from 0, no descriptor, to 5, extremely intense. 

Each panellist evaluated the intensity aroma of eugenol or thymol on strawberry 
jam samples, which contained these compounds that were free and immobilised 

on the MCM-41 surface. The concentrations of the free and immobilised eugenol 
and thymol on MCM-41 were selected according to the MFCs determined in the in 

vitro assays. 
In order to quantify the effect of immobilisation to reduce the effect of 

bioactive compounds on strawberry jam aroma, the rates given to the samples 
with the immobilised compound were compared to those given to strawberry jam 

with free eugenol and thymol at the same concentration. 
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2.5 Statistical analysis 

The results obtained in the in vitro and in vivo tests to evaluate the antifungal 
activity of the free eugenol and thymol, when immobilised on the surface of 

MCM-41, were analysed by a multifactor analysis of variance (multifactor
ANOVA). The characterisation of the mesoporous silica particles the sensory

analysis were evaluated by a one-way ANOVA. The least significance procedure
(LSD) was employed to test for differences between averages at the 5%
significance level. Data were statistically processed by Statgraphics Centurion XVI.

3. RESULTS AND DISCUSSION

3.1 Antifungal activity of free eugenol and thymol 

The counts of A. flavus, A. niger, P. expansum, Z. bailii and Z. rouxii after free 

eugenol and thymol treatment are shown in Figure 1. Both the bioactive 
compounds showed significant (p<0.05) antifungal activity, which affected fungi 

growth in a dose-dependent manner. With eugenol, the use of 0.3 mg/mL led to a 
reduction of between 3 and 5 log-cycles for the Aspergillus and 

Zygosaccharomyces genera after 72 h and 48 h, respectively, of its inoculation. 
The growth inhibition of A. flavus, A. niger, Z. bailii and Z. rouxii was achieved by 

employing 0.4 mg/mL of eugenol (MFC). With P. expansum, inhibition was 
attained by using 0.2 mg/mL of eugenol, and this concentration was the MFC.  

When 0.2 mg/mL of thymol were added to the media, a reduction of between 
3 and 4 log-cycles took place for the Aspergillus and Zygosaccharomyces genera 

after 72 h and 48 h, respectively, of its inoculation. Thymol inhibited the growth of 
all the target microorganisms tested at 0.4 mg/mL, which corresponded to the 

MFC value.  
It is worth mentioning that the discontinuous horizontal line indicates the 

CFU/mL after inoculation (Figure 1). Above this line, no antifungal effect was 

achieved, while this line indicated the fungistatic activity of free eugenol or 
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thymol.  In addition, below the discontinuous line a fungicidal effect is observed. 
Taking it into account, a significant (p<0.05) fungicidal effect was exhibited when 

using ≥ 0.3 mg/mL of eugenol and thymol for A. niger, Z. bailii and Z. rouxii, which 
was stronger for thymol. Indeed, the fungicidal effect of thymol against A. flavus 

was evidenced when 0.2 mg/mL were employed. For P. expansum, the treatment 
with 0.1 and 0.2 mg/mL of eugenol and thymol, respectively, showed clear 

fungistatic activity. 
The differences in the molecular structure of both the antifungal agents most 

likely determine their antifungal effectiveness. The hydroxyl group present in 
thymol is responsible for the strong ability to dissolve and accumulate in the cell 

membrane, and lead to its destabilisation due to marked proton transfer 
disruption (Rao et al., 2010; Ahmad et al., 2011). Furthermore, the generally 
weaker antifungal activity of eugenol at low concentrations could be related to its 

lower hydrophobicity, and also to the presence of a methoxyl group in 
orthoposition, which diminished its ability to release a proton from the hydroxyl 

group (Ben Arfa et al., 2006). Similar results have been obtained by Abbaszadeh et 
al. (2014) when they applied eugenol as an alternative agent to control fungi 

development. However, the MFC values of thymol against the Aspergillus, 
Penicillium and Zygosaccharomyces species were lower than the data obtained in 

this study. Abbaszadeh et al. (2014) showed the influence of thymol with the MFC 
values of 150 and 250 µg/mL against A. flavus and A. niger, respectively. In 

another study, Monu et al. (2016) found that eugenol and thymol inhibited Z. 
bailii growth at 200 mg/L. The differences between these findings and the results 

reported herein could be due to the strains selected, the type of assay employed 
and incubation times used. 



Chapter 3 

208 

0

2

4

6

8

10

0 0,1 0,2 0,3 0,4

lo
g 

CF
U/

m
L

Concentration (mg/mL)

Aspergillus flavus

Free Eugenol

Free Thymol

0

2

4

6

8

10

0 0,1 0,2 0,3 0,4

lo
g 

CF
U/

m
L

Concentration (mg/mL)

Aspergillus niger

Free Eugenol

Free Thymol

0

2

4

6

8

10

0 0,1 0,2 0,3 0,4

lo
g 

CF
U/

m
L

Concentration (mg/mL)

Penicillium expansum

0

2

4

6

8

10

0 0,1 0,2 0,3 0,4

lo
g 

CF
U/

m
L

Concentration (mg/mL)

Zygosaccharomyces bailii

Free Eugenol

Free Thymol

0

2

4

6

8

10

0 0,1 0,2 0,3 0,4

lo
g 

CF
U/

m
L

Concentration (mg/mL)

Zygosaccharomyces rouxii

Free Eugenol
Free Thymol

a) b) c)

d) e)

0 0.1 0.2 0.3 0.4 0

00

0

0.1

0.1 0.1

0.10.2

0.2 0.2

0.2

0.3 0.3

0.30.3

0.4 0.4

0.4 0.4

Figure 1. Antifungal activity of free eugenol and thymol against a) Aspergillus flavus, b) Aspergillus niger and c) 

Penicillium expansum at 25 °C for 72 h; and against d) Zygosaccharomyces bailii and e) Zygosaccharomyces rouxii at 25 

°C for 48 h. Mean value (n=3) ± standard deviation. The discontinuous horizontal line indicates the initial CFU/mL values. 
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3.2 Characterisation of the bare and functionalised MCM-41 

microparticles 

Antifungal microparticles were prepared by the immobilisation of eugenol and 

thymol on the surface of the MCM-41 support. In a first step, both bioactive 
compounds were reacted with APTES to obtain the corresponding trialcoxysilane 

derivative. The efficiency of the alkoxysilane derivatisation process was evaluated 
by the 1H NMR analysis. For the two bioactive agents, the product yield estimated 
from the 1H NMR spectra was 20-40%. The alkoxysilanes derivatives reacted in a 

second step with the silanol groups of the MCM-41 microparticles yielded the 
final functionalised solids. 

Bare and functionalised MCM-41 microparticles were characterised by 
standard techniques. Table 1 summarises the d0.5 and the ζ-potential values for 

the MCM-41 microparticles (bare and immobilised with eugenol and thymol). The 
bare MCM-41 microparticles showed a d0.5 of 3.13±0.14 µm, whereas an 

increased particle mean diameter was obtained when the particles were 
functionalised with eugenol and thymol (4.37±0.12 and 4.1±0.2 µm, respectively).  

The ζ-potential values of the samples are provided in Table 1. The bare MCM-
41 microparticles had negative ζ-potential values (-35.9±1.4). After the 

immobilisation of eugenol and thymol on the mesoporous material surface, the ζ-
potential changed to weak negative or positive values in agreement with the 

functionalisation of the MCM-41 surface with eugenol and thymol. The change we 
noted in the ζ-potential values upon functionalisation has also been observed by 
Pérez-Esteve et al. (2016) in mesoporous silica supports loaded with folic acid and 

functionalised with amines, and also by Mathew et al. (2016) in succinamic acid 
functionalised MCM-41 particles.  

Figure 2 shows the FESEM images of the bare and functionalised MCM-41. As 
seen, no changes on the surface of the mesoporous supports were detected when 

comparing the bare MCM-41 and the functionalised samples, which confirms that 
the immobilisation of eugenol and thymol on the surface did not affect the 

integrity of the mesoporous silica particles. As previously mentioned, the content 
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of the eugenol and thymol immobilised on the surface of the MCM-41 
microparticles, obtained from the thermogravimetric and elemental analyses, was 

65 mg and 76 mg per gram of solid, respectively. These data were used to 
calculate the amount of MCM-41 functionalised with eugenol and thymol needed 

to provide an equivalent dose of bioactive compounds compared to the free 
molecule (Section 2.3.5).  

Table 1. Particle size (d0.5) and ζ-potential values of MCM-41 microparticles (bare) 
and with eugenol and thymol derivates immobilised on its surface (Eugenol-MCM-

41 and Thymol-MCM-41). Values are expressed as mean (n=3) ± standard 
deviation. 

Sample d 0.5 (µm) ζ-potential (mV) 

Bare MCM-41 3.13 ± 0.14 a -35.9 ± 1.4 a

Eugenol-MCM-41 4.37 ± 0.12 c -0.4 ± 0.4 b

Thymol-MCM-41 4.1 ± 0.2 b 10.8 ± 2.1 c 

a, b, c Different superscripts indicate differences among mesoporous silica materials 
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Figure 2. FESEM images of a) bare MCM-41, b) eugenol-MCM-41, c) thymol-MCM-

41 microparticles. 

3.3 Antifungal activity of eugenol and thymol immobilised on 

the surface of MCM-41 microparticles 

The antifungal activity of eugenol and thymol immobilised on the surface of 

MCM-41 against A. flavus, A. niger, P. expansum, Z. bailii and Z. rouxii is
summarised in Figure 3.

No growth inhibition was observed in any mould and yeast strains in the 
presence of the bare MCM-41. These results agree with those obtained by 

Wehling et al. (2013), who also evaluated the antimicrobial activity of bare silica 
particles. In contrast, mould and yeast growth significantly reduced (p<0.05) in the 
presence of increasing amounts of MCM-41 functionalised with eugenol and 

thymol. The MCM-41 that contained eugenol as an antifungal agent exhibited 
greater effectiveness than the thymol immobilised on the MCM-41 microparticles 

against all the evaluated fungi species. Growth of P. expansum, Z. bailii and Z. 
rouxii was inhibited by using 0.2 mg/mL of eugenol (MFC) immobilised on the 

surface of MCM-41, whereas the genus Aspergillus presented less sensitivity at 
this concentration. The total inhibition of A. flavus and A. niger was attained at 0.3 
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and 0.4 mg/mL of eugenol immobilised on the MCM-41 microparticles, 
respectively, which were the MFC concentrations. 

Conversely when MCM-41 functinalised with thymol was tested against all the 
target microorganisms, weak antifungal efficacy was observed at low thymol 

concentrations. The use of 0.2 mg/mL of thymol immobilised on MCM-41 led to a 
reduction of between 2 and 4 log-cycles, whereas, the eugenol immobilised on 

the MCM-41 microparticles at the same concentration attained a 5 log reduction 
for A. niger and inhibited fungi development as in the case of P. expansum, Z. 

bailii and Z. rouxii. As previously mentioned, this tendency was not observed for 
A. flavus (Figure 3). Inhibition of A. flavus was observed when using 0.3 mg/mL of

thymol immobilised on MCM-41, which corresponds to its MFC value. The MFC
values for A. niger, P. expansum, Z. bailii and Z. rouxii were observed by using 0.4
mg/g of thymol immobilised on silica particles.

In addition, a significant (p<0.05) fungicidal effect was observed when using ≥ 
0.2 mg/mL of eugenol and thymol immobilised on MCM-41 microparticles for A. 

niger, P. expansum, Z. bailii and Z. rouxii, and was stronger for eugenol. Moreover, 
the fungicidal effect of eugenol and thymol immobilised on the MCM-41 

microparticles against A. flavus was exhibited when 0.3 mg/mL were utilised 
(Figure 3). 

As far as we know, this is the first time that studies which evaluate the 
antifungal efficacy of eugenol and thymol derivatives immobilised on the surface 

of microparticulated MCM-41 against the genera Aspergillus, Penicillium and 
Zygosaccharomyces have been reported. 
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Figure 3. Antifungal activity of eugenol and thymol immobilised on the surface of MCM-41 microparticles against a) 
Aspergillus flavus, b) Aspergillus niger and c) Penicillium expansum at 25 °C for 72 h; and against d) Zygosaccharomyces 
bailii and e) Zygosaccharomyces rouxii at 25 °C for 48 h. Mean value (n=3) ± standard deviation. The discontinuous 

horizontal line indicates the initial CFU/mL values. 
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When the results of the free and immobilised eugenol and thymol were 
compared, it was generally established that greater antifungal effectiveness was 

observed when these compounds were immobilised on the MCM-41 support. This 
could be due to: i) the intense antifungal activity of the MCM-41 microparticle 

after eugenol and thymol immobilisation due to the high density of the antifungal 
compound on the mesoporous material surface; and/or ii) the volatility reduction 

of bioactive agents when immobilised on the surface of MCM-41 microparticles.  

3.4 Studying the MCM-41 microparticles functionalised with 

eugenol and thymol in strawberry jam 

3.4.1 Antifungal effectiveness in strawberry jam 

The development of A. niger and Z. bailii in non-inoculated and inoculated 
strawberry jams stored at 25 °C for 28 days is shown in Figure 4. As noted, the 

jams prepared with free and immobilised eugenol exhibited no mould and yeast 
development throughout the evaluation period. On the contrary, the samples 

prepared with the free thymol and thymol-MCM-41 did not inhibit the fungal 
growth of the samples. However, it is noteworthy that the strawberry jams 

prepared with the free thymol, and inoculated with A. niger and Z. bailii, exhibited 
a more fungi development compared to the samples that contained the thymol-

MCM-41 microparticles. These results agree with those reported in the in vitro
antifungal assays (Section 3.3), where the antifungal effectiveness of the MCM-41

that contained the immobilised bioactive agents was enhanced.
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Despite the same amount of the free and immobilised thymol being used in 
the jam samples and culture media against A. niger and Z. bailii, different 

antifungal activity was observed. This could be related to the presence of 
antagonistic interactions with other ingredients, such as carbohydrates (Pitt and 

Hocking, 2009).  Firouzi et al. (2007) reported that despite in vitro assays with EOs 
and their main components, such as oregano and nutmeg, displayed substantial 

antimicrobial activity, the amounts required when used in food systems increased 
(approx. 1–3% higher). 

3.4.2 Sensory evaluation 

In order to test the feasibility of immobilisation to avoid the drawbacks of 

aromas when incorporating eugenol and thymol into food samples, a sensory 
evaluation was made. The assessment results indicated that, even though 

immobilisation could not eliminate the typical thymol and eugenol aroma in the 
jam samples, this technique was able to significantly reduce the aroma intensity 

of these compounds in strawberry jam. A comparison of the jam samples with the 
free and immobilised bioactive compounds established that immobilisation 
reduced the intensity of eugenol and thymol aromas more than 92% and 96%, 

respectively. These results confirm the feasibility of immobilisation as a technique 
to avoid the impact of eugenol and thymol on the sensory profile of food samples. 

This promising technique could be employed with other substances that are not 
currently viable given their adverse impact on the sensory perception of applied 

foods. 
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Figure 4. Influence of the free and immobilised eugenol and thymol on the growth 

of (a) Aspergillus niger and (b) Zygosaccharomyces bailii in inoculated strawberry 
jams for 28 days at 25 °C. Mean values (n=3) ± standard deviation. 
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4. CONCLUSIONS

Free eugenol and thymol exhibit excellent properties as antifungal agents
against several mould and yeast strains. When incorporated in their free form, 

eugenol induces better preservation of strawberry jam in terms of fungal spoilage 
compared to thymol. However, after immobilisation on MCM-41 microparticles, 

both bioactive agents have improved the antifungal properties and their impact 
on jam odour compared to the free compounds are weaker. These results suggest 
that the use of bioactive agents from plants immobilised on the surface of 

mesoporous silica materials acts as promising antifungal agents for controlling 
mould and yeast spoilage, and by diminishing the current industrial limitation due 

to their strong flavour at the same time.  
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In the present Doctoral Thesis, the feasibility of using different antifungal 
systems to preserve strawberry jam, and the effect of their incorporation on the 

sensory profile of jams, have been investigated. 
Antifungal systems, such as the O/W emulsions and nanoemulsions and, 

mesoporous silica supports, were used to control strawberry jams spoilage. 
Different antifungal agents (EOs: bergamot, cinnamon bark, cinnamon leaf, clove, 

lemon and mandarin; EOs’ main compound: eugenol and thymol; phenolic 
compounds: trans-ferulic acid; zinc salt: zinc gluconate) and emulsifiers (Tween 80 

and WPI) were used in the formulation of these antifungal systems. XG was also 
used as a biopolymer in the formulation of some emulsions.  

Several strategies were adopted to achieve a product with excellent 
microbiological and sensory qualities. Table 1 summarises the different strategies 
followed, the results achieved and the future studies or perspectives required 

after following each approach. 
The first approach was based on using O/W emulsions as stable delivery 

systems. First of all, nanoemulsions-based delivery systems with different EOs 
(cinnamon leaf, lemon and bergamot) against A. niger were developed.  

The cinnamon leaf, lemon and bergamot EOs nanoemulsions were prepared with 
the oil phase consisting only of EO or of EO mixed with sunflower oil as a ripening 

inhibitor at the 3:1 wt ratio. T80 and WPI were used as emulsifiers (1 wt%). This 
formulation proved stable under the accelerating ageing tests conducted at 35 °C, 

and was employed in the fungitoxic experiments.   
The cinnamon leaf nanoemulsions exhibited significantly better in vitro 

antifungal properties than the free EO. However with the citrus EOs (lemon and 
bergamot), encapsulation in nanoemulsions generally diminished their antifungal 

activity. The different composition of EOs and their different interactions with the 
nanoemulsion ingredients likely explain the distinct contribution of 
nanoemulsions. Probably for citrus EOs, nanoemulsion acts as a hydrophobic sink 

for their main constituents. In addition, the nanoemulsions based on WPI 
exhibited better in vitro antifungal activity than those based on T80. This is likely 
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due to the larger numbers of sites of interaction with WPI than with the T80 
available on the surface of fungal cells and spores. 

By taking into account the relevance of the formulation of emulsions in 
developing efficient and stable antifungal systems for food applications, the 

antifungal activity of O/W emulsions to control the fungal deterioration of 
strawberry jam was investigated. O/W emulsions were formulated with different 

concentrations of clove (0.55, 0.65 and 0.75 mg/g), cinnamon leaf EO (0.65, 0.75 
and 0.85 mg/g) and XG (2.5, 5.0 and 7.5 mg/g).   

The in vitro antifungal activity of O/W emulsions indicated that those 
emulsions which contained 0.55 mg/g of clove and 0.65 mg/g of cinnamon leaf 

were able to inhibit A. flavus, A. niger and P. expansum growth over 7 days. 
Furthermore, the XG concentration employed in the formulation of emulsions 
strongly impacted losses of EOs, which took place while preparing the emulsions. 

The use of 2.5 mg/g of XG led to the most severe eugenol losses, compared to 5.0 
and 7.5 mg/g XG, while no significant differences were observed between these 

samples. The lower viscosity of the samples formulated with 2.5 mg/g of XG, 
compared to the emulsions that contained 5.0 and 7.5 mg/g of XG, could cause 

the diffusion of EOs to the surface of the emulsions, which promotes the 
volatilisation and subsequent loss. Therefore, the emulsions prepared with 0.55 

and 0.65 mg/g of the clove and cinnamon leaf EO, respectively, and with 5.0 mg/g 
of XG, were selected to be added to strawberry jam.  

The effectiveness of the O/W emulsion to control mould growth, was studied at 4 
°C (by reproducing product cold storage after opening the jam container) and at 

25 °C (the optimum growth temperature of fungi) for 63 days. The antifungal 
activity of the clove and cinnamon leaf O/W emulsions against several strains, 

such as A. flavus, A. niger and P. expansum, was confirmed in the in vivo tests at 
both temperatures. Finally, the incorporation of the O/W emulsions into 
strawberry jam did not modify the product’s texture and colour, but its affected 

aroma, taste and the overall acceptance of the jam. 
After considering the previous effects of incorporating O/W emulsions into 

strawberry jams, the use of cinnamon bark-xanthan gum emulsions was also 
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evaluated. To this end, the optimisation of the methodology followed to prepare 
the O/W emulsions (to reduce the losses of EO) and the evaluation of their 

antifungal activity in culture media and in strawberry jam were studied. Emulsions 
were prepared in a rotor-stator homogeniser or by magnetic stirring combined 

with a high pressure homogeniser. Losses of EO, after prepararing the emulsions, 
referred to trans-cinnamaldehyde, which is the main compound of CBEO. The 

emulsion processed with magnetic stirring and subjected to high pressure 
displayed a significant reduction in the trans-cinnamaldehyde losses, compared 

with the emulsion prepared in the rotor-stator type device. Indeed, the greater 
the pressure applied during the homogenisation process, the more degraded the 

EO compounds became. According to the results obtained while optimising of the 
methodology employed to prepare emulsions, this was carried out by mixing and 
dispersing ingredients with a magnetic stirrer for 15 min, followed by HPH at 40 or 

80 MPa. Furthermore, the concentrations of the CBEO used were established at 
0.06, 0.08, 0.10 and 0.12 mg/g. The in vitro antifungal activity of the O/W 

emulsions showed higher mycelial growth when using 80 MPa than 40 MPa at the 
same CBEO concentrations. This finding could be related to the trans-

cinnamaldehyde losses, which could diminish the antifungal effectiveness of O/W 
emulsions. By considering these results, the in vivo study was performed using the 

emulsions composed of 0.08 and 0.10 mg/g of the CBEO, and homogenised at 40 
MPa. The incorporation of the CBEO emulsions into strawberry jam induced their 

preservation against A. flavus, P. expansum, Z. rouxii and Z. bailii. Nevertheless, its 
incorporation adversely affected the jam’s aroma, taste and overall acceptance. 

The second strategy was defined by bearing all this in mind. The combination 
of different antifungal compounds, such as CBEO, ZG and FA, in O/W emulsions 

was investigated. This part of the Thesis aimed to achieve a formulation with 
excellent antifungal in vivo properties, which in turn, did not alter the sensory 
profile of strawberry jam as a food matrix. A. niger was selected as the target 

fungi for its relevance in strawberry decay and because of its high resistance 
against different antifungal agents. Different concentrations of the antifungal 

compounds were used in the in vitro and in vivo tests, and also in the physico-
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chemical characterisation of  O/W emulsions. In this sense, the emulsion prepared 
with 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 mg/g of FA exhibited great in vitro 

antifungal effects against A. niger. In addition, strawberry jam was prepared by 
incorporating into it three different emulsions that contained: i) 0.06 mg/g of 

CBEO and 1 mg/g of ZG; ii) 0.06 mg/g of CBEO and 1 mg/g of FA and; iii) 0.06 mg/g 
of CBEO, 1 mg/g of ZG and 1 mg/g of FA. The strawberry jams prepared with the 

emulsions that contained CBEO and ZG, or CBEO and FA, did no present antifungal 
activity, compared to the control samples. Conversely, the strong fungicidal effect 

observed the in emulsions that contained 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 
mg/g of FA could be the result of the interactions among the main and minor EO 

compounds, ZG and FA. This synergistic effect favoured reduced mould growth 
with a total number of 101 CFU/g after 28 days of inoculation, which is considered 
microbiologically admissible for jam (limits of microbiological growth: yeasts and 

moulds 102 CFU/g). Additionally, the minor modification of the typical 
organoleptic properties of strawberry jam after incorporating the emulsion 

indicated the potential use of this delivery system in food products. This strategy 
allowed the obtention of a food product with good sensory properties and 

microbiologically acceptable. 
In spite of the satisfying results obtained in the aforementioned strategy, a 

third approach was investigated to accomplish the complete inhibition of the 
moulds and yeasts capable of growing in strawberry jam. Hence the antifungal 

activity of the bioactive agents immobilised on the surface of mesoporous silica 
particles was evaluated. Furthermore, the sensory impact of the silica supports 

with eugenol and thymol after their incorporation into strawberry jam was 
studied. The jams prepared with the free and immobilised eugenol exhibited no 

mould and yeast growth throughout the evaluation period. The samples prepared 
with free thymol exhibited greater fungi development in comparison with the 
samples prepared with thymol-MCM-41. The antagonistic interactions with other 

ingredients, such as carbohydrates, present in the food matrix could be the reason 
for the different antifungal activity noted between eugenol and thymol after 

immobilising on the MCM-41 surface. Regarding the sensory analysis, the 
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immobilisation of eugenol and thymol reduced their typically strong impact on 
strawberry jam flavour.  

The results obtained in the present Doctoral Thesis represent a major advance 
in the drawbacks presented by different systems with potential antifungal 

properties. Nevertheless, further studies with other bioactive agents, silica 
substrates and polymers in a wide variety of food matrices should be conducted. 

Moreover, toxicity studies to reinforce the safety of silica supports, such as MCM-
41 particles with bioactive agents to be employed in food commodities, are 

required. 
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Table 1. Summary of the present Thesis: strategies, results achieved and the future perspectives of each strategy. 

STRATEGIES RESULTS ACHIEVED FUTURE PERSPECTIVES 

First strategy 

CEO, LEO and BEO nanoemulsions (EO:sunflower oil at the 3:1 wt ratio) prepared with T80 or 
WPI (1 wt%) were stable under accelerating ageing test at 35 °C. 

Good antifungal properties of CEO nanoemulsions against A. niger. 

Nanoemulsions formulated with WPI exhibited great in vitro antifungal effects against A. niger. 

Incorporation of stable delivery 
systems into food products. 

Excellent physico-chemical properties of the clove and cinnamon leaf emulsions formulated 
with 5 mg/g of XG. 

Great in vitro and in vivo antifungal activity of the clove and cinnamon leaf emulsions against A. 
flavus, A. niger and P. expansum. 
 

Sensory analysis highlights differences between the control and strawberry jam samples.  

A further inquiry on the final 
product’s sensory profile after 
incorporating the O/W emulsions is 
required.  

Optimisation of the methodology employed to prepare O/W emulsions. 

Good in vitro antifungal properties of the CBEO emulsions against A. flavus, A. niger, P. 
expansum, Z. rouxii and Z. bailii. 
 

Excellent in vivo antifungal properties of the CBEO emulsions against A. flavus, P. expansum, Z. 
rouxii and Z. bailii. 
 

The sensory evaluation revealed differences between the control and strawberry jam samples. 

More studies concerning the finals 
product’s sensory impact due to 
the emulsions incorporation are 
needed. 

General discussion 



General discussion 

229 

Table 1. (Continued) 

STRATEGY RESULTS ACHIEVED FUTURE PERSPECTIVES 

Second strategy 

The emulsions prepared with 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 mg/g of FA exhibited 
great in vitro antifungal effects against A. niger. 

Slight modification of the typical organoleptic properties of strawberry jam as a result of  
incorporating emulsions. 

Microbiologically acceptable final product. 

Delivery systems achieved the total 
inhibition of moulds and yeasts 
without affecting the food sensory 
characteristics. 

Third strategy 

Eugenol and thymol immobilisation on the surface of MCM-41 microparticles exhibited good 
in vitro antifungal properties. 

Free and immobilised eugenol added to strawberry jam showed no mould growth.  

Eugenol and thymol immobilisation masked their typical strong impact on strawberry jam. 

Studies about bioactive agents, silica 
particles and biopolymers in different 
food products.  

Toxicological studies to confirm the 
security of silica particles that contain 
bioactive agents, anchored or 
immobilised. 





5. CONCLUSIONS
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Based on the results obtained in the present Doctoral Thesis, and given their 
interpretation, the following statements are concluded:  

O/W emulsions and nanoemulsions  
 Formulation of nanoemulsions plays an important role in antifungal activity.

Despite the formulation and processing conditions of nanoemulsions being
identical, the nanoemulsions based on WPI exhibits better in vitro

antifungal activity than those based on T80, probably due to the larger
numbers of sites of interaction with WPI than with the T80 available on the

surface of fungal cells and spores.
 The concentration of each component in the formulation of the clove and

cinnamon leaf emulsions determines their physico-chemical properties. The
higher the oil content in emulsions, the bigger particle sizes become.
Conversely, higher xanthan gum concentrations lead to a smaller droplet

mean diameter of emulsions, the reduction of the EOs losses and, increase
the consistency index of emulsions. Regarding the ζ-potential analysis, both

types of emulsions are stable. Additionally, the clove and cinnamon leaf
emulsions prepared with 0.55 and 0.65 mg/g, respectively, inhibits the

development of A. flavus, A. niger and P. expansum in culture media and in
strawberry jam. After incorporating the emulsions into strawberry jams,

changes in the product’s aroma, taste and overall acceptance are detected.
 Optimisation of the methodology used to prepare oil-in-water emulsions

reduces the essential oil losses. The emulsions prepared by magnetic
stirring for 15 min and the high pressure homogenisation process at 40 MPa

present the lower essential oil losses, which are related to the heating and
stress applied in the homogenisation procedure.

 Incorporation of the cinnamon bark-xanthan gum emulsions, containing
0.08 mg/g of EO and prepared by magnetic stirring and high pressure
homogenisation at 40 MPa, into strawberry jams induces their preservation

against several fungi strains. This incorporation does not alter product
texture or colour, but negatively affects the jam’s aroma, taste and overall

acceptance.



Conclusions 

234 

 The combination of different antifungal agents such as cinnamon bark oil
(0.06 mg/g), zinc gluconate (1 mg/g) and trans-ferulic acid (1 mg/g)

determines the in vitro antifungal properties of emulsions, lowering the
essential oil concentration used. The in vivo test exhibits the reduction of

the mould growth with a total number of 101 CFU/g after 28 days of
inoculation, which is considered microbiologically acceptable for jam.

Furthermore, the incorporation of emulsions into strawberry jam does not
change its organoleptic profile.

Mesoporous silica particles 

 Immobilisation of eugenol and thymol on the surface of microparticulated
MCM-41 improves their antifungal activity compared to the free bioactive
agents. This could be due to the intense antifungal activity of the MCM-41

microparticles after the immobilisation of eugenol and thymol, whit a high
density of the antifungal compound on its surface and/or owing to the

volatility reduction of bioactive agents when immobilising on MCM-41
microparticles.

 Immobilisation of eugenol and thymol on the surface of MCM-41
microparticles enhances their impact on jam aroma compared to the free

bioactive agents. A comparison of jam samples with the free and
immobilised bioactive compounds confirmes that immobilisation reduces

the intensity of eugenol and thymol aromas more than 92% and 95%,
respectively.
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	EOs are categorised as flavourings in Europe (Official Journal of the European Communities, Commission Decision 2002/113/EC, notified under document number C (2002) 88) and their constituents are categorised as GRAS (Generally Recognized as Safe) by t...
	The main objective of this work was to study the use of cinnamon bark oil-in-water emulsions to preserve strawberry jams from fungi contamination. The optimisation of the methodology employed to prepare the emulsions by reducing active compounds losse...
	Strains of Aspergillus flavus (CECT 20156), Aspergillus niger (CECT 20156), Penicillium expansum (CECT 20140), Zygosaccharomyces rouxii (CECT 1229) and Zygosaccharomyces bailii (CECT 12001) were supplied by the Spanish Type Culture Collection (CECT, B...
	In the emulsions formulation, the cinnamon bark EO (CBEO) was supplied by Ernesto Ventós S.A. (Barcelona, Spain) and the xanthan gum (XG, SatiaxaneTM CX 911) by Cargill (Barcelona, Spain). Trans-cinnamaldehyde 99% was supplied by Sigma-Aldrich (St. Lo...
	The CBEO was individually tested against A. flavus, A. niger and P. expansum following the methodology proposed by Ribes, Fuentes, Talens, and Barat (2016). Moulds were inoculated on PDA and incubated at 25  C for 7 days. The spore solutions (103 and ...
	Radial mycelial growth was determined after 1, 3, 5 and 7 days of incubation by measuring the diameter of the fungal colony. Values were expressed as mm diameter/day.
	The Minimal Inhibitory Concentration (MIC) and the Minimal Fungicidal Concentration (MFC) of the CBEO were evaluated by observing the revival or growth of the inhibited mycelial disc transferred to the untreated PDA for 7 days. The dishes that showed ...
	The antimicrobial activity of the CBEO against Z. rouxii and Z. bailii was also evaluated by the methodology adapted from Tyagi, Gottardi, Malik, and Guerzoni (2014). Yeast strains were grown in YPD broth medium at 25  C for 48 h in an orbital shaking...
	The tested CBEO concentrations were the same as those previously described, and they were established by considering previous works (Tzortzakis, 2009; Kocevski et al., 2013). Aliquots of 15 g of YPD agar with the EO and 0.1% Tween 80 were poured into ...
	2.3.1 Emulsions preparation
	The CBEO (0.06, 0.08, 0.10, 0.12 mg/g) was used as a lipid phase. To prepare the aqueous phase, 5 mg/g of XG were dispersed in distilled water and stirred overnight at room temperature. Primary emulsions were obtained following different steps: i) usi...
	The final EO content in the CBEO emulsions was quantified according to the methodology employed for emulsion preparation: rotor-stator device and/or a high pressure homogenisation at 40 and 80 MPa. For this purpose, 5 mg/g of the XG were dispersed in ...
	After preparing the O/W emulsions, and independently of the process used, the EO was extracted by adding 15 mL of n-hexane to 2 g of the O/W emulsion, followed by 2-minute vortex agitations. The mixture was shaken gently and filtered through filter pa...
	According to the results obtained in this part of the study, and those obtained while evaluating the antimicrobial activity of the CBEO, the concentration of the EOs in the emulsions (0.06, 0.08, 0.10, 0.12 mg/g) and the methodology for preparing emul...
	The pH of the emulsions was measured by a Crison Basic 20+ pH meter (Crison S.A. Barcelona, Spain), and density was determined in a pycnometer.
	Particle size was determined in a laser diffractometer (Mastersizer 2000, Malvern Instruments, Worcestershire, UK) following the methodology described by Ribes et al. (2016).
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	5.  CONCLUSIONS
	Based on the results obtained in the present Doctoral Thesis, and given their interpretation, the following statements are concluded:
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