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Abstract

Automatic Speech Recognition applications can benefit from a confidence mea-
sure (CM) to predict the reliability of the output. Previous works showed that a
word-dependent naive Bayes (NB) classifier outperforms the conventional word
posterior probability as a CM. However, a discriminative formulation usually
renders improved performance due to the available training techniques.

Taking this into account, we propose a logistic regression (LR) classifier
defined with simple input functions to approximate to the NB behaviour. Ad-
ditionally, as a main contribution, we propose to adapt the CM to the speaker
in cases in which it is possible to identify the speakers, such as online lecture
repositories.

The experiments have shown that speaker-adapted models outperform their
non-adapted counterparts on two difficult tasks from English (videoLectures.net)
and Spanish (poliMedia) educational lectures. They have also shown that the
NB model is clearly superseded by the proposed LR classifier.

Keywords: confidence measures, speech recognition, speaker adaptation,
log-linear models, online video lectures

1. Introduction

Significant advances in the field of Automatic Speech Recognition (ASR) have
been achieved over the last decades. Nowadays, automatic transcriptions of
spontaneous speech in moderately noisy environments have reached an accurate
enough quality ([, B, B]). This quality can be even better when ASR systems
are adapted to specific scenarios ([d, 8, B, [, 8, @]). Nonetheless, ASR is still far
from producing error-free transcriptions and, consequently, its performance in
many applications is not completely satisfactory.

To further improve the usefulness and performance of the current technology,
researchers have proposed to compute a normalised score or confidence measure
(CM) to indicate the reliability of the ASR output. This score has been com-
puted at different levels: phoneme, word, phrase or sentence. Nevertheless, CM
at the word level has been the main focus in the literature due to its usefulness
for the vast majority of applications ([0, [T, [2, I3, 0, I3, I6]).
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One widely used word-level CM has been word posterior probability ([IT]).
From then on, many works have focused on combining word posterior with
additional sources of knowledge. The combination has been addressed as a
classification problem in the vast majority of the works. Most well-known clas-
sifier algorithms have been tried: linear, Gaussian mixtures, neural networks,
decision trees, support vector machines, etc. For further reference, a still good
comprehensive survey can be found in [I77].

In the framework of CM as a classification problem, significant improvements
were achieved by means of a combination of word-dependent (specific) and word-
independent (generalised) naive Bayes (NB) classifiers [I8]. Nonetheless, NB
is learned by means of a generative criterion, the mazximum likelihood estimate
(MLE), which involves some issues. In particular, MLE overfits due to the
unseen data. This issue was addressed in NB work by using a complex backing-
off smoothing technique. But still, MLE aims at modelling the distribution
underlying a given sample, which does not guarantee the solution to be the
best suited for classification. Indeed, better fitted criteria may improve overall
performance. For instance, the mazimum mutual information (MMI) [T9] aims
at better discriminating between classes without explaining the data. This
criterion has been widely exploited in the literature for the mazimum entropy
(ME) models ([P0, 211).

Nevertheless, despite the success of MMI training in many applications, there
is no direct relationship between maximising the MMI and minimising the prob-
ability of classification error. Instead, there are better suited criteria, which
guarantee the minimisation of the classification error rate (CER) such as the
minimum classification error (MCE) or the mean squared error (MSE). There-
fore, we propose a logistic regression (LR) model to be learnt by means of the
MSE to surpass NB performance.

On the other hand, speaker model adaptation has proved to be very effective
for the improvement of recognition performance [4, 5, G, [7]. However, adaptation
of the CMs to the speaker is nowadays unexplored. There is an increasing
number of interesting scenarios in which CMs can be very useful and information
about the speaker is available, such as the online lecture repositories. These
repositories usually count with a large number of speeches delivered by a reduced
number of speakers. Improving CM performance in these academic repositories
is highly motivated since manual transcription is not affordable for such a large
amount of speeches. Moreover, ASR performance is usually poor due to the
amount of technical concepts, very different native and non-native accents, etc.
In this scenario, interactive speech transcription (IST) guided by CMs can help
in massively producing acceptable transcripts for large amounts of videos with
limited manual effort [22].

Motivated by the scenario depicted above, we propose to adapt the CM
models to the speaker in an attempt to improve CM classification and IST
performance. To do so, we formulate the speaker adaptation to extend both the
published NB and the proposed LR models.

The rest of the content is organised as follows: the inclusion of speaker de-
pendence into the NB model is described in Section B. Section B proposes the LR
model and formulates its corresponding speaker-dependent version. Section @
describes the evaluation of the proposed models on two challenging tasks based
on ASR transcripts from videoLectures.net and poliMedia repositories. Com-
parative results are presented including also Conditional Random Field (CRF)



models [23, 24, 25]. Section B proves that the increased CM performance results
in better amended transcripts for videoLectures.net when integrated into an IST
application. Finally, Section B raises the conclusions.

2. Speaker-adapted naive Bayes classifier

In this Section, we introduce a speaker-adapted confidence estimator model.
The model is designed to extend the naive Bayes (NB) approach that was suc-
cessfully applied to speech recognition [I&] as well as to machine translation [26].
Thus, let us first briefly recall the speaker independent NB model.

The NB model is formulated on the framework of confidence estimation
addressed as a classification problem. On this framework, the recognised words
are labelled as correct (¢ = 1) or incorrect (¢ = 0) by means of the class posterior
given the word (w) and a vector of input scores (x):

¢ = arg max p(clw,x) = argmax p(c|w) p(x|c, w) (1)

where Eq. 0 is obtained by applying Bayes’ rule and then ignoring the class-
independent term. Also, the values of all the involved variables in the latter
equation are assumed to be discrete. Discretisation avoids the need of explicitly
modelling the probability distribution of continuous-valued features, while it
renders a more flexible and data-driven model. Details on discretisation and
several different approaches can be found in [23]. Here, we just discretised by
dividing the feature domain into a fixed number of evenly-spaced bins. The
optimal number of bins was tested on the development set.

The estimation of p(x|c, w) is usually biased due to the training data sparsity.
More robust estimations can be obtained by simplifying the problem with the
following strong independence assumption (the “naive Bayes assumption”):

D

p(x|e,w) = [T p(zale,w) (2)

d

Therefore, the basic problem is to estimate p(z4|c, w) for each class-word pair
and p(clw) for each target word. Given N training samples {(Xn, ¢, wn) 1,
these probabilities can be computed as the mazimum likelihood estimate (MLE):

N(e,w)

N(e,w,zq)
N(w)

N(c,w) 3)

plcjw) = p(zdle,w) =
where {N(-)} are suitably defined event counts on a given training data set.
However, the MLE quickly overfit the training data. In order to prevent this
overfitting, a particular backing-off smoothing method was introduced in [Ig].

We propose to extend the NB into a naive Bayes speaker-adapted model
(NB+spk). For that, a new variable s is introduced into Eq. I to identify the
speaker:

¢ = argmax p(clw,x, s) = argmax p(c|w, s)p(x|c, w, s) (4)
C c



Consequently, the problem is turned into computing p(z4|c, w,s) for each
class-word-speaker triplet and p(c|w, s) for each word-speaker pair, which anal-
ogously can be simply estimated by means of their MLE:

el ) = o) )
B, ) = S ()

As in the non-adapted (speaker-independent) NB approach, MLE overfitting can
be prevented by using a straightforward extension of the backing-off smoothing
method proposed in [I3].

3. Speaker-adapted logistic regression confidence estimator

In this Section, we propose a new CM model based on logistic regression
(LR) models. It is worth noting that, for binary classification problems such
as the CM problem considered in this work, these models are equivalent to
more general conditional random field (CRF) models. In what follows, after
describing the proposed speaker-dependent LR models, we briefly discuss how
to discriminatively learn them using the MSE training criterion (Sec. B). In
Sec. B, this criterion is empirically compared with a similar yet different criterion
that is commonly used in CRF training.

The proposed approach resembles the ones presented in [27]. However, that
work formulated the classification problem as a generative model, and only
the posterior of the features was attempted to be learnt in a discriminative way.
Furthermore, the purpose was to mimic NB, so no improvements were obtained.
Hence, in contrast to [27], here we do model the class posterior; define simpler
input functions for the LR model; introduce a standard L, regularisation to
avoid the complex set of maximum entropy constraints with cut-offs; and use
the MSE learning criterion, optimised with the simple and fast iRPROP+ [IR]
algorithm.

The assumption of a general LR distribution for the class posterior yields
the following classification rule:

exp (D_; Nifi(c,w,x))
Z(w,x)

(7)

¢ = arg maxp(c|w, x) = arg max
c c

where w is the recognised word and x = (z1..zp) is a D-dimensional vector of
discretised input features. On the other hand, Z is a normalisation constant,
which does not affect classification; () are a set of data-driven parameters; and
f) aset of functions which give the model expressiveness.

As discussed before, the NB model in [I¥] introduced several convenient
assumptions: conditional independence amongst the D scores, discretisation of
the continuous-valued scores, etc. Hence, we propose now a particular definition
for the f(.) functions to make the LR model behave similarly to the NB model
in terms of classification.

Let i be the triplet of labels (¢ € {0,1}, w € {1.W}, Z; € {1..X;} ) indexing

the classes, the known vocabulary and the values of the score number d € {1..D}



respectively. X; accounts for the total number of different possible discrete
values of z5. For each possible triplet, let us define the following function:

f&,i},i{i(C?wvx) = 55(6) -0 (w> . 515,{()() (8)

with (-) being the Kronecker delta and dz.(x) = Hg 0z ;(xar)-64(d") = 0z (7).

It becomes clear from the latter definition that the set of functions { fg,ﬁ,@d}
serves merely to activate the corresponding weights {)\gﬂ;j,i(i}. Thus, it is the set
of weights alone which will render the classification, and they are to be learned
exclusively from data, as detailed in Sec BTl. Also, it should be noted that each
of the defined functions does not involve more than one score. This is precisely
equivalent to assuming naive Bayes over the scores, as in Eq. B.

Furthermore, in order to prevent overfitting, additional weights and func-
tions to be active independently of one or more label values are necessary:

&

fc,@,@(a w, X) 66(6)
fc@mg(cvwax) = (5"(0) .5~J(X)
fc w,@(cv w, X) = 55(6) 0y (w) (9)

These terms enable a behaviour similar to the smoothing in the NB model,
which backs off to less specific probabilities under certain conditions.

Finally, it should be noted that the presented model typically involves a huge
number of weights to be estimated, of order O(vocabulary x number of features
x mean number of values per score). Fortunately, the computation time can
be halved by defining a new set of weights Ay = As—1,(.) — Aé=o,(.), and the
corresponding activation features:

fﬂfcd(wvx) = dp(w)- 5%(")

fop(w,x) = 1

f@,fc(;(wv x) = 55:5(X)

foplw,x) = dz(w) (10)

in this way, Eq. (@) adopts the following expression:
1
11
T e (17 5, 3 fo(w. ) y

Speaker dependence can be easily introduced into Eq. (1), yielding a logistic
regression speaker-adapted (LR+spk) model:

plew, x) =

1
1+ exp ((—1)0 . (El Aifi(w,x) + Zj A fj(w, x, 5)))

where speaker dependence has been formulated as a separated sum over j for
the sake of clarity. Now, the number of weights to be estimated is increased by
S times, S being the number of known speakers. In this case, the new index j
should map the triplet of labels (w € {0, 1. W}, z;€ {0,1.. Xz}, 5§ € {1..5}).
Thus, speaker adaptation results in the addition of the following functions:

p(C | w, X, 5) = (12)



foi;5(w0,%,8) = d5(w) - 0z,(x) - 05(s)
fa05(w,x,5) = o (w) - 05(s)
f@,i{i7§(wvxa s) = 5~d~(X) - 03(s)
fops(w,x,s) = d5(s)

(13)

3.1. Discriminative learning

As discussed in Sec. [, the weights of the discriminative models can be es-
timated to minimise the MSE, which may be preferable for classification prob-
lems instead of the MMI criterion and the MLE criterion for generative models.
Given N training samples { (X, c,, wn)}Y_; , the MSE can be formulated as an
optimisation problem by means of the objective:

N
Fuse(A) = Z (cn —palen =1 wn7xn))2 (14)
n=1

However, there is no closed form solution for the optimal A under the min-
imum MSE constrain. Fortunately, any simple gradient descent based optimi-
sation algorithm can succeed in finding the solution despite the MSE not being
a convex criterion. In this work we opted for the simpler iRPROP+ [P¥] iter-
ative algorithm, which provides faster convergence than other more expensive
methods such as generalised iterative scaling (GIS) [29]. A recent evaluation of
different optimisation algorithms on a large task can be found in [B0].

Another common issue of many training criteria, including MSE, is that they
easily overfit the weights to the training data. Since there is no clear way to
smooth discriminatively trained models, a typical amendment is to add a Lq
regularisation term to the objective:

PO = Fuss () — 5 3000 A2 (15)
1

where M9 can be either a reliable estimation of the weights or simply 0.
For our model, )\EO) = 0 is a clever guess, since it prevents the features from
having an overrated impact. During experimentation, the zero regularisation
made the feature-independent term Ay y drop quickly to zero after a few itera-
tions. This behaviour can be interpreted as an increased generalisation of the
model, since \g ¢ is proportional to the logarithm of the class prior p(c) from the
generative point of view. Thus, for two different models yielding the same per-
formance on a certain test, the one with Ay g closer to zero is likely to perform
better on a new test with different prior distribution.

4. Experiments

4.1. Ezxperimental setup

The evaluation of the proposed models (NB+spk, LR and LR+spk) and
the baseline model (NB) has been carried out over two difficult tasks from En-
glish (videoLectures.net) and Spanish (poliMedia) video lectures. These tasks



have been used in the context of the EU-funded project transLectures, which
had the aim of developing innovative, cost-effective tools for the automatic tran-
scription and translation of online educational videos [B1]. The English task has
been defined over the free and open access educational video lecture repository
VideoLectures. NET (VL). In VL, the recorded lectures are mostly delivered by
distinguished scholars and scientists at important conferences, summer schools,
workshops, etc. Currently, VL hosts more than 16.000 lectures from 12.698
speakers. The Spanish task has been defined over Polimedia (PM), which is a
recent, innovative service for the creation and distribution of multimedia edu-
cational content at Universitat Politécnica de Valéncia (UPV). PM is designed
primarily to allow UPV professors to record their courses in video blocks lasting
up to 10 minutes, accompanied by time-aligned slides. PM hosts more than
9.000 lectures from 1.300 speakers with a duration of 2.100 hours.

The state-of-the-art ASR TLK toolkit ([32]) has been used for the experi-
ments. Acoustic models (AM) were learned using TLK by means of a pre-trained
deep neural network hidden Markov model (DNN-HMM) hybrid architecture, in
a similar fashion to [33]. Speaker adaptation was implemented using constrained
MLLR (CMLLR) features B4, B5]. The speech data to train the English AM
consisted of out-of-domain corpora (TED-LIUM [B6], EPPS [, 87, BR] and Vox-
forge [8Y]), as well as in-domain VL speeches. In contrast, only in-domain PM
speech data was used for Spanish. Additionally, it should be noted that the
speakers related to the AM data are different from those selected to evaluate
the CM models. The statistics of the AM train data are summarised in Table
m.

On the other hand, the language model (LM) consisted of 5-gram models
computed with the SRILM toolkit ([&0]). It is worth mentioning that a common
LM was used for all the lectures of the VL task. However, a different LM was
used for the PL task depending on the speaker who delivered the speech. Each
different LM was adapted to the speaker by exploiting the textual content in
the slides available for these PM lectures [4].

The evaluation of CMs has been carried out over a distinct corpus from
the data used to build the ASR systems. This corpus was split into training,
development and test partitions in a balanced way for each of the speakers
(statistics are summarised in Table B). As a measure of the difficulty of the
task, it should be noted that about 25% of the words of each test are not found
in the training sets . The word error rates (WER) on the automatic transcripts
of the VL and PL test sets were 29.97% and 11.83%, respectively.

4.2. Evaluation of CMs

For the purpose of evaluation, the recognised words must be labelled as
correct or incorrect. The labelling was computed as the tagging error on the
automatic transcripts compared to the reference transcripts based on the opti-
mal Levenshtein alignments. Additionally, class prediction (correct, ¢ = 1, or
incorrect, ¢ = 0) is carried out by minimising the Bayes risk as follows:

(16)

cC =

. correct  if p(c=1lw,x,s) > 7T
incorrect ow

Note that the speaker dependence in Eq. (I8) is not present in the case
of speaker independent models. The threshold 7 can be empirically estimated



Table 1: Acoustic data statistics for the English and Spanish ASR systems.
videoLectures.net poliMedia
Set Spks Dur. Words Voc. || Spks Dur. Words Voc.

| ASR data [ 4034 427h  28M 41K [| 73 107h 936K 27K |

Table 2: Data partitions for the VL and PL evaluation tasks.

videoLectures.net poliMedia
Set Spks Dur. Words Voc. || Spks Dur. Words Voc.
Train 8 3.9h 34K 4K 29  20h 117K 13K
Dev. 8 1.3h 11K 2K 29  6.5h 59K 6K
Test 8 1.3h 11K 2K 29 6.7h 59K 6K

on the development set. However, this was only necessary for the generative
models, because the optimal threshold for the discriminative models (LR and
LR+spk) resulted always very close to 0.5 due to the MSE training criterion.

The performance of CMs has been tested based on the following evaluation
metrics:

e Classification error rate (CER): The relative number of wrongly classified
samples on an evaluation sample set, given the rule in (IB). It is the direct
natural metric to assess the performance of two classifiers: the higher the
value, the worse. A simple way to estimate the goodness of a classifier is
to compare the CER value to the relative number of incorrect samples pro-
duced by the system (usually referred as the “baseline”). Unfortunately,
the CER as a metric has some flaws: results cannot be directly compared
for different tests sets; and the CER is very sensitive to the test set itself,
not only to the classifier.

e Area under the ROC curve (AROC): The area under the Receiving Op-
erating Characteristic (ROC) curve [&1]. Briefly, the ROC curve is the
set of points in the False Positive Rate (FPR)-True Positive Rate (TPR)
space, yielded by the classification for every possible different value of
the classification threshold 7. The AROC is usually normalised within
[0,100], 100 being a perfect classification and 50 a random classification.
The AROC has been a commonly used metric to evaluate the replicability
of the CER results. Nonetheless, this metric has been severely criticised
since it can give potentially misleading results if ROC curves cross, and it
is incoherent in terms of misclassification costs [42].

e h-measure [@2]: Normalised metric which is proportional to the overall
misclassification loss incurred when using an optimal threshold (which
depends on the costs) averaged by a certain function u(c) over the cost
ratio ¢ € [0,1], ¢ = ¢o/(co + ¢1) and (cg,c1) being the misclassification
costs. For the common case in which it cannot be derived which kind
of misclassifications are preferable (false positive, or false negatives, etc.),
the author proposes a normalised symmetric function u(c) x 8(c;2,2)
(c—c?). This measure was proposed to avoid the issue of the AROC metric,
since it is proportional to the expectation of the overall misclassification
loss weighted by a function depending on the distribution of the scores.



Thus, the weight function to measure the AROC depends on the classifier
to be tested.

e Normalised cross entropy (NCE) [43]: Metric proportional to the cross
entropy of the classified set. This metric is related to the average log
distance of the score to the true class. NCE equals 1 for a perfect classifi-
cation in which the predicted posteriors of the correct class score 1 for the
correct samples and 0 for the incorrect. Unfortunately, the lowest value is
unbounded, since it involves the sum of the logarithm of zero or arbitrarily
low values for samples which scored high on the opposite class to the true
one. Despite this flaw (noticed shortly after its publication [d4]), it is still
widely used.

4.3. Results

Experiments have been carried out computing the set of input scores that
performed the best for the NB model in [I8].

e SP: Word acoustic log-score per time frame (10-ms).

e D: Duration (in ms.) of the word per phone.

NL: Length of the N-gram in which the word has been decoded.

PAvg: Word posterior probability computed as the average of frame-based
posteriors [I0].

e PMax: Like PAvg but using the maximum instead of the average [IT].

The NL score is not exactly the same as that used in [I¥], since the length of
the N-gram is used instead of the Boolean feature representing the LM back-off
behaviour.

Table B summarises the performance of the proposed models on the VL
and PL test sets in terms of the different metrics presented in Section 2.
We also include results from additional experiments using Conditional Random
Field (CRF) models which, as stated in recent publications, are of particular
importance [23, 24, 25, 45] O Tt is worth noting that all models have been
compared under identical conditions. To assess statistical significance of results,
95% confidence intervals are included for the CER% evaluation metric.

From the results in Table B, it can be stated that speaker-adapted models
outperform their non-adapted counterparts. This is true, indeed, for all models
and all evaluation metrics, and also holds for both, VL. and PL tasks. Statisti-
cally speaking, this statement is significant to a great extent, especially in the
case of VL. In this case, in terms of CER%, the best results are: 14.99, with
CRF+spk, and 14.82 with LR+spk. These figures are clearly below the lower
limit of the 95% confidence intervals for CRF and LR, respectively. On the
other hand, the results on PL are similar, though the CRF+spk result overlap

1Both, CRF++ and wapiti toolkits were tested. Results presented here correspond to
wapiti toolkit (https://wapiti.limsi.fr/), which in turn outperformed CRF++. The optimisa-
tion algorithm used was RPROP+ too with L2 regularisation. The optimisation criterion was
Maximum log-Likelihood conditional Estimate.



Table 3: Performance of the models on VL and PL tasks.

TASK MODEL CER% CER% 95%CI AROC% h NCE
NB 17.27 [16.57,17.97] | 854 037 0.17
CRF 16.62 [15.93,17.31] | 862  0.39 0.31
Vi | IR 16.43 [15.75,17.11] | 86.4 040 0.32
NB+4spk | 16.56 [15.87,17.25] | 86.2  0.39 0.19
CRF4spk | 14.99 [14.33,15.65] | 88.1 044 0.36
LRtspk | 14.82 [14.16,15.48] | 882  0.45 0.36
NB 814 [7.92,836] | 849 030 007
CRF 799 [777,821] | 859 031 0.29
pL | IR 789  [7.67,811 | 855 031 0.29
NB+spk | 8.09 [7.87,8.31] | 8.7 031 0.10
CRF4spk | 7.97  [7.75,8.19] | 86.9  0.33 0.30
LRispk | 7.81  [7.59,8.03] | 864  0.32 0.30

the CER% confidence interval for CRF at its lower half, and the same happens
with LR4spk. This might be influenced by the comparatively low values of
CER% on PL for all models.

Another conclusion that can be drawn from Table B is that the NB model is
clearly superseded by CRF and LR, and that this also holds for their speaker-
adapted versions. Given that the LR model is designed as a discriminatively
trained version of NB, this result was well expected. On the other hand, al-
though LR(+4spk) results are slightly but consistently better than those of
CRF(+spk), there is no clear statistical evidence to support its superiority.
Indeed, the main difference between them is the training criterion used which,
from our experiments, has little effect on the results.

The ROC curves of the NB(+spk), CRF(+spk) and LR(+spk) models are
depicted in Fig. I and Fig. B for VL and PL, respectively. The classification
thresholds adjusted from the development data (operating points) and the op-
timal ones are also plotted. As can be observed, the speaker-adapted models
show better performance than their basic, non-adapted counterparts for nearly
all possible classification thresholds.

Table @ shows detailed results on the VL test, at speaker level, using the
CER evaluation metric. As above, the best results are achieved by LR+spk
and CRF+spk. The results at speaker level using other evaluation metrics are
similar and are omitted for simplicity.

Table 4: CER in [%] for each speaker on the VL test set.

| Speaker | 1 2 3 4 5 6 7 8
Baseline [ 15.37 1279 21.94 16.10 48.76 22.72 31.86 45.89
NB 1401 1272 1591 13.10 27.24 16.15 2243 30.78
CRF 13.37 1237 1620 13.88 2511 15.96 19.71 28.49
LR 13.00 1223 16.20 13.55 24.68 15.33 20.31 29.06

NB+spk 13.91 11.74 1556 13.21 22.03 16.15 21.84 25.62
CRF+spk | 12.64 11.81 14.41 12.83 19.56 15.52 18.86 21.99
LR+spk 12.73 11.39 1441 1238 19.73 14.77 18.61 23.14

10
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Figure 1: ROC curves on the videoLectures.net test set.
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Figure 2: ROC curves on the poliMedia test set.
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5. Interactive Speech Transcription Application

With the aim of measuring the benefits of the LR+spk model in a prac-
tical application, we have evaluated its performance in an interactive speech
transcription (IST) setting applied within the EU project transLectures. In this
setting, users devote a limited amount of effort to supervising a given percentage
of words of the automatic transcriptions. User effort is optimised by ordering
the speech segments selected for supervision from lower to higher reliability
based on CMs.

The VL test set has been used for the assessment of the NB and LR+spk
models. Corrections were performed by means of a simulated user in a similar
way to [48].

The final quality (measured in WER) of partially supervised transcriptions
resulting for different percentages of supervised words is depicted on Fig. B.
The figure assesses the behaviour when using the NB, LR+spk or CRF+spk
(wapiti+spk) models to compute CMs. A random strategy corresponding to a
sequential supervision of the words is also depicted.

From Fig. B, it can be stated that the LR+spk and CRF+spk models perform
similarly, and that they both outperform the NB model for any level of user
effort (percentage of supervised words). In particular, for the reasonable range
of percentages from 10% to 20%, the LR+spk and CRF+spk produce relative
WER improvements between 2% and 7%.
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Figure 3: Resulting WER for the partial supervision of the VL test set in a reasonable range
of effort. The sub-figure shows the behaviour under all percentages up to full supervision.
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6. Conclusions

We have introduced a new particular logistic regression model to improve the
reliability of the confidence measures for automatic speech recognition. Also, as
a main contribution, we have proposed the use of speaker-adapted models.

The experiments have shown that speaker-adapted models outperform their
non-adapted counterparts on two difficult tasks from English (videoLectures.net)
and Spanish (poliMedia) educational lectures. The proposed logistic regression
model achieved comparatively good results.

Finally, a simple real application of interactive speech transcription guided
by confidence measures has confirmed that the gains obtained by the proposed
models translate into a noticeable improvement of the resulting semi-supervised
transcriptions for an equal level of user effort.
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