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Abstract

Let G be a finite group and N a normal subgroup of G. We determine
the structure of N when the graph associated to the G-conjugacy classes
contained in N has diameter three.
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1 Introduction

Let G be a finite group and let N be a normal subgroup of G and let x ∈ N .
We denote by xG = {xg | g ∈ G} the G-conjugacy class of x. Let ΓG(N) be
the graph associated to these G-conjugacy classes, which was defined in [2] as
follows: its vertices are the G-conjugacy classes of N of cardinality bigger than
1, that is, G-classes of elements in N \ (Z(G) ∩N), and two of them are joined
by an edge if their sizes are not coprime. It was proved in [2] that d(ΓG(N)) ≤ 3
where d(ΓG(N)) denotes the diameter of the graph. In this paper we analyze
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the structure properties of N when d(ΓG(N)) = 3.

The above graph extends the ordinary graph, Γ(G), which was formerly de-
fined in [3], whose vertices are the non-central conjugacy classes of G and two
vertices are joined by an edge if their sizes are not coprime. The graph ΓG(N)
can be viewed as the subgraph of Γ(G) induced by those vertices of Γ(G) which
are vertices in ΓG(N). This fact does not allow to obtain directly properties of
the graph of G-classes.

Concerning ordinary classes, L.S. Kazarin characterizes in [7] the structure
of a group G having two “isolated classes”. Remember that a group G has iso-
lated conjugacy classes if there exist elements x, y ∈ G with coprime conjugacy
class sizes such that every element of G has conjugacy class size coprime to
either |xG| or |yG|. Particularly Kazarin determined the structure of the groups
G with d(Γ(G)) = 3. It should be noted that similar results have also been
tested for other graphs. In [5], Dolfi defines the graph Γ′(G) whose vertices are
the elements of the set of all primes which occur as divisors of the lengths of the
conjugacy classes of G, and two vertices p, q are joined by an edge if there exists
a conjugacy class in G whose length is a multiple of pq. In [6] Dolfi and Casolo
describe all finite groups G for which Γ′(G) is connected and has diameter three.

We have to remark that the primes dividing the G-conjugacy class sizes not
necessarily divide |N |, it can occur the case when N is abelian and it is non-
central in G and consequently we have not control on these primes. For this
reason, we observe that new cases appear when we work with G-classes which
are not contemplated in the ordinary case. The main result of this paper is the
following theorem. From now on, if H is a subgroup of a finite group G we
denote by π(H) the set of primes dividing |H|.

Theorem A. Let G be a finite group and N � G. Suppose that xG and
yG are two non-central G-conjugacy classes of N such that any G-conjugacy
of G has size coprime with |xG| or |yG|. Let πx = π(|xG|), πy = π(|yG|) and
π = πx ∪ πy. Then, N = Oπ′(N)×Oπ(N) with x, y ∈ Oπ(N) which is a quasi-
Frobenius group with abelian kernel and complement or Oπ(N) = P × A with
A ≤ Z(N) and P a p-group for a prime p.

Notice that in the conditions of Theorem A if d(ΓG(N)) ≤ 2 it follows that
the graph is disconnected and the structure of N is determined in Theorem E
of [2]. Consequently, d(ΓG(N)) = 3 and we obtain the following result.

Corollary. Let G be a finite group and N �G. Suppose that ΓG(N) is con-
nected and d(ΓG(N)) = 3. Let us consider x, y ∈ N such that d(xG, yG) = 3.
Set π = π(|xG|) ∪ π(|yG|). We have that x, y ∈ Oπ(N), N =Oπ′(N)×Oπ(N)
with Oπ(N) a quasi-Frobenius group with abelian kernel and complement or
Oπ(N) = P ×A with A ≤ Z(N) and P a p-group for a prime p.
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Proof. It follows immediately by Theorem A. 2

Proofs of these results are based on the techniques appeared in [7] although
we do not use them in ours. When N = G we obtain the result of Kazarin.

2 Proof of Theorem A

First, we show three elementary results necessary to prove the main theorem.

Lemma 1. Let G a π-separable group. Then the conjugacy class length of
every π-element of G is a π-number if and only if G = H ×K, where H and K
are a Hall π-subgroup and a π-complement of G, respectively.

Proof. This is Lemma 8 of [1].

In the particular case in which π = p′, the complement of some prime p, the
above Lemma is true without assuming p-separability (which is equivalent to
p-solvability).

Lemma 2. If, for some prime p, every p′-element of a group G has index
prime to p, then the Sylow p-subgroup of G is a direct factor of G.

Proof. This is Lemma 1 of [4].

Lemma 3. Let G be a finite group and N �G. Let B = bG and C = cG be
two non-central G-conjugacy classes of N . If (|B|, |C|) = 1. Then

a. CG(b)CG(c) = G.

b. BC = CB is a non-central G-class of N and |BC| divides |B||C|.

c. Suppose that d(B,C) ≥ 3 and |B| < |C|. Then |BC| = |C| and CBB−1 =
C. Furthermore, C〈BB−1〉 = C, 〈BB−1〉 ⊆ 〈CC−1〉 and |〈BB−1〉| di-
vides |C|.

Proof. This is Lemma 2.1 of [2].

Proof of Theorem A. We proceed by induction on |N |. Notice that the hy-
potheses are inherited by every normal subgroup in G which is contained in N
and contains x and y. By using the primary decomposition we can assume that
x and y have order a power of two primes, say p and q, respectively.

Step 1. q = p if and only if xy = yx.

Suppose that xy = yx and that p 6= q. Observe that CG(xy) = CG(x) ∩
CG(y) and consequently, |xG| divides |(xy)G| and |yG| divides |(xy)G|. Thus, we
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obtain a G-conjugacy class connected with xG and yG, which is a contradiction
by hypotheses. Conversely, suppose that p = q. We know that p cannot divide
either |xG| or |yG|. Furthermore, the hypotheses imply that (|xG|, |yG|) = 1, so
we have G = CG(x)CG(y) and |xG| = |G : CG(x)| = |CG(y) : CG(x) ∩CG(y)|.
Now, since y is a p-element in Z(CG(y)), we deduce that y ∈ CG(x) ∩ CG(y)
and hence xy = yx.

Step 2. p, q ∈ π.

We define K = CG(x) ∩CG(y). First, we assume that p 6= q and xy 6= yx.
We have |G : K| = |G : CG(x)||CG(x) : CG(x) ∩CG(y)| = |xG||yG|, which is a
π-number. Since x ∈ Z(CG(x)) and x is a p-element but x 6∈ K, we know that
p divides |CG(x) : K| = |yG|. This means that p ∈ πy. Similarly we obtain that
q divides |xG|, that is, q ∈ πx. Consequently, p, q ∈ π.

Suppose now that p = q and xy = yx. Let us see that p ∈ π. We denote
X = xG and Y = yG and we assume for instance that |X| > |Y |. By hypothe-
sis, the distance between X and Y in ΓG(N) is 3. We can apply Lemma 3(c)
and we obtain X〈Y Y −1〉 = X, 〈Y Y −1〉 ⊆ 〈XX−1〉 and |〈Y Y −1〉| divides |X|.
On the other hand, since G = CG(x)CG(y) we have X ⊆ CG(y). As a result,
〈Y Y −1〉 ⊆ 〈XX−1〉 ⊆ CG(y). In particular, if we take z = yg 6= y, for some
g ∈ G, we have w = zy−1 ∈ 〈Y Y −1〉 ⊆ CG(y), so [z, y] = 1. We obtain that w
is a non-trivial p-element and, since p divides |〈Y Y −1〉|, which divides |X|, we
conclude that p ∈ πx. If |Y | > |X| we can argue similarly to get p ∈ πy.

Step 3. We can assume that N/Z(N) is neither a p-group nor a q-group
(particularly, we can assume that N is not abelian).

As we have said at the beginning, x is a p-element and y is a q-element.
Suppose that N/Z(N) is a p-group (the reasoning is analogous if we suppose
that it is a q-group). Hence we can write N = P × A where A ≤ Z(N) and
A is a p′-group. If p 6= q, it follows that x ∈ P and y ∈ A, which leads to a
contradiction with Step 1. Thus, p = q and x, y ∈ P , so the theorem is proved.

Step 4. We can suppose that N is not a π-group.

Let us see that if N is a π-group, then N is a quasi-Frobenius group with
abelian kernel and complement or N = P × A with A ≤ Z(N) and A a p′-
group. Assume that N is a π-group. As N is non-abelian by Step 3, there
exists a conjugacy class zN such that |zN | 6= 1, Since |zN | divides |zG|, then
either (|zN |, |xG|) = 1 or (|zN |, |yG|) = 1. Thus, |zN | either is a πx-number
or a πy-number. If Γ(N) is disconnected, we know by Theorem 2 of [3] that
N is quasi-Frobenius group with abelian kernel and complement. Moreover,
Γ(N) cannot be empty since by Step 3, we can assume that N is not abelian.
Consequently, we can assume that Γ(N) is connected and this forces to either
|xN | = 1 or |yN | = 1. Suppose for instance that |xN | = 1, that is, x ∈ Z(N).
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By Step 3 we can take w an s-element of N \ Z(N) with s 6= p. Observe that
|wN | must be a πy-number, so wG is connected to yG in ΓG(N). Since x and
w have coprime orders and x ∈ Z(N) we have that |wG| and |xG| both divide
|(wx)G|. As a consequence, we have a contradiction because |(wx)G| has primes
in πx and πy. Then we can suppose that N is not a π-group.

Step 5. Conclusion in case p 6= q.

Let z be a π′-element of K ∩ N and let us prove that |zG| is a π′-number.
Suppose that s ∈ π is a prime divisor of |zG|. We can assume for instance that
s ∈ πy, otherwise we proceed analogously. Since |zG| divides |(zx)G| we obtain
that s divides |(zx)G|. On the other hand, we know by the proof of Step 2 that
q ∈ πx. Therefore, |(zx)G| is divisible by primes in πx and πy, a contradiction.
Consequently, s 6∈ π and |zG| is a π′-number, as wanted.

Let M be the subgroup generated by all π′-elements of K ∩ N . Note that
M 6= 1, otherwise K∩N would be a π-group and, since |N : K∩N | = |KN : K|
divides |G : K|, which is a π-number too, then N would be a π-group, a contra-
diction with Step 2. Let us prove that M � G. Let α be a generator of M , so
|αG| is π′-number. Since (|G : K|, |αG|) = 1 we have G = KCG(α) and hence,
αG = αK ⊆ K ∩N . Therefore αG ⊆M , as wanted.

Let D = 〈xG, yG〉. Notice that D � G and D ⊆ N . Let α be a generator
of M . As we have proved that |αG| is π′-number, then (|αG|, |xG|) = 1, so
G = CG(x)CG(α). Thus, xG = xCG(α) ⊆ CG(α) because α ∈ K. The same
happens for y, that is, yG ⊆ CG(α), so we conclude that [M,D] = 1.

We define L = MD and we distinguish two cases. Assume first that L < N .
Note that x, y ∈ L�G and L trivially satisfies the hypotheses of the theorem.
By applying induction to L we have in particular L = Oπ(L)×Oπ′(L). Observe
that the fact that M 6= 1 implies that Oπ′(L) > 1. Now, by definition of M , we
have that |K ∩ N : M | is a π-number. As |N : K ∩ N | is also a π-number,
it follows that |N : Oπ′(L)| is a π-number too. Then, Oπ′(L) = Oπ′(N)
is a Hall π′-subgroup of N . We can apply Lemma 1 so as to conclude that
N = Oπ(N) × Oπ′(N) with x, y ∈ Oπ(N). Since Oπ′(N) > 1, we apply the
inductive hypotheses to Oπ(N) < N and we deduce that Oπ(N) is a quasi-
Frobenius group with abelian kernel and complement or Oπ(N) = P × A with
A ≤ Z(N) and P is a p-group so the theorem is finished.

From now on, we assume that L = N and let us see that Z(N) = 1. Other-

wise, we take N = N/Z(N) and G = G/Z(N). If |xG| = 1, then [x, y] = 1, and
thus [x, y] ∈ Z(N). Since (o(x), o(y)) = 1, it is easy to prove that [x, y] = 1,

a contradiction. Analogously, we have |yG| 6= 1. Consequently, N satisfies the
assumptions of the theorem. By induction, we have N = Oπ′(N)×Oπ(N) with
x, y ∈ Oπ(N) and Oπ(N) is either a quasi-Frobenius group with abelian kernel
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and complement or N = P ×A with A 6 Z(N) and P a p-group. In the latter
case, [y, x] = 1 which leads to a contradiction as we have seen before. So we are
in the former case. It follows that N = Oπ′(N)×Oπ(N) with x, y ∈ Oπ(N) and
by applying induction to Oπ(N) < N , we have the result. Therefore, Z(N) = 1.
On the other hand, we have proved that [M,D] = 1. Thus M ∩D ⊆ Z(N) = 1
and N = M × D with x, y ∈ D. Since M 6= 1, we can apply induction to D
and we get D = Oπ′(D)×Oπ(D) with x, y ∈ Oπ(D) and Oπ(D) is a Frobenius
group with abelian kernel and complement (notice that Z(Oπ(D)) = 1 because
Z(N) = 1). The p-group case cannot occur because x and y do not commute.
Notice that if M is π′-group then the theorem is proved. Assume then that M
is not a π′-group and we will obtain a contradiction. Let s ∈ π such that s
divides |M |. We can assume that s ∈ πx (we proceed analogously if s ∈ πy).
Suppose that there exists an s′-element z ∈ M such that |zM | is divisible by
s. Since N is the direct product of M and D, we have that (zy)N = zNyN

is a non-trivial class of N whose size is divisible by s and by some prime of
|yN | 6= 1. This is not possible because |(zy)G| would have primes in πx and πy.
Thus, the class size of every s′-element of M is a s′-number. It is known that
M = M1×S with S ∈ Syls(M). In this case, Z(S) ⊆ Z(N) = 1, a contradiction.

Step 6. Conclusion in case p = q.

Let K = CG(x) ∩CG(y) as in Step 2. Let z be a p′-element of K ∩N and
let us prove that |zG| is a π′-number. Suppose that s ∈ π is a prime divisor
of |zG|. We can assume for instance that s ∈ πy, otherwise we proceed anal-
ogously. Since |zG| divides |(zx)G| we obtain that s divides |(zx)G|. On the
other hand, we know by the proof of Step 2 that q ∈ πx. Therefore, |(zx)G| is
divisible by primes in πx and πy, a contradiction. Consequently, s 6∈ π and |zG|
is a π′-number, as wanted.

Let T be the subgroup generated by all p′-elements of K ∩N . We have that
T 6= 1 because otherwise K ∩ N would be a π-group and this implies that N
is a π-group as in Step 5, a contradiction. Let us prove that T � G. If α is
a generator of T , we know that |αG| is π′-number. Then (|G : K|, |αG|) = 1,
so we have G = KCG(α) and αG = αK ⊆ K∩N . Therefore, αG ⊆ T as wanted.

Since the class size of every p′-element of T is a p′-number then, by Lemma
2, T = Op(T ) ×Op′(T ). However, by definition of T , we have Op(T ) = 1, or
equivalently M = Op′(T ). Now, notice that if s ∈ π and s 6= p, then the class
size of every element of T is an s′-number so, it is well know that T has a Sylow
s-subgroup central and we can write T = Oπ(T )×Oπ′(T ). On the other hand,
|N : T | = |N : K ∩N ||K ∩N : T | where |N : K ∩N | = |KN : K| is a π-number
and |K∩N : T | is a power of p ∈ π. Therefore Oπ′(T ) = Oπ′(N) and Oπ′(N) is
a Hall π′-subgroup of N . We have proved that the class size of every p′-element
of N is a π′-number, so by Lemma 1, we have N = Oπ′(N)×Oπ(N). We apply
induction to Oπ(N) < N and the proof is finished. 2
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We give an example showing that the converse of Theorem A is not true.

Example 1. We take the Special Linear group H = SL(2, 5) which is a
group of order 120 that acts Frobeniusly on K = Z11 × Z11. Let P ∈ Syl5(H)
and we consider NH(P ). Then, we define N = KP , which is trivially a normal
subgroup of G = KNH(P ). We have that the set of the G-conjugacy class sizes
of N is {1, 20, 242}. Consequently, there are not two non-central G-classes of N
such that any non-central G-class of N has size coprime with one of both.

Let us look at several examples illustrating Theorem A.

Example 2. We take the following groups from the library SmallGroups
of GAP G1 = Id(324, 8) and G2 = Id(168, 44) that have the normal subgroups
exposed now. The abelian 3-subgroup P = Z3 × Z3 and A = Z2 × Z2 × Z2,
respectively. It follows that the set of conjugacy class sizes of P is {1, 2, 3, 3}
and the set of conjugacy class sizes of A is {1, 7}. We construct N = P × A
and G = G1 × G2. We have that N is a normal subgroup of G and the set
of G-conjugacy class sizes of N is {1, 2, 3, 7, 14, 21} so d(ΓG(N)) = 3 and N
satisfies that it is the direct product of a 3-group and A ≤ Z(N). Note that in
this example it follows that Oπ′(N) = 1 and π = {2, 3}.

Example 3. In order to illustrate the quasi-Frobenius case it is enough to
consider any group G and a normal subgroup N = G such that Γ(N) has two
connected components. Thus, by applying Theorem of [3] we know that N is a
quasi-Frobenius group with abelian kernel and complement.
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