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1. INTRODUCTION.

Junnila [6, Corollary 4.13] showed (see also [4, Theorem 6.21]) that in a
semistratifiable metacompact space the third power of each neighbornet belongs
to the point-finite quasi-uniformity. Similarly, in [7] it was proved that each
regular hereditarily metacompact compact space possesses the latter property.

Junnila’s result and the techniques used in [7] suggested that it should be
possible to generalize the latter result beyond (local) compactness using meth-
ods known from the theory of monotonic properties (compare [2]).

In this note we verify this conjecture by presenting a proof which shows
that each regular hereditarily metacompact (monotonic) S-space satisfies the
condition that the third power of any neighbornet belongs to its point-finite
quasi-uniformity.

Recall that a topological space is called transitive (see e.g. [4]) provided
that its finest compatible quasi-uniformity has a base consisting of transitive
entourages. Hence in particular our result implies that each regular hereditarily
metacompact (monotonic) (-space is transitive.

For basic facts about quasi-uniformities we refer the reader to [4].

*The author acknowledges support by the Swiss National Science Foundation (under grant
20-63402.00) during stays at theUniversity of Berne, Switzerland.
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2. MAIN RESULT.

Let us first mention some pertinent definitions and recall a few well-known
facts. A regular topological space X is said to be a monotonic 3-space [1]
if, for each point x € X, there exists a decreasing sequence (B, (x))ne, of
open neighborhood bases of X at the point x such that if B,, € B, (z,) and
B, +1 C B,, whenever n € w and if ﬂn6w B,, is nonempty, then the sequence
(Tn)new has a cluster point. The family {(B,(x))new : * € X} is called a
monotonic [3-system of X.

The following results are known to hold (in the class of regular (73-)spaces):
Each (-space is a monotonic G-space. Every monotonic p-space is a monotonic
B-space [1, Proposition 1.7]. Furthermore, every submetacompact monotonic
p-space is a p-space [2, Theorem 2.8(b)]. Recall also that each submetacompact
space is a p-space if and only if it is a wA-space [5, Theorem 3.19].

We shall find it convenient to work with the following class of (regular)
topological spaces X that is defined in terms of a game G(X) in X, which is a
modification of certain games introduced in [3] and was suggested to us by Prof.
J. Chaber. The game G(X) is similar to the strong game of Choquet. Player I
starts the game by choosing a nonempty open set V; and a point zo € Vj. After
player I has chosen his nonempty open set V,, and z,, € Vj, in his n” move
where n € w, player II replies with an open set W,, C V,, containing z,, and
player I, in the next move, has to pick V,,1 inside W,,. Player II wins if either
NnewWn = & or the sequence (x,)nc. has a cluster point in X. A winning
strategy for player I1 is a function s into the topology of X defined on all finite
sequences of moves of player I so that player II always wins when using the
function s to determine his next move.

It is readily seen that for each (regular) monotonic 3-space X, player II has
a winning strategy for the game G(X). Indeed in his n** move he will choose
as W, some (fixed) member of B, (x,) contained in V,.

A scattered partition (see e.g. [8, Definition 2.4]) of a topological space
X is a cover {L, : a < v} of X by pairwise disjoint sets such that the set
Sz =J{La : @ < B} is open for each 3 < .

A binary relation N on a topological space X is called a neighbornet of X

if N(x) = {y € X : (x,y) € N} is a neighborhood at = whenever z € X.
For any interior-preserving open cover C of a topological space X, we define
the neighbornet DC of X by setting DC(x) = (\{C € C : v € C'} whenever
x € X. We recall that the filter on X x X generated by the subbase {DC : C is
a point-finite open cover of X} is called the point-finite quasi-uniformity of X
(see e.g. [4]).
Lemma 2.1. Suppose that X is a hereditarily metacompact space and let O be
a neighbornet of X such that O(x) is open whenever x € X. Then there is a
point-finite open cover G(X) of X such that for each member H € G(X) there
isxg € X such that v € H C O(xp).

Proof. Choose inductively a possibly transfinite sequence (x4 ), of points in X
such that z, € X'\ s, O(zp) as long as possible, say whenever a < . Then
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{O(xa) \ Up<q Ozp) : @ < 7} is a scattered partition of X. According to [8,
Theorem 6.3] a topological space X is hereditarily metacompact if and only if
every scattered partition of X has a point-finite open expansion.

Hence there is a point-finite open collection {P, : a < «} of X such that
[O(za) \ Us<q Ozp)] € Po whenever o < . It follows that [J{FPs N O(za) :
a <y} =X and z, € P,NO(z4) C O(z,) whenever a < . Therefore we can
set G(X) ={P,NO(x,) : @ <~} O

Theorem 2.2. Let O be a neighbornet of a reqular hereditarily metacompact
space X. If player II has a winning strategy in the game G(X) described above,
then there exists a point-finite open family U of X such that DU C O3.

Proof. Without loss of generality we suppose that O(x) is open whenever x €
X. Inductively for each n € w we shall define a point-finite open family U,, of
X.

By Lemma 2.1 there is a point-finite open cover Uy of X which has the
property that for each Uy € Uy there is some point py, € X such that py, €
Uo € O(puy)-

Let n € w. Suppose that we have defined the point-finite open family Uy 1 as
the union of families G41(U) where U runs through a subfamily of i), whenever
k < n. (In the following we distinguish between members in different families
Gr+1(U) or in Uy that denote the same set; in this way each member arises on
a well-defined level of the construction and each member V' belonging to the
level Uy+1 has a unique element U in the level Uy preceding it in the sense that
V€ Gra(U).)

Furthermore suppose that each U,, where Uy11 € Giy1(Ux) whenever k < n
determines the sequence (Up \ O~ (pu, ), vy, Wo, U1 \ O~ (pv, ), puys Wh,y - -
Un—1\ O (pu,_,),pu, Wn—1) which describes the moves k < n of a well-
defined instance of the game G(X) in the sense that

(1) player I has used Uy \ O~!(py,) and some well-defined point py, ., of

Ui \ O~1(py,) in his k*"-move whenever k < n,

and (2) player II has chosen the set W}, according to his winning strategy in
his £** move whenever k < n.

In particular note that each Wj, is determined by the preceding moves of
player I and that each Uy \ O~Y(py,) # & whenever k < n. Call a member U,
of U,, suitable (in Uy,) if U,, € O~ L(py,).

Assume now that U, is a suitable member of U,. Suppose that player I
continues the beginning of the game G(X) associated with U, by choosing
U, \O~(py,) and any = € U, \O~L(py,) in his n" move. Then player II finds
Wy(...,Up,x) according to his winning strategy such that x € W,,(...,Uy,,x) C
Un \ O_l(pUn).

By hereditary metacompactness and regularity of X there exists a point-
finite open cover V,,11(U,,) of U, \ O~1(py, ) such that the closures of its mem-
bers are all contained in U,, \ O~1(py, ). Consider the neighbornet of the sub-

space U, \ O~ !(py,) of X determined by the neighborhoods W,,(...,U,,z) N
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(W{E € Vnt1(Uyn) : @ € E} N O(x) whenever z € U, \ O~(py, ). By Lemma
2.1 there exists a point-finite open cover G, +1(Uy,) of U, \ O~1(py, ) such that
for each Upy1 € Gny1(Un) there is some point py, ., € U, \ O~(py,) sat-
iSfying PU, 11 € Un+1 c Wn("~,Unvan+1) N ﬂ{E € Vn+1(Un) P PUL €
E}YNO(pu,y,)-

Set Up+1 = U{Gn+1(Uyn) : U, is a suitable member of U, }. Note that Uy,41
is a point-finite open family of X. Observe also that for each suitable U,, of
U, the closures of all members of G,1(U,) are contained in U, \ O~1(py,)
because V,,4+1(U,) had the latter property.

Furthermore by the construction above it is readily checked that for each
member U,11 € Gp1+1(U,) we have constructed the moves k < n + 1 of the
instance of the game G(X) associated with U,+; by adding to the (unique)
sequence of moves associated with U,, the n‘* moves (U,\O~(py, ), v, o Wa)
of player I and player II, respectively, where W,, = W, (..., Uy, pu,.,,)-

Claim 2.3. There exists a point-finite family U of open sets of X such that

the family H ={U N O~ (py) : U € U} covers X.

We shall show that our claim holds for the family U = |J,,c,, Un:

Suppose that for some x € X there are infinitely many sets in U containing
z. Consider the family S of all sets in U containing x. Since each family U,
is point-finite, we conclude by Koénig’s Lemma [9] and the definition of the
families U, 11 that in S there exists a sequence (U,)nc. such that for each
n € w, Upt1 € Gna1(Uy,). We shall show next that such a sequence does not
exist.

Note first that the sequence (U, \ O~ (py, ), pv, ;1 )new yields the moves of
player I in an instance of the game G(X) where player IT uses his winning
strategy to find the sets W;, = W,(...,U,,pu,,,) Whenever n € w.

By the construction of the family G, 1(Uy,), Uns1 € Unt1 € U, \O~(py,)
and py, ., € Uny1 CWiu(...,Un,pu, ) € Un \ O~ 1(py,) whenever n € w.

Since & € Npe,Upn and thus z € Npe Wi (..., Un,pUnH), we conclude that
(pu, )new has a cluster point z in X. Thus py, € O(z) for infinitely many
n € w. But also z € U,,; whenever n € w, because for each n € w a tail
of the sequence (py, )ne, is contained in Up4q. Since Upp1 N O~ (py,) = @
whenever n € w, we see that z ¢ O~1(py, ) whenever n € w —a contradiction.
We conclude that the family I/ is point-finite.

Suppose that some point € X is not contained in any set U N O~ 1(py)
where U € U. Since Uy is a cover of X, there exists Uy € Uy such that
x € Up. Suppose that n € w and sets U, (k < n) have inductively been
defined such that © € Ug+1 € Gr11(Ux) (kK < n). By our assumption, we have
that « € U, \ O~ (py,). In particular, U, is suitable in U,. Since G,+1(U,)
covers Uy, \ O~1(py, ), there exists U, 41 € Gp4+1(U,,) such that = € U, 1. This
concludes the induction. Of course, x € N,c,U,. But as we just noted above
such a sequence (U, )ne. cannot exist. Hence H is a cover of X.
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Finally we show that DU C O3. Let x € X. By the claim verified above
there exists U € U such that + € U N O~!(py). Furthermore, we see that
DU(x) = ({V €U : x € V} CU C O(py) by the selection of the sets U
belonging to U. Since we have that x € O~1(py), there exists a point y €
O(x) N O~ (py). We now conclude that y € O(x) and py € O(y). It follows
that py € O%(x) and, furthermore, that O(py) € O3(x). As a consequence, we
see that DU(x) C O(py) C O3(x), which confirms the assertion. O
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