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Abstract. Based on some set-theoretical observations, compact-
ness results are given for general hit-and-miss hyperspaces. Compact-
ness here is sometimes viewed splitting into “κ-Lindelöfness” and “κ-
compactness” for cardinals κ. To focus only hit-and-miss structures,
could look quite old-fashioned, but some importance, at least for the
techniques, is given by a recent result, [8], of Som Naimpally, to who
this article is hearty dedicated.
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1. Introduction.

Let (X, τ) be a topological space. By P(X), P0(X), Cl(X) and K(X) respec-
tively we denote the power set, the power set without the empty set ∅, the family
of all closed subsets and the set of all compact subsets of X. For B ∈ P(X) and
A ⊆ P(X) we define B−A := {A ∈ A|A ∩ B 6= ∅} (hit–set) and B+A := {A ∈
A|A ∩ B = ∅} (miss–set). Specializing A := Cl(X), we get the usual symbols
B−, B+. By τl,A we denote the topology for A, generated by the subbase of all
G−A , G ∈ τ . Now consider ∅ 6= α ⊆ P(X); by τα,A we denote the topology for A
which is generated from the subbase of all B+A , B ∈ α and G−A , G ∈ τ . Of course,
for every possible α we have τl,A ⊆ τα,A; for α = Cl(X) we get the Vietoris topology
and for α = K(X) we get the Fell topology for A. If α = ∆ ⊆ Cl(X), τα,A is called
∆–topology by Beer and Tamaki [2], and was first introduced by Poppe [10].

By F(X) and F0(X) we denote the set of all filters and ultrafilters, respectively,
on a set X (a filter is not allowed to contain the empty set ∅); the symbol F(ϕ) (resp.
F0(ϕ)) means the set of all filters (resp. ultrafilters) which contain a given filter
ϕ;

.
x is the filter generated by a singleton {x}, x ∈ X. The symbol qτ denotes the

convergence structure induced by a topology τ , i.e. qτ := {(ϕ, x) ∈ F(X)×X|ϕ ⊇
.
x ∩ τ}, so qτ is a relation between filters and points of a set X.

If X is a set, τ,A are subsets of P(X), then we call A weakly complementary w.r.t.
τ , iff for every subset σ ⊆ τ there exist a subset B ⊆ A, s.t.

⋃
B∈BB = X \

⋃
S∈σ S.
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Lemma 1.1. Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds⋃
i∈I

Gi ⊇ K =⇒
⋃
i∈I

G−A
i ⊇ K−A

for every collection Gi, i ∈ I,Gi ∈ τ .
If A is weakly complementary w.r.t. τ , then for every collection Gi, i ∈ I,Gi ∈ τ
the implication ⋃

i∈I
Gi ⊇ K ⇐=

⋃
i∈I

G−A
i ⊇ K−A

holds, too.

Proof. Let
⋃
i∈I Gi ⊇ K. A ∈ K−A ⇒ A ∩K 6= ∅⇒ ∅ 6= A ∩

⋃
i∈I Gi ⇒ ∃i0 ∈ I :

A ∩Gi0 6= ∅⇒ A ∈ G−A
i0
⇒ A ∈

⋃
i∈I G

−A
i .

Conversely, let A be weakly complementary w.r.t. τ and
⋃
i∈I G

−A
i ⊇ K−A . Assume⋃

i∈I Gi 6⊇ K. Then X\
⋃
i∈I Gi ⊇ K\

⋃
i∈I Gi 6= ∅ holds, so there is an A ∈ A, A ⊆

X \
⋃
i∈I Gi with A ∩K \

⋃
i∈I Gi 6= ∅. Thus A ∈ K−A , implying A ∈

⋃
i∈I G

−A
i .

This yields ∃i0 ∈ I : A ∩Gi0 6= ∅ in contradiction to the construction of A. �

Corollary 1.2. Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds

(1.1)
⋃
i∈I

Gi ⊇ K ⇐⇒
⋃
i∈I

G−A
i ⊇ K−A

for every collection Gi, i ∈ I,Gi ∈ τ if and only if A is weakly complementary w.r.t.
τ .

Proof. We only have to show, that A is weakly complementary w.r.t. τ , if (1.1)
holds. Assume, A is not weakly complementary w.r.t. τ . Then there must be a
collection {Gi|i ∈ I} ⊆ τ , such that

⋃
{A|A ∈ P(X \

⋃
i∈I Gi) ∩A} 6⊇ X \

⋃
i∈I Gi.

Now, we chose K :=
(
X \

⋃
i∈I Gi

)
\
⋃
{A|A ∈ P(X \

⋃
i∈I Gi)∩A} 6= ∅. Then no

element of A, which meets K, can be contained in X \
⋃
i∈I Gi, i.e. every element

of K−A meets
⋃
i∈I Gi, too. So, it must meet a Gi0 , i0 ∈ I and consequently it

is contained in
⋃
i∈I G

−A
i . But, by construction, the collection {Gi|i ∈ I} doesn’t

cover K, so (1.1) would fail. �

Obviously, if for every collection {Gi|i ∈ I} ⊆ τ the complement X \
⋃
i∈I Gi

itself belongs to A, or if all singletons {x}, x ∈ X are elements of A, then A is weakly
complementary w.r.t. τ . So, if τ is a topology on X, Cl(X) and K(X) are weakly
complementary w.r.t. τ .

Corollary 1.3. Let (X, τ) be a topological space, K ⊆ X and ∀i ∈ I : Gi ∈ τ .
Then holds ⋃

i∈I
Gi ⊇ K ⇐⇒

⋃
i∈I

G−i ⊇ K
−

We have yet another easy, but useful set-theoretical lemma:

Lemma 1.4. Let X be a set, A ⊆ P(X) and ϕ ∈ F(X). Assume, A is closed under
finite unions of its elements. Then holds

ϕ ∩ A 6= ∅⇐⇒ ∀ψ ∈ F0(ϕ) : ψ ∩ A 6= ∅ ,

i.e. a filter contains an A–set, iff each refining ultrafilter contains an A–set.
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Proof. Suppose ∀ψ ∈ F0(ϕ) : ∃Aψ ∈ A : Aψ ∈ ψ. Now, assume ϕ ∩ A = ∅. From
this automatically follows X 6∈ A.
Consider B := {X \A| A ∈ A}. Because of the closedness of A under finite unions,
B is closed under finite intersection of its elements, and ∅ 6∈ B, because X 6∈ A.
For any F ∈ ϕ,B ∈ B we have F ∩ B 6= ∅, because F ∩ B = ∅ would imply
F ⊆ X \ B ∈ A and therefore ϕ ∩ A 6= ∅. So, ϕ ∪B is a subbase of a filter and
consequently, there exists an ultrafilter ψ, containing ϕ∪B, therefore containing ϕ
and the complement of every A–set - in contradiction to ∀ψ ∈ F0(ϕ) : ψ ∩ A 6= ∅.
The other direction of the statement of the lemma is obvious. �

Definition 1.5. Let κ be a cardinal. Then a topological space (X, τ) is called
κ-compact, iff every open cover of X with cardinality at most κ admits a finite
subcover.
(X, τ) is called κ-Lindelöf, iff every open cover of X admits a subcover of cardinality
at most κ.

A filter is called κ-generated, iff it has a base of cardinality at most κ. A filter
ϕ is called κ-completable, iff every subset B ⊆ ϕ with card(B) at most κ fulfills⋂
B∈BB 6= ∅. It is called κ-complete, iff

⋂
B∈BB ∈ ϕ holds under this condition.

Proposition 1.6. A topological space (X, τ) is κ-compact, if and only if every
κ-generated filter on X has a convergent refining ultrafilter.

Proof. Let (X, τ) be κ-compact and ϕ a filter on X with a base B of cardinality at
most κ. Assume, all refining ultrafilters of ϕ would fail to converge in X. Then for
each element x ∈ X, all refining ultrafilters of ϕ contain the complement of an open
neighbourhood of x. But the set of complements of open neighbourhoods of a point
x is closed w.r.t. finite unions, thus by Lemma 1.4, ϕ contains the complement of
an open neighbourhood of x. So, for each x ∈ X there must exist Ox ∈ τ ∩

.
x and

Bx ∈ B, s.t. Bx ⊆ X \ Ox, implying Bx ⊆ X \ Ox and thus X \ Bx ⊇ Ox. Now,
for each B ∈ B we define OB := X \ B and find, that {OB | B ∈ B} is an open
cover of X, because of the preceeding facts. So, there must exist a finite subcover
OB1 ∪ · · · ∪ OBn = X, implying

⋃n
i=1(X \ Bi) = X, just meaning

⋂n
i=1Bi = ∅,

which is impossible, because all Bi belong to the filter ϕ. So, the assumption must
be false; there must exist convergent refining ultrafilters of ϕ.
Otherwise, let all κ-generated filters on X have a convergent refining ultrafilter. As-
sume, there would exist an open cover C := {Oi ∈ τ | i ∈ I},

⋃
i∈I Oi = X, card(I) ≤

κ such that all finite subcollections fail to cover X (implying κ to be infinite). But
the set of all finite subcollections of the infinite collection C of cardinality at most
κ has cardinality at most κ, too. So, B := {X \

⋃n
k=1Oik | n ∈ IN, ik ∈ I} is

a filterbasis of cardinality at most κ, thus there must exist an ultrafilter ϕ ⊇ B,
which converges in X - leading to the usual contradiction, because every x ∈ X is
contained in an open Ox ∈ C and X \Ox belongs to B ⊆ ϕ. �

Analogously we get a characterization of κ-Lindelöf-spaces.

Proposition 1.7. If (X, τ) is κ-Lindelöf, then every κ-completable filter on X has
a convergent refining ultrafilter.
If κ is an infinite cardinal and every κ-complete filter on a topological space (X, τ)
has a convergent refining ultrafilter, then (X, τ) is κ-Lindelöf.
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Of course, every κ-complete filter is κ-completable, so we may say, that a topo-
logical space (X, τ) is κ-Lindelöf, if and only if each κ-complete filter on X has a
convergent refinement.

2. Compactness Properties for Hyperspaces.

Lemma 2.1. Let κ be a cardinal, (X, τ) a topological space and let A ⊆ P(X) be
weakly complementary w.r.t. τ . If A0 := A \ {∅} is κ-Lindelöf (resp. κ-compact)
in τl,A0 , then (X, τ) is κ-Lindelöf (resp. κ-compact).

Proof. If A is weakly complementary w.r.t. τ , then A0 is, too. So, Corollary 1.2 is
applicable. Let {Gi|i ∈ I} be an open cover (resp. an open cover with cardinality at
most κ) of X. By Corollary 1.2, then {G−A0

i |i ∈ I} is an open cover of X−A0 = A0

(resp. of card. at most κ), so there exists a subset J ⊆ I of cardinality at most κ
(resp. a finite subset J), s.t.

⋃
j∈J G

−A0
j ⊇ A0 = X−A0 , implying

⋃
j∈J Gj ⊇ X by

Corollary 1.2. �

Of course, the assumed topology τl,A0 is not really hit-and-miss, because the
miss-sets are missed. But every proper hit-and-miss topology would be stronger
and therefore it would enforce the desired properties for (X, τ) as well.

Lemma 2.2. Let (X, τ) be a κ-compact (resp. κ-Lindelöf) topological space and
assume Cl(X) ⊆ A ⊆ P(X). Then A0 := A \ {∅} is κ-compact (resp. κ-Lindelöf)
in τl,A0 .

Proof. Let ϕ̂ be a κ-generated (resp. κ-complete) filter on A0. Then, for an arbitrary
h ∈ A := {g ∈ XP0(X)| ∀M ∈ P0(X) : g(M) ∈M} the image h(ϕ̂) is a κ-generated
(resp. κ-complete) filter on X and consequently it has a τ -convergent refining
ultrafilter ψh. Furthermore, there must exist an ultrafilter ψ̂ ⊇ ϕ̂, s.t. h(ψ̂) = ψh.
So, the set

A := {a ∈ X| ∃f ∈ A : (f(ψ̂), a) ∈ qτ}
is not empty and consequently the closure A belongs to A0. Now, for any O ∈ τ
with A ∈ O−A0 (⇔ A ∩ O 6= ∅) we get A ∩ O 6= ∅ (because of the closure-
properties). Now, the assumption O−A0 6∈ ψ̂ would imply O+A0 ∈ ψ̂, yielding
∀f ∈ A : X \O ∈ f(ψ̂), thus ∀f ∈ A : ∀b ∈ A ∩O : (f(ψ̂), b) 6∈ qτ - in contradiction
to the construction of A. Thus, O ∈ τ, A ∈ O−A0 always imply O−A0 ∈ ψ̂ and
consequently ψ̂ τl,A0-converges to A. �

Definition 2.3. Let (X, τ) be a topological space. A subset A ⊆ X is called weakly
relatively complete in X, iff

∀ϕ ∈ F(A) ∩ q−1
τ (X) : F(ϕ) ∩ q−1

τ (A) 6= ∅ ,

i.e. every filter ϕ on A, which converges in X, has a refinement, converging in A.

Proposition 2.4. Let (X, τ) be a topological space and A ⊆ X. Then holds:
(a) A is weakly relatively complete in X, iff F0(A)∩ q−1

τ (X) = F0(A)∩ q−1
τ (A),

i.e. every ultrafilter on A, which converges in X, converges in A.
(b) If A is closed in X, then A is weakly relatively complete in X.
(c) If A is compact, then A is weakly relatively complete in X.
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(d) If (X, τ) is compact and A is weakly relatively complete in X, then A is
compact.

(e) If (X, τ) is Hausdorff, then every weakly relatively complete subset A ⊆ X
is closed in (X, τ).

(f) A is compact iff A is weakly relatively complete and relatively compact.
(g) If (X, τ) is κ-compact and A is weakly relatively complete in (X, τ), then A

is κ-compact.
(h) If (X, τ) is κ-Lindelöf and A is weakly relatively complete in (X, τ), then A

is κ-Lindelöf.
(i) Weak relative completeness is transitive, i.e. for all A ⊆ B ⊆ X with

B weakly relatively complete in (X, τ) and A weakly relatively complete in
(B, τ|B), the subset A is weakly relatively complete in (X, τ).

There is also a useful description by coverings for weak relative completeness.

Lemma 2.5. Let (X, τ) be a topological space and A ⊆ X. Then the following are
equivalent:

(1) A is weakly relatively complete in X.
(2) For every open cover A of A and every element x of X, there is an open

neighbourhood Ux,A of x, s.t. Ux,A ∩A is covered by finitely many members
of A.

(3) For every open cover A of A there exists an open cover A′ ⊇ A of X, such
that the intersection of every member of A′ with A can be covered by finitely
many members of A, i.e. ∀O ∈ A′ : ∃n ∈ IN, P1, ..., Pn ∈ A :

⋃n
i=1 Pi ⊇

O ∩A holds.

Proof. (1)⇒(2): Let A ⊆ τ with
⋃
P∈A P ⊇ A be given. For every x ∈ A we can

chose a single member of A as open neighbourhood, whose intersection with A is
covered by itself. So, assume

(2.2) ∃x ∈ X \A : ∀Ux ∈ U(x) ∩ τ : ∀n ∈ IN, P1, ..., Pn ∈ A : Ux ∩A 6⊆
n⋃
i=1

Pi

Then B := {(U ∩A)\
⋃n
i=1 Pi| U ∈ U(x)∩ τ, n ∈ IN, Pi ∈ A} would be closed under

finite intersections and thus there would exist an ultrafilter ϕ on A with ϕ ⊇ B.
By construction ϕ→ x must hold for this ultrafilter, and now by the weak relative
completeness of A it follows ∃a ∈ A : U(a) ⊆ ϕ. But A is an open cover of A, so
there is an open set P ∈ A with a ∈ P , implying P ∈ ϕ – in contradiction to the
construction of ϕ. Thus (2.2) is false and we have

∀x ∈ X \A : ∃Ux ∈ U(x) ∩ τ : ∃n ∈ IN, P1, ..., Pn ∈ A : Ux ∩A ⊆
n⋃
i=1

Pi

(2)⇒(3): Note, that (3) is fulfilled with A′ := {Ux| x ∈ X \A} ∪ A.
(3)⇒(1): For a given ultrafilter ϕ on A with ϕ→ x ∈ X assume ϕ 6∈ q−1

τ (A). Then
∀a ∈ A : ∃Ua ∈ U(a) ∩ τ : U ca = X \ Ua ∈ ϕ. With these neighbourhoods define
A := {Ua| a ∈ A}, which is an open cover of A. By (2) there is an open cover
A′ ⊇ A of X such that ∀O ∈ A′ : ∃n ∈ IN, P1, ..., Pn ∈ A :

⋃n
i=1 Pi ⊇ O ∩ A holds.

Now, ϕ → x implies ∃O ∈ A′ : O ∈ ϕ (especially A ∩ O 6= ∅ follows), and then we
have ∃n ∈ IN, P1, ..., Pn ∈ A : O ∩ A ⊆

⋃n
i=1 Pi, implying ∃j ∈ {1, ..., n} : Pj ∈ ϕ
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– in contradiction to the construction of A. So, the assumption ϕ 6∈ q−1
τ (A) must

be false, showing, that every ultrafilter on A, which converges in X, converges in
A. �

Theorem 2.6. Let (X, τ) be a topological space, and let α ⊆ P(X) consist of weakly
relatively complete subsets of X. Then holds for any A with Cl(X) ⊆ A ⊆ P(X):
(A0, τα) is compact ⇐⇒ (X, τ) is compact.

Proof. According to Lemma 2.1 we need only to show that (A0, τα) is compact,
if (X, τ) is compact. So, assuming (X, τ) to be compact, by Proposition 2.4 every
weakly relatively complete subset of X is compact, and we have α ⊆ K(X). Now we
will use Alexander’s Lemma: let U be a cover of A0, consisting of subbase elements
K

+A0
i , G

−A0
j with Ki compact and Gj open.

A := X \ (
⋃
{G|G−A0 ∈ U}) is closed.

By construction, A 6∈ G−A0 for any G−A0 ∈ U , so for A 6= ∅ there must exist some
K

+A0
0 ∈ U with A ∈ K

+A0
0 , yielding that K0 ⊆

⋃
{G|G−A0 ∈ U}; K0 compact

⇒ ∃G1, ..., Gn ∈ U with K0 ⊆
⋃n
k=1Gk, but then {K+A0

0 } ∪ {G−A0
1 , ..., G

−A0
n } is a

cover of A0.
If A = ∅, then

⋃
{Gi|G

−A0
i ∈ U} = X, so from the compactness of X the existence

of some G
−A0
1 , ..., G

−A0
n ∈ U with X =

⋃n
k=1Gk follows. By Lemma 1.1 then⋃n

k=1G
−A0
k = A0 holds. �

Many known theorems of compactness w.r.t. the Fell– or the Vietoris–topology
follow immediately from the above result.

Lemma 2.7. Let (X, τ) be a topological space, A ⊆ P0(X) with Cl(X) ⊆ A and
α ⊆ Cl(X). If R ⊆ X is relatively compact in X, then P0(R) ∩ A is relatively
compact in (A, τα).

Proof. Let B := {O−A
i | i ∈ I,Oi ∈ τ} ∪ {C

+A
j | j ∈ J,Cj ∈ α} be an open cover of

A by subbase elements of τα. Let O :=
⋃
i∈I Oi.

If O = X, then there exists finitely many i1, ..., in ∈ I with
⋃n
k=1Oik ⊇ R, because

R is relatively compact, and thus
⋃n
k=1O

−A
ik
⊇ R−A ⊇ P0(R) ∩ A, by Lemma 1.1.

If O 6= X, then X \ O is nonempty and closed, but not covered by the O−A
i from

B. Thus, there must exist a j0 ∈ J with X \O ∈ C+A
j0

, implying Cj0 ⊆ O. Now, we
have P0(R)∩A = (P0(R)∩C+A

j0
)∪ (P0(R)∩C−A

j0
), and, of course, P0(R)∩C+A

j0
is

covered just by C+A
j0
∈ B. So, we have to find a finite subcover for (P0(R)∩C−A

j0
),

if this is not empty. Observe, that R∩Cj0 is relatively compact in X, because it is
a subset of R. Furthermore, {Oi| i ∈ I}∪{X \Cj0} is an open cover of X. Thus we
find again finitely many i1, .., in ∈ I, s.t.

⋃n
k=1Oik ⊇ R∩Cj0 (because X\Cj0 can be

removed from any cover of R∩Cj0 without loosing the covering property). Therefore⋃n
k=1O

−A
ik
⊇ (R∩Cj0)−A , by Lemma 1.1. But P0(R)∩C−A

j0
⊆ (R∩Cj0)−A holds,

because any subset of R, which hits Cj0 , automatically hits R ∩ Cj0 . �

3. Compact Unions.

As an interesting application of a simple set-theoretical property, concerning the
+-operator, we want to take a brief look at the naturally arising question, whether
a union of compact sets itself is compact. Michael showed in [6] that a union of



A short note on hit-and-miss hyperspaces 287

closed sets is compact, if the unifying family is compact w.r.t. the Vietoris-topology.
Now, the Vietoris-topology is induced by the upper-Vietoris τ+

V (miss sets: A+A with
Ac ∈ τ) and τl, but τl is not sufficient to enforce compactness of a union of compact
sets, as the following example shows: Let X := IR, endowed with euclidian topology,
M := {[−m,m]| m ∈ IN}. Then

⋃
M∈MM = IR, is obviously not compact. But

every cover of M with elements of the defining subbase for τl must especially cover
the element {0} = [0, 0] of M, so it must contain a set O− with 0 ∈ O. Now, every
element of M contains the point 0, thus M ⊆ O− follows. So, M is compact in τl
by Alexander’s subbase Lemma.
And unifying compact sets, τl is not necessary, too, as we will see.

Proposition 3.1. Let X be a set, X ⊆ P(X) and M ⊆ X. Then holds⋃
i∈I

C+X
i ⊇M =⇒

⋃
i∈I

Cci ⊇
⋃

M∈M

M

for every collection Ci, i ∈ I.

Proof. For every M ∈ M there must exist an iM ∈ I with M ∈ C+x

iM
, because of⋃

i∈I C
+x

i ⊇M. Thus M ⊆ CciM ⊆
⋃
i∈I C

c
i . �

In [5] it was shown

Lemma 3.2. Let (X, τ) be a topological space and M ⊆ K(X) compact w.r.t. the
upper–Vietoris topology. Then

K :=
⋃

M∈M

M

is compact w.r.t. τ .

Applying our simple set-theoretical statement, we get a similar result for unions
of relatively compact subsets.

Lemma 3.3. Let (X, τ) be a topological space, let X be the family of all relatively
compact subsets of X and let M ⊆ X be relatively compact in X w.r.t. the upper
Vietoris topology. Then

R :=
⋃

M∈M

M

is relatively compact in (X, τ).

Proof. Let
⋃
i∈I Oi ⊇ X with Oi ∈ τ, i ∈ I an open cover of X. Because of the

relative compactness of all P ∈ X, there is a finite subcover Oi1P , ..., OinPP for ev-
ery P ∈ X, i.e. OP :=

⋃nP
k=1OikP ⊇ M . Of course, OP ∈ τ and so (OP )c is

closed w.r.t. τ . Furthermore, P ∩ OcP = ∅, implying P ∈ (OcP )+X . Thus we have
X ⊆

⋃
P∈X(OcP )+X , where the (OcP )+X are open w.r.t. the upper–Vietoris topology.

Because of the relative compactness of X w.r.t. the upper–Vietoris topology, there
must exist finitely many P1, ..., Pn ∈ X with M ⊆

⋃n
j=1(OcPj )

+X . Now, from Propo-
sition 3.1 we get R =

⋃
M∈MM ⊆

⋃n
j=1OPj , where every OPj is a finite union of

members of the original cover {Oi|i ∈ I} by construction. �
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Corollary 3.4. Let (X, τ) be a topological space and let M ⊆ P0(X) consist of
relatively compact subsets of X. If M is compact w.r.t. the upper–Vietoris topology,
then

R :=
⋃

M∈M

M

is relatively compact in (X, τ).

Proof. M is compact and therefore relatively compact in every set, which contains
M, especially in the family of all relatively compact subsets of X. So, Lemma 3.3
applies. �
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