

© Universidad Politécnica de Valencia Volume 5, No. 1, 2004 pp. 1- 10

Iterated starcompact topological spaces

Junhui Kim

ABSTRACT. Let \mathcal{P} be a topological property. A space X is said to be k- \mathcal{P} -starcompact if for every open cover \mathcal{U} of X, there is a subspace $A \subseteq X$ with \mathcal{P} such that $\operatorname{st}^k(A,\mathcal{U}) = X$. In this paper, we consider k- \mathcal{P} -starcompactness for some special properties \mathcal{P} and discuss relationships among them.

2000 AMS Classification: 54D20, 54B05.

Keywords: countably compact, n-star compact, (n,k)-star compact, pseudocompact.

1. Introduction

Let X be a topological space and \mathcal{U} a collection of subsets of X. For $\emptyset \neq A \subseteq X$, let $\operatorname{st}(A,\mathcal{U}) = \operatorname{st}^1(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : A \cap U \neq \emptyset\}$ and $\operatorname{st}^{n+1}(A,\mathcal{U}) = \operatorname{st}(\operatorname{st}^n(A,\mathcal{U}),\mathcal{U})$ for all $n \in \mathbb{N}$. We simply write $\operatorname{st}^n(x,\mathcal{U})$ for $\operatorname{st}^n(\{x\},\mathcal{U})$. A space X is called n-starcompact $(n\frac{1}{2}$ -starcompact) [6] if for every open cover \mathcal{U} of X there is a finite subset F of X (finite subcollection \mathcal{V} of \mathcal{U}) such that $\operatorname{st}^n(F,\mathcal{U}) = X$ ($\operatorname{st}^n(\bigcup \mathcal{V},\mathcal{U}) = X$). Let $\widetilde{\mathbb{N}} = \mathbb{N} \cup \{n\frac{1}{2} : n \in \mathbb{N}\}$. By definition, every n-starcompact space is $(n+\frac{1}{2})$ -starcompact for $n \in \widetilde{\mathbb{N}}$. It is known that 1-starcompactness is equivalent to countable compactness for Hausdorff spaces. Moreover, every n-starcompact regular space is $2\frac{1}{2}$ -starcompact for $n \geq 3, n \in \widetilde{\mathbb{N}}$, and $2\frac{1}{2}$ -starcompactness is equivalent to pseudocompactness for Tychonoff spaces [1].

Behaviours of the above mentioned star-covering properties were studied in [1, 6, 7]. By replacing 'finite' with 'countable' in the definition, n-starcompactness was extended to n-star-Lindelöffness in [1]. As we have seen, finiteness plays an important role in the concept of n-starcompactness. In what follows, we may replace finiteness with some topological properties to get some new concepts. Given a topological property \mathcal{P} , a space X is called k- \mathcal{P} -starcompact if for every open cover \mathcal{U} of X, there is a subspace $A \subseteq X$ with \mathcal{P} such that $\operatorname{st}^k(A,\mathcal{U}) = X$. Ikenaga [4] and Song [7] considered 1- \mathcal{P} -starcompactness for

 \mathcal{P} being compact. We are especially interested in k- \mathcal{P} -starcompact spaces for \mathcal{P} being n-starcompact, and call them iterated starcompact spaces in general. More precisely, a space X is said to be (n,k)-starcompact if for every open cover \mathcal{U} of X there is an n-starcompact subspace A of X such that $\operatorname{st}^k(A,\mathcal{U}) = X$. For the sake of unification, a compact space is called $\frac{1}{2}$ -starcompact. In fact, the above definitions appeared in [6] but no further investigation has been done so far. By definition, we have the following lemma.

Lemma 1.1. (i) Every (n,k)-starcompact space is (n+k)-starcompact for $n \in \widetilde{\mathbb{N}}$ and $k \in \mathbb{N}$.

- (ii) Every (n_1, k) -starcompact space is (n_2, k) -starcompact for $n_1, n_2 \in \widetilde{\mathbb{N}}$ with $n_1 \leq n_2$ and $k \in \mathbb{N}$.
- (iii) Every (n, k_1) -starcompact space is (n, k_2) -starcompact for $n \in \widetilde{\mathbb{N}}$ and $k_1, k_2 \in \mathbb{N}$ with $k_1 \leq k_2$.

By applying known properties, we obtain Diagram 1 in the class of regular spaces. For convenience, (n, k)-starcompactness is abbreviated as $st^{n,k}$.

Diagram 1 (In the class of regular spaces)

In Section 2, we provide examples to distinguish iterated star compact properties around (1,1)-star compactness and consider their relations with other covering properties. Section 3 is devoted to distinguish properties weaker than 2-star compactness. Throughout this paper, ω (ω_1) is the first infinite (uncountable) cardinal and \mathfrak{c} is the continuum. For any set A, the cardinality of A is denoted by |A|. Undefined concepts and symbols can be found in [2].

2. (1,1)-STARCOMPACT SPACES

A space X is said to be \mathcal{L} -starcompact if for every open cover \mathcal{U} of X there exists a Lindelöf subspace L such that $\operatorname{st}(L,\mathcal{U})=X$. By definition, every $(\frac{1}{2},1)$ -starcompact space is \mathcal{L} -starcompact, (1,1)-starcompact and $1\frac{1}{2}$ -starcompact; every $1\frac{1}{2}$ -starcompact space is both $(1\frac{1}{2},1)$ -starcompact and 2-starcompact; and every (1,1)-starcompact space is both 2-starcompact and $(1\frac{1}{2},1)$ -starcompact. These relationships can be described in the following diagam.

Diagram 2

In this section, we shall first provide some examples to show the difference among concepts in Diagram 2.

Lemma 2.1. [6] If a regular space X contains a closed discrete subspace Y such that $|Y| = |X| \ge \omega$, then X is not $1\frac{1}{2}$ -starcompact.

Example 2.2. There is a 2-starcompact, \mathcal{L} -starcompact Tychonoff space which is not $(1\frac{1}{2},1)$ -starcompact. Let \mathcal{R} be a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$. It is proved that the Isbell-Mrówka space $\Psi = \omega \cup \mathcal{R}$ is 2-starcompact in [1]. Since Ψ is separable, it is \mathcal{L} -starcompact. Note that every $1\frac{1}{2}$ -starcompact subspace of Ψ is compact. For, if there exists a $1\frac{1}{2}$ -starcompact non-compact subspace $X \subseteq \Psi$, then $|X \cap \mathcal{R}| < |X| \le \omega$ by Lemma 2.1. It follows from $|X \cap \mathcal{R}| = |\{R_1, \cdots, R_n\}| < \omega$ that there exists $A \subseteq X \cap \omega$ such that $|A| = \omega$ and $A \cap \bigcup_{i=1}^n R_i = \emptyset$. This implies that X is not pseudocompact, which is a contradiction. Enumerate \mathcal{R} as $\{R_\beta : \beta < \mathfrak{c}\}$. Since the intersection of every compact subspace of Ψ with \mathcal{R} is finite, we can enumerate all compact subsets of Ψ as $\mathcal{K} = \{F_\alpha : \alpha < \mathfrak{c}\}$. For each $\alpha < \mathfrak{c}$, choose $\beta_\alpha > \alpha$ such that $|R_{\beta_\alpha} \cap F_\alpha| < \omega$. In addition, we may require $\beta_\alpha < \beta_{\alpha'}$ whenever $\alpha < \alpha'$. Choose an open neighborhood $O(R_{\beta_\alpha})$ of R_{β_α} such that $O(R_{\beta_\alpha}) \cap F_\alpha = \emptyset$. Let $I = \{\beta_\alpha : \alpha < \mathfrak{c}\}$. Then

$$\mathcal{U} = \{\{n\} : n \in \omega\} \cup \{\{R_{\alpha}\} \cup R_{\alpha} : \alpha \in \mathfrak{c} \setminus I\} \cup \{O(R_{\beta_{\alpha}}) : \alpha \in \mathfrak{c}\}$$

is an open cover of Ψ . Let K be any compact subspace of Ψ . Then $K = F_{\alpha}$ for some $\alpha < \mathfrak{c}$. By the construction of \mathcal{U} , $R_{\beta_{\alpha}} \notin \operatorname{st}(K,\mathcal{U})$. Therefore, Ψ is not $(1\frac{1}{2},1)$ -starcompact.

Example 2.3. There is a (1,1)-starcompact Tychonoff space which is neither $1\frac{1}{2}$ -starcompact nor \mathcal{L} -starcompact. Let τ be a regular cardinal with $\tau \geq \omega_1$. Let D be the discrete space with $|D| = \tau$ and let $D^* = D \cup \{\infty\}$ be the one-point

compactification of D. Consider $X = (D^* \times (\tau + 1)) \setminus \{\langle \infty, \tau \rangle\}$ as a subspace of the usual product space $D^* \times (\tau + 1)$. Since $D^* \times \tau$ is a countably compact dense subspace of X, X is (1,1)-starcompact. But X is not $1\frac{1}{2}$ -starcompact, since |X| = |D| and $D \times \{\tau\}$ is a closed discrete subspace of X.

Now, we will show that X is not \mathcal{L} -starcompact. Enumerate D as $\{d_{\alpha}: \alpha < \tau\}$. For each $\alpha < \tau$, choose an open set $U_{\alpha} = \{d_{\alpha}\} \times (\alpha, \tau]$. Then $\mathcal{U} = \{U_{\alpha}: \alpha < \tau\} \cup \{D^* \times \tau\}$ is an open cover of X. Let L be any Lindelöf subspace of X. Then $L \cap (D \times \{\tau\})$ must be countable. Let $L' = L \setminus \bigcup \{L \cap U_{\alpha}: \langle d_{\alpha}, \tau \rangle \in L \cap (D \times \{\tau\})\}$. Without loss of generality, we may assume $L' \neq \emptyset$. Since L' is closed in L, L' is Lindelöf. Note that $L' \subseteq D^* \times \tau$. Let $\pi : D^* \times \tau \to \tau$ be the projection. Then $\pi(L')$ is a Lindelöf subspace of the countably compact space τ . Therefore there exists $\kappa_0 < \tau$ which is greater than all elements of $\pi(L')$, i.e., $U_{\alpha} \cap L' = \emptyset$ for all $\alpha \geq \kappa_0$. Since τ is a regular cardinal with $\tau \geq \omega_1$ and $L \cap (D \times \{\tau\})$ is countable, there exists some $\kappa < \tau$ such that $\kappa_0 < \kappa$ and $U_{\kappa} \cap L = \emptyset$. Because U_{κ} is the only one element of $\mathcal U$ containing d_{κ} , $d_{\kappa} \not\in \operatorname{st}(L,\mathcal U)$. Therefore, X is not $\mathcal L$ -starcompact.

Example 2.4. There is an \mathcal{L} -starcompact and (1,1)-starcompact Tychonoff space X which is not $1\frac{1}{2}$ -starcompact. Let $\Psi = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space, where \mathcal{R} is a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$ and let D be the discrete space such that $|D| = |\mathcal{R}|$ and $D \cap \mathcal{R} = \emptyset$. Let $Y = (D^* \times (\omega_1 + 1)) \setminus \{\langle \infty, \omega_1 \rangle\}$, where $D^* = D \cup \{\infty\}$ is the one-point compactification of D. Take a bijection $i : \mathcal{R} \to D \times \{\omega_1\}$. Let X be a quotient space of $\Psi \cup Y$ and $\pi : \Psi \cup Y \to X$ a quotient mapping which identifies r with i(r) for each $r \in \mathcal{R}$. Then $X = \pi(\omega) \cup \pi(Y) = \pi(\Psi) \cup \pi(D^* \times \omega_1)$. Since X is locally compact Hausdorff, it is Tychonoff.

First, we will show that X is (1,1)-starcompact. Let \mathcal{U} be an open cover of X. Note that $A = \pi(D^* \times \omega_1)$ is a countably compact dense subset of $\pi(Y)$. Hence $\pi(Y) \subseteq \operatorname{st}(A,\mathcal{U})$. Since $\pi(\omega)$ is relatively countably compact in $\pi(\Psi)$, $B = \omega \setminus \operatorname{st}(A,\mathcal{U})$ is finite. Thus $\operatorname{st}(A \cup B,\mathcal{U}) = X$ and $A \cup B$ is a countably compact subspace of X. Now, we will show that X is \mathcal{L} -starcompact. Since A is countably compact, there is a finite subset F of A such that $A \subseteq \operatorname{st}(F,\mathcal{U})$. Moreover, $\pi(\omega)$ is a countable dense subset of $\pi(\Psi)$, thus we have $\operatorname{st}(F \cup \pi(\omega), \mathcal{U}) = X$ and $F \cup \pi(\omega)$ is a Lindelöf subspace of X. But $\pi(\mathcal{R})$ is closed and discrete in X and $|\pi(\mathcal{R})| = |X|$. Therefore, X is not $1\frac{1}{2}$ -starcompact. \square

Example 2.5. There is a $1\frac{1}{2}$ -starcompact, \mathcal{L} -starcompact Hausdorff space which is not (1,1)-starcompact. Let X=[0,1] and let τ_0 be the Euclidean topology on X. Define $\tau_1=\{U\smallsetminus F:U\in\tau_0,F\text{ is a countable subset of }X\}$. Then (X,τ_1) is Hausdorff. We will show that (X,τ_1) is $1\frac{1}{2}$ -starcompact. Let \mathcal{U} be a basic open cover of (X,τ_1) . For each $U\in\mathcal{U}$, select an open subset V(U) of (X,τ_0) and a countable subset F(U) of X such that $U=V(U)\smallsetminus F(U)$. Then $\mathcal{V}=\{V(U):U\in\mathcal{U}\}$ is an open cover of (X,τ_0) . Since (X,τ_0) is compact, \mathcal{V} has a finite subcover \mathcal{V}_0 . Let $\mathcal{U}_0=\{U\in\mathcal{U}:V(U)\in\mathcal{V}_0\}$. Then $|X\setminus\bigcup\mathcal{U}_0|\leq\omega$. Since every neighborhood of each point of $X\setminus\bigcup\mathcal{U}_0$ meets $\bigcup\mathcal{U}_0$, $\operatorname{st}(\bigcup\mathcal{U}_0,\mathcal{U})=X$. It is easy to prove that (X,τ_1) is Lindelöf. Note that

every countable subset is closed and discrete in (X, τ_1) . So every countably compact subspace is finite. Since (X, τ_1) is not countably compact (i.e., not 1-starcompact), it is not (1, 1)-starcompact.

A space X is said to be meta- $Lindel\"{o}f$ (para- $Lindel\"{o}f$) if every open cover of X has a point (locally) countable open refinement. It is well-known that every pseudocompact para-Lindel\"{o}f Tychonoff space is compact.

Theorem 2.6. Let X be a meta-Lindelöf T_1 space. If X is (1,1)-starcompact, then it is $1\frac{1}{2}$ -starcompact.

Proof. Let \mathcal{U} be an open cover of X. Since X is meta-Lindelöf, we may assume that \mathcal{U} is point countable. Since X is (1,1)-starcompact, there exists a countably compact subspace A of X such that $\operatorname{st}(A,\mathcal{U})=X$. We may assume $A\cap U\neq\emptyset$ for all $U\in\mathcal{U}$. Now, we will show that some finite subcollection \mathcal{V} of \mathcal{U} covers A. Therefore $\operatorname{st}(\bigcup\mathcal{V},\mathcal{U})=X$. Suppose that it is not true, and pick an arbitrary point $x_0\in A$. Denote by \mathcal{V}_{x_0} the subcollection $\{V\in\mathcal{U}:x_0\in V\}$ of \mathcal{U} . Since A is countably compact and \mathcal{V}_{x_0} is countable, $A\setminus\bigcup\mathcal{V}_{x_0}\neq\emptyset$ (Otherwise, we have $A\subseteq\bigcup\mathcal{V}_{x_0}$, and thus there exists a finite subfamily of \mathcal{V}_{x_0} which covers A). Inductively, we can choose an infinite sequence $\{x_n:n\in\omega\}$ such that $x_n\in A\setminus\bigcup_{i< n}\mathcal{V}_{x_i}$ for each $n\in\omega$. But the sequence $\{x_n:n\in\omega\}$ does not have a cluster point in X. This contradicts the countable compactness of A. Hence, there exists a finite subfamily $\mathcal{V}\subseteq\mathcal{U}$ such that $A\subseteq\bigcup\mathcal{V}$, which implies $\operatorname{st}(\bigcup\mathcal{V},\mathcal{U})=X$.

A space X is said to be strongly collectionwise Hausdorff (collectionwise Hausdorff) if for every closed discrete subset D of X, there exists a discrete (pairwise disjoint) open collection $\{U_d: d \in D\}$ such that $U_d \cap D = \{d\}$ for each $d \in D$.

Theorem 2.7. Let X be a strongly collectionwise Hausdorff space. If X is (1,1)-starcompact, then X is countably compact.

Proof. Suppose that D is a closed discrete subset of X with $|D| = \omega$. Since X is strongly collectionwise Huasdorff, there exists a discrete open collection $\mathcal{U} = \{U_d : d \in D\}$ such that $U_d \cap D = \{d\}$ for every $d \in D$. Then $\mathcal{V} = \{X \setminus D\} \cup \mathcal{U}$ is an open cover of X. If A is a countably compact subspace of X, $\{U \in \mathcal{U} : U \cap A \neq \emptyset\}$ is finite. Hence there exists $d \in D$ such that $U_d \cap A = \emptyset$. Since U_d is the only element of \mathcal{U} containing $d, d \notin \operatorname{st}(A, \mathcal{V})$.

In Theorem 2.7, strongly collectionwise Hausdorffness cannot be replaced by collectionwise Hausdorffness. It is easy to check that the Tychonoff plank is $(\frac{1}{2}, 1)$ -starcompact and collectionwise Hausdorff, but not countably compact.

3. More Examples

In this section, we shall provide some examples to distinguish properties weaker than 2-starcompactness.

Lemma 3.1. If a space X is locally compact and $n\frac{1}{2}$ -starcompact for any $n \in \mathbb{N}$, then X is $(\frac{1}{2}, n)$ -starcompact.

Proof. Let \mathcal{U} be an open cover of X. For each $x \in X$, choose an open neighborhood V_x of x such that $\overline{V_x}$ is compact and $\overline{V_x} \subseteq U$ for some $U \in \mathcal{U}$. Then $\mathcal{V} = \{V_x : x \in X\}$ is an open cover of X. Since X is $n\frac{1}{2}$ -starcompact, there exists a finite subcollection \mathcal{V}_0 of \mathcal{V} such that $\operatorname{st}^n(\bigcup \mathcal{V}_0, \mathcal{V}) = X$. Since $\overline{\bigcup \mathcal{V}_0}$ is compact and $\operatorname{st}^n(\overline{\bigcup \mathcal{V}_0}, \mathcal{U}) = X$, X is $(\frac{1}{2}, n)$ -starcompact.

Example 3.2. There exists a $(\frac{1}{2}, 2)$ -starcompact Tychonoff space which is not 2-starcompact. Tree [8] constructed a $2\frac{1}{2}$ -starcompact locally compact space which is not 2-starcompact. By Lemma 3.1, it is $(\frac{1}{2}, 2)$ -starcompact.

Also, the space in Example 3.2 can be considered as a candidate of a counterexample between (2,2)-starcompactness and (2,1)-starcompactness. But it is not easy to verify that the space is not (2,1)-starcompact directly. So we shall give a detail maximal family to destroy (2,1)-starcompactness. First, we shall outline the construction of Tree in [8].

Tree's construction: Let C be the lexicographically ordered Cantor square. Then C is a first-countable compact space such that $\dim(C) = 0$ and $\pi w(G) = \mathfrak{c}$ for every non-empty open subset G of C. Let X be the topological sum of ω many copies of C and let $Y = \bigcup \{X_{\alpha} : \alpha < \mathfrak{c}\}$ be the union of \mathfrak{c} many copies of X. Then Y is a first-countable, locally compact, meta-Lindelöf, non-pseudocompact space such that $\dim(Y) = 0$ and $\pi w(G) = \mathfrak{c}$ for every non-empty open subset G of Y.

Let \mathcal{B} be a base of Y such that every $B \in \mathcal{B}$ is a compact clopen subset of some X_{α} . Since Y is a locally compact first-countable Hausdorff space, there exists a point-countable π -base \mathcal{P} (see [8] for details) for Y such that

- 1) $\mathcal{P} \subseteq \mathcal{B}$ and $|\mathcal{P}| = \mathfrak{c}$;
- 2) for every non-empty set $B \in \mathcal{B}$, $|\{P \in \mathcal{P} : P \subseteq B\}| = \mathfrak{c}$.

Let $D(\mathcal{P})$ be a collection of all sequences $S = \{S_n\}$ of pairwise disjoint open sets from \mathcal{P} that have no cluster point in Y. Enumerate $D(\mathcal{P})$ as $\{T^{\alpha} : \alpha < \mathfrak{c}\}$ such that $\bigcup T^{\omega \cdot \alpha} \subseteq X_{\alpha}$ for each $\alpha < \mathfrak{c}$. Inductively we can find, by 1) and 2), $\mathcal{R} = \{S^{\alpha} : \alpha < \mathfrak{c}, S_n^{\alpha} \in \mathcal{P}\}$ such that $S_n^{\alpha} \subseteq T_n^{\alpha}$ for each α , n, and $S_n^{\alpha} = S_{n'}^{\alpha'} \Rightarrow \alpha = \alpha'$ and n = n'.

Let $\mathcal{A} = \{S^{\omega \cdot \alpha} : \alpha < \mathfrak{c}\}$ and let \mathcal{R}' be a maximal eventually disjoint family of \mathcal{R} with $\mathcal{A} \subseteq \mathcal{R}'$ (that is, if $S \neq S' \in \mathcal{R}'$, there is $n \in \omega$ such that $\bigcup_{i \geq n} S_i \cap \bigcup_{i \geq n} S_i' = \emptyset$). We take a basic neighborhood of $S \in \mathcal{R}'$ as $O_n(S) = \{S\} \cup \bigcup_{i \geq n} S_i$. Then $\mathcal{B}' = \mathcal{B} \cup \{O_n(S) : S \in \mathcal{R}', n \in \omega\}$ is a base for $Y^+ = Y \cup \mathcal{R}'$. Therefore Y^+ is a pseudocompact, locally compact, meta-Lindelöf, Tychonoff space. But Y^+ is not 2-starcompact. Indeed, $\mathcal{U} = \{X_\alpha : \alpha < c\} \cup \{O_1(S) : S \in \mathcal{R}'\}$ is an open cover of Y^+ such that

- a) every $y \in Y^+$ is contained in at most countably many members of \mathcal{U}
- b) if $\mathcal{V} \subseteq \mathcal{U}$ is countable, there exists $S \in \mathcal{A}$ with $O_1(S) \cap \bigcup \mathcal{V} = \emptyset$.

Lemma 3.3. Let $Z \subseteq Y^+$ with $|Z \cap \mathcal{A}'| \geq \omega_1$ for some $\mathcal{A}' \subseteq \mathcal{R}'$, and let $\mathcal{U}_0 = \{U_S : S \in \mathcal{A}'\}$ be an open (in Y^+) collection such that $U_S \cap \mathcal{A}' = \{S\}$. If some open (in Y^+) cover $\mathcal{U} \supseteq \mathcal{U}_0$ satisfies a) and b), then Z is not 2-starcompact.

Proof. Let $\mathcal{O} = \{U \cap Z : U \in \mathcal{U}\}$ be a collection of non-empty sets. Then \mathcal{O} is an open cover of Z and satisfies a) and b). Therefore, Z is not 2-starcompact. \square

Example 3.4. There exists a (2,2)-starcompact Tychonoff space which is not (2,1)-starcompact. We will use \mathcal{A} and \mathcal{R} which were constructed in the above. Let $\{\mathcal{A}_{\beta}: \beta < \mathfrak{c}\}$ be a partition of \mathcal{A} such that $|\mathcal{A}_{\beta}| = \omega$ for each $\beta < \mathfrak{c}$ and let $\mathcal{R}_{\beta} = \{S \in \mathcal{R}: \bigcup S \subseteq \bigcup \{X_{\alpha}: X_{\alpha} \cap \bigcup \bigcup \mathcal{A}_{\beta} \neq \emptyset\}\}$ for each $\beta < \mathfrak{c}$. Then $\mathcal{A}_{\beta} \subseteq \mathcal{R}_{\beta} \subseteq \mathcal{R}$. For each $\beta < \mathfrak{c}$, choose a maximal eventually disjoint family \mathcal{R}'_{β} of \mathcal{R}_{β} which contains \mathcal{A}_{β} . Finally, we choose a maximal eventually disjoint family \mathcal{R}' of \mathcal{R} which contains $\bigcup \{\mathcal{R}'_{\beta}: \beta < \mathfrak{c}\}$. Then $\mathcal{A} \subseteq \mathcal{R}' \subseteq \mathcal{R}$ and $Y^+ = Y \cup \mathcal{R}'$ is a locally compact pseudocompact Tychonoff space (and hence (2,2)-starcompact).

Now, we prove that Y^+ is not (2,1)-starcompact. $\mathcal{U}=\{X_\alpha:\alpha<\mathfrak{c}\}\cup\{O_1(S):S\in\mathcal{R}'\}$ is an open cover of Y^+ . Suppose that Z is a 2-starcompact subspace of Y^+ such that $\operatorname{st}(Z,\mathcal{U})=Y^+$. By Lemma 3.3, $Z\cap\mathcal{A}$ is countable. It follows from $\operatorname{st}(Z,\mathcal{U})=Y^+$ that $O_1(S)\cap Z\neq\emptyset$ for each $S\in\mathcal{R}'$. Because $Z\cap\mathcal{A}$ is countable, there exists $\beta_0<\mathfrak{c}$ such that for each $\beta\geq\beta_0$, $O_1(S)\cap Z\neq\emptyset$ and $S\notin Z$ for all $S\in\mathcal{A}_\beta$. Hence for each $S\in\mathcal{A}_\beta$ ($\beta\geq\beta_0$), there exists $n(S)\in\omega$ such that $F_S=S_{n(S)}\cap Z\neq\emptyset$. Note that $\{F_S:S\in\mathcal{A}_\beta\}$ is a sequence of pairwise disjoint open subsets of Z. Since Z is a pseudocompact subspace of Y^+ , there exists $S^\beta\in\mathcal{R}'\cap Z$ which is a cluster point of $\{F_S:S\in\mathcal{A}_\beta\}$. Also S^β is a cluster point of $T^\beta=\{S_{n(S)}:S\in\mathcal{A}_\beta\}$. Thus, $S^\beta\in\mathcal{R}'_\beta$ (otherwise, S^β and T^β should be eventually disjoint by the maximalities of \mathcal{R}'_β and \mathcal{R}' , namely, S^β is not a cluster point of T^β). Let $\mathcal{A}'=\{S^\beta:\beta\geq\beta_0\}$. By Lemma 3.3, Z is not 2-starcompact. This is a contradiction.

Matveev [5] gave a pseudocompact Tychonoff space in which no infinite subspace is 2-starcompact. This is an example of a pseudocompact Tychonoff space which is not (2, 2)-starcompact.

Example 3.5. There exists a (1,2)-starcompact Hausdorff space X which is either (2,1)-starcompact nor $2\frac{1}{2}$ -starcompact. Let $S=\mathbb{R}$ and τ_0 be the Euclidean topology on \mathbb{R} . Endow S with a new topology $\tau_1=\{U\smallsetminus F:U\in\tau_0,|F|\leq\omega\}$. Let $Y_1=\bigoplus_{\alpha<\omega_1}S_\alpha$, $\mathbb{Q}_\alpha=S_\alpha\cap\mathbb{Q}$, and $\mathbb{P}_\alpha=S_\alpha\setminus\mathbb{Q}_\alpha$, where $S_\alpha=S$ for each $\alpha<\omega_1$ and \mathbb{Q} is the set of rational numbers. Then $E=\bigcup_{\alpha<\omega_1}\mathbb{Q}_\alpha$ is closed and discrete in Y_1 . Let D be a discrete space with $|D|=\omega_1$ and $D\cap E=\emptyset$, and $D^*=D\cup\{\infty\}$ the one-point compactification of D. Then $Y_2=D^*\times(\omega_1+1)\smallsetminus\{\langle\infty,\omega_1\rangle\}$ has a dense countably compact subset $A=D^*\times\omega_1$. Hence Y_2 is 2-starcompact. Enumerate D and E such that $D=\{d_\kappa:\kappa<\omega_1\}$ and $E=\{q_\kappa:\kappa<\omega_1\}$. Let X be the quotient space of $Y_1\cup Y_2$ which identifies $\langle d_\kappa,\omega_1\rangle$ with q_κ for each $\kappa<\omega_1$.

We firstly show that X is (1,2)-starcompact. Let \mathcal{U} be an open cover of X. We will prove $\operatorname{st}^2(A,\mathcal{U})=X$. Because A is dense in $Y_2, Y_2\subseteq\operatorname{st}(A,\mathcal{U})$. Note that for every open subset U of X which contains $E, Y_1\subseteq\operatorname{cl}_X U$. Therefore, $\operatorname{st}^2(A,\mathcal{U})=X$.

To show X is not (2,1)-starcompact, we firstly show that every 2-starcompact subspace of X meets only finitely many \mathbb{P}_{α} . Suppose not. Then there is a 2starcompact subspace K of X such that $\Gamma = \{\alpha < \omega_1 : K \cap \mathbb{P}_\alpha \neq \emptyset\}$ is infinite. Without loss of generality, we can assume $Y_2 \subseteq K$. For each $\alpha \in \Gamma$, pick a point $p_{\alpha} \in K \cap \mathbb{P}_{\alpha}$. Note that for each $q_{\kappa} \in E$, there is a unique $\alpha(\kappa)$ such that $q_{\kappa} \in \mathbb{Q}_{\alpha(\kappa)}$. Let $U(q_{\kappa}) = (\mathbb{P}_{\alpha(\kappa)} \setminus \{p_{\alpha(\kappa)}\}) \cup (\{d_{\kappa}\} \times (\omega_1 + 1))$ for each $\kappa < \omega_1$. Then $\mathcal{U} = \{K \cap \mathbb{P}_{\alpha} : \alpha \in \Gamma\} \cup \{K \cap U(q_{\kappa}) : \kappa < \omega_1\} \cup \{A\}$ is an open cover of K. If $x = p_{\alpha}$ for some (unique) $\alpha \in \Gamma$, then $\operatorname{st}(x, \mathcal{U}) = K \cap \mathbb{P}_{\alpha}$, i.e., $\operatorname{st}(x,\mathcal{U}) \cap (K \cap \mathbb{P}_{\alpha'}) = \emptyset$ for all $\alpha' \in \Gamma$ with $\alpha \neq \alpha'$. If $x \in \mathbb{P}_{\alpha}$ and $x \neq p_{\alpha}$, then $\operatorname{st}(x,\mathcal{U}) = \bigcup \{U(q_{\kappa}) : q_{\kappa} \in \mathbb{Q}_{\alpha}\}, \text{ i.e., } \operatorname{st}(x,\mathcal{U}) \cap (K \cap \mathbb{P}_{\alpha'}) = \emptyset \text{ for all } \alpha' \in \Gamma$ with $\alpha \neq \alpha'$. In both cases, since $K \cap \mathbb{P}_{\alpha'}$ is the only element of \mathcal{U} containing $p_{\alpha'}, p_{\alpha'} \notin \operatorname{st}^2(x, \mathcal{U}).$ If $x \in \mathbb{Q}_{\alpha}$ and $x = q_{\kappa}$ for some κ , then $\operatorname{st}(x, \mathcal{U}) = U(q_{\kappa}),$ i.e., $\operatorname{st}(x,\mathcal{U}) \cap (K \cap \mathbb{P}_{\alpha'}) = \emptyset$ for all $\alpha' \in \Gamma$ with $\alpha \neq \alpha'$. Similarly, we have $p_{\alpha'} \notin \operatorname{st}^2(x, \mathcal{U})$. If $x \in A$, then $|\{\kappa < \omega_1 : x \in U(q_\kappa)\}| \leq 1$. Thus $\operatorname{st}(x, \mathcal{U})$ meets at most one \mathbb{P}_{α} . Hence for any finite subset F of K, $\operatorname{st}^{2}(F,\mathcal{U}) \neq K$. This is a contradiction. Now we will show that X is not (2,1)-starcompact. For each $\alpha < \omega_1$, choose a point $p_\alpha \in \mathbb{P}_\alpha$. For each $q_\kappa \in E$, choose a (unique) $\alpha(\kappa) < \omega_1$ such that $q_{\kappa} \in \mathbb{Q}_{\alpha(\kappa)}$. Let $U(q_{\kappa}) = (\mathbb{P}_{\alpha(\kappa)} \setminus \{p_{\alpha(\kappa)}\}) \cup (\{d_{\kappa}\} \times (\omega_1 + 1))$ for each $\kappa < \omega_1$. Then $\mathcal{U} = \{\mathbb{P}_{\alpha} : \alpha < \omega_1\} \cup \{U(q_{\kappa}) : \kappa < \omega_1\} \cup \{A\}$ is an open cover of X. Let K be a 2-star compact subspace of X. Then $\Gamma = \{\alpha < \omega_1 : K \cap \mathbb{P}_\alpha \neq \emptyset\}$ is finite. So there exists $\alpha < \omega_1$ such that $p_\alpha \notin \operatorname{st}(K, \mathcal{U})$. Therefore, X is not (2,1)-starcompact.

Finally, we show that X is not $2\frac{1}{2}$ -starcompact. For each $\alpha < \omega_1$, choose a point $p_{\alpha} \in \mathbb{P}_{\alpha}$. For each $q_{\kappa} \in E$, choose a (unique) $\alpha(\kappa) < \omega_1$ such that $q_{\kappa} \in \mathbb{Q}_{\alpha(\kappa)}$. Let $U(q_{\kappa}) = (\mathbb{P}_{\alpha(\kappa)} \setminus \{p_{\alpha(\kappa)}\}) \cup (\{d_{\kappa}\} \times (\kappa, \omega_1])$ and let $V_{\kappa} = D^* \times \kappa$ for each $\kappa < \omega_1$. Then $\mathcal{U} = \{\mathbb{P}_{\alpha} : \alpha < \omega_1\} \cup \{U(q_{\kappa}) : \kappa < \omega_1\} \cup \{V_{\kappa} : \kappa < \omega_1\}$ is an open cover of X. Note that \mathcal{U} satisfies the following conditions: (1) $\mathbb{P}_{\alpha} \cap \mathbb{P}_{\alpha'} = \emptyset$ if $\alpha \neq \alpha'$; (2) $U(q_{\kappa}) \cap U(q_{\kappa'}) = \emptyset$ if $\alpha(\kappa) \neq \alpha(\kappa')$; (3) each V_{κ} meets at most countably many $U(q_{\kappa})$; and $(4) \mathbb{P}_{\alpha} \cap V_{\kappa} = \emptyset$ for all $\alpha, \kappa < \omega_1$. It follows that $\mathrm{st}(\mathbb{P}_{\alpha}, \mathcal{U}) \cap \mathbb{P}_{\alpha'} = \emptyset$ if $\alpha \neq \alpha'$; $\mathrm{st}(U(q_{\kappa}), \mathcal{U}) \cap \mathbb{P}_{\alpha'} = \emptyset$ if $\alpha(\kappa) \neq \alpha'$ and $\mathrm{st}(V_{\kappa}, \mathcal{U}) \cap \mathbb{P}_{\alpha} \neq \emptyset$ for at most countably many α . Hence for every finite subcollection \mathcal{V} of \mathcal{U} , $\mathrm{st}(\bigcup \mathcal{V}, \mathcal{U})$ meets at most countably many \mathbb{P}_{α} , i.e., there exists $\alpha < \omega_1$ such that $\mathrm{st}(\bigcup \mathcal{V}, \mathcal{U}) \cap \mathbb{P}_{\alpha} = \emptyset$. Since \mathbb{P}_{α} is the only element of \mathcal{U} containing p_{α} , $p_{\alpha} \notin \mathrm{st}^2(\bigcup \mathcal{V}, \mathcal{U})$. Therefore, X is not $2\frac{1}{2}$ -starcompact. \square

Every (2,2)-starcompact regular space is $2\frac{1}{2}$ -starcompact, but the implication is not true for Hausdorff spaces. Example 3.5 is a counterexample.

Example 3.6. There exists a $(1\frac{1}{2},2)$ -starcompact Hausdorff space which is not (1,2)-starcompact. Let $X_1 = \mathbb{R}$ and τ_0 be the Euclidean topology on \mathbb{R} . Endow X_1 with a new topology $\tau_1 = \{U \setminus F : U \in \tau_0, |F| \leq \omega\}$. Suppose X_2 is a

homeomorphic copy of the subspace [0,1] of X_1 and $X_1 \cap X_2 = \emptyset$. For convenience, we assume $X_2 = [0,1]$. Let $h: X_1 \to (0,1)$ be a homeomorphism. Let D and E be closed discrete subsets of X_1 and (0,1) respectively satisfying the following conditions: (1) h(D) = E; (2) D is dense in the Euclidean topology on \mathbb{R} ; and (3) E is dense in the Euclidean topology on (0,1). Let X be the quotient space of $X_1 \cup X_2$ which identifies d with h(d) for each $d \in D$. Then X is Hausdorff. From Example 2.4, X_2 is $1\frac{1}{2}$ -starcompact and every open subset U of X with $\widetilde{D} \subset U$ is dense in X (\widetilde{D} is the equivalence class on X). Let U be an open cover of U. Since U is open in U and U is open in U and U is U is U be an open cover of U. Thus, U is U is open in U and U is U is U in U is U is U is open in U and U is U in U is U in U is U in U is open in U and U is U in U is U in U is U in U is open in U and U is U in U in U is U in U is open in U and U is U in U in U is U in U in U in U in U in U in U is open in U and U in U in

Next, we show X is not (1,2)-starcompact. Every countable subset of X is closed and discrete in X. So every countably compact subspace is finite. Hence it is enough to show that X is not 2-starcompact. For each $n \in \mathbb{Z}$, let $I_n = (n, n+1)$ and $J_n = (n, n+2)$. We denote $J'_n = h(J_n)$ and choose a point $p_n \in I_n \setminus D$ for each $n \in \mathbb{Z}$. Define $U_n = J'_n \cup (J_n \setminus \{p_n, p_{n+1}\})$ for each $n \in \mathbb{Z}$. Then $\mathcal{U} = \{I_n \setminus \widetilde{D} : n \in \mathbb{Z}\} \cup \{U_n : n \in \mathbb{Z}\} \cup \{X_2 \setminus \widetilde{D}\}$ is an open cover of X. One can prove easily that $\{n : \operatorname{st}(x,\mathcal{U}) \cap (I_n \setminus \widetilde{D}) \neq \emptyset\}$ is finite for each $x \in X_1$. We will prove it only for $x \in X_2 \setminus \widetilde{D}$. If x = n+1, then $\operatorname{st}(x,\mathcal{U}) = (X_2 \setminus \widetilde{D}) \cup U_n$. If $\widetilde{n} < x < n+1$, then $\operatorname{st}(x,\mathcal{U}) = (X_2 \setminus \widetilde{D}) \cup U_{n-1} \cup U_n$. Hence $\{n : \operatorname{st}(x,\mathcal{U}) \cap (I_n \setminus \widetilde{D}) \neq \emptyset\}$ is finite for each $x \in X_2 \setminus \widetilde{D}$. Thus, for every finite subset F of X, there exists $n \in \mathbb{Z}$ such that $\operatorname{st}(F,\mathcal{U}) \cap (I_n \setminus \widetilde{D}) = \emptyset$. Since $I_n \setminus \widetilde{D}$ is the only element of \mathcal{U} containing $p_n, p_n \notin \operatorname{st}^2(F,\mathcal{U})$.

Remark 3.7. Most of existing examples in the theory of star-covering properties are regular and locally compact (see [1], [6], [7], and [8]). By Lemma 3.1, every locally compact $2\frac{1}{2}$ -starcompact space is $(\frac{1}{2},2)$ -starcompact. It seems not easy to construct regular spaces distinguishing properties between $(\frac{1}{2},2)$ -starcompactness and $2\frac{1}{2}$ -starcompactness in Diagram 1.

Acknowledgements. The author would like to thank Professor Tsugunori Nogura and Doctor Jiling Cao for their encouragement, valuable suggestions and comments during the preparation of this paper.

References

- E. van Douwen, G. Reed, A. Roscoe and I. Tree, Star covering properties, Topology Appl., 39 (1991), 71-103.
- [2] R. Engelking, General Topology, Revised and completed edition, *Heldermann Verlag, Berlin*, 1989.
- [3] S. Ikenaga, Topological concepts between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology, 26 (1990), 103-108.

- [4] S. Ikenaga and T. Tani, On a topological concept between countable compactness and pseudocompactness, *Research Reports of Numazu Technical College*, **15** (1980), 139-142.
- [5] M. Matveev, Closed embeddings into pseudocompact spaces, Mat. Zametki, 41 (1987), 377-394 (in Russian); English translation: Math. Notes 41 (1987), No. 3-4, 217-226.
- [6] M. Matveev, A survey on star covering properties, Topology Atlas, Preprint No. 330, 1998.
- [7] Yang-Kui Song, A study of star-covering properties in topological spaces, Ph.D Thesis, Shizuoka University, Japan, 2000.
- [8] I. Tree, Constructing regular 2-star compact spaces that are not strongly 2-star-Lindelöf, Topology Appl., 47 (1992), 129-132.

RECEIVED APRIL 2002 ACCEPTED SEPTEMBER 2002

JUNHUI KIM (kimjunny74@hotmail.com) Department of Mathematical Science, Faculty of Science, Ehime University, 790-8577 Matsuyama, Japan