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Homeomorphisms of R and the Davey Space

Sheila Carter and F. J. Craveiro de Carvalho

Abstract. Up to homeomorphism, there are 9 topologies on a three
point set {a, b, c} [4]. Among the resulting topological spaces we have
the so called Davey space, where the only non-trivial open set is, let
us say, {a}. This is an interesting topological space to the extent that
every topological space can be embedded in a product of Davey spaces
[3]. In this note we will consider the problem of obtaining the Davey
space as a quotient R/G, where G is a suitable homeomorphism group.
The present work can be regarded as a follow-up to some previous work
done by one of the authors and Bernd Wegner [1].
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1. R/G as the Davey space -necessary conditions

We will take the topological space ({a, b, c}, τ), with τ = {∅, {a}, {a, b, c}},
as a model for the Davey space and the real line will be denoted by R.

Our purpose is to obtain a group G of homeomorphisms of R whose natural
action on R gives rise to the Davey space and we start by establishing a number
of observations which guided our quest.

Below we assume that the homeomorphism group G is such that R/G is the
Davey space and π will stand for the projection from R to R/G.

Proposition 1.1. G is not finite.

Proof. If G were finite then, for instance, π−1(b) would be finite and, conse-
quently, {a, c} would be open.

�

Proposition 1.2. π−1(a) is bounded neither above nor below.

Proof. Assume that π−1(a) is bounded above and let x be its supremum. Then
π((x,+∞)) is open in R/G and, consequently must contain a.

�
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Proposition 1.3. π−1({b, c}) is bounded neither above nor below.

Proof. Assume that x is the supremum of π−1({b, c}). Since this set is closed
in R, x belongs to it. Let us suppose that π(x) = b. As we will see below it
then follows that | π−1(b) |≤ 2 which, as remarked above, is impossible.

Let y, z be points in π−1(b) with y < z < x. There is a homeomorphism f
in G such that f(z) = x. If f were increasing then f(x) > x. Therefore f must
be decreasing and, since y < z, f(y) > x which, again, is impossible.

�

Proposition 1.4. π−1(b), π−1(c) are bounded neither above nor below.

Proof. Assume that π−1(b) is bounded above and let x be its supremum. Then
π((x,+∞)) must be {a} and x is an upper bound for π−1(c). Consequently
π−1({b, c}) would be bounded above.

�

We are now in a position which allows us to conclude

Theorem 1.5. The action of G is not free.

Proof. Let π−1(a) =
⋃

i∈I

Ci, where the Ci’s are the connected components.

From above it follows that, for each i, Ci = (ai, bi).
Fix an i and choose x, y distinct in Ci. There is an f ∈ G such that f(x) = y.

Since f maps [ai, bi] into itself, it must have a fixed point. �

It is also clear that π−1({b, c}) is totally disconnected and that every point
in it is a limit point of that set.

Proposition 1.6. π−1({b, c}) is uncountable.

Proof. Write π−1(a) =
⋃

i∈I

Ci and choose x, y in different components, with

x < y. Then π−1({b, c})
⋂
[x, y] is a compact, Hausdorff space having all its

elements as limits points. Therefore it is uncountable [4]. �

2. An example

This section is devoted to the construction of an example of a group G such
that R/G is the Davey space. Since they are homeomorphic spaces we will use
the open interval (0, 1) instead of R.

LetC denote the intersection of the Cantor set [2], [5] with (0, 1) and consider
the partition (0, 1) = A∪B∪C, where A = (0, 1)\C is a union of open intervals,
the “middle thirds”, B is the set of end-points of the open intervals in A and
C = C \B.

The Cantor set can be described in terms of ternary expansions. We then
have, for x ∈ (0, 1), that
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x ∈ A if and only if there is n ∈ N such that x =

∞∑

i=1

xi

3i
, where, for i < n,

xi = 0 or 2, xn = 1 and 0 <

∞∑

i=n+1

xi

3i
<

1

3n
,

x ∈ B if and only if there is n ∈ N such that x =
n∑

i=1

xi

3i
, where, for i < n,

xi = 0 or 2, xn = 1 or 2.

x ∈ C if and only if x =

∞∑

i=1

xi

3i
, with xi = 0 or 2, and there are arbitrarily

large i and j for which xi = 0, xj = 2.

Proposition 2.1. The quotient topological space originated by the partition

(0, 1) = A ∪B ∪ C is the Davey space.

Proof. Let X = {a, b, c} be the quotient space obtained by identifying A,B,C
to points a, b, c, respectively.

Since A is open in (0, 1) it follows that {a} is open in X .

Let now x ∈ B and suppose that x =

n−1∑

i=1

xi

3i
+

1

3n
, where xi = 0 or 2. For

k ≥ n + 1, define yk ∈ C by yk =

n−1∑

i=1

xi

3i
+

k∑

i=n+1

2

3i
+

∞∑

j=1

2

3k+2j
. Then the

sequence (yk) converges to

n−1∑

i=1

xi

3i
+

∞∑

i=n+1

2

3i
, which is x.

Similarly if x =

n−1∑

i=1

xi

3i
+

2

3n
, where xi = 0 or 2, for k ≥ n + 1, define

yk = x+
∞∑

j=1

2

3k+2j
. This sequence also converges to x.

Thus every element of B belongs to the closure of C and, since it is an
end-point of an open interval in A, it also lies in the closure of A. Hence every
open set in X containing b also contains a and c and the only such open set is
X itself.

Next consider x ∈ C, say x =

∞∑

i=1

xi

3i
, where xi = 0 or 2. There exists an

arbitrarily large i for which xi = 2. Let xl be the first nonzero term and, for

k ≥ l, define yk ∈ B by yk =

k∑

i=1

xi

3i
. The sequence (yk) converges to x.

Thus x lies in the closure of B and, as each yk is in the closure of A, it also
lies in the closure of A. So every open set in X containing c also contains a
and b and the only such open set is X itself.

Therefore X is the Davey space. �
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Let G = {h : (0, 1) → (0, 1) | h is a homeomorphism and h(A) = A}.
If h ∈ G then h takes an open interval in A to an open interval in A and,
consequently, the end-points to end-points. So h(B) = B and then h(C) = C.
If we prove that G acts transitively on A,B and C we may conclude that those
subsets are the orbits of the natural action of G on (0, 1) and, by Proposition
2.1, (0, 1)/G is the Davey space.

Proposition 2.2. G acts transitively on A.

Proof. We start by observing that, given any open interval (α, β) in (0, 1) and
x, y ∈ (α, β), there exists a homeomorphism h : (0, 1) → (0, 1) such that
h((α, β)) = (α, β), h(x) = y and h | (0, 1) \ (α, β) is the identity function.

To prove transitivity on A it is therefore enough to show that, for any open
interval (α, β) in A, with α, β ∈ B, there is h ∈ G such that h((α, β)) = (13 ,

2
3 ).

Assume α = 2
3i1

+ . . .+ 2
3ik

+ 1
3n , 1 ≤ i1 < i2 < . . . < ik < n. So β = α+ 1

3n .
Let j1, . . . , jl be such that 1 ≤ j1 < . . . jl < n, {j1, . . . , jl}∪{i1, i2, . . . , ik} =

{1, 2, . . . , n− 1}, l + k = n− 1. Hence

α+
2

3j1
+ . . .+

2

3jl
+

1

3n
=

n∑

i=1

2

3i
= 1−

1

3n
and, in the construction of h, we

will use 1− (
2

3j1
+ . . .+

2

3jl
+

1

3n
+

s

3n
) = α+

t

3n
, where s = 1− t, t ∈ [0, 1].

We define h : (0, 1) → (0, 1) as follows:

(0, 2
3i1

] is mapped to (0, 2
32 ] by h( 2t

3i1
) = 2t

32 , with t ∈ (0, 1],

for r = 2, . . . , k, [ 2
3i1

+ . . .+ 2
3ir−1

, 2
3i1

+ . . .+ 2
3ir ] is mapped to [ 2

32 + . . .+
2
3r ,

2
32 + . . .+ 2

3r+1 ] by h( 2
3i1

+ . . .+ 2
3ir−1

+ 2t
3ir ) =

2
32 + . . .+ 2

3r + 2t
3r+1 , with

t ∈ [0, 1],

[ 2
3i1

+. . .+ 2
3ik

, α] is mapped to [ 2
32 +. . .+ 2

3k+1 ,
1
3 ] by h( 2

3i1
+. . .+ 2

3ik
+ t

3n ) =
2
32 + . . .+ 2

3k+1 + t
3k+1 , with t ∈ [0, 1],

[α, α+ 1
3n ] is mapped to [ 13 ,

2
3 ] by h(α+ t

3n ) =
1
3 + t

3 , with t ∈ [0, 1],

[α+ 1
3n , α+ 2

3n ] is mapped to [ 23 ,
2
3 +

1
3l+1 ] by h(1− ( 2

3j1
+ . . .+ 2

3jl
+ s

3n )) =

1− ( 2
32 + . . .+ 2

3l+1 + s
3l+1 ), with s ∈ [0, 1],

for r = 2, . . . , l, [1 − ( 2
3j1

+ . . .+ 2
3jr ), 1 − ( 2

3j1
+ . . .+ 2

3jr−1
)] is mapped to

[1− ( 2
32 + . . .+ 2

3r+1 ), 1− ( 2
32 + . . .+ 2

3r )] by h(1− ( 2
3j1

+ . . .+ 2
3jr−1

+ 2s
3jr )) =

1− ( 2
32 + . . .+ 2

3r + 2s
3r+1 ), with s ∈ [0, 1],

[1− 2
3j1

, 1) is mapped to [1− 2
32 , 1) by h(1− 2s

3j1
) = 1− 2s

32 , with s ∈ (0, 1].

We have then a homeomorphism h : (0, 1) → (0, 1) such that h((α, β)) =
(13 ,

2
3 ). On each interval of its definition, h is of the form h(x) = λx + µ, for

some λ, µ ∈ R. Hence it takes middle thirds in (0, 1
3i1

) to middle terms in
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(0, 1
32 ), middle thirds in ( 2

3i1
+ . . . + 2

3ir−1
, 2

3i1
+ . . . + 2

3ir−1
+ 1

3r ) to middle

thirds in ( 2
32 + . . . + 2

3r ,
2
32 + . . .+ 2

3r + 1
3r+1 ), for r = 2, . . . , k, and so on for

the other intervals. So h(A) = A and h ∈ G as required.
�

Proposition 2.3. G acts transitively on B.

Proof. The homeomorphism h constructed above maps [α, β] to [ 13 ,
2
3 ], with

h(α) = 1
3 , h(β) =

2
3 and every element in B is such an α or β.

Composing h with the reflection of (0, 1) that sends x to 1 − x gives an
element of G that takes β to 1

3 . Hence, for α ∈ B, there exists g ∈ G with

g(α) = 1
3 . Therefore G acts transitively on B.

�

Proposition 2.4. G acts transitively on C.

Proof. Since 1
4 ∈ C, it suffices to show that, for γ ∈ C, there is h ∈ G such

that h(γ) =

∞∑

n=1

2

32n
=

1

4
.

Let γ =

∞∑

n=1

2

3in
, I = {i1, i2, . . .}, J = N \ I = {j1, j2, . . .}. Define h : (0, 1)

→ (0, 1) as follows:

(0, 2
3i1

] is mapped to (0, 2
32 ] by h( 2t

3i1
) = 2t

32 , with t ∈ (0, 1],

for n = 2, . . ., [ 2
3i1

+ . . .+ 2
3in−1

, 2
3i1

+ . . .+ 2
3in ] is mapped to [ 2

32 +
2
34 + . . .+

2
32n−2 ,

2
32 + . . .+ 2

32n ] by h( 2
3i1

+ . . .+ 2
3in−1

+ 2t
3in ) =

2
32 +

2
34 + . . .+ 2

32n−2 +
2t
32n ,

with t ∈ [0, 1],

h(
∞∑

n=1

2

3in
) =

∞∑

n=1

2

32n
,

for n = 2, . . ., [1 − ( 2
3j1

+ . . . + 2
3jn ), 1 − ( 2

3j1
+ . . . + 2

3jn−1
)] is mapped to

[1 − (23 + 2
33 + . . . + 2

32n−1 ), 1 − (23 + 2
33 + . . . + 2

32n−3 )] by h(1 − ( 2
3j1

+ . . . +
2

3jn−1
+ 2s

3jn )) = 1− (23 + 2
33 + . . .+ 2

32n−3 + 2s
32n−1 ), with s ∈ [0, 1],

[1− 2
3j1

, 1) is mapped to [ 13 , 1) by h(1− 2s
3j1

) = 1− 2s
3 , with s ∈ (0, 1].

We have therefore defined an h ∈ G with h(γ) = 1
4 as required.

�

We can now conclude with our main result.

Theorem 2.5. There is a group G of homeomorphisms of R such that the

quotient space R/G is the Davey space.
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