Homeomorphisms of R and the Davey Space

Sheila Carter and F. J. Craveiro de Carvalho

Abstract

Up to homeomorphism, there are 9 topologies on a three point set $\{a, b, c\}[4]$. Among the resulting topological spaces we have the so called Davey space, where the only non-trivial open set is, let us say, $\{a\}$. This is an interesting topological space to the extent that every topological space can be embedded in a product of Davey spaces [3]. In this note we will consider the problem of obtaining the Davey space as a quotient R / G, where G is a suitable homeomorphism group. The present work can be regarded as a follow-up to some previous work done by one of the authors and Bernd Wegner [1].

2000 AMS Classification: 54F65.
Keywords: Davey space, homeomorphism group, Cantor set.

1. R / G as the Davey space -necessary Conditions

We will take the topological space $(\{a, b, c\}, \tau)$, with $\tau=\{\varnothing,\{a\},\{a, b, c\}\}$, as a model for the Davey space and the real line will be denoted by R.

Our purpose is to obtain a group G of homeomorphisms of R whose natural action on R gives rise to the Davey space and we start by establishing a number of observations which guided our quest.

Below we assume that the homeomorphism group G is such that R / G is the Davey space and π will stand for the projection from R to R / G.

Proposition 1.1. G is not finite.
Proof. If G were finite then, for instance, $\pi^{-1}(b)$ would be finite and, consequently, $\{a, c\}$ would be open.

Proposition 1.2. $\pi^{-1}(a)$ is bounded neither above nor below.
Proof. Assume that $\pi^{-1}(a)$ is bounded above and let x be its supremum. Then $\pi((x,+\infty))$ is open in R / G and, consequently must contain a.

Proposition 1.3. $\pi^{-1}(\{b, c\})$ is bounded neither above nor below.
Proof. Assume that x is the supremum of $\pi^{-1}(\{b, c\})$. Since this set is closed in R, x belongs to it. Let us suppose that $\pi(x)=b$. As we will see below it then follows that $\left|\pi^{-1}(b)\right| \leq 2$ which, as remarked above, is impossible.

Let y, z be points in $\pi^{-1}(b)$ with $y<z<x$. There is a homeomorphism f in G such that $f(z)=x$. If f were increasing then $f(x)>x$. Therefore f must be decreasing and, since $y<z, f(y)>x$ which, again, is impossible.

Proposition 1.4. $\pi^{-1}(b), \pi^{-1}(c)$ are bounded neither above nor below.
Proof. Assume that $\pi^{-1}(b)$ is bounded above and let x be its supremum. Then $\pi((x,+\infty))$ must be $\{a\}$ and x is an upper bound for $\pi^{-1}(c)$. Consequently $\pi^{-1}(\{b, c\})$ would be bounded above.

We are now in a position which allows us to conclude
Theorem 1.5. The action of G is not free.
Proof. Let $\pi^{-1}(a)=\bigcup_{i \in I} C_{i}$, where the C_{i} 's are the connected components.
From above it follows that, for each $i, C_{i}=\left(a_{i}, b_{i}\right)$.
Fix an i and choose x, y distinct in C_{i}. There is an $f \in G$ such that $f(x)=y$. Since f maps $\left[a_{i}, b_{i}\right]$ into itself, it must have a fixed point.

It is also clear that $\pi^{-1}(\{b, c\})$ is totally disconnected and that every point in it is a limit point of that set.

Proposition 1.6. $\pi^{-1}(\{b, c\})$ is uncountable.
Proof. Write $\pi^{-1}(a)=\bigcup_{i \in I} C_{i}$ and choose x, y in different components, with $x<y$. Then $\pi^{-1}(\{b, c\}) \bigcap[x, y]$ is a compact, Hausdorff space having all its elements as limits points. Therefore it is uncountable [4].

2. An example

This section is devoted to the construction of an example of a group G such that R / G is the Davey space. Since they are homeomorphic spaces we will use the open interval $(0,1)$ instead of R.

Let \mathbf{C} denote the intersection of the Cantor set [2], [5] with $(0,1)$ and consider the partition $(0,1)=A \cup B \cup C$, where $A=(0,1) \backslash \mathbf{C}$ is a union of open intervals, the "middle thirds", B is the set of end-points of the open intervals in A and $C=\mathbf{C} \backslash B$.

The Cantor set can be described in terms of ternary expansions. We then have, for $x \in(0,1)$, that
$x \in A$ if and only if there is $n \in N$ such that $x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}$, where, for $i<n$, $x_{i}=0$ or $2, x_{n}=1$ and $0<\sum_{i=n+1}^{\infty} \frac{x_{i}}{3^{i}}<\frac{1}{3^{n}}$,
$x \in B$ if and only if there is $n \in N$ such that $x=\sum_{i=1}^{n} \frac{x_{i}}{3^{i}}$, where, for $i<n$, $x_{i}=0$ or $2, x_{n}=1$ or 2.
$x \in C$ if and only if $x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}$, with $x_{i}=0$ or 2 , and there are arbitrarily large i and j for which $x_{i}=0, x_{j}=2$.

Proposition 2.1. The quotient topological space originated by the partition $(0,1)=A \cup B \cup C$ is the Davey space.

Proof. Let $X=\{a, b, c\}$ be the quotient space obtained by identifying A, B, C to points a, b, c, respectively.

Since A is open in $(0,1)$ it follows that $\{a\}$ is open in X.
Let now $x \in B$ and suppose that $x=\sum_{i=1}^{n-1} \frac{x_{i}}{3^{i}}+\frac{1}{3^{n}}$, where $x_{i}=0$ or 2 . For $k \geq n+1$, define $y_{k} \in C$ by $y_{k}=\sum_{i=1}^{n-1} \frac{x_{i}}{3^{i}}+\sum_{i=n+1}^{k} \frac{2}{3^{i}}+\sum_{j=1}^{\infty} \frac{2}{3^{k+2 j}}$. Then the sequence $\left(y_{k}\right)$ converges to $\sum_{i=1}^{n-1} \frac{x_{i}}{3^{i}}+\sum_{i=n+1}^{\infty} \frac{2}{3^{i}}$, which is x.

Similarly if $x=\sum_{i=1}^{n-1} \frac{x_{i}}{3^{i}}+\frac{2}{3^{n}}$, where $x_{i}=0$ or 2 , for $k \geq n+1$, define $y_{k}=x+\sum_{j=1}^{\infty} \frac{2}{3^{k+2 j}}$. This sequence also converges to x.

Thus every element of B belongs to the closure of C and, since it is an end-point of an open interval in A, it also lies in the closure of A. Hence every open set in X containing b also contains a and c and the only such open set is X itself.

Next consider $x \in C$, say $x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}$, where $x_{i}=0$ or 2 . There exists an arbitrarily large i for which $x_{i}=2$. Let x_{l} be the first nonzero term and, for $k \geq l$, define $y_{k} \in B$ by $y_{k}=\sum_{i=1}^{k} \frac{x_{i}}{3^{i}}$. The sequence $\left(y_{k}\right)$ converges to x.

Thus x lies in the closure of B and, as each y_{k} is in the closure of A, it also lies in the closure of A. So every open set in X containing c also contains a and b and the only such open set is X itself.

Therefore X is the Davey space.

Let $G=\{h:(0,1) \rightarrow(0,1) \mid h$ is a homeomorphism and $h(A)=A\}$. If $h \in G$ then h takes an open interval in A to an open interval in A and, consequently, the end-points to end-points. So $h(B)=B$ and then $h(C)=C$. If we prove that G acts transitively on A, B and C we may conclude that those subsets are the orbits of the natural action of G on $(0,1)$ and, by Proposition $2.1,(0,1) / G$ is the Davey space.

Proposition 2.2. G acts transitively on A.
Proof. We start by observing that, given any open interval (α, β) in $(0,1)$ and $x, y \in(\alpha, \beta)$, there exists a homeomorphism $h:(0,1) \rightarrow(0,1)$ such that $h((\alpha, \beta))=(\alpha, \beta), h(x)=y$ and $h \mid(0,1) \backslash(\alpha, \beta)$ is the identity function.

To prove transitivity on A it is therefore enough to show that, for any open interval (α, β) in A, with $\alpha, \beta \in B$, there is $h \in G$ such that $h((\alpha, \beta))=\left(\frac{1}{3}, \frac{2}{3}\right)$.

Assume $\alpha=\frac{2}{3^{\imath_{1}}}+\ldots+\frac{2}{3^{2} k}+\frac{1}{3^{n}}, 1 \leq i_{1}<i_{2}<\ldots<i_{k}<n$. So $\beta=\alpha+\frac{1}{3^{n}}$.
Let j_{1}, \ldots, j_{l} be such that $1 \leq j_{1}<\ldots j_{l}<n,\left\{j_{1}, \ldots, j_{l}\right\} \cup\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=$ $\{1,2, \ldots, n-1\}, l+k=n-1$. Hence
$\alpha+\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{l}}}+\frac{1}{3^{n}}=\sum_{i=1}^{n} \frac{2}{3^{i}}=1-\frac{1}{3^{n}}$ and, in the construction of h, we will use $1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{l}}}+\frac{1}{3^{n}}+\frac{s}{3^{n}}\right)=\alpha+\frac{t}{3^{n}}$, where $s=1-t, t \in[0,1]$.

We define $h:(0,1) \rightarrow(0,1)$ as follows:
$\left(0, \frac{2}{3^{i_{1}}}\right]$ is mapped to $\left(0, \frac{2}{3^{2}}\right]$ by $h\left(\frac{2 t}{3^{i_{1}}}\right)=\frac{2 t}{3^{2}}$, with $t \in(0,1]$,
for $r=2, \ldots, k,\left[\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{r-1}}}, \frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{r}}}\right]$ is mapped to $\left[\frac{2}{3^{2}}+\ldots+\right.$ $\left.\frac{2}{3^{r}}, \frac{2}{3^{2}}+\ldots+\frac{2}{3^{r+1}}\right]$ by $h\left(\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i} r-1}+\frac{2 t}{3^{i_{r}}}\right)=\frac{2}{3^{2}}+\ldots+\frac{2}{3^{r}}+\frac{2 t}{3^{r+1}}$, with $t \in[0,1]$,
$\left[\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{k}}}, \alpha\right]$ is mapped to $\left[\frac{2}{3^{2}}+\ldots+\frac{2}{3^{k+1}}, \frac{1}{3}\right]$ by $h\left(\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i} k}+\frac{t}{3^{n}}\right)=$ $\frac{2}{3^{2}}+\ldots+\frac{2}{3^{k+1}}+\frac{t}{3^{k+1}}$, with $t \in[0,1]$,
$\left[\alpha, \alpha+\frac{1}{3^{n}}\right]$ is mapped to $\left[\frac{1}{3}, \frac{2}{3}\right]$ by $h\left(\alpha+\frac{t}{3^{n}}\right)=\frac{1}{3}+\frac{t}{3}$, with $t \in[0,1]$,
$\left[\alpha+\frac{1}{3^{n}}, \alpha+\frac{2}{3^{n}}\right]$ is mapped to $\left[\frac{2}{3}, \frac{2}{3}+\frac{1}{3^{l+1}}\right]$ by $h\left(1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{l}}}+\frac{s}{3^{n}}\right)\right)=$ $1-\left(\frac{2}{3^{2}}+\ldots+\frac{2}{3^{l+1}}+\frac{s}{3^{l+1}}\right)$, with $s \in[0,1]$,
for $r=2, \ldots, l,\left[1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{r}}}\right), 1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{r-1}}}\right)\right]$ is mapped to $\left[1-\left(\frac{2}{3^{2}}+\ldots+\frac{2}{3^{r+1}}\right), 1-\left(\frac{2}{3^{2}}+\ldots+\frac{2}{3^{r}}\right)\right]$ by $h\left(1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{r-1}}}+\frac{2 s}{3^{3 j_{r}}}\right)\right)=$ $1-\left(\frac{2}{3^{2}}+\ldots+\frac{2}{3^{r}}+\frac{2 s}{3^{r+1}}\right)$, with $s \in[0,1]$,
$\left[1-\frac{2}{3^{j_{1}}}, 1\right)$ is mapped to $\left[1-\frac{2}{3^{2}}, 1\right)$ by $h\left(1-\frac{2 s}{3^{j_{1}}}\right)=1-\frac{2 s}{3^{2}}$, with $s \in(0,1]$.
We have then a homeomorphism $h:(0,1) \rightarrow(0,1)$ such that $h((\alpha, \beta))=$ $\left(\frac{1}{3}, \frac{2}{3}\right)$. On each interval of its definition, h is of the form $h(x)=\lambda x+\mu$, for some $\lambda, \mu \in R$. Hence it takes middle thirds in $\left(0, \frac{1}{3^{i_{1}}}\right)$ to middle terms in
$\left(0, \frac{1}{3^{2}}\right)$, middle thirds in $\left(\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i} r-1}, \frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{r-1}}}+\frac{1}{3^{r}}\right)$ to middle thirds in $\left(\frac{2}{3^{2}}+\ldots+\frac{2}{3^{r}}, \frac{2}{3^{2}}+\ldots+\frac{2}{3^{r}}+\frac{1}{3^{r+1}}\right)$, for $r=2, \ldots, k$, and so on for the other intervals. So $h(A)=A$ and $h \in G$ as required.

Proposition 2.3. G acts transitively on B.
Proof. The homeomorphism h constructed above maps $[\alpha, \beta]$ to $\left[\frac{1}{3}, \frac{2}{3}\right]$, with $h(\alpha)=\frac{1}{3}, h(\beta)=\frac{2}{3}$ and every element in B is such an α or β.

Composing h with the reflection of $(0,1)$ that sends x to $1-x$ gives an element of G that takes β to $\frac{1}{3}$. Hence, for $\alpha \in B$, there exists $g \in G$ with $g(\alpha)=\frac{1}{3}$. Therefore G acts transitively on B.

Proposition 2.4. G acts transitively on C.
Proof. Since $\frac{1}{4} \in C$, it suffices to show that, for $\gamma \in C$, there is $h \in G$ such that $h(\gamma)=\sum_{n=1}^{\infty} \frac{2}{3^{2 n}}=\frac{1}{4}$.

Let $\gamma=\sum_{n=1}^{\infty} \frac{2}{3^{i_{n}}}, I=\left\{i_{1}, i_{2}, \ldots\right\}, J=N \backslash I=\left\{j_{1}, j_{2}, \ldots\right\}$. Define $h:(0,1)$ $\rightarrow(0,1)$ as follows:
$\left(0, \frac{2}{3^{i_{1}}}\right]$ is mapped to $\left(0, \frac{2}{3^{2}}\right]$ by $h\left(\frac{2 t}{3^{i_{1}}}\right)=\frac{2 t}{3^{2}}$, with $t \in(0,1]$,
for $n=2, \ldots,\left[\frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{n-1}}}, \frac{2}{3^{i_{1}}}+\ldots+\frac{2}{3^{i_{n}}}\right]$ is mapped to $\left[\frac{2}{3^{2}}+\frac{2}{3^{4}}+\ldots+\right.$ $\left.\frac{2}{3^{2 n-2}}, \frac{2}{3^{2}}+\ldots+\frac{2}{3^{2 n}}\right]$ by $h\left(\frac{2}{3^{\imath_{1}}}+\ldots+\frac{2}{3^{i_{n-1}}}+\frac{2 t}{3^{\imath^{i} n}}\right)=\frac{2}{3^{2}}+\frac{2}{3^{4}}+\ldots+\frac{2}{3^{2 n-2}}+\frac{2 t}{3^{2 n}}$, with $t \in[0,1]$,
$h\left(\sum_{n=1}^{\infty} \frac{2}{3^{i_{n}}}\right)=\sum_{n=1}^{\infty} \frac{2}{3^{2 n}}$,
for $n=2, \ldots,\left[1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{n}}}\right), 1-\left(\frac{2}{3^{j_{1}}}+\ldots+\frac{2}{3^{j_{n-1}}}\right)\right]$ is mapped to $\left[1-\left(\frac{2}{3}+\frac{2}{3^{3}}+\ldots+\frac{2}{3^{2 n-1}}\right), 1-\left(\frac{2}{3}+\frac{2}{3^{3}}+\ldots+\frac{2}{3^{2 n-3}}\right)\right]$ by $h\left(1-\left(\frac{2}{3^{j_{1}}}+\ldots+\right.\right.$ $\left.\left.\frac{2}{3^{j^{n}-1}}+\frac{2 s}{3^{j} n}\right)\right)=1-\left(\frac{2}{3}+\frac{2}{3^{3}}+\ldots+\frac{2}{3^{2 n-3}}+\frac{2 s}{3^{2 n-1}}\right)$, with $s \in[0,1]$,
$\left[1-\frac{2}{3^{j_{1}}}, 1\right)$ is mapped to $\left[\frac{1}{3}, 1\right)$ by $h\left(1-\frac{2 s}{3^{j_{1}}}\right)=1-\frac{2 s}{3}$, with $s \in(0,1]$.
We have therefore defined an $h \in G$ with $h(\gamma)=\frac{1}{4}$ as required.

We can now conclude with our main result.
Theorem 2.5. There is a group G of homeomorphisms of R such that the quotient space R / G is the Davey space.

Acknowledgements. The authors are very grateful to Alan West for discussions on the topic of this paper which have led to a complete proof of Theorem 2.5.

References

[1] F. J. Craveiro de Carvalho and Bernd Wegner, Locally Sierpinski spaces as interval quotients, Kyungpook Math. J. 42 (2002), 165-169.
[2] Ryszard Engelking, General Topology, Heldermann Verlag, 1989.
[3] Sidney A. Morris, Are finite topological spaces worthy of study?, Austral. Math. Soc. Gazette 11 (1984), 563-564.
[4] James R. Munkres, Topology, a first course, Prentice-Hall, Inc., 1975.
[5] Stephen Willard, General Topology, Addison-Wesley, Inc., 1970.

Received December 2002

Accepted April 2003

Sheila Carter (S.Carter@leeds.ac.uk)
School of Mathematics, University of Leeds, Leeds LS2 9JT, U. K. F. J.
Craveiro de Carvalho (fjcc@mat.uc.pt)
Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal

