

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 5, No. 1, 2004 pp. 91- 96

Homeomorphisms of R and the Davey Space

Sheila Carter and F. J. Craveiro de Carvalho

ABSTRACT. Up to homeomorphism, there are 9 topologies on a three point set $\{a, b, c\}$ [4]. Among the resulting topological spaces we have the so called Davey space, where the only non-trivial open set is, let us say, $\{a\}$. This is an interesting topological space to the extent that every topological space can be embedded in a product of Davey spaces [3]. In this note we will consider the problem of obtaining the Davey space as a quotient R/G, where G is a suitable homeomorphism group. The present work can be regarded as a follow-up to some previous work done by one of the authors and Bernd Wegner [1].

2000 AMS Classification: 54F65.

Keywords: Davey space, homeomorphism group, Cantor set.

1. R/G as the Davey space -necessary conditions

We will take the topological space $(\{a, b, c\}, \tau)$, with $\tau = \{\emptyset, \{a\}, \{a, b, c\}\}$, as a model for the Davey space and the real line will be denoted by R.

Our purpose is to obtain a group G of homeomorphisms of R whose natural action on R gives rise to the Davey space and we start by establishing a number of observations which guided our quest.

Below we assume that the homeomorphism group G is such that R/G is the Davey space and π will stand for the projection from R to R/G.

Proposition 1.1. *G* is not finite.

Proof. If G were finite then, for instance, $\pi^{-1}(b)$ would be finite and, consequently, $\{a, c\}$ would be open.

Proposition 1.2. $\pi^{-1}(a)$ is bounded neither above nor below.

Proof. Assume that $\pi^{-1}(a)$ is bounded above and let x be its supremum. Then $\pi((x, +\infty))$ is open in R/G and, consequently must contain a.

Proposition 1.3. $\pi^{-1}(\{b,c\})$ is bounded neither above nor below.

Proof. Assume that x is the supremum of $\pi^{-1}(\{b,c\})$. Since this set is closed in R, x belongs to it. Let us suppose that $\pi(x) = b$. As we will see below it then follows that $|\pi^{-1}(b)| \leq 2$ which, as remarked above, is impossible.

Let y, z be points in $\pi^{-1}(b)$ with y < z < x. There is a homeomorphism f in G such that f(z) = x. If f were increasing then f(x) > x. Therefore f must be decreasing and, since y < z, f(y) > x which, again, is impossible.

Proposition 1.4. $\pi^{-1}(b)$, $\pi^{-1}(c)$ are bounded neither above nor below.

Proof. Assume that $\pi^{-1}(b)$ is bounded above and let x be its supremum. Then $\pi((x, +\infty))$ must be $\{a\}$ and x is an upper bound for $\pi^{-1}(c)$. Consequently $\pi^{-1}(\{b,c\})$ would be bounded above.

We are now in a position which allows us to conclude

Theorem 1.5. The action of G is not free.

Proof. Let $\pi^{-1}(a) = \bigcup_{i \in I} C_i$, where the C_i 's are the connected components. From above it follows that, for each $i, C_i = (a_i, b_i)$.

Fix an *i* and choose x, y distinct in C_i . There is an $f \in G$ such that f(x) = y. Since f maps $[a_i, b_i]$ into itself, it must have a fixed point.

It is also clear that $\pi^{-1}(\{b,c\})$ is totally disconnected and that every point in it is a limit point of that set.

Proposition 1.6. $\pi^{-1}(\{b,c\})$ is uncountable.

Proof. Write $\pi^{-1}(a) = \bigcup C_i$ and choose x, y in different components, with x < y. Then $\pi^{-1}(\{b,c\}) \bigcap [x,y]$ is a compact, Hausdorff space having all its

elements as limits points. Therefore it is uncountable [4].

2. An example

This section is devoted to the construction of an example of a group G such that R/G is the Davey space. Since they are homeomorphic spaces we will use the open interval (0, 1) instead of R.

Let \mathbf{C} denote the intersection of the Cantor set [2], [5] with (0, 1) and consider the partition $(0,1) = A \cup B \cup C$, where $A = (0,1) \setminus C$ is a union of open intervals, the "middle thirds", B is the set of end-points of the open intervals in A and $C = \mathbf{C} \setminus B.$

The Cantor set can be described in terms of ternary expansions. We then have, for $x \in (0, 1)$, that

 $x \in A$ if and only if there is $n \in N$ such that $x = \sum_{i=1}^{\infty} \frac{x_i}{3^i}$, where, for i < n, $x_i = 0$ or $2, x_n = 1$ and $0 < \sum_{i=n+1}^{\infty} \frac{x_i}{3^i} < \frac{1}{3^n}$,

 $x \in B$ if and only if there is $n \in N$ such that $x = \sum_{i=1}^{n} \frac{x_i}{3^i}$, where, for i < n,

 $x_i = 0$ or 2, $x_n = 1$ or 2. $x \in C$ if and only if $x = \sum_{i=1}^{\infty} \frac{x_i}{3^i}$, with $x_i = 0$ or 2, and there are arbitrarily large *i* and *j* for which $x_i = 0$, $x_j = 2$.

Proposition 2.1. The quotient topological space originated by the partition $(0,1) = A \cup B \cup C$ is the Davey space.

Proof. Let $X = \{a, b, c\}$ be the quotient space obtained by identifying A, B, C to points a, b, c, respectively.

Since A is open in (0, 1) it follows that $\{a\}$ is open in X.

Let now
$$x \in B$$
 and suppose that $x = \sum_{i=1}^{n-1} \frac{x_i}{3^i} + \frac{1}{3^n}$, where $x_i = 0$ or 2. For

$$k \ge n+1$$
, define $y_k \in C$ by $y_k = \sum_{i=1}^{n-1} \frac{x_i}{3^i} + \sum_{i=n+1}^{\kappa} \frac{2}{3^i} + \sum_{j=1}^{\infty} \frac{2}{3^{k+2j}}$. Then the

sequence (y_k) converges to $\sum_{i=1}^{n-1} \frac{x_i}{3^i} + \sum_{i=n+1}^{\infty} \frac{2}{3^i}$, which is x.

Similarly if $x = \sum_{i=1}^{n-1} \frac{x_i}{3^i} + \frac{2}{3^n}$, where $x_i = 0$ or 2, for $k \ge n+1$, define

$$y_k = x + \sum_{j=1}^{2} \frac{z}{3^{k+2j}}$$
. This sequence also converges to x .

Thus every element of B belongs to the closure of C and, since it is an end-point of an open interval in A, it also lies in the closure of A. Hence every open set in X containing b also contains a and c and the only such open set is X itself.

Next consider $x \in C$, say $x = \sum_{i=1}^{\infty} \frac{x_i}{3^i}$, where $x_i = 0$ or 2. There exists an arbitrarily large *i* for which $x_i = 2$. Let x_l be the first nonzero term and, for $k \ge l$, define $y_k \in B$ by $y_k = \sum_{i=1}^k \frac{x_i}{3^i}$. The sequence (y_k) converges to *x*.

Thus x lies in the closure of \overline{B} and, as each y_k is in the closure of A, it also lies in the closure of A. So every open set in X containing c also contains a and b and the only such open set is X itself.

Therefore X is the Davey space.

Let $G = \{h : (0,1) \rightarrow (0,1) \mid h \text{ is a homeomorphism and } h(A) = A\}.$ If $h \in G$ then h takes an open interval in A to an open interval in A and, consequently, the end-points to end-points. So h(B) = B and then h(C) = C. If we prove that G acts transitively on A, B and C we may conclude that those subsets are the orbits of the natural action of G on (0,1) and, by Proposition 2.1, (0,1)/G is the Davey space.

Proposition 2.2. G acts transitively on A.

Proof. We start by observing that, given any open interval (α, β) in (0, 1) and $x, y \in (\alpha, \beta)$, there exists a homeomorphism $h: (0,1) \to (0,1)$ such that $h((\alpha,\beta)) = (\alpha,\beta), h(x) = y$ and $h \mid (0,1) \setminus (\alpha,\beta)$ is the identity function.

To prove transitivity on A it is therefore enough to show that, for any open

interval (α, β) in A, with $\alpha, \beta \in B$, there is $h \in G$ such that $h((\alpha, \beta)) = (\frac{1}{3}, \frac{2}{3})$. Assume $\alpha = \frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_k}} + \frac{1}{3^n}, 1 \le i_1 < i_2 < \ldots < i_k < n$. So $\beta = \alpha + \frac{1}{3^n}$. Let j_1, \ldots, j_l be such that $1 \le j_1 < \ldots j_l < n, \{j_1, \ldots, j_l\} \cup \{i_1, i_2, \ldots, i_k\} = \{1, 2, \ldots, n-1\}, l+k = n-1$. Hence

$$\alpha + \frac{2}{3^{j_1}} + \dots + \frac{2}{3^{j_l}} + \frac{1}{3^n} = \sum_{i=1}^n \frac{2}{3^i} = 1 - \frac{1}{3^n} \text{ and, in the construction of } h, \text{ we}$$
will use $1 - \binom{2}{3^{j_1}} + \binom{2}{3^{j_1}} + \binom{2}{3^{j_1}} + \binom{2}{3^{j_1}} = \alpha + \binom{t}{3^{j_1}} + \binom{t}{3$

will use $1 - \left(\frac{2}{3^{j_1}} + \ldots + \frac{2}{3^{j_l}} + \frac{1}{3^n} + \frac{3}{3^n}\right) = \alpha + \frac{\varepsilon}{3^n}$, where $s = 1 - t, t \in [0, 1]$.

We define $h: (0,1) \to (0,1)$ as follows:

 $(0, \frac{2}{2t_1}]$ is mapped to $(0, \frac{2}{2t_2}]$ by $h(\frac{2t}{2t_1}) = \frac{2t}{2t_2}$, with $t \in (0, 1]$,

for $r = 2, \dots, k$, $\left[\frac{2}{3^{i_1}} + \dots + \frac{2}{3^{i_{r-1}}}, \frac{2}{3^{i_1}} + \dots + \frac{2}{3^{i_r}}\right]$ is mapped to $\left[\frac{2}{3^2} + \dots + \frac{2}{3^r}, \frac{2}{3^2} + \dots + \frac{2}{3^{r+1}}\right]$ by $h\left(\frac{2}{3^{i_1}} + \dots + \frac{2}{3^{i_{r-1}}} + \frac{2t}{3^{i_r}}\right) = \frac{2}{3^2} + \dots + \frac{2}{3^r} + \frac{2t}{3^{r+1}}$, with $t \in [0, 1],$

$$\begin{bmatrix} \frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_k}}, \alpha \end{bmatrix} \text{ is mapped to } \begin{bmatrix} \frac{2}{3^2} + \ldots + \frac{2}{3^{k+1}}, \frac{1}{3} \end{bmatrix} \text{ by } h(\frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_k}} + \frac{t}{3^n}) = \frac{2}{3^2} + \ldots + \frac{2}{3^{k+1}} + \frac{t}{3^{k+1}}, \text{ with } t \in [0, 1],$$

 $[\alpha, \alpha + \frac{1}{3^n}]$ is mapped to $[\frac{1}{3}, \frac{2}{3}]$ by $h(\alpha + \frac{t}{3^n}) = \frac{1}{3} + \frac{t}{3}$, with $t \in [0, 1]$,

 $[\alpha + \frac{1}{3^n}, \alpha + \frac{2}{3^n}] \text{ is mapped to } [\frac{2}{3}, \frac{2}{3} + \frac{1}{3^{l+1}}] \text{ by } h(1 - (\frac{2}{3^{j_1}} + \ldots + \frac{2}{3^{j_l}} + \frac{s}{3^n})) = 1 - (\frac{2}{3^2} + \ldots + \frac{2}{3^{l+1}} + \frac{s}{3^{l+1}}), \text{ with } s \in [0, 1],$

for $r = 2, \dots, l, \left[1 - \left(\frac{2}{3^{j_1}} + \dots + \frac{2}{3^{j_r}}\right), 1 - \left(\frac{2}{3^{j_1}} + \dots + \frac{2}{3^{j_{r-1}}}\right)\right]$ is mapped to $\left[1 - \left(\frac{2}{3^2} + \dots + \frac{2}{3^{r+1}}\right), 1 - \left(\frac{2}{3^2} + \dots + \frac{2}{3^r}\right)\right]$ by $h\left(1 - \left(\frac{2}{3^{j_1}} + \dots + \frac{2}{3^{j_{r-1}}} + \frac{2s}{3^{j_r}}\right)\right) = 1 - \left(\frac{2}{3^2} + \dots + \frac{2}{3^r} + \frac{2s}{3^{r+1}}\right)$, with $s \in [0, 1]$,

 $[1-\frac{2}{3i_1},1)$ is mapped to $[1-\frac{2}{3^2},1)$ by $h(1-\frac{2s}{3i_1})=1-\frac{2s}{3^2}$, with $s \in (0,1]$.

We have then a homeomorphism $h: (0,1) \to (0,1)$ such that $h((\alpha,\beta)) =$ $(\frac{1}{3},\frac{2}{3})$. On each interval of its definition, h is of the form $h(x) = \lambda x + \mu$, for some $\lambda, \mu \in R$. Hence it takes middle thirds in $(0, \frac{1}{3^{i_1}})$ to middle terms in

 $(0, \frac{1}{3^2})$, middle thirds in $(\frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_{r-1}}}, \frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_{r-1}}} + \frac{1}{3^r})$ to middle thirds in $(\frac{2}{3^2} + \ldots + \frac{2}{3^r}, \frac{2}{3^2} + \ldots + \frac{2}{3^r} + \frac{1}{3^{r+1}})$, for $r = 2, \ldots, k$, and so on for the other intervals. So h(A) = A and $h \in G$ as required.

Proposition 2.3. G acts transitively on B.

Proof. The homeomorphism h constructed above maps $[\alpha, \beta]$ to $[\frac{1}{3}, \frac{2}{3}]$, with $h(\alpha) = \frac{1}{3}, h(\beta) = \frac{2}{3}$ and every element in B is such an α or β .

Composing h with the reflection of (0,1) that sends x to 1-x gives an element of G that takes β to $\frac{1}{3}$. Hence, for $\alpha \in B$, there exists $g \in G$ with $g(\alpha) = \frac{1}{3}$. Therefore G acts transitively on B.

Proposition 2.4. G acts transitively on C.

Proof. Since $\frac{1}{4} \in C$, it suffices to show that, for $\gamma \in C$, there is $h \in G$ such that $h(\gamma) = \sum_{n=1}^{\infty} \frac{2}{3^{2n}} = \frac{1}{4}$. Let $\gamma = \sum_{n=1}^{\infty} \frac{2}{3^{i_n}}$, $I = \{i_1, i_2, \ldots\}$, $J = N \setminus I = \{j_1, j_2, \ldots\}$. Define $h: (0, 1) \to (0, 1)$ as follows:

 $(0, \frac{2}{3^{i_1}}]$ is mapped to $(0, \frac{2}{3^2}]$ by $h(\frac{2t}{3^{i_1}}) = \frac{2t}{3^2}$, with $t \in (0, 1]$,

for $n = 2, \ldots, \left[\frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_{n-1}}}, \frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_n}}\right]$ is mapped to $\left[\frac{2}{3^2} + \frac{2}{3^4} + \ldots + \frac{2}{3^{2n-2}}, \frac{2}{3^2} + \ldots + \frac{2}{3^{2n}}\right]$ by $h(\frac{2}{3^{i_1}} + \ldots + \frac{2}{3^{i_{n-1}}} + \frac{2t}{3^{i_n}}) = \frac{2}{3^2} + \frac{2}{3^4} + \ldots + \frac{2}{3^{2n-2}} + \frac{2t}{3^{2n}},$ with $t \in [0, 1]$,

$$h(\sum_{n=1}^{\infty} \frac{2}{3^{i_n}}) = \sum_{n=1}^{\infty} \frac{2}{3^{2n}},$$

for $n = 2, \ldots, [1 - (\frac{2}{3^{j_1}} + \ldots + \frac{2}{3^{j_n}}), 1 - (\frac{2}{3^{j_1}} + \ldots + \frac{2}{3^{j_{n-1}}})]$ is mapped to $[1 - (\frac{2}{3} + \frac{2}{3^3} + \ldots + \frac{2}{3^{2n-1}}), 1 - (\frac{2}{3} + \frac{2}{3^3} + \ldots + \frac{2}{3^{2n-3}})]$ by $h(1 - (\frac{2}{3^{j_1}} + \ldots + \frac{2}{3^{j_{n-1}}} + \frac{2s}{3^{j_{n-1}}})) = 1 - (\frac{2}{3} + \frac{2}{3^3} + \ldots + \frac{2}{3^{2n-3}} + \frac{2s}{3^{2n-1}})$, with $s \in [0, 1]$,

$$[1 - \frac{2}{3^{j_1}}, 1)$$
 is mapped to $[\frac{1}{3}, 1)$ by $h(1 - \frac{2s}{3^{j_1}}) = 1 - \frac{2s}{3}$, with $s \in (0, 1]$.

We have therefore defined an $h \in G$ with $h(\gamma) = \frac{1}{4}$ as required.

We can now conclude with our main result.

Theorem 2.5. There is a group G of homeomorphisms of R such that the quotient space R/G is the Davey space.

Acknowledgements. The authors are very grateful to Alan West for discussions on the topic of this paper which have led to a complete proof of Theorem 2.5.

References

- F. J. Craveiro de Carvalho and Bernd Wegner, Locally Sierpinski spaces as interval quotients, Kyungpook Math. J. 42 (2002), 165-169.
- [2] Ryszard Engelking, General Topology, Heldermann Verlag, 1989.
- [3] Sidney A. Morris, Are finite topological spaces worthy of study?, Austral. Math. Soc. Gazette 11 (1984), 563-564.
- [4] James R. Munkres, Topology, a first course, Prentice-Hall, Inc., 1975.
- [5] Stephen Willard, General Topology, Addison-Wesley, Inc., 1970.

RECEIVED DECEMBER 2002 ACCEPTED APRIL 2003

SHEILA CARTER (S.Carter@leeds.ac.uk) School of Mathematics, University of Leeds, Leeds LS2 9JT, U. K. F. J.

CRAVEIRO DE CARVALHO (fjcc@mat.uc.pt)

Departamento de Matemática, Universidade de Coimbra, 3001 - 454 Coimbra, Portugal