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The only source of knowledge is experience 

Albert Einstein, scientist 

 

 

 

 

 

 

A solution is not merely a set of functions of 
time, or a set of numbers, but a rule telling the 
decisionmaker what to do; a policy 

Richard R. Bellman, researcher and father 
of the Dynamic Programming technique 

 

 

 

 

 

 

Wine? Thanks to the aqueducts built, we have 
secured that no roman will be thirsty 

Caesar Augustus, roman emperor. 
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SUMMARY 

Given the high degree of construction of hydraulic infrastructure in the 

developed countries, and with the increasing opposition to constructing new 

facilities in developing countries, the focus of water resource system analysis 

has turned into defining adequate operation strategies. Better management 

is necessary to cope with the challenge of supplying increasing demands and 

conflicts on water allocation while facing climate change impacts. To do so, 

a large set of mathematical simulation and optimization tools have been 

developed. However, the real application of these techniques is still limited. 

One of the main lines of research to fix this issue regards to the involvement 

of experts’ knowledge in the definition of mathematical algorithms. To define 

operating rules in a way in which system operators could rely, their expert 

knowledge should be fully accounted and merged with the results from 

mathematical algorithms. 

This thesis develops a methodological framework and the required tools 

to improve the operation of large-scale water resource systems. In such 

systems, decision-making processes are complex and supported, at least 

partially, by the expert knowledge of decision-makers. This importance of 

expert judgment in the operation strategies requires mathematical tools able 

to embed and combine it with optimization algorithms. 

The methods and tools developed in this thesis rely on stochastic 

programming, fuzzy logic and the involvement of system operators during 

the whole rule-defining process. An extended stochastic programming 

algorithm, able to be used in large-scale water resource systems including 

stream-aquifer interactions, has been developed (the CSG-SDDP). The 

methodological framework proposed uses fuzzy logic to capture the expert 

knowledge in the definition of optimal operating rules. Once the current 

decision-making process is fairly reproduced using fuzzy logic and expert 

knowledge, stochastic programming results are introduced and thus the 

performance of the rules is improved.  

The framework proposed in this thesis has been applied to the Jucar river 

system (Eastern Spain), in which scarce resources are allocated following 

complex decision-making processes. We present two applications. In the first 
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one, the CSG-SDDP algorithm has been used to define economically-optimal 

conjunctive use strategies for a joint operation of reservoirs and aquifers. In 

the second one, we implement a collaborative framework to couple 

historical records with expert knowledge and criteria to define a decision 

support system (DSS) for the seasonal operation of the reservoirs of the Jucar 

River system. The co-developed DSS tool explicitly reproduces the decision-

making processes and criteria considered by the system operators. Two fuzzy 

logic systems have been developed and linked with this purpose, as well as 

with fuzzy regressions to preview future inflows. The DSS developed was 

validated against historical records. The developed framework offers 

managers a simple way to define a priori suitable decisions, as well as to 

explore the consequences of any of them. The resulting representation has 

been then combined with the CSG-SDDP algorithm in order to improve the 

rules following the current decision-making process. 

Results show that reducing pumping from the Mancha Oriental aquifer 

would lead to higher systemwide benefits due to increased flows by stream-

aquifer interaction. The operating rules developed successfully combined 

fuzzy logic, expert judgment and stochastic programming, increasing water 

allocations to the demands by changing the way in which Alarcon, Contreras 

and Tous are balanced. These rules follow the same decision-making 

processes currently done in the system, so system operators would feel 

familiar with them. In addition, they can be contrasted with the current 

operating rules to determine what operation options can be coherent with 

the current management and, at the same time, achieve an optimal 

operation. 
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RESUMEN 

Dado el alto número de infraestructuras construidas en los países 

desarrollados, y con una oposición creciente a la construcción de nuevas 

infraestructuras en los países en vías de desarrollo, la atención del análisis de 

sistemas de recursos hídricos ha pasado a la definición de reglas de operación 

adecuadas. Una gestión más eficiente del recurso hídrico es necesaria para 

poder afrontar los impactos del cambio climático y de la creciente demanda 

de agua. Para lograrlo, un amplio abanico de herramientas y modelos 

matemáticos de optimización se han desarrollado. Sin embargo, su 

aplicación práctica en la gestión hídrica sigue siendo limitada. Una de las más 

importantes líneas de investigación para solucionarlo busca la involucración 

de los expertos en la definición de dichos modelos matemáticos. Para definir 

reglas de operación en las cuales los gestores confíen, es necesario tener en 

cuenta su criterio experto y combinarlo con algoritmos de optimización. 

La presente tesis desarrolla una metodología, y las herramientas 

necesarias para aplicarla, con el fin de mejorar la operación de sistemas 

complejos de recursos hídricos. En éstos, los procesos de toma de decisiones 

son complicados y se sustentan, al menos en parte, en el juicio experto de 

los gestores. Esta importancia del criterio de experto en las reglas de 

operación requiere herramientas matemáticas capaces de incorporarlo en su 

estructura y de unirlo con algoritmos de optimización. 

Las herramientas y métodos desarrollados se basan en la optimización 

estocástica, en la lógica difusa y en la involucración de los expertos durante 

todo el proceso. Un algoritmo estocástico extendido, capaz de ser usado en 

sistemas complejos con interacciones río-acuífero se ha desarrollado (el CSG-

SDDP). La metodología definida usa lógica difusa para capturar el criterio de 

experto en la definición de reglas óptimas. En primer lugar se reproducen los 

procesos de toma de decisiones actuales y, tras ello, el algoritmo de 

optimización estocástica se emplea para mejorar las reglas previamente 

obtenidas. 

La metodología propuesta en esta tesis se ha aplicado al sistema Júcar 

(Este de España), en el que los recursos hídricos son gestionados de acuerdo 

a complejos procesos de toma de decisiones. La aplicación se ha realizado de 
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dos formas. En la primera, el algoritmo CSG-SDDP se ha utilizado para definir 

una estrategia óptima para el uso conjunto de embalses y acuíferos. En la 

segunda, la metodología se ha usado para reproducir las reglas de operación 

actuales en base a criterio de expertos. La herramienta desarrollada 

reproduce de forma explícita los procesos de toma de decisiones seguidos 

por los operadores del sistema. Dos sistemas lógicos difusos se han 

empleado e interconectado con este fin, así como regresiones difusas para 

predecir aportaciones. El Sistema de Ayuda a la Decisión (SAD) creado se ha 

validado comparándolo con los datos históricos. La metodología desarrollada 

ofrece a los gestores una forma sencilla de definir decisiones a priori 

adecuadas, así como explorar las consecuencias de una decisión concreta. La 

representación matemática resultante se ha combinado entonces con el 

CSG-SDDP para definir reglas óptimas que respetan los procesos actuales. 

Los resultados obtenidos indican que reducir el bombeo del acuífero de 

la Mancha Oriental conlleva una mejora en los beneficios del sistema debido 

al incremento de caudal por relación río-acuífero. Las reglas de operación 

han sido adecuadamente desarrolladas combinando lógica difusa, juicio 

experto y optimización estocástica, aumentando los suministros a las 

demandas mediante modificaciones el balance de Alarcón, Contreras y Tous. 

Estas reglas siguen los procesos de toma de decisiones actuales en el Júcar, 

por lo que pueden resultar familiares a los gestores. Además, pueden 

compararse con las reglas de operación actuales para establecer qué 

decisiones entre las posibles serían coherentes con la gestión actual y, a la 

vez, óptimas. 
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RESUM 

Donat l'alt nombre d'infraestructures construïdes en els països desenrotllats, 

i amb una oposició creixent a la construcció de noves infraestructures en els 

països en vies de desenrotllament, l'atenció de l’anàlisi de sistemes de 

recursos hídrics ha passat a la definició de regles d'operació adequades. Una 

gestió més eficient del recurs hídric és necessària per a poder afrontar els 

impactes del canvi climàtic i de la creixent demanda d’aigua. Per a 

aconseguir-ho, una amplia selecció de ferramentes i models matemàtics 

d'optimització s'han desenrotllat. No obstant això, la seua aplicació pràctica 

en la gestió hídrica continua sent limitada. Una de les més importants línies 

d'investigació per a solucionar-ho busca la col·laboració activa dels experts 

en la definició dels models matemàtics. Per a definir regles d'operació en les 

quals els gestors confien, és necessari tindre en compte el seu criteri expert 

i combinar-ho amb algoritmes d'optimització. 

La present tesi desenrotlla una metodologia, i les ferramentes necessàries 

per a aplicar-la, amb la finalitat de millorar l'operació de sistemes complexos 

de recursos hídrics. En estos, els processos de presa de decisions són 

complicats i se sustenten, almenys en part, en el juí expert dels gestors. Esta 

importància del criteri d'expert en les regles d'operació requereix 

ferramentes matemàtiques capaces d'incorporar-lo en la seua estructura i 

d'unir-lo amb algoritmes d'optimització. 

Les ferramentes i mètodes desenrotllats es basen en l'optimització 

estocàstica, en la lògica difusa i en la col·laboració activa dels experts durant 

tot el procés. Un algoritme estocàstic avançat, capaç de ser usat en sistemes 

complexos amb interaccions riu-aqüífer, s'ha desenrotllat (el CSG-SDDP) . La 

metodologia definida utilitza lògica difusa per a capturar el criteri d'expert 

en la definició de regles òptimes. En primer lloc es reprodueixen els 

processos de presa de decisions actuals i, després d'això, l'algoritme 

d'optimització estocàstica s'empra per a millorar les regles prèviament 

obtingudes. 

La metodologia proposada en esta tesi s'ha aplicat al sistema Xúquer (Est 

d'Espanya), en el que els recursos hídrics són gestionats d'acord amb 

complexos processos de presa de decisions. L'aplicació s'ha realitzat de dos 
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formes. En la primera, l'algoritme CSG-SDDP s'ha utilitzat per a definir una 

estratègia òptima per a l'ús conjunt d'embassaments i aqüífers. En la segona, 

la metodologia s'ha usat per a reproduir les regles d'operació actuals basant-

se en criteri d'experts. La ferramenta desenvolupada reprodueix de forma 

explícita els processos de presa de decisions seguits pels operadors del 

sistema. Dos sistemes lògics difusos s'han empleat i interconnectat amb este 

fi, al igual què regressions difuses per preveure cabdals. El Sistema d’Ajuda a 

la Decisió (SAD) creat s’ha validat comparant-lo amb les dades històriques. 

La metodologia desenvolupada ofereix als gestors una manera senzilla de 

definir decisions a priori adequades, així com per explorar les conseqüències 

d’una decisió concreta. La representació matemàtica resultant s'ha combinat 

amb el CSG-SDDP per a definir regles òptimes que respecten els processos 

actuals. 

Els resultats obtinguts indiquen que reduir el bombament de l'aqüífer de 

la Mancha Oriental comporta una millora en els beneficis del sistema a causa 

de l'increment de l’aigua per relació riu-aqüífer. Les regles d'operació han 

sigut adequadament desenrotllades combinant lògica difusa, juí expert i 

optimització estocàstica, augmentant els subministres a les demandes per 

mitjà de modificacions del balanç d'Alarcón, Contreras i Tous. Estes regles 

segueixen els processos de presa de decisions actuals en el Xúquer, per la 

qual cosa poden resultar familiars als gestors. A més, poden comparar-se 

amb les regles d'operació actuals per a establir quines decisions entre les 

possibles serien coherents amb la gestió actual i, al mateix temps, òptimes. 
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1. INTRODUCTION 

1.1. ROLE OF OPTIMIZATION IN WATER RESOURCES 

The operation of multireservoir systems requires complex decision-making 

processes involving many variables, various (often conflicting) objectives, 

and a considerable amount of uncertainty and risk (Oliveira and Loucks, 

1997). System operators need to balance decisions to address many goals 

while complying with diverse constraints, agreements, and traditions 

affecting water allocation and use (Loucks and van Beek, 2005; Lund and 

Guzman, 1999; Simonovic, 2009). Managers are required to be experts in the 

water resource system they operate, being able to recognize and match all 

the interests, pressures, constraints and available sources of information. 

Given the threaten of climate change, as well as the rising population, 

economic development and living standards causing increasing water 

demands, the need of improving water resource systems efficiency is 

expected to keep growing. 

A large set of mathematical modeling tools has been developed to 

achieve an efficient and integrated use of water resources (Labadie, 2004; 

Lund et al., 2017; Rani and Moreira, 2010; Simonovic, 1992; Singh, 2012; 

Wurbs, 1993; Yeh, 1985). All of them regard to the system features (physical, 

hydrological, economic, institutional and so on) to find out how it should be 

managed (storage levels, releases, demand deliveries, pumping rates, etc.). 

These models can be divided mainly in simulation and optimization. In the 

first ones, the system operating rules are described and introduced in the 

model to find out the performance level associated with them. On the other 

hand, optimization selects a set of values of the decision variables from the 

feasible region that maximizes or minimizes an objective function (Rani and 

Moreira, 2010; Wurbs, 1993). In an optimization procedure, system 

operating rules may be introduced as part of the system model description 

(as constraints) or in the objective function (as goals). 

Simulation models can assume detailed system representations in both 

its features and operation strategies, but cannot derive improved operating 

rules in a proper way (Labadie, 2004). On the contrary, optimization models 

are powerful tools to obtain more efficient management decisions, but their 
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results should be post-processed to transform them into suitable operating 

rules (Oliveira and Loucks, 1997). Optimization models have intrinsic 

limitations that hinder their use in decision-making (Labadie, 2004; Rogers 

and Fiering, 1986). It should be taken into account that the decisions 

obtained by them are only optimal for the mathematical model of the system 

they assume. Reality is more complex than a mathematical model, so results 

need to be adapted to the decision-making processes carried out in real-life.  

All these facts have hurdled the real-life applicability of optimization 

procedures during the last decades, creating a gap between theory and 

practice (Labadie, 2004; Oliveira and Loucks, 1997; Rani and Moreira, 2010; 

Simonovic, 1992; Wurbs, 1993; Yeh, 1985). In the present day, this gap has 

been significantly narrowed thanks to advances in the computation power, 

the increasing usage of decision support systems (DSS) including 

optimization models (Labadie, 2004), and the use of evolutionary 

optimization algorithms able to consider multiple objectives and trade-offs 

between them (Maier et al., 2014; Rani and Moreira, 2010). Hydropower 

systems, which are mostly operated following an economic objective easy to 

be quantified, are often managed employing real-time optimization models 

(Lund et al., 2017). In addition, optimization algorithms are also used, as 

simulation ones, in the long-term planning and the development of 

adaptation measures to face climate change impacts (e.g. Girard et al., 2015). 

In spite of this progress and the increasing interest of decision-makers in 

improved operating rules, there is still a lack of uptake of optimization 

models by the operators of complex water resource systems (characterized 

by multiple and conflicting performance criteria and different points of view), 

who keep relying mostly on simulation techniques (Maier et al., 2014; Rani 

and Moreira, 2010). This is particularly true in the case of the seasonal 

operation (up to one year in advance), given that agricultural decision-

making includes decisions (such as the cropping pattern) that should be 

maintained during certain period (e.g. Marques et al., 2005). The main 

reasons behind this gap is the lack of involvement of system operators in the 

models’ development, the choice of inappropriate methodologies to 

estimate operating rules based on optimization results (Labadie, 2004), and 

the fact that good system operation is a subjective concept, depending upon 

the stakeholders’ views (Maier et al., 2014; Oliveira and Loucks, 1997). 
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In order to improve the level of implementation of optimization models 

in the decision-making processes carried out in complex water resource 

systems, several alternatives have been pointed out in the literature, among 

them: 

1) Increasing the involvement of decision-makers in the development of 

optimization algorithms (Labadie, 2004; Maier et al., 2014). 

2) Improving the linkage between simulation and optimization models 

(Labadie, 2004; Rani and Moreira, 2010). 

3) Adequately framing optimization methods in the decision-making 

processes, in which they should be perceived as part of wider 

management practices (Maier et al., 2014; Oliveira and Loucks, 1997). 

With regard to the linkage between simulation and optimization models, 

computational intelligence and heuristic methods are recognized as the most 

promising alternatives due to its ability to be linked with simulation models 

(Labadie, 2004; Maier et al., 2014; Rani and Moreira, 2010). Considering the 

framing in decision-making, it is crucial to adapt them to the processes 

carried out in reality, since sometimes rules are used in the context of a 

broader scope, including negotiation and agreement reaching (Maier et al., 

2014; Oliveira and Loucks, 1997). Under these circumstances, operating rules 

should provide guidance to the system operators, exploring promising 

management alternatives for further examination rather than finding an 

optimal course of action (Maier et al., 2014). If optimization algorithms are 

desired to be applied in simulation models reflecting the decision-making 

processes, it is required to transform their results into operating rules 

expressed in a way in which system operators rely. To achieve this, close 

cooperation between researchers and decision-makers is necessary, 

involving the latter from the beginning in order to receive a continuous 

feedback and adapt the research outcomes to their needs and practices. 

1.2. GOALS AND OBJECTIVES 

The main goal pursued is the development of methods and tools for 

improving the operation of large-scale water resource systems (comprised of 

both several reservoirs and aquifers and in which surface and ground waters 

interact). This improvement is measured by the increase in monetary 

revenues (hydroeconomic approach) and by the rise in deliveries to the 
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system demands (in line with the metrics established by the case study River 

Basin Authority). 

The proposed research takes into account the interaction between 

surface and groundwater bodies; as well as the different decision-making 

processes, modeling requirements and time horizons possessed by surface 

and groundwater resources. The current decision-making practices and 

operating rules are reproduced in this thesis using heuristic procedures, 

given their potential to be linked with mathematical simulation models. 

Decision-makers are actively involved in the assessment and reproduction of 

the current operation processes and the building of the tools defined in this 

thesis. The suitability of the developments is tested in the Jucar river system 

(Eastern Spain). 

In order to implement the main goal and determine its degree of 

achievement, the following research objectives with regard to the methods 

and the case study applications have been defined. The ones related to the 

methods can be stated as: 

➢ Development of an optimization algorithm able to define optimal 

conjunctive operation decisions of large-scale water resource systems, 

considering both inflow uncertainty and interactions between surface 

and groundwater bodies. 

➢ Build-up of a methodology capable of reproducing and improving the 

seasonal operation of a large-scale water resource system. It should 

be able to merge expert judgment, observed historical decisions and 

optimization results into a Decision Support System (DSS). 

➢ Building of Decision Support System shells able to implement the 

previously defined algorithm, as well as the resulting improved 

operating rules. 

The objectives related to the case study, using the methods previously 

developed, are the following: 

➢ Definition of an improved conjunctive use operation of the Jucar river 

system, taking into account how reservoirs and groundwater bodies 

interact. 

➢ Reproduction of the current decision-making processes of the Jucar 

river system seasonal operation. This reproduction will be built in close 



Introduction 

27 

collaboration with the system operators, in order to assure its 

adequacy to the current practices and to acquire their expert 

judgment. It will be validated against historical records to ensure its 

suitability. 

➢ Application of the optimization algorithm previously developed to 

define optimal seasonal operating rules respecting the current 

decision-making processes. 

1.3. METHODS AND MAIN ASSUMPTIONS 

In order to address the goals and objectives pointed out previously, the 

methods used must have specific features. In particular, the optimization 

algorithm should be applicable to large-scale systems (like the Jucar system) 

and consider inflow uncertainty in decision-making (given the long droughts 

– high inflow correlation – faced by the Jucar river system). This algorithm 

will be used with the focus on the system operation. On the other hand, the 

method employed to reproduce the system operation should be able to 

combine expert knowledge and optimization results, as well as to be easy 

understood by decision-makers without strong foundations on it. The state-

of-the-art of both the optimization algorithms and the procedures to 

mathematically reproduce operating rules is presented in Chapter 2, 

including the advantages and limitations of the main approaches followed in 

the literature so far. 

The analysis period will cover mainly the first decade of the 21st century. 

The system features considered in the analysis (inflows, demands, 

environmental requirements and so on) will correspond to this period. The 

time span choice is conditioned by the need of validating the current 

operating rules and decision-making processes against historical records. 

Applying the analyses carried out in this thesis to future climatic conditions 

would require to continuously update the models at the light of the 

forecasted future climate. 

Considering the issues pointed out previously, this PhD thesis relies on 

two mathematical methods: stochastic programming and fuzzy logic. The 

first one will be used to obtain time series of optimal decisions, while the 

second will be employed to support seasonal operation representing the 

current practices of the system. Fuzzy logic will also be used to transform 
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optimization results into operating rules, taking into account expert 

judgment. 

Explicit stochastic programming is a family of optimization techniques in 

which a probabilistic description of inflows is included within the algorithm 

structure (Labadie, 2004). It has been chosen in this thesis because it does 

not work with perfect foreknowledge of future inflows, a phenomenon that 

would make the obtained decisions optimal just for the hydrologic time 

series analyzed (Labadie, 2004). This issue becomes relevant in river systems 

like the Jucar, subject to drought operating conditions, as optimal decisions 

from deterministic programming algorithms would not provide an adequate 

hedging strategy (Rani and Moreira, 2010). 

Among the stochastic optimization algorithms available, SDDP (Pereira 

and Pinto, 1991, 1985) is one of the few alternatives able to optimize large-

scale water resource systems due to its reduction of the computational 

burden suffered by SDP when the number of state variables increase (Goor, 

2010; Rani and Moreira, 2010). Furthermore, SDDP has been long used in 

large-scale system applications in which hydropower, agriculture and urban 

uses coexist (Rani and Moreira, 2010). 

SDDP has been combined in this thesis with the stream-aquifer 

interaction model EMM (Embedded Multireservoir Model, Pulido-Velazquez 

et al., 2005). EMM’s formulation is based on the structure of the analytical 

solution of the stream-aquifer interaction problem obtained from the 

groundwater flow equation applied into linear systems (confined aquifers or 

unconfined aquifers with negligible head variations compared with its 

thickness), as well as its analogy with the state equation of the groundwater 

linear reservoir model (Sahuquillo, 1983). It represents stream-aquifer 

interaction as the summation of the drainage of one or more reservoirs with 

discharges linearly proportional to the volume store above the outlet. 

Although the EMM is unable to obtain spatially-distributed heads, it has been 

shown to provide accurate representations of stream-aquifer interactions, 

even in complex cases such as karstic aquifers (Estrela and Sahuquillo, 1997). 

Further information on analytical and numerical derivations of the EMM can 

be found in Pulido-Velazquez et al. (2008, 2006a, 2005). 
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The resulting algorithm, the CSG-SDDP, is able to obtain optimal decisions 

under inflow uncertainty considering the influential stream-aquifer 

interactions. These decisions consist of reservoir releases, demand deliveries 

and pumping rates from aquifers. In spite of its ability to define optimal 

decisions making a joint operation of reservoirs and aquifers, the inclusion of 

groundwater bodies enlarges the size of the optimization problem and thus 

the computational requirements. However, they do not grow enough to 

suppose a challenge in terms of the computational power required. 

Moreover, the characterization of stream-aquifer interactions requires 

detailed information on groundwater behavior. The algorithm is also subject 

to the features of any hydroeconomic procedure (need of enough 

information to build the economic characterization of the system), the SDDP 

algorithm (social planner approach, single objective optimization), the EMM 

(not modeling groundwater heads and internal groundwater flows), and the 

social planner perspective (perfect cooperation is assumed). 

Assuming that heuristic procedures offer the most efficient way to 

reproduce complex decision-making processes and operating rules, as well 

as being easily combined with simulation algorithms (Labadie, 2004; Rani and 

Moreira, 2010), decision moves to choosing the right heuristic method. Fuzzy 

logic (Mamdani, 1974; Zadeh, 1965), is one of the most popular derivations 

of the fuzzy set theory. It is an alternative to the classic or Boolean logic in 

which fuzzy sets and fuzzy numbers are used to quantify the inputs and 

outputs of each logical or IF-THEN rule. A fuzzy logic system or fuzzy rule-

based system is a collection of fuzzy logic rules mapping inputs to outputs, as 

done by other heuristic procedures like Artificial Neural Networks or 

Bayesian networks. In terms of its efficiency in reproducing complex 

decision-making processes and rules, fuzzy logic offers a similar performance 

level than other heuristic methods. 

Fuzzy logic has been chosen in this PhD thesis mainly due to its ability to 

accommodate expert knowledge in its construction, to combine it with data-

based information sources and to link language with mathematics. Thanks to 

this, fuzzy logic can be intuitively perceived and easy to be understood and 

managed by people not familiar with its foundations (Pedrycz et al., 2011; 

Sen, 2010). Furthermore, fuzzy logic is better suited to situations in which 

data availability is scarce, in contrast to Artificial Neural Networks or 
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Bayesian networks, which require more data records to be fully operative. 

On the contrary, fuzzy logic can easily replace this lack of data by expert 

knowledge. 

1.4. STRUCTURE OF THE DOCUMENT 

This document has been divided into 8 chapters, going from an introduction 

to the conclusions through the state-of-the-art review, the presentation of 

the methods and tools developed, the two different applications to the Jucar 

river system and the results. Finally, conclusions and further research lines 

are identified, followed by the list of dissemination activities and the 

references. 

The introductory chapter (Chapter 1) presents the context, exposition of 

goals, objective, methods and assumptions. 

The state-of-the-art review (Chapter 2) has been divided into two parts. 

The first one is devoted to defining optimal operating rules, including the 

frameworks and mathematical tools employed so far. The second one 

regards to the use of the fuzzy set theory in water resources, focusing on 

fuzzy logic, fuzzy regression and the ways to represent expert knowledge. 

The materials and methods part is covered in two chapters. Chapter 3 

presents the extension of the SDDP algorithm to take into account stream-

aquifer interactions, able to define optimal conjunctive use strategies. It also 

includes the description of the ESPAT tool, the general-purpose DSS shell 

created to perform CSG-SDDP runs. Chapter 4 describes the framework 

developed in this thesis con combine fuzzy logic, stochastic programming and 

expert knowledge to define optimal operating rules adapting to the system 

operators’ requirements and processes. 

The application of the materials and methods to the case study, the Jucar 

river system, is presented in the next three chapters. Chapter 5 introduces 

the system and its operation. Chapter 6 focuses on the definition of an 

optimal conjunctive use strategy for the system. Chapter 7 presents a 

collaborative framework to couple historical records with expert knowledge 

and criteria to define a decision support system (DSS) that helps on the 

seasonal operation of the Jucar river system. The framework relies on the co-

development of a DSS tool, based on fuzzy logic, which explicitly reproduces 
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the decision-making processes and criteria followed by the system operators. 

Optimization results are used to improve the system operating rules. 

Chapter 8 consists of a summary of the thesis and the conclusions drawn 

from it with regard to the application of the methods to the Jucar river 

system, and outlines several investigation lines that could be further 

explored based on the results of this thesis. 
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2. STATE-OF-THE-ART 
The following state of the art is divided in two main parts. The first one 

reviews the methods employed in the design of operating rules based on 

optimization models. In the second one, the use of fuzzy logic in water 

resources is described, as well as fuzzy regression and how expert knowledge 

can be modeled. Finally, some remarks about optimization procedures 

applied to large-scale systems with reservoirs and aquifers are given. 

2.1. DEVELOPMENT OF RESERVOIR OPERATING 
RULES 

Mutireservoir systems management has been extensively studied in the 

literature, usually employing computer simulation or optimization models, 

or combinations of both (Labadie, 2004; Oliveira and Loucks, 1997; Rani and 

Moreira, 2010; Simonovic, 1992; Singh, 2012; Wurbs, 1993; Yeh, 1985). The 

mathematical representation of optimal system operations has been 

addressed by three different approaches in the literature: using an 

optimization algorithm for real-time operation based on the system state 

and some forecasting tools; developing a priori reservoir operating rules; and 

building a representation of the implicit reservoir operating rules. In the last 

two, operating rules need to be explicitly expressed. These rules can take 

many forms, from simple to complex mathematical formulations, and should 

indicate the actions to be taken by the system operators depending on the 

system conditions expressed through variables like storage state, time of the 

year and forecasted hydrology (Loucks and van Beek, 2005; Lund et al., 2017; 

Oliveira and Loucks, 1997). 

For deriving optimal operating rules, it is necessary to decide how they 

are going to be obtained and the mathematical representation to be used. 

Both decisions are linked, since the formulation of the rules can condition 

the way they are estimated, and some of the methods developed to design 

operating rules are restricted to one or several rule forms. 

2.1.1. Deriving operating rules from optimization models 

Although systems’ optimization models have been long used for water 

resources planning and management, the conversion of their results into 
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operating rules is not easy and direct (Lund, 1996). The alternatives existing 

to do so consist of the direct use of optimization results, the definition of 

operating rules with a priori rule forms, or the inference of rules from 

optimization results. In order to choose the right alternative, one should take 

into account the case study features and the purpose of the operating rules. 

Direct optimization of the system’s operation 

Optimization models have been largely employed for analyzing potential 

improvements in the operation of water resource systems (e.g. Labadie, 

2004; Rani and Moreira, 2010; Simonovic, 1992; Singh, 2012; Wurbs, 1993; 

Yakowitz, 1982; Yeh, 1985). Regarding the purpose of the algorithm and its 

time horizon, its use can be divided into two categories: long-term 

optimization and real-time optimal control with forecasting. 

Long-term optimization 

This option employs an optimization algorithm applied to long-term periods 

(monthly time steps with planning horizons of more than a decade) in order 

to extract and analyze the ideal operation of the system and its associated 

performance. The goal of the analysis is not to derive an entire set of 

operating rules, but to suggest certain aspects of the system management 

that could be changed to improve its efficiency. This category can 

accommodate a wide range of algorithms, including deterministic (implicit 

stochastic) optimization, stochastic (explicit stochastic) optimization and 

heuristic optimization (Fig. 2.1). 

The implicit stochastic optimization (ISO) approach consists in using 

deterministic programming procedures to optimize a large set of inflow time 

series (one long inflow sequence or several shorter ones) in order to capture 

most of the stochastic aspects included in the problem (Labadie, 2004; 

Mousavi et al., 2005; Rani and Moreira, 2010). The general optimization 

equation is: 

𝐹 = 𝑚𝑎𝑥
𝑟𝑡

∑ 𝐵𝑡(𝑠𝑡, 𝑟𝑡, 𝑞𝑡)

𝑡

 2.1 

Where F total benefit, Bt benefit obtained in time stage t; rt optimal decision 

made during time stage t; st initial storage at time stage t; and qt inflow during 

time stage t. This equation is subject to the mass balance between st and st+1, 
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and to the variables’ bounds constraints. Implicit stochastic programming is 

mainly divided into linear programming, non-linear programming and 

dynamic programming (Labadie, 2004; Rani and Moreira, 2010; Yeh, 1985). 

 

Fig. 2.1: Long-term optimization algorithm classification 

The primary advantage of this approach is the ability of deterministic 

programming algorithms to be applied in large water resource systems, thus 

being able to solve complex problems with less simplification needs than 

stochastic programming. However, they are subject to the perfect foresight 

phenomenon: since the allocation decisions are optimized for the whole 

inflow time series, the problem knows future inflows in advance, having an 

unrealistic advantage. This phenomenon implies that the optimal decisions 

obtained are unique to the assumed hydrologic time series (Labadie, 2004). 

The optimization problem can be solved through linear programming (LP), 

non-linear programming (NLP) and dynamic programming (DP). 

In linear programming (LP) algorithms, both the objective function and 

the constraints are expressed using linear equations (Yakowitz, 1982; Yeh, 

1985). Its advantages are its efficiency, its global optimum convergence 

guarantee, the non-necessity of a starting point for the calculations and a 
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developed duality theory (Labadie, 2004). Its main disadvantage is the 

necessity of a linear problem, which sometimes requires the assumption of 

simplifications or previous analyses to turn all the mathematical 

relationships into linear (Rani and Moreira, 2010). 

Non-linear programming (NLP) algorithms are required when the problem 

cannot be transformed into a linear one. In comparison with LP, non-linear 

programming algorithms are slower, iterative, resource-consuming and in 

need of a starting point (Simonovic, 1992). However, they are able to obtain 

optimal solutions when linear programming problems cannot be applied 

(Simonovic, 1992). When applying a non-linear programming method, one 

should be aware of the starting point used, since the solver may fail in finding 

an optimal solution depending on it. In order to tackle this issue, Cai et al. 

(2001) developed a piece-by-piece approach in which the problem was 

decomposed into several subproblems that were sequentially solved using 

as starting point the solution of the previous one. This scheme succeeded in 

avoiding solver’s failure, reducing the problem’s complexity and decreasing 

the time required. Examples of NLP can be found in Cai et al, (2001); Satti et 

al. (2015); Theodossiou (2004); and Vieira et al. (2011). 

Dynamic programming (DP, Bellman 1957) is one of the most popular 

optimization techniques for sequential decision-making (Simonovic, 1992; 

Yakowitz, 1982; Yeh, 1985). Dynamic programming approaches multistage 

optimization problems by decomposing them into series of single-stage 

problems that are sequentially solved (Labadie, 2004; Rani and Moreira, 

2010; Simonovic, 1992). This procedure reduces the computational effort 

required to solve the multistage problem and tackles its non-linearities in an 

efficient way (Labadie, 2004; Nandalal and Bogardi, 2007). 

In its original form, also named as discrete dynamic programming (DDP), 

the state and decision variables (usually initial and final storages) are 

discretized for each time stage. Then, for all combinations of discrete 

storages, the benefit function Ft(st) is recursively optimized moving (usually) 

backwards between the end of the planning horizon (t=T) and the present 

(t=1). To do so, the Bellman equation must be solved for each and every time 

stage t (Labadie, 2004; Nandalal and Bogardi, 2007; Rani and Moreira, 2010): 

𝐹𝑡(𝑠𝑡) = 𝑚𝑎𝑥
𝑟𝑡
[𝐵𝑡(𝑠𝑡, 𝑟𝑡) + 𝐹𝑡+1(𝑠𝑡+1)] 2.2 
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Were st discrete initial storage at time stage t; rt decision (release or final 

storage) made, Bt immediate benefits obtained from the system operation at 

time stage t, which are the results of the previous solver executions; Ft+1 

benefits-to-go between time stage t+1 and the end of the planning horizon; 

and st+1 discrete initial storage at time stage t+1. 

The main drawback of DDP is the discretization of variables, since only 

combinations of the discrete states previously defined are considered when 

finding an optimal solution. Consequently, accurate solutions require the use 

of finer discretizations, which increase the number of solver executions and 

thus the computational costs. This phenomenon is known as the curse of 

dimensionality (Labadie, 2004). In order to alleviate it, several modifications 

of the original DP algorithm have been developed (Labadie, 2004; Rani and 

Moreira, 2010): incremental DP (IDP), discrete differential DP (DDDP), DP 

with successive approximations (DPSA), differential DP (DDP), constrained 

differential DP (CDDP) and so on. Examples of DP can be found in Grüne and 

Semmler (2004); Hall and Buras (1961); Johnson et al. (1993); Liu et al. (2011); 

Nandalal and Bogardi (2007); and Turner and Galelli (2015). 

The main difference between the ISO and the explicit stochastic 

optimization (ESO) approach is that the latter uses stochastic programming 

algorithms. These algorithms embed probabilistic descriptions of inflows, 

thus the optimization is performed without the assumption of perfect inflow 

foreknowledge (Labadie, 2004; Rani and Moreira, 2010): 

𝐹 = 𝑚𝑎𝑥
𝑟𝑡

𝐸 [∑𝐵𝑡(𝑠𝑡, 𝑟𝑡 , 𝑞𝑡)

𝑡

]

𝑞

 2.3 

Where F total benefit obtained; rt optimal decision made during time 

stage t; E expectation operator; Bt benefits obtained through the system 

operation in time stage t; st initial storage at time stage t; and qt inflow during 

time stage t. This equation is subject to the mass balance between st and st+1, 

and to the variables’ bounds constraints. 

The main advantage of ESO is the absence of the perfect foresight 

phenomenon, thus achieving efficiency levels that could be attainable in real 

life. Furthermore, these methods directly obtain optimal rules without the 

(theoretical) need of ex post analyses (Labadie, 2004). On the other hand, 
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they are more computationally challenging than ISO, since they embed the 

inflows’ probabilistic description within its formulation (Labadie, 2004). 

Moreover, the form in which the operating rules are obtained by default is 

method-dependent and may not match the desired one. Explicit stochastic 

optimization algorithms can be mainly divided in chance-constrained 

programming, stochastic linear programming and stochastic dynamic 

programming. 

In the chance-constrained programming algorithm, inflows are treated as 

random variables with a probability distribution. A risk level is established 

and the operation decisions are bond to it (Eisel, 1972; Revelle et al., 1969). 

The lower the risk level is, the tough the restrictions are and thus the more 

conservative is the operation of the system (Labadie, 2004). The main 

drawback associated with chance-constrained programming is that the 

operating rules obtained are more conservative than the risk level assumed 

by the optimization algorithm, requiring further Monte Carlo analyses to 

determine their true risk level and iterative processes to adjust it to the 

desired limits (Labadie, 2004). Furthermore, the temporal correlation of 

inflows is not taken into account. Examples of chance-constrained 

applications can be found in Eisel (1972); Houck (1979); Revelle et al. (1969); 

Sahinidis (2004); Xu et al. (2017); and Zeng et al. (2013). 

Stochastic linear programming (SLP) models operate under the 

assumption that current decisions can be made with certain information, but 

future ones are subject to growing uncertainties (Labadie, 2004). 

Consequently, the problem is built as a two-stage one, in which the goal is to 

maximize the benefits obtained with the current (first stage) decisions plus 

the expected benefits of the future decisions (second stage), which depend 

on the current ones and future random inflows (Marques et al., 2005). The 

algorithm is executed each time stage to obtain the best decision and the 

information is updated time stage after time stage. Its primary advantage is 

that it efficiently divides the decision-making process according to the 

uncertainty level: one stage without uncertainty and other one with 

uncertainty. Its main disadvantage is that inflow scenarios are required for 

the second stage and, unless a reduced number of them are chosen, the 

problem becomes computationally challenging (Labadie, 2004). 
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Stochastic dynamic programming (SDP, Stedinger et al. 1984) combines 

the DP methodology with an explicit consideration of inflow uncertainty 

(Rani and Moreira, 2010). Its general equation combines the DP one with the 

general explicit stochastic programming formulation: 

𝐹𝑡(𝑠𝑡) = 𝑚𝑎𝑥
𝑟𝑡

𝐸[𝐵𝑡(𝑠𝑡 , 𝑟𝑡 , 𝑞𝑡) + 𝐹𝑡+1(𝑠𝑡+1, 𝑞𝑡)]𝑞 2.4 

Were Ft total benefits between time stage t and the end of the planning 

horizon; st initial storage at time stage t; rt decision (release or final storage) 

made; E expectation operator; Bt immediate benefits obtained from the 

system operation at time stage t; qt inflows during time stage t; Ft+1 benefits-

to-go between time stage t+1 and the end of the planning horizon; and st+1 

initial storage at time stage t+1. 

In its standard formulation, both the storage and the inflow variables are 

discretized and a probabilistic description in the form of a Markov Chain is 

used to estimate the probabilities associated with any possible discrete 

future inflow given the current discrete value (Nandalal and Bogardi, 2007). 

The main result of the algorithm is the operating rule in the form of a table, 

in which the optimal decision is provided given any possible discrete storage 

and inflow combination (Loucks and van Beek, 2005). In this form, SDP 

possesses the same advantages as deterministic DP but without being 

subject to the perfect foresight phenomenon. However, it suffers a stronger 

curse of dimensionality than deterministic DP due to the use of discrete 

storages and inflows (Labadie, 2004; Rani and Moreira, 2010). Several 

derivatives of SDP have been developed in order to provide alternative ways 

to solve stochastic programming problems. The most popular among them 

are: 

• Stochastic dual dynamic programming (SDDP, Pereira and Pinto 1985) 

uses dual variables to build efficient representations of the benefit-to-

go functions, in order to tackle the curse of dimensionality. This 

approach is explained in more detail in Chapter 3. 

• Sampling SDP (SSDP Kelman et al. 1990), in which the discrete inflow 

values are substituted by a scenario-based approach that partially 

alleviates the curse of dimensionality. 
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• Bayesian SDP (BSDP, Karamouz and Vasiliadis 1992), embedding a 

Bayesian network in a SDP algorithm in order to continuously update 

the Markov Chain as the hydrological information increases. 

• Demand-driven SDP (DDSP, Vasiliadis and Karamouz 1994) that aims 

at incorporating demand uncertainties in the analysis. 

• Fuzzy SDP (FSDP): two derivatives use this name: 

o A SDP variant in which the objectives were expressed using fuzzy 

sets (Tilmant et al., 2002a). 

o A SDP formulation in which fuzzy transition probabilities, fuzzy 

reservoir states and/or other fuzzy variables were employed 

(Mousavi et al., 2004b; Mujumdar and Kumari, 2015). 

• Reinforcement learning (Lee and Labadie, 2007), whose aim is to 

tackle the curse of dimensionality by letting the algorithm learn in a 

continuous way. 

Examples of applications of SDP and their derivatives can be found in 

Nandalal and Bogardi (2007); Pereira-Cardenal et al. (2015); Pereira and 

Pinto (1991, 1985); Stedinger et al. (1984); Tejada-Guibert et al. (1993); 

Turner and Galelli (2015); and Zhao et al. (2014). 

Heuristic optimization, also known as computational intelligence, 

evolutionary algorithms or metaheuristics, differs from the previous 

approaches in the way it addresses the optimization problem. Rather than 

based on algorithmic procedures following well-founded mathematical 

theories, heuristic optimization relies on making analogies between the 

optimization problem and natural processes based on the survival or success 

of the best (Labadie, 2004). These procedures apply an intelligent search in 

order to optimize the problem. They do not guarantee the achievement of 

an optimal solution (even local), but they are able to obtain optimal decisions 

to problems in which traditional algorithms would fail to converge or would 

only be able to obtain local optima (Labadie, 2004). 

Their main advantage is their efficiency in handling non-linearities and 

discontinuous variables, their suitability to solve multi-objective procedures 

and their possibility to be easily linked with simulation models (Labadie, 

2004; Maier et al., 2014; Rani and Moreira, 2010). A lot of algorithms have 
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been developed, each of one having their own advantages and disadvantages 

with respect to the rest. Some of the most common heuristic procedures are: 

• Genetic algorithms (GA): based on natural genetics and evolutionary 

processes. Examples of application can be found in Bozorg-Haddad et 

al. (2017); Oliveira and Loucks (1997); Reed et al. (2013); and Salazar 

et al. (2016). 

• Simulated annealing (SA): in which the algorithm mimics the annealing 

process used in glass making or metallurgy (e.g. Teegavarapu and 

Simonovic, 2002). 

• Tabu search (TS): similar to SA processes (Glover and Taillard, 1993) 

but lightly applied to water resources management. 

• Ant colony optimization (ACO): based on how ants find the closest way 

to food sources (e.g. Safavi and Enteshari, 2016). 

• Particle swarm optimization (PSO): similar to GA algorithms. 

• Honey bees mating optimization: which reproduces the process with 

which honey bees meet (e.g. Haddad et al., 2006). 

• Bat algorithm (BA): in which the procedure reproduces the 

echolocation or sonar system employed by the bats when flying (e.g. 

Bozorg-Haddad et al., 2014). 

Real-time optimal control with forecasting 

The direct use of an optimization algorithm in real-life operation is only 

possible at short time horizons (hourly or daily time steps and time spans of 

weeks or months) and in water resource systems in which the objective is 

unique and clearly defined, such as maximizing hydropower production or 

minimizing pumping costs (e.g. Bauer-Gottwein et al., 2015; Caseri et al., 

2016; Castelletti et al., 2014; Ficchì et al., 2015; Teegavarapu and Simonovic, 

2000). 

Most of the real-life applications of optimization algorithms refer to real-

time optimal control with forecasting. This method, also known as Model 

Predictive Control (MPC) with forecasting, is based on the receding horizon 

principle: the problem is optimized over a finite time horizon, for which a 

forecast is available, but only the decision obtained for the first time step is 

implemented. For the next time stage, the problem is re-formulated 
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updating the forecast and solved again, repeating the process from time step 

to time step (Castelletti et al., 2008; Galelli et al., 2014; Lin and Rutten, 2016). 

This algorithm construction makes it especially suited to the short-term 

operation of water resource systems. 

For example, consider that, at time stage t, a forecast is available for the 

next n stages. An optimal control model would solve the optimization 

problem for the time horizon [t, t+n] using this forecast. However, only the 

decision obtained for the first time stage (r1) would be implemented. At time 

stage t+1, the problem would be re-built and solved using an updated 

forecast for the [t+1, t+n+1] period. The process would be repeated each 

time stage, continuously updating the forecast information. 

The main advantages of real-time optimal control are its higher flexibility 

compared with conventional methods, being also more realistic, and its 

ability to be included in early warning systems (Jain and Singh, 2003). The 

flexibility is achieved by continuously updating the control model and the 

forecast information available. 

Regarding the optimization techniques, the same algorithms as presented 

for the long-term optimization can be used in MPC. The choice depends on 

the optimization goals, the system features and the available information. 

Considering the inflow forecasting methods, the main options used so far 

consist of hydrological and/or hydraulic models forced with meteorological 

forecasts (Bianucci et al., 2015; Caseri et al., 2016; Côté and Leconte, 2015; 

Faber and Stedinger, 2001; Ficchì et al., 2015; Pianosi and Ravazzani, 2010; 

Raso et al., 2014); stochastic autoregressive models predicting inflows based 

on current streamflows and/or rainfall (e.g. Mizyed et al., 1992; Pianosi and 

Ravazzani, 2010; Pianosi and Soncini-Sessa, 2009); and decision trees in 

which future inflows were predicted based on past and present 

meteorological and hydrological information (e.g. Chazarra et al., 2016; Côté 

and Leconte, 2015; Galelli et al., 2014; Raso et al., 2014, 2013). 

MPC has been mainly applied to urban reservoirs (e.g. Galelli et al., 2014), 

irrigation and drainage control (e.g. Mizyed et al., 1992; Overloop et al., 

2008), hydropower (e.g. Bianucci et al., 2015; Côté and Leconte, 2015; Sordo-

Ward et al., 2012; Teegavarapu and Simonovic, 2000), and flood protection 
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(e.g. Caseri et al., 2016; Ficchì et al., 2015; Raso et al., 2014). Comprehensive 

reviews can be found in Castelletti et al. (2008); and Lin and Rutten (2016). 

Using a priori operating rule forms 

In this approach, the rule form in which the system operation is 

conceptualized is chosen before running any algorithm, being explicitly 

included in its formulation. This framework can accommodate optimization 

algorithms and combined simulation-optimization approaches. 

If employing an optimization algorithm, the equations of the chosen rule 

form are embedded into its formulation. The algorithm is executed to obtain 

the rule parameter set that maximizes the system’s efficiency. Objective 

functions used in the literature consisted mainly in minimizing the required 

reservoir capacity (Houck, 1979; Loucks, 1970; Revelle et al., 1969); 

optimizing a combination of performance indicators (Gundelach and ReVelle, 

1975; ReVelle and Gundelach, 1975; Revelle and Kirby, 1970); and 

maximizing the benefits obtained from operation (Eisel, 1972; Houck et al., 

1980; Wan et al., 2016). This process guarantees the achievement of an 

optimal rule with the given rule form. However, the incorporation of the rule 

form equations increases the complexity of the optimization problem, thus 

requiring simplifications that may cause the optimal rules to be ill-defined. 

Combined simulation-optimization approaches take advantage of the 

complementary features possessed by optimization and simulation models. 

These processes have grown in the last years thanks to the rise of heuristic 

optimization, which can effectively combine simulation and optimization 

procedures while handling complex performance criteria (e.g. Ashbolt et al., 

2016; Lerma et al., 2015, 2013; Yang and Ng, 2016). The main rule forms 

assumed by these procedures have been regression equations (e.g. Ahmadi 

et al., 2014; Bolouri-Yazdeli et al., 2014; Celeste et al., 2009; Fallah-

Mehdipour et al., 2012); operating rule curves (e.g. Celeste and Billib, 2009; 

Lerma et al., 2013; Wan et al., 2016); radial basis functions (e.g. Giuliani et 

al., 2015); and fuzzy rule-based systems (e.g. Yang and Ng, 2016). 

Inferring rules from optimization results 

In this approach, an optimization algorithm is executed and its results 

analyzed in order to define the rule that best fits them. Any optimization 
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procedure can be chosen, based on either deterministic or stochastic 

programming (Karamouz and Houck, 1987; Labadie, 2004; Rani and Moreira, 

2010). The framework of this approach consists in running an optimization 

model using the historical and/or alternative inflow time series, analyzing its 

results and deriving operating rules, which are tested using simulation 

models to refine and validate them and, if required, the optimization model 

too. 

The rule forms mainly employed in the literature are shown in Table 2.1. 

They have grown in the last years due to the increase in computer power and 

the emergence of heuristic and knowledge-based procedures such as 

artificial neural networks or fuzzy rule-based systems. 

Table 2.1: Main approaches for inferring rules from optimization results 

Rule form family Examples 

Regression equations 

Bhaskar and Whitlatch (1980); Huang et al. (2016); 
Karamouz et al. (1992); Karamouz and Houck (1987, 
1982); Loucks (1970); Lund (1996); Lund and Ferreira 

(1996); Lund and Guzman (1999); Young (1967) 

Interpolation equations 
Celeste et al. (2009); Davidsen et al. (2014); Tejada-

Guibert et al. (1993) 

Data mining 
Bessler et al. (2003); Hejazi et al. (2008); Hejazi and Cai 

(2009, 2011); Yang et al. (2016) 

Artificial Neural Networks Chandramouli and Raman (2001); Liu et al. (2006) 

Fuzzy Rule-based Systems 
Dubrovin et al. (2002); Panigrahi and Mujumdar (2000); 

Russell and Campbell (1996) 

Reinforcement learning 
Castelletti et al. (2013, 2010); Lee and Labadie (2007); 

Madani and Hooshyar (2014) 

2.1.2. Mathematical formulations of operating rules 

Operating rules obtained from optimization models should link current and 

predicted state variables (storages, groundwater levels, current and/or 

forecasted inflows, demands, etc.) with operational decisions (releases, 

target storages, deliveries and so on). Several mathematical formulations 

have been developed to address these relationships, growing during the last 

years due to the development of computational intelligence and heuristic 

methods. According to their features, they can be mainly divided into four 

families of methods: empirically-based methods, rules-of-thumb, heuristic 

procedures and knowledge-based approaches. 
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Empirically-based operating rules 

This family of methods refers to the empirical development of operating 

rules from the results of optimization algorithms using mathematical 

equations. 

Regression 

Regression was the first wide-used mathematical representation of 

operating rules based on optimization results (Bhaskar and Whitlatch, 1980; 

Karamouz and Houck, 1982; Loucks, 1970; Revelle et al., 1969; Young, 1967). 

Its main advantages are the fact that it is easy to apply, conceptually simple 

and with a wide range of applicability. It is also scalable and easy to be 

embedded in different optimization and simulation algorithm configurations. 

Its main drawback is that it may lead to poor correlation coefficients 

invalidating the obtained rules (Labadie, 2004). Moreover, regression results 

depend on the pre-fixed regression equation form used, being difficult to tell 

in advance which could be the best one. 

The standard regression procedure consists in assuming an equation form 

and fitting its coefficients to reproduce as close as possible the optimization 

results. Optimization procedures are required to determine which 

coefficients maximize the quality of the regression (evaluated through 

indices such as the correlation coefficient, the R-squared, the Nash-Sutcliffe 

coefficient, etc.). The main regression procedures used in water resources 

management are linear regression, nonlinear regression, piecewise linear 

regression, fuzzy regression and support vector regression (Table 2.2). 

Table 2.2: Examples of rule inference using regression 

Regression procedure Examples 

Linear regression 
Bhaskar and Whitlatch (1980); Karamouz et al. (1992); 

Karamouz and Houck (1987, 1982); Loucks (1970); 
Ostadrahimi et al. (2012); Young (1967) 

Nonlinear regression 
Bhaskar and Whitlatch (1980); Celeste et al. (2009); 

Celeste and Billib (2009) 

Piecewise linear regression 
Huang et al. (2016); Lund (1996); Lund and Ferreira 

(1996); Pulido-Velazquez et al. (2004) 

Fuzzy regression Malekmohammadi et al. (2009); Mousavi et al. (2007) 

Support vector regression Aboutalebi et al. (2015); Ji et al. (2014) 
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Interpolation 

Interpolation defines operating rules based on the results obtained at some 

specific points, extending them to the whole state space of the explanatory 

variables. The resulting operating rules consist of a set of mathematical 

functions defined using the available points as boundary conditions. This 

maintenance of the given values is the main advantage of interpolation, as 

well as a better representation of the variability observed across the space 

of the explanatory variables (Celeste et al., 2009). On the other hand, the 

mathematical representation obtained is usually complex, since each region 

between neighboring points needs its own equation. 

The most common interpolation equations are the piecewise linear and 

the piecewise cubic (also known as cubic splines). Interpolation is mainly 

used in conjunction with discrete dynamic programming or stochastic 

dynamic programming, to extend their results to the whole state space. In 

this way, it reduces the need of finer discretizations of the state variables, 

alleviating the curse of dimensionality (Celeste et al., 2009; Davidsen et al., 

2015; Goor, 2010; Johnson et al., 1993; Nandalal and Bogardi, 2007; Tejada-

Guibert et al., 1993). 

Data mining 

This technique efficiently analyzes large data sets to discover their hidden 

patterns or trends (Bessler et al., 2003), as well as which state variables are 

the most relevant drivers of decision-making (Hejazi and Cai, 2009). Instead 

of using a pre-set of candidates, data mining finds out the variables that 

should be taken into account in the definition of operating rules (Hejazi and 

Cai, 2011). Data mining can be used jointly with regression equations (Bessler 

et al., 2003) or as a pre-analysis technique (Hejazi and Cai, 2009; Soleimani 

et al., 2016) to ensure an adequate variable selection. 

Rules-of-thumb 

Rules-of-thumb are based on conceptual or mathematical deductions, 

experience and engineering principles (Lund, 1996; Lund et al., 2017; Lund 

and Guzman, 1999). These rules can be defined for diverse reservoir 

configurations, in series or in parallel, and for different operating purposes 

(Table 2.3, based on the comprehensive review by Lund et al., 2017). 
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Although each rule form possesses its own advantages and drawbacks, all 

of them have in favor a conceptually simple definition and the confidence 

that system operators have in them. Even some, as rule curves, appear in the 

regulatory frameworks of water resource systems (e.g. CHJ, 2013). Since 

their purpose is to guide system operators, they are usually used in real-life 

in conjunction with expert knowledge (Oliveira and Loucks, 1997). This need 

of additional specifications to map state variables to decisions is their 

primary disadvantage for their use in mathematical modeling. 

Table 2.3: Main rules-of-thumb summary of applicability 

Rule name System types Operating purposes 

Standard Operating Policy (SOP) Single reservoir 
Water supply, flood control, 
navigation, environmental, 

recreation 

Hedging rules (HR) Single reservoir 
Water supply, flood control, 
navigation, environmental, 

recreation 

Pack rules (PR) Single reservoir 
Water supply, hydropower 

production 

Rule curves Single reservoir Multiple purposes 

Zone-based operation Single reservoir Multiple purposes 

Water Storage Rules (WSR) Reservoirs in series 
Water supply, navigation, 
environmental, recreation 

Flood Control Rules (FCR) Reservoirs in series Flood control 

Hydropower rules Reservoirs in series Hydropower production 

New York City Space Rule (NYCSR) Reservoirs in parallel 
Water supply, navigation, 
environmental, recreation 

Equal Ratio Space Rule (ERSR) Reservoirs in parallel 
Water supply, navigation, 
environmental, recreation 

Flood Control Space Rule (FCSR) Reservoirs in parallel Flood control 

The form most used in research so far seems to be the rule curves (Celeste 

and Billib, 2009; Lerma et al., 2013; Wan et al., 2016). Classic rules for single 

reservoirs are the Standard Operating Policy (SOP) and, most common and 

efficient, hedging rules that reduce potential future severe shortages by 

reducing water deliveries when water availability is low (Lund and Draper, 

2004; You and Cai, 2008). 
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Heuristic operating rules 

The operation of complex multireservoir multipurpose water resource 

systems is likely to not be efficiently characterized using empirically-based 

rules or rules-of-thumb. This is because they would require complex fitting 

procedures ending sometimes in poor correlation coefficients (Labadie, 

2004); or because they are beyond the applicability of rules-of-thumb (Lund 

et al., 2017). Heuristic procedures, on the other hand, are able to efficiently 

model the operation of complex water resource systems. They have grown 

in the last years favored by a continuous development of new methods and 

the rise of computation power. Each rule form possesses its own rationale 

behind, so they are quite different methods with regard to their behavior. 

Artificial neural networks 

Artificial neural networks (ANN) map input to output variables based on a 

mathematical process inspired by the human brain, in which simple units 

(neurons) are massively aggregated and interlinked to reproduce complex 

relationships (Fig. 2.2). Each neuron or node implements a single-input 

single-output function fed with a weighted sum of the inputs to the ANN or 

by outputs from previous layers (Labadie, 2004). Mathematical relationships 

can be modeled by establishing the number of nodes and how they are 

connected, as well as the functions and weights of each node. 

 

Fig. 2.2: Artificial neural network schematic 
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The advantages of an ANN are its ability to reproduce complex 

mathematical relationships and its high computational efficiency, reducing 

the computing power requirements in comparison with similar approaches 

(Cancelliere et al., 2002). Its main drawback is its marked heuristic character, 

since the equations and coefficients employed by an ANN do not correspond 

to the ones associated with the physical processes modeled. This issue makes 

ANNs to be seen as black boxes whose rationale is difficult to be understood 

by decision-makers not familiar with them, hindering its acceptability 

(Russell and Campbell, 1996). 

ANNs have been applied in the assessment of optimal operating rules 

since the 90’s with adequate results. Their performance has been found 

superior than equivalent regression procedures (Chandramouli and Raman, 

2001; Raman and Chandramouli, 1996), rules-of-thumb (Cancelliere et al., 

2002; Chandramouli and Raman, 2001; Liu et al., 2006) and interpolation 

from stochastic dynamic programming results (Giuliani et al., 2015; Raman 

and Chandramouli, 1996). 

A derivative approach combining ANNs and fuzzy rule-based systems, 

named adaptive network-based fuzzy inference system (ANFIS), has been 

applied to define optimal operating rules with good results (Celeste and 

Billib, 2009; Chang and Chang, 2001; Mousavi et al., 2007). 

Bayesian networks 

Although their use in reservoir operating rules has been very limited so far, 

Bayesian networks have been widely applied in fields like system 

maintenance and medicine (Castelletti and Soncini-Sessa, 2007a). A Bayesian 

network has two components: a graphical representation of the logical 

relationships between variables, based on nodes and links, and a 

probabilistic model consisting of conditional probabilities attached to each 

link (Fig. 2.3) (Castelletti and Soncini-Sessa, 2007b). Input values enter the 

network at the root nodes (nodes without arriving links) and follow the links 

between them until the leaf nodes are found (nodes without departing links), 

whose values are the outputs. The distinctive features of Bayesian networks 

are that output values are given in the form of probability distribution 

functions and that inputs can be single values (certain) or probability 
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functions (uncertain). In the latter, they are useful to aid in expert decision-

making (Castelletti and Soncini-Sessa, 2007b). 

 
Fig. 2.3: Bayesian network schematic 

Their main advantage is the ability to be understood by people not 

familiar with them, thanks to their explicit graphical representation. They are 

also efficient in mapping complex relationships while taking into account 

uncertainty (Malekmohammadi et al., 2009). However, they are not able to 

model multicomponent systems (like water resource systems) guaranteeing 

that every individual component would be accurately modelled. If used to 

represent part of a multicomponent system, the rest of it needs to be defined 

in a compatible way (Castelletti and Soncini-Sessa, 2007b). In spite of the few 

applications noticed in the field, they have been compared with regression 

procedures, to reproduce optimal operating rules, showing better results 

(Malekmohammadi et al., 2009). 

Expert-knowledge based rules 

Although heuristic methods are able to efficiently model complex operation 

procedures, they suffer a disadvantage: the rationale behind the processes 

they use may not be in line with the ones employed by system operators. 

This issue hampers the interaction with decision-makers, who feel more 

comfortable if they are involved in the development process (Labadie, 2004), 

as well as if the operating rule form is able to match the stages and criteria 

they use (Oliveira and Loucks, 1997). 

These stages usually include comprehensive negotiation and subsequent 

agreements on how to operate the system. In this context, operating rules 

provide guidance to the system operators, but their judgment is still required 
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to adapt them to the circumstances and the agreements with the users. In 

fact, system managers often deviate from these rules to adapt to specific 

conditions, objectives and constraints that may exist over time (Oliveira and 

Loucks, 1997). 

To solve this issue, expert-knowledge based rules employ a flexible 

internal structure, which can be adapted to closely reproduce the decision-

making processes, criteria and the rationale behind them. These methods are 

able to capture expert knowledge and combine it with other information 

sources (mainly historical records and optimization algorithms). They can 

also be used, in the absence of expert knowledge, as heuristic methods, 

offering in general similar performance levels than them. 

Fuzzy rule-based systems 

This procedure maps input to output variables using fuzzy logic (Mamdani, 

1974; Zadeh, 1965). A fuzzy rule-based system consists of a set of logical rules 

expressed using IF-THEN sentences (fuzzy rules), in which the premises 

and/or the consequences are provided using fuzzy numbers and operated 

with fuzzy operators (Sen, 2010; Shrestha et al., 1996). The mapping process 

is known as fuzzy inference procedure. A comprehensive description of fuzzy 

logic is given later in subsection 2.2.1. 

The main advantages of fuzzy rule-based systems are their efficiency in 

mapping explanatory variables to decisions in a flexible approach, closer to 

the way in which decisions are made (Moeini et al., 2011; Mousavi et al., 

2005; Panigrahi and Mujumdar, 2000; Russell and Campbell, 1996; Yang and 

Ng, 2016), and their possibilities to combine numerical data with expert 

judgment (Macian-Sorribes and Pulido-Velazquez, 2017; Pedrycz et al., 

2011). However, their concepts and quantifications may be perceived as 

strange and hostile in comparison with classical approaches in which system 

operators rely (Russell and Campbell, 1996; Sen, 2010). Furthermore, 

complex fuzzy rule-based systems may be cumbersome to work with due to 

an excessive number of rules (Sen, 2010). 

Fuzzy logic has been applied, in the assessment of optimal operating rules 

for both single and multireservoir systems, in combination with deterministic 

(Mousavi et al., 2005; Senthil kumar et al., 2013; Yang and Ng, 2016) and 

stochastic optimization algorithms (Panigrahi and Mujumdar, 2000; Russell 
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and Campbell, 1996). Several studies have compared this approach with 

interpolation (Moeini et al., 2011; Russell and Campbell, 1996) and 

regression (Mousavi et al., 2005). It has also been compared with other 

heuristic procedures such as ANNs and decision trees (Senthil kumar et al., 

2013), as well as in situations subject to inflow non-stationarity and/or the 

existence of multiple objectives (Yang and Ng, 2016). More information 

about its applications can be found in subsection 2.2.1. 

Decision trees 

Decision trees are a knowledge discovery method, in which the patterns 

followed in decision-making processes are inferred from data sets (Wei and 

Hsu, 2008). As Bayesian networks, they represent operating rules through a 

graph consisting of nodes and arcs, although the calculation processes are 

significantly different. In a decision tree, each node represents an attribute 

or variable, while each arc corresponds to a situation applicable to it (like 

having certain values or being within a range). The input values enter the tree 

in the root nodes and are passed through the arcs to the terminal nodes. 

Each path followed across the tree represents a rule, and the values of the 

variables in the terminal nodes are the decisions attached to it. 

 

Fig. 2.4: Decision tree schematic 

The main advantages of decision trees are their conceptual simplicity, 

their efficiency to handle large data sets and the fact that they can be easily 

complemented with expert knowledge (Wei and Hsu, 2008). Their main 

drawback is that each node is restricted to work with just one variable, so 
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complex operating rules are likely to result in large cumbersome trees. In 

addition, they are not able to handle interdependent variables (Wei and Hsu, 

2008). The main use of decision trees in water resources management 

corresponds to the forecasting of future inflows under the name of scenario 

trees (Castelletti et al., 2010; Chazarra et al., 2016; Côté and Leconte, 2015; 

Ficchì et al., 2015; Galelli et al., 2014; Housh et al., 2013). Optimal operating 

rules using decision trees have also been used in water resources 

management (Senthil kumar et al., 2013; Wei and Hsu, 2008). Their 

performance has been found to be similar to ANNs (Senthil kumar et al., 

2013). 

2.2. FUZZY LOGIC USE IN WATER RESOURCES 
MANAGEMENT 

Pioneered by Zadeh (1965), the fuzzy set theory can be briefly described as 

an attempt to quantify vague (nonrandom uncertain) concepts, regarding 

their intuitive meaning, in a mathematical way that allows them to be 

operated and easily understood. Fuzzy logic is based on imprecise human 

reasoning, embedding it into complex problems in an effective way (Ross, 

2010). As an example, concepts as low, large, heavy, etc., whose 

quantification regarding classic methodologies is challenging, can be easily 

expressed using fuzzy sets and then operated using fuzzy operations. In this 

way, fuzzy logic takes advantage of situations in which high precision is not 

required, being able to exploit our tolerance to imprecision (Ross, 2010). 

Comprehensive fuzzy set theory definitions and operation descriptions can 

be found in Simonovic (2009), Sen (2010), Ross (2010), and Macian-Sorribes 

(2012, in Spanish), as in a large number of related publications. 

2.2.1. Fuzzy logic 

Fuzzy logic (Mamdani, 1974) is the main derivative of the fuzzy set theory. It 

can be defined, as classic or Boolean logic, as a way to obtain output values 

based on inputs using logic rules in the form of IF-THEN sentences: 

IF x is A and y is B, then z is C 

The main difference between a Boolean rule and fuzzy rule is that the 

latter uses fuzzy sets in its premises. Considering the previous rule, both A, B 

and C would be fuzzy sets (or fuzzy numbers). These can be associated with 
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linguistic descriptions like low, normal or high. Linking language with 

mathematics is the main advantage of fuzzy logic, since humans tend to feel 

more comfortable when using words (Sen, 2010). In consequence, people 

would feel more familiar with the description of a fuzzy rule than with its 

Boolean equivalent, in which the numbers sometimes hide the real meaning 

behind (Sen, 2010). 

In addition, a fuzzy rule benefits from the fuzzy sets and numbers’ ability 

to capture and treat the subjective uncertainty, also known as ambiguity, 

vagueness or fuzziness; being able to embed it, work with it and propagate it 

to further mathematical processes (Pedrycz et al., 2011; Simonovic, 2009). 

The use of fuzzy numbers to consider this uncertainty is not only beneficial 

in terms of estimating its effect in an efficient way (Simonovic, 2009), but 

also supposes a computational advantage, since fuzzy rule-based systems are 

able to reproduce complex mathematical relationships with a reduced 

number of fuzzy rules (Sen, 2010). 

Another distinct feature of a fuzzy rule is that it is not restricted to the to 

be or not to be approach offered by Boolean logic, in which a rule can be 

either followed (logic value 1) or not followed (logic value 0). On the contrary, 

a fuzzy rule can be definitely followed (logic value 1), definitely not followed 

(logic value 0) or partially followed (logic value between 0 and 1). This partial 

membership to a concept is one of the reasons why the fuzzy set theory is 

close to the real world, in which the all-or-nothing approach hardly applies, 

but what matters is how much something is true or false (Pedrycz et al., 

2011). 

A fuzzy rule-based (FRB) system, also known as fuzzy inference system 

(FIS) or fuzzy logic system, is a set of fuzzy rules put together with the fuzzy 

numbers that quantify the rules’ premises and consequences, and diverse 

fuzzy operators that are required to link inputs with outputs. In order to 

create a fuzzy rule-based system, several stages are needed, being explained 

in the following section. 

According to how are they built and operated, there are two main types 

of fuzzy rule-based systems: Mamdani and Sugeno. Other kinds of FRB 

systems have been developed although little applied in comparison (Sen, 

2010). The main distinctive feature of a Mamdani FIS (Mamdani, 1974) is that 
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it uses both fuzzy inputs and outputs, so the results of the inference process 

are expressed as fuzzy sets. This type of fuzzy inference is the most popular 

one when building a FRB system (Sen, 2010). On the other hand, a Sugeno 

FIS (Sugeno, 1985), considers mathematical equations as the outputs of the 

FRB system. Despite these differences, the rationale behind the building and 

inference processes remains the same, as well as the majority of the 

mathematical procedures required (Sen, 2010). 

Fuzzy rule-based systems building 

The following description on how to build a fuzzy rule-based (FRB) system is 

based on the research carried out by Bai and Tamjis (2004); Campbell (1993); 

Dubrovin et al. (2002); Mousavi et al. (2005); Panigrahi and Mujumdar 

(2000); Russell and Campbell (1996); and Shrestha et al. (1996). Although 

these works (and others) introduced custom features to adapt the 

methodology to the application, the process remains almost the same (Fig. 

2.5). Since the following description focuses on building FRB systems for 

water resources management, it contains some of the modifications made 

to adapt the process to the specific needs of the field (Dubrovin et al., 2002; 

Russell and Campbell, 1996; Shrestha et al., 1996). 

 

Fig. 2.5: FRB System building flowchart 
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Previous analysis 

Since fuzzy logic works with linguistic variables based on human reasoning, it 

is necessary to find out what relationships exist in the water resource system 

analyzed (Sen, 2010). The previous analysis should not only focus on data and 

information collection, but on acquiring expert knowledge to blueprint the 

relationships found between state and decision variables. This will frame the 

FRB main features and goals. 

Fuzzy inputs 

This stage can be subdivided into two: input definition and input 

characterization. The first refers to choosing the input variables. Typical 

variables used in water resource systems are initial storage, inflows, time of 

the year, rainfall and so on (Dubrovin et al., 2002; Panigrahi and Mujumdar, 

2000; Sen, 2010; Shrestha et al., 1996). Once decided, the input variables 

should be characterized using different linguistic descriptors like low, 

excessive, rather good, extremely advantageous and so on (Bai and Tamjis, 

2007; Russell and Campbell, 1996). 

Examples on how to linguistically characterize a variable can be found in 

Pedrycz et al. (2011); and Sen (2010). To complete the characterization, a 

fuzzy number should be attached to each descriptor. These numbers can be 

determined using a systematic approach (Russell and Campbell, 1996), 

historical data (Shrestha et al., 1996), expert knowledge (Pedrycz et al., 2011; 

Sen, 2010) and combinations between them (Dubrovin et al., 2002; Panigrahi 

and Mujumdar, 2000). 

Fuzzy rules 

Fuzzy rules are formed by combining inputs, and characterized creating IF-

THEN sentences like: if storage is low and inflow is high, then release is … If 

every combination between linguistic descriptors is possible, the number of 

rules is equal to the product of the number of linguistic descriptors (e.g.: a 

FRB system with two inputs with 5 and 6 linguistic descriptors would possess 

30 fuzzy rules). 

Although fuzzy rules with the and logical operator are usually the ones 

employed in water resources management (Russell and Campbell, 1996; 

Shrestha et al., 1996), it is possible to define them with other logical 
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operators. It is also possible, although not common, to define fuzzy rules with 

different numbers of variables (Sen, 2010). 

Outputs 

Output definition requires to state the number of output variables and to 

quantify them. Typical outputs in FRB systems for water resources 

management are releases (Shrestha et al., 1996) and the target storage 

(Russell and Campbell, 1996). Outputs can be characterized by either fuzzy 

(Bai and Tamjis, 2007; Dubrovin et al., 2002; Panigrahi and Mujumdar, 2000; 

Shrestha et al., 1996) or non-fuzzy numbers (Mousavi et al., 2005; Russell and 

Campbell, 1996).  

Fuzzy outputs represent a Mamdani FIS while non-fuzzy ones are 

associated with a Sugeno FIS. They can be quantified by using historical data 

(Bai and Tamjis, 2007; Dubrovin et al., 2002; Shrestha et al., 1996), 

mathematical algorithms (Mousavi et al., 2005; Panigrahi and Mujumdar, 

2000; Russell and Campbell, 1996) and expert knowledge (Sen, 2010). 

Training 

The training or calibration stage consists in modifying the response of the 

FRB system in order to adapt it to the desired behavior. The training of a FRB 

system can be done theoretically in two ways: modifying the inputs and/or 

modifying the outputs. Nonetheless, the vast majority of FRB developments 

have relied on modifying the outputs (Bai and Tamjis, 2007; Dubrovin et al., 

2002; Sen, 2010; Shrestha et al., 1996). Varying the output values is definitely 

simpler than doing the same with the inputs. Furthermore, inputs may be 

characterized taking into account expert knowledge (Dubrovin et al., 2002; 

Panigrahi and Mujumdar, 2000) that would be lost if they were modified 

during the fitting process. 

Validation 

Validation consists in contrasting the performance of the FRB system using 

data not employed in the training process. In this case, if the performance 

level is not adequate, the FRB building process needs to be restarted. If it is 

successful, then the FRB system created is considered as valid and can be 

used in further analyses or developments. 
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The fuzzy inference procedure 

The fuzzy inference procedure maps inputs to outputs for each time stage of 

the analysis period (Fig. 2.6). It corresponds to the stage in which the 

validated FRB system is used to reproduce the mathematical relationship 

between inputs and outputs. A detailed description of this process can be 

found in Bai and Tamjis (2007); Macian-Sorribes (2012, in Spanish); Panigrahi 

and Mujumdar (2000); and Sen (2010). 

 

Fig. 2.6: Fuzzy inference flowchart 

Previous operations 

This first stage consists in obtaining the input variables based on the data sets 

available. It is not necessary if the available information already fits the input 

variables. Typical situations when previous operations are required refer to 

FRB systems that use forecasted variables (Shrestha et al., 1996), as they 

must be obtained prior to the inference. 

Input fuzzification 

In the fuzzification stage, the input values are introduced into the FRB system 

by computing how they match the different linguistic categories. This 

calculation is done using the fuzzy numbers attached to each descriptor. It 

consists in obtaining the degree of membership that represents how much 

the input belongs to the given fuzzy number (Bai and Tamjis, 2007; Panigrahi 

and Mujumdar, 2000; Sen, 2010). 
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Rule inference 

This process uses the results of the fuzzification to determine the extent to 

which each fuzzy rule is true. For each end every rule, the degrees of 

membership associated with its inputs are combined in order to obtain a 

single numerical value that expresses how certain is this rule given the inputs. 

This value, known as degree of fulfillment (DOF, Shrestha et al. 1996), can be 

calculated by two main ways: 

• Using logical operators (Bai and Tamjis, 2007; Panigrahi and 

Mujumdar, 2000; Sen, 2010). 

• Using mathematical operators like the product (Shrestha et al., 1996), 

or the squared product (Russell and Campbell, 1996). 

The DOF is used in a Mamdani FIS to modify the fuzzy outputs. This 

operation, also known as implication, usually consists in truncating (Bai and 

Tamjis, 2007; Panigrahi and Mujumdar, 2000; Sen, 2010) or re-scaling (Sen, 

2010) the fuzzy outputs to reflect the effect of partially-followed rules. A 

Sugeno FIS does not require additional operations after its calculus. 

Output composition 

In this stage, the global outputs of the FRB system are assessed using the 

outcomes of the previous stage. In a Mamdani FIS, the fuzzy outputs 

modified in the rule inference are combined. This combination is usually 

done using logical operators (Sen, 2010). Once the global fuzzy outputs have 

been combined, a defuzzification operator should be applied if non-fuzzy 

responses are desired. In order to do so, several procedures have been used 

like the centroid, the mean of maxima and so on (Sen, 2010). In case of using 

a Sugeno FIS, the output composition process is easier as the outputs of each 

rule are already non-fuzzy numbers. The most used operation in this case is 

a weighted average in which the weights are the degrees of fulfillment 

(Russell and Campbell, 1996; Sen, 2010). 

Final operations 

The final operations consist in using the outputs of the FRB system in further 

calculations if desired. For this, the FRB system could be combined with a 

water resources management model that is executed after the inference 

process (Macian-Sorribes and Pulido-Velazquez, 2015). In these case, this 
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model could also be used to compute the input variables for the following 

time stage. 

Main applications in water resources management 

In the water resources management field, fuzzy logic has been widely 

applied, following different purposes and reproducing various mathematical 

processes. 

Development of reservoir operating rules 

Including expert judgment in the definition of operating rules is the main 

advantage of fuzzy logic when used to represent reservoir management 

rules, as explicitly indicated in the published research (Bai and Tamjis, 2007; 

Macian-Sorribes and Pulido-Velazquez, 2017; Mousavi et al., 2005; Panigrahi 

and Mujumdar, 2000; Russell and Campbell, 1996; Sen, 2010; Shrestha et al., 

1996). Furthermore, it has proven its suitability to mimic the desired 

behavior (Labadie, 2004; Rani and Moreira, 2010). 

FRB systems have been applied to reproduce the current operating rules 

or to represent an optimal operation. Research focused on mimicking the 

historical behavior used FRB systems whose structure was built with the aid 

of expert judgment (Bai and Tamjis, 2007; Dubrovin et al., 2002; Macian-

Sorribes and Pulido-Velazquez, 2017; Sen, 2010; Shrestha et al., 1996). These 

FRB systems were trained and validated against historical records (Dubrovin 

et al., 2002; Macian-Sorribes and Pulido-Velazquez, 2017; Sen, 2010; 

Shrestha et al., 1996). 

When used to represent optimal rules, FRB systems aim at reproducing 

the decisions obtained by an optimization algorithm (Mousavi et al., 2005; 

Panigrahi and Mujumdar, 2000; Russell and Campbell, 1996; Senthil kumar 

et al., 2013; Yang and Ng, 2016). Expert knowledge could still be employed 

to set up the structure of the FRB system. Examples of using fuzzy logic to 

reproduce optimal operating rules regard to employing them in isolation 

(Moeini et al., 2011; Mousavi et al., 2005; Panigrahi and Mujumdar, 2000; 

Russell and Campbell, 1996; Senthil kumar et al., 2013; Yang and Ng, 2016) 

or in combination with ANNs within the ANFIS framework (Celeste and Billib, 

2009; Chang and Chang, 2001; Mehta and Jain, 2009; Mousavi et al., 2007; 

Soltani et al., 2010). The ANFIS procedure is, by definition, more flexible than 
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using the FRB in isolation (since its parameters are estimated by an ANN 

rather than being fixed) but, on the contrary, it increases the complexity of 

the process and thus hinders its understandability. 

Demand forecasting 

As regression, fuzzy logic can be used to forecast variables in response to 

present or past measurements of explanatory variables. Its main advantage 

with respect to statistical regression regards to its ability to efficiently 

represent complex mathematical relationships (Sen, 2010), a feature shared 

between fuzzy logic and ANNs (Labadie, 2004). Examples can be found for 

both urban and agricultural uses (Firat et al., 2009; Pulido-Calvo and 

Gutierrez-Estrada, 2009; Sen, 2010).  

FRB systems have been used in isolation (Firat et al., 2009; Sen, 2010) or 

in conjunction with other methodologies. Firat et al. (2009) compared the 

performance of FRB and ANFIS methods. Differently, Pulido-Calvo and 

Gutierrez-Estrada (2009) used an ANN trained by a genetic algorithm to 

obtain the inputs of a FRB system whose goal was to forecast irrigation 

demands. 

Hydrology 

Hydrological phenomena are subject to complex non-linear relationships and 

a considerable amount of uncertainty and vagueness, something that can be 

efficiently handled with methods such as fuzzy logic (Sen, 2010). Fuzzy logic 

is also able to take advantage of expert knowledge. FRB systems have been 

applied in many ways within hydrology (Table 2.4). 

Table 2.4: Fuzzy logic applications in hydrology 

Application or goal Examples 

Development of hydrological models 
FRB systems (Sen, 2010; Turan and Yurdusev, 

2016) and ANFIS (Safavi et al., 2015) 

Forecast of river discharges Jayawardena et al. (2014); Sen (2010) 

Hydrograph estimation combining FRB and ANFIS Güçlü and Şen (2016) 

Drought prediction Pesti et al. (1996) 

Estimation of hydrological variables (evaporation, 
infiltration, etc.) 

Selim Güçlü et al. (2016); Sen (2010) 

Water budget definition Sen (2010) 
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Hydrogeology 

Fuzzy logic applicability in hydrology can also be extended to hydrogeology. 

FRB systems have been used to approximate conjunctive use allocation 

(Chang et al., 2013), as well as for the estimation of groundwater recharge 

rates based on rainfall amounts (Sen, 2010). It has also been employed to 

classify aquifers according to its geological properties (Sen, 2010). 

Other applications 

Fuzzy logic has been used with other water-related purposes than the ones 

previously mentioned. 

Table 2.5: Other fuzzy logic applications in water science 

Application or goal Examples 

Water quality simulation with FRB or ANFIS Soltani et al. (2010) 

Water quality indexes assessment with FRB or 
ANFIS 

Lermontov et al.(2009) 

Environmental rehabilitation operations Tzionas et al. (2004) 

Investment ranking Karnib (2004) 

River dike and sewer pipe design Vucetic and Simonovic (2011) 

2.2.2. Fuzzy regression 

Fuzzy regression can be described as a regression whose coefficients are 

fuzzy. It emerged as an alternative to statistical regression in the case of 

having imprecise variables, imprecise relationships and scarce or inaccurate 

data (Bardossy et al., 1990). Fuzzy regression these imprecisions within its 

structure via fuzzy parameters (Mousavi et al., 2007; Simonovic, 2009). 

Its main advantage is its ability to work with few data records, something 

unattainable with statistical regression (Bardossy et al., 1990; Kim et al., 

1996). In this case, fuzzy regression is able to capture non-random 

uncertainty in a simple way (Simonovic, 2009). The applicability of fuzzy 

regression in water resources management and hydrology regards to the fact 

that they are two science fields in which data can be scarce and/or inaccurate 

(Bardossy et al., 1990; Mousavi et al., 2007). However, the decision on the 

method to be used is case-dependent (Kim et al., 1996). 
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Formulation 

Fuzzy regression can be formulated as the standard one but replacing its 

coefficients by fuzzy numbers (Eq. 2.5, based on Bardossy et al. 1990): 

𝑦̃ = 𝑓(𝑥, 𝑐̃) 2.5 

In which 𝑦̃  dependent variable or output (fuzzy), f functional form, x 

vector of independent variables or inputs (fuzzy or non-fuzzy) and 𝑐̃ vector 

of parameters. In the case of a linear regression, Eq. 2.5 turns into: 

𝑦̃ =∑𝑐𝑖̃𝑥𝑖  

𝑖

 2.6 

In which i number of independent variables and coefficients. 

To fit a fuzzy regression equation, it is needed to estimate the fuzzy 

coefficients through an optimization problem. Among the wide range of 

forms available (e.g. trapezoidal), the most straightforward way is to 

consider the coefficients as L-R fuzzy numbers (Bardossy et al., 1990), or 

symmetric triangular fuzzy numbers (Simonovic, 2009). The goal of the 

problem is to minimize the vagueness of the predicted output for a given 

degree of acceptability. In contrast with statistical regression, its 

performance level is predefined (the degree of acceptability). 

In order to measure the vagueness of the regression, labeled as V, a 

measurement or vagueness criteria must be set (Bardossy et al., 1990; 

Mousavi et al., 2007; Simonovic, 2009). There are three main vagueness 

criteria available (Bardossy et al., 1990): 

• The maximal vagueness of the fuzzy coefficients, or maximum width 

(interval in which the membership value is non-zero) among the 𝑐̃𝑖 

coefficients. 

• The average vagueness, or average width of the 𝑐̃𝑖 coefficients. 

• The prediction vagueness, which is the vagueness provided by the 

fuzzy regression equation on the domain of the independent variables. 

The degree of acceptability, labeled as h, establishes the minimum quality 

that the regression must possess. It is measured by comparing the fuzzy 

predicted output value with the fuzzy or non-fuzzy measured output 

(Bardossy et al., 1990; Mousavi et al., 2007; Simonovic, 2009).  
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• For fuzzy measured output values (Fig. 2.7 left), the regression is 

considered valid if, for each and every fuzzy measurement, the α-cut 

of level h of the measured output (O1-O2) is within the predicted one 

(P1-P2) (Bardossy et al., 1990).  

• For non-fuzzy measured output values (Fig. 2.7 right), the regression 

offers an adequate performance if each and every measured output 

belongs to its corresponding fuzzy prediction with a membership 

degree α equal or higher than h (Simonovic, 2009). 

 

Fig. 2.7: Degree of acceptability criterion for fuzzy (left) and non-fuzzy (right) output 
measurements 

Consequently, the optimization problem can be defined as: 

Minimize 𝑉(𝑐̃)  

 Subject to:   

   𝑦𝑗̃ = 𝑓(𝑥𝑗 , 𝑐̃)  for each record j  

  V = vagueness criterion equation  

  Each 𝑦𝑗̃complies acceptability with level h 2.7 

Initially the process described was defined for symmetric fuzzy 

coefficients (Bardossy et al., 1990; Kim et al., 1996; Simonovic, 2009). It was 

extended to asymmetric fuzzy numbers by Ishibuchi and Nii (2001), who 

modified the procedure described above to fit separately the width of the 

fuzzy coefficients and their modal values, using a least-squares regression to 

fit the latter. Alternative fitting approaches, such as hybrid least-squares 

regression (Chang, 2001) have also been developed. 
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Main applications in water resources management 

As statistical regression, fuzzy regression has been applied in both water 

resources management and hydrology. It is applicable to situations in which 

fuzzy regression is a suitable alternative to statistical regression due to the 

features mentioned above. 

Although not extensively used, its main application in water resources 

management has been the definition of reservoir operating rules as an 

alternative to statistical regression. Mousavi et al. (2007) used fuzzy 

regression to estimate optimal operating rules for both the long and the 

medium-term operation of a reservoir. Deterministic dynamic programming 

was used to obtain the data records employed in the fitting process. Fuzzy 

regression was compared with statistical regression and ANFIS-based rules. 

They found out that the operating rules generated by fuzzy regression 

outperformed statistical regression in both the long and the medium-term, 

and even ANFIS in the long-term. They pointed out that fuzzy regression was 

especially adequate when data availability was reduced. 

Similarly, Malekmohammadi et al. (2009) applied fuzzy regression to 

obtain optimal reservoir operating rules for a two-reservoir system, 

comparing it with Bayesian networks and statistical regression. Optimization 

results obtained from a genetic algorithm were used in the fitting process. 

Their results showed that fuzzy regression outperformed statistical 

regression in both the fitting and the performance quality, but was 

overwhelmed by the fitted Bayesian network. 

Zahraie and Hosseini (2009) employed fuzzy regression to assess optimal 

operating rules including variations in demands. A genetic algorithm was 

used to derive the data sets for the fitting process. Both symmetric and 

asymmetric fuzzy regressions were employed, as well as different 

combinations of independent variables. The procedure was tested in a single 

reservoir system. They found out that fuzzy regression outperformed 

statistical regression, with asymmetric coefficients offering higher efficiency 

levels. They concluded that fuzzy regression was a proper way to 

accommodate the uncertainty on future demands on the operating rules. 

Fuzzy regression has also been applied in hydrology. It has been used in 

the estimation of the soil hydraulic permeability (Bardossy et al., 1990), in 
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the estimation of fuzzy hydrological parameters (Ozelkan and Duckstein, 

2001) and in the approximation of stage-discharge curves (R. Shrestha and 

Simonovic, 2009; R. R. Shrestha and Simonovic, 2009), among other goals. 

2.2.3. Modeling expert knowledge in fuzzy logic 

Fuzzy logic is said to efficiently integrate expert knowledge in mathematical 

modeling. Its treatment of the uncertainty and fuzziness associated with 

mathematical measurements through membership functions, and its use of 

linguistic variables, make it closer to human reasoning than the classic 

Boolean logic (Pedrycz et al., 2011; Sen, 2010). This resemblance with human 

thinking makes it understandable by people, being possible to 

mathematically express their thoughts, opinions and knowledge (Zadeh, 

2008). In a FRB system, expert judgment can be included in two main ways: 

• In the FRB structure (number of inputs, number of outputs and 

number and features of the rules). 

• In the membership functions of the input and/or output 

quantifications. 

Expert knowledge in the FRB structure 

This type of expert knowledge inclusion consists in taking expert judgment 

into account when determining which variables will be the inputs of a FRB 

system and which output variables will be obtained, as well as the number 

and premises of the fuzzy rules. With regard to inputs and outputs, expert 

knowledge is considered when the decisions of which variables will be used 

are made on the basis of expert judgment (Gurocak and Whittlesey, 1998; 

Karnib, 2004; Sen, 2010; Tzionas et al., 2004).  

For example, one can set a FRB system for defining a reservoir’s operating 

rules, without further knowledge on how it is operated, using as inputs the 

current inflow forecast, the initial storage level and the month of the year. 

However, in case of a reservoir devoted exclusively to urban demands or 

industrial users, whose temporal variability is negligible or limited, the month 

of the year could be eliminated. In this situation, the use of expert judgment 

would result in an efficiency increase due to less input variables. 
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This input and output choice by expert judgment is also shared by other 

methodologies such as regression, decision tress and Bayesian networks. In 

fact, its ability to be adapted to expert judgment is one of the main 

advantages of these techniques (for example, see Castelletti and Soncini-

Sessa, 2007b, for Bayesian networks). Mathematical and/or statistical 

analyses can be used to support, compare and contrast experts’ opinion. 

With regard to the number of fuzzy rules, expert judgment is used when 

they are asked about the characterization of the fuzzy rules by combining 

inputs. In fact, expert view is one of the ways in which the fuzzy rules are 

established (Sen, 2010). As the input and output choice, expert knowledge 

on the system modeled by the FRB would result in a more efficient 

representation. Clustering analyses can be used to support, compare and 

contrast expert knowledge (Pedrycz et al., 2011; Sen, 2010). 

This feature is shared with other methodologies in which the input 

variables are divided in intervals, such as Boolean logic systems or decision 

trees. However, fuzzy logic possesses one advantage over them, which is the 

use of linguistic descriptors such as low, extremely or insufficient. This feature 

enables the acquisition of expert knowledge in a more efficient way, giving 

importance to the concept rather than to its exact quantification. 

Expert knowledge in the membership functions 

Including expert knowledge in the membership functions is an exclusive 

feature possessed by fuzzy logic. Given that fuzzy numbers can be 

mathematically operated as if were non-fuzzy ones, the membership 

function elicitation using expert judgment allows its introduction in any 

mathematical process. Such a feature opens a wide range of possibilities to 

work with expert knowledge in fuzzy logic. 

It is said that expert judgment is used in membership function estimation 

when one employs the information given by them to build the fuzzy numbers 

(Pedrycz et al., 2011; Sen, 2010; Simonovic, 2009). Differently from the 

previous ways to take into account expert judgment, its consideration in 

membership function elicitation is not straightforward: we could not directly 

ask an expert about membership function estimation unless he or she is an 

expert in fuzzy logic too. Consequently, there are some methods with which 

their judgment is transformed into membership functions. 
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These methodologies can be divided between direct and indirect 

methods (Simonovic, 2009). A comprehensive description of them is given in 

Pedrycz et al. (2011). The ones considered in this thesis have been the 

horizontal and the vertical method. The main reasons why they have been 

chosen are their simplicity and their efficiency in generating membership 

functions accurate enough to be employed in a FRB system. In situations in 

which more accurate descriptions of membership functions are needed (such 

as fuzzy optimization), more sophisticated methods would be required. 

The horizontal method 

The horizontal method is recommended when a large number of experts can 

be involved in the membership function estimation. In this method, a sample 

of x values is chosen from the domain of variable X whose membership 

functions are desired. Then, for each value of x and each one of the linguistic 

variables A in which X has been divided (e.g. low, medium and high), a 

question like the following is asked (Pedrycz et al., 2011): 

Can be x considered as A? 

For which the answer should be yes or no. Once all the experts are asked, 

the membership degree of A for each value x is the number of experts who 

answered yes divided by their total number (Pedrycz et al., 2011). Then, 

interpolation procedures can be used to obtain the membership function for 

the whole domain of X. 

For example, consider a reservoir of 500 Mm3. Three linguistic descriptors 

have been attached to its storage (low, medium and high). The following 

sample has been chosen: {0, 100, 200, 300, 400, 500}. Twenty experts where 

asked, for each and every sampled value, if it could be considered as a low, 

medium or large storage level (Table 2.6). The number of positive answers 

defined the membership degree at each of the sampled points. Piecewise 

linear interpolation was then applied to determine the membership 

functions for the whole domain (Fig. 2.8). The method, as well its advantages 

and drawbacks, is comprehensively described in Pedrycz et al. (2011). 
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Table 2.6: Example of membership function elicitation using the horizontal method 

Expert answers and 
membership degrees 

Sampled values 
0  

Mm3 
100 
Mm3 

200 
Mm3 

300 
Mm3 

400 
Mm3 

500 
Mm3 

Answered yes to low storage 20 20 12 2 0 0 

Answered yes to medium storage 0 7 15 20 9 0 

Answered yes to high storage 0 0 0 8 17 20 

Memberships for low storage 1.00 1.00 0.60 0.10 0.00 0.00 

Memberships for medium storage 0.00 0.35 0.75 1.00 0.45 0.00 

Memberships for high storage 0.00 0.00 0.00 0.40 0.85 1.00 

 

Fig. 2.8: Example of membership function elicitation using the horizontal method 

The vertical method 

The vertical method is adequate in situations in which the number of experts 

is reduced. In this method, different membership degrees or α-levels are 

considered and each expert is asked a question like the following (Pedrycz et 

al., 2011): 

Which elements of X can be considered as A at degree no lower than α? 

For a specific category A, the interval associated with each α-level is one 

α-cut of the corresponding fuzzy number. The responses obtained by each 

expert should be combined into a single set of α-cuts by mathematical 

operations (average interval, union of responses, intersection of responses 

and so on). Alternatively, experts can be asked to provide a single set of α-
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cuts if they can reach consensus. The combination of the resulting α-cuts 

corresponds to the fuzzy number. 

Consider the same example as for the horizontal method. Five α-levels 

have been defined: {0.00, 0.25, 0.50, 0.75, 1.00}. However, assume that, in 

this case, only five experts where available, so we were able to gather them 

together and let them discuss and agree in a single set of α-cuts (Table 2.7). 

These are obtained for low, medium and high storage levels. The resulting α-

cuts were used to build the fuzzy numbers representing a low, a medium and 

a high storage level. The method, as well its advantages and drawbacks, is 

comprehensively described in Pedrycz et al. (2011). 

Table 2.7: Example of membership function elicitation using the vertical method 

Reservoir  
category 

Intervals (Mm3) 

α=0.00 α=0.25 α=0.50 α=0.75 α=1.00 

Low 0 to 200 0 to 175 0 to 150 0 to 75 0 to 50 

Medium 100 to 400 125 to 350 150 to 325 200 to 300 225 to 275 

High 250 to 500 300 to 500 350 to 500 400 to 500 450 to 500 

 

Fig. 2.9: Example of membership function elicitation using the vertical method 

Applications in water resources management 

The applications in water science in which fuzzy set theory and fuzzy logic 

were used explicitly to elicit expert knowledge regard to different fields and 

diverse goals. Given that expert judgment is usually used, to some extent, in 

fuzzy set theory or fuzzy logic, the applications described here correspond 

solely to situations in which expert judgment was clearly the main or the 
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unique source of information. Most of them regard to the elicitation of 

membership functions. They offer a way to measure the acceptability of a 

variable in response to a specific need or problem (e.g. a membership 

function representing adequate storages would have higher membership 

degrees for the most desired storage values and lower ones for undesired 

ones). 

Fuzzy membership functions built on the basis of expert judgment have 

been used in optimization algorithms to provide a unified metric for ranking 

management decisions concerning multiple objectives (Fontane et al., 1997; 

Kindler, 1992; Tilmant et al., 2007, 2002a, 2002c). Membership functions 

were estimated for the different goals of reservoir management, being 

combined through fuzzy arithmetic operations and included in an 

optimization algorithm to attain the best possible membership degree. This 

process has been employed in both deterministic (Fontane et al., 1997; 

Kindler, 1992; Tilmant et al., 2007, 2002a, 2002c) and stochastic optimization 

(Fontane et al., 1997; Kindler, 1992; Tilmant et al., 2007, 2002a, 2002c). 

A similar approach used fuzzy set theory and fuzzy logic in multicriteria 

decision analysis. Fuzzy membership functions were estimated based on 

expert judgment and then employed in multicriteria analysis algorithms 

(Bárdossy and Duckstein, 1992; Bender and Simonovic, 2000; Yin et al., 1999) 

or in a FRB system (Gurocak and Whittlesey, 1998; Tzionas et al., 2004). 

Apart from decision-making applications, fuzzy set theory and logic have 

been used in situations in which expert knowledge was the only suitable 

source of information. In this case, membership functions based on expert 

knowledge were assessed and operated to find out the desired information. 

Some applications include the assessment of nitrate concentration in 

groundwater (Bardossy et al., 1993), evaluation of flood protection (Despic 

and Simonovic, 2000; Simonovic, 2009) and aquifer classification (Sen, 2010). 

2.2.4. Other applications of fuzzy logic to water management 

Apart from the ones previously presented, a wide range of techniques based 

on the fuzzy set theory have been applied in water resources management 

and hydrology. The existence of such a diverse set of possibilities is one of 

the main advantages of using fuzzy logic.  
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Fuzzy programming 

Fuzzy programming seeks the maximum possible credibility or acceptability 

in a decision-making process subject to a set of constraints (Bellman and 

Zadeh, 1970). This acceptability is measured using membership functions 

that can be built using expert knowledge. Reviews of fuzzy programming can 

be found in Kacprzyk and Esogbue (1996); Liu and Esogbue (1996); 

Luhandjula (1989); and Sahinidis (2004). Applications in water resources 

management are included in Table 2.8. 

Table 2.8: Fuzzy programming applications 

Application or goal Examples 

Optimization of surface systems Fontane et al., 1997; Kindler, 1992 

Compromise optimization of groundwater systems Bogardi et al., 1983 

Multiobjective optimization of water resources 
management 

Vucetic and Simonovic, 2011 

Comparison with stochastic programming Zeng et al., 2013 

Optimization under water footprint constraints Aviso et al., 2011 

Determination of  the optimal balance between 
economic and environmental performance 

Lee and Chang, 2005 

Modeling of climate change uncertainties Teegavarapu, 2010 

Allocation of water resources under uncertainty 
Tsakiris and Spiliotis, 2004; Vucetic and 

Simonovic, 2011 

Combination of fuzzy set theory and SDP to create 
fuzzy SDP 

Mousavi et al., 2004a, 2004b; Rehana and 
Mujumdar, 2014; Tilmant et al., 2007, 2002a, 

2002b, 2002c 

Comparison between SDP and fuzzy SDP 
Chandramouli and Nanduri, 2011; Tilmant et 

al., 2002c 

Combination of probability and fuzzy set theory in 
SDP 

Luhandjula, 2006; Luhandjula and Gupta, 
1996 

Fuzzy random variables in fuzzy optimization 
Chen et al., 2015; Dong et al., 2014; Li et al., 

2010; Li and Huang, 2009 

Multicriteria decision analysis and making 

Multicriteria decision analysis (MCDA) and multicriteria decision-making 

(MCDM) have been combined with fuzzy logic to take advantage of its unified 

metric and its possibilities to take into account expert knowledge. The 

resulting methodology was named as fuzzy multicriteria decision-making 

(Chen et al., 2011; Chiou et al., 2005), being reviewed by Pedrycz et al. (2011). 

Examples of its application can be found in Bárdossy and Duckstein (1992); 

Bender and Simonovic (2000); and Yin et al. (1999). Alternatively, fuzzy 
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analytical network processes have been applied to rank watersheds in which 

to establish measures (RazaviToosi and Samani, 2016). 

Fuzzy arithmetic 

Fuzzy arithmetic has been widely applied in water resources management, 

mainly to take into account and propagate uncertainty through the 

calculation process, as well as to operate with the expert judgment 

mathematically embedded in the membership functions. Its main 

applications are summarized in Table 2.9. 

Table 2.9: Fuzzy arithmetic applications 

Application or goal Examples 

Flood control evaluation Despic and Simonovic, 2000; Simonovic, 2009 

Fuzzy performance indices 
El-Baroudy and Simonovic, 2005, 2003, 2004; 

Fleming et al., 2014; Simonovic, 2009 

Fuzzy conceptual hydrological models Ozelkan and Duckstein, 2001 

Analysis of urban water supply systems Simonovic, 2009 

Soil mapping under knowledge availability Zhu et al., 2010 

2.3. OPTIMIZATION OF LARGE WATER RESOURCE 
SYSTEMS INCLUDING STREAM-AQUIFER 
INTERACTION 

Both deterministic and stochastic programming algorithms have been used 

to optimize large-scale water resource systems through a joint management 

of surface and groundwater resources, assuming a central and perfectly 

coordinated system operation. 

Deterministic optimization models can handle complex conjunctive use 

optimization problems (e.g. Hanson et al., 2012; Jenkins et al., 2004; 

Marques et al., 2010; Pulido-Velazquez et al., 2006a, 2004; Reichard, 1995). 

The primary disadvantage of this approach is the perfect foresight. In 

contrast, stochastic optimization algorithms explicitly consider inflow 

uncertainty. They can be divided into two main areas: approaches in which 

uncertainty is handled by taking expectations on the future state of the 

system, and methods in which uncertainty is treated in a broader 

perspective. Within the latter one can mention the Info-Gap Decision Theory 
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(Ben-Haim, 2006) and Robust Optimization (Ben-Tal et al., 2009). Stochastic 

optimization algorithms, which make expectations on the future system 

state, often treat the problem as a single objective (often, maximization of 

expected benefits), fitting a probabilistic description to the inflow data. 

However, their use in large-scale water resource systems is hindered by the 

curse of dimensionality (Labadie, 2004). Tackling it down requires the use of 

aggregation-disaggregation techniques (Archibald et al., 1997) or derivative 

approaches. 

In most reported applications of stochastic optimization to large-scale 

water resource systems, groundwater and stream-aquifer interaction 

processes are not explicitly modeled (Goor et al., 2010; Marques and Tilmant, 

2013; Pereira and Pinto, 1991, 1985; Tilmant et al., 2008; Tilmant and 

Kelman, 2007) or are represented as underground reservoirs with no 

connection to surface waters (Davidsen et al., 2015, 2014; Marques et al., 

2010; Zhu et al., 2015). However, in surface-groundwater systems, both 

components interact. In fact, groundwater abstractions can have a 

remarkable impact on surface resources with streamflow depletion due to 

groundwater overdraft (e.g. Barlow and Leake, 2012). 

Stochastic Dual Dynamic Programming (SDDP, Pereira and Pinto, 1991, 

1985) is one of the few stochastic alternatives for solving management 

problems in large-scale water resource systems. It has been used to derive 

optimal operating rules for multireservoir systems and to assess marginal 

water values (Goor et al., 2010; Marques and Tilmant, 2013; Tilmant et al., 

2008; Tilmant and Kelman, 2007). This estimation of marginal water values is 

its distinct possibility. However, it is not able to mathematically represent 

stream-aquifer interactions. In order to make it applicable to large-scale 

water resource systems with reservoirs, aquifers and stream-aquifer 

interactions, SDDP needs to be extended. Part of the research of this thesis 

focuses on this issue. 

2.4. DISCUSSION 

Despite the wide range of optimization algorithms available, its efficiency in 

prescribing optimal decisions and the methodologies developed to derive 

operating rules based on their results, their use in the real-life operation of 

water resource systems has not increased as previewed, remaining a gap 
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between theory and practice (Labadie, 2004; Maier et al., 2014; Rani and 

Moreira, 2010). The two main reasons behind this issue are: 

1) Optimization models have intrinsic limitations that hinder their use in 

decision-making (Labadie, 2004; Rogers and Fiering, 1986). It should 

be taken into account that optimal decisions obtained by them are 

subject to the mathematical model of the system they assume. Reality 

is usually more complex than a mathematical model, so its results need 

to be adapted to the decision-making processes carried out in real-life. 

2) Expert knowledge and criteria should be included in the definition of 

operating rules. Management decisions are usually the result of a 

process implying comprehensive negotiation and agreement reaching. 

Operating rules provide guidance to the system operators, but their 

expert knowledge is required in order to adapt the decisions 

previewed by the rules to the circumstances found at that time 

(Oliveira and Loucks, 1997). In fact, they sometimes deviate from the 

operating rules in response to specific conditions, objectives and 

constraints that may exist over time. Optimization models should take 

into account the decision-making processes carried out in the system 

(Maier et al., 2014). 

These reasons are the main motivation of the research carried out in this 

PhD thesis. In order to develop operating rules based on optimization 

algorithms, ensuring they could be applied in real-life decision-making, 

expert criteria and knowledge should be combined with optimal decisions. 

Fuzzy logic, which has been proven to be able to embed expert judgment in 

its structure, is going to be used for this purpose. Optimization results will be 

provided by stochastic programming, in order to wipe out the perfect 

foresight associated with deterministic programming. However, stochastic 

programming algorithms developed so far did not explicitly model stream-

aquifer interactions in large-scale water resource systems, thus requiring the 

development of new methods able to take it into account. 
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3. METHODS 1: STOCHASTIC 
OPTIMIZATION OF CONJUNCTIVE 
USE OF RESERVOIRS AND AQUIFERS 
IN LARGE WATER RESOURCE 
SYSTEMS1 

The management of large water resource systems (with both several 

reservoirs and aquifers and in which surface and ground waters overlap) 

requires considering stream-aquifer interactions, as well as how they are 

affected by surface and groundwater management. Optimization models 

applied to large-scale systems have either employed deterministic 

optimization (with perfect foreknowledge of future inflows, which hinders 

their applicability to real-life operations) or stochastic programming (in 

which stream-aquifer interaction is often neglected due to the 

computational burden associated with these methods).  

In this chapter it is presented the approach for the integration of stream-

aquifer interaction in stochastic programming. It combines the Stochastic 

Dual Dynamic Programming (SDDP) algorithm with the Embedded 

Multireservoir Model (EMM). The resulting extension of the SDDP algorithm, 

named Combined Surface-Groundwater SDDP (CSG-SDDP), is able to 

properly represent the stream-aquifer interaction within stochastic 

optimization models of large-scale surface-groundwater resource systems. 

3.1. OVERVIEW OF STOCHASTIC PROGRAMING 

Stochastic programming has been chosen in this thesis due to its lack of 

perfect foreknowledge of future inflows. Since this issue becomes important 

in river basins subject to drought conditions (Rani and Moreira, 2010), as the 

Jucar River Basin, its further application to the case study is likely to produce 

more adequate results than deterministic formulations. Stochastic dynamic 

                                                           

1 The methodology presented in this Chapter has been adapted from Macian-Sorribes et al., 

(2017). Its use complies with the Copyright Transfer Agreement signed between the authors 

and the American Geophysical Union (AGU) 
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programming combines dynamic programming with an explicit consideration 

of inflow uncertainty (Rani and Moreira, 2010). Its general objective function 

for optimal water resource system operations is (Stedinger et al., 1984): 

𝐹𝑡(𝑠𝑡, 𝑞𝑡−1) = 𝑚𝑎𝑥
𝑟𝑡

𝐸𝑞𝑡|𝑞𝑡−1[𝐵𝑡(𝑠𝑡, 𝑟𝑡, 𝑞𝑡) + 𝐹𝑡+1(𝑠𝑡+1, 𝑞𝑡)] 3.1 

Were 𝐹𝑡 total benefits between time stage t and the end of the planning 

horizon; 𝑠𝑡 initial storage at time stage t; 𝑞𝑡 inflows during time stage t; 𝑟𝑡 

decision (release or final storage) made; E expectation operator based on the 

conditional probability of 𝑞𝑡  given  𝑞𝑡−1 ; 𝐵𝑡  immediate benefits; and 𝐹𝑡+1 

benefits-to-go. In its standard formulation, the storage and the inflow 

variables are discretized and a Markov chain is used to characterize the 

uncertainty associated with future inflows given the current ones (Nandalal 

and Bogardi, 2007). These discretizations make it suffer the curse of 

dimensionality (Labadie, 2004; Rani and Moreira, 2010), requiring alternative 

stochastic programming approaches to deal with large-scale water resource 

systems. 

In most of the research published on the stochastic optimization of large 

water resource systems, groundwater and stream-aquifer interactions were 

not explicitly modeled (Goor et al., 2010; Marques and Tilmant, 2013; Pereira 

and Pinto, 1991, 1985; Tilmant et al., 2008; Tilmant and Kelman, 2007), or 

aquifers were mathematically represented as underground reservoirs 

without any link with the surface system (Davidsen et al., 2015, 2014; 

Marques et al., 2010; Zhu et al., 2015). However, it is well-known that both 

components interact. In fact, groundwater exploitation can have remarkable 

impacts on the surface resources, reducing streamflows due to overdraft 

(e.g. Barlow and Leake, 2012). 

Stochastic Dual Dynamic Programming (SDDP, Pereira and Pinto, 1991, 

1985) is one of the alternatives developed to cope with the curse of 

dimensionality. It has been employed to derive optimal operation decisions 

for multireservoir systems and to assess marginal water values (Goor et al., 

2010; Marques and Tilmant, 2013; Poorsepahy-Samian et al., 2016; Tilmant 

et al., 2008; Tilmant and Kelman, 2007). It has been chosen, among the set 

of SDP alternatives capable of handling large water resource systems, due to 

the long experience applications in complex water resource systems in which 

hydropower, agriculture and urban uses coexist (Rani and Moreira, 2010). 
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An extension of the SDDP algorithm has been developed to simulate the 

effect of stream-aquifer interactions in large-scale water resource systems. 

This extension has been named as combined surface-groundwater stochastic 

dual dynamic programming (CSG-SDDP, Macian-Sorribes et al., 2017). It 

incorporates a stream-aquifer interaction modeling procedure, the 

Embedded Multireservoir Model (EMM, Pulido-Velazquez et al. 2005), for 

the assessment of conjunctive water use strategies. 

3.2. ONE-STAGE SUBPROBLEM BUILDING 

The SDDP algorithm, and thus the CSG-SDDP one, optimizes the management 

of a water resource system applying the following objective function (Eq. 

3.2), which is a version of the general one presented in Eq. 3.1. 

𝐹𝑡(𝑠𝑡, 𝑞𝑡−1) = 𝑚𝑎𝑥
𝑟𝑡

 [𝐵𝑡(𝑠𝑡, 𝑟𝑡 , 𝑞𝑡) + 𝐹𝑡+1] 3.2 

Where 𝐹𝑡 total benefits obtained between time stage t and the end of the 

planning horizon; 𝑠𝑡  system state at the beginning of time stage t; 𝑞𝑡−1 

inflows to the system at time stage t-1; 𝐵𝑡  immediate benefits (the ones 

obtained in time stage t); 𝑟𝑡  decision made in time stage t; 𝑞𝑡  forecasted 

inflows during time stage t given the previous ones; and 𝐹𝑡+1 benefit-to-go 

function represented as one scalar. 

The system operation problem is subject to the surface water mass 

balance conservation equation (Eq. 3.3) for every time period t. 

𝑠𝑡+1 = 𝑠𝑡 − 𝑙𝑡 + 𝐶
𝑞 · 𝑞𝑡 + 𝐶

𝑛 · 𝑟𝑡 + 𝐶𝑋 · 𝑋𝑡 − 𝐶𝑑 · 𝑠𝑑𝑡  3.3 

Where 𝑠𝑡+1  vector of storages at the beginning of time stage t+1, 𝑠𝑡  

vector of storages at the beginning of time stage t; 𝑙𝑡  vector of losses 

(including evaporation and seepage); 𝐶𝑞  inflow connectivity matrix; 𝑞𝑡  

vector of inflows from hydrological sub-basins; 𝐶𝑛 node connectivity matrix; 

𝑟𝑡  vector of releases from nodes; 𝐶𝑋  stream-aquifer interaction 

connectivity matrix; 𝑋𝑡  vector of exchanged flows between surface and 

ground waters due to stream-aquifer interaction (positive if there is a 

groundwater discharge); 𝐶𝑑 demand connectivity matrix; and 𝑠𝑑𝑡  vector of 

surface water deliveries to consumptive demands. The operation problem is 

also subject to the groundwater mass balance conservation (Eq. 3.4). 
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𝐺𝑡+1 = 𝐺𝑡 + 𝑅𝑡 − (𝐶
𝑋)𝑇 · 𝑋𝑡 − 𝐶𝑝 · 𝑝𝑑𝑡  3.4 

Where 𝐺𝑡+1 vector of aquifer storages at the beginning of time stage t+1, 

𝐺𝑡  vector of aquifer storages at the beginning of time stage t; 𝑅𝑡  vector of 

aquifer recharge; 𝐶𝑝 pump connectivity matrix; and 𝑝𝑑𝑡  vector of pumping 

rates from the aquifer to consumptive demands. An example of a 

multireservoir system including aquifers and the corresponding connectivity 

matrices is shown in Fig. 3.1. The stream-aquifer interaction term is obtained 

using the equations of the Embedded Multireservoir Model, able to model 

complex relationships between surface and groundwater bodies (presented 

in detail in section 3.3). 
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Fig. 3.1: Example of a multireservoir system and the associated connectivity matrices 

The interactions between surface and ground waters considered by the 

algorithm are three: 1) aquifer recharge R; 2) aquifer pumping from 

consumptive demands pd; and 3) water exchanged between river reaches 

and groundwater bodies through stream-aquifer interaction X. The 

optimization problem described can be applied to any water resource system 

configuration within the applicability limits of the SDDP algorithm, which can 
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handle very large water resource systems (e.g. Pereira and Pinto, 1985; 

Tilmant et al., 2010; Tilmant and Kelman, 2007); and within the range of 

application of the EMM, which can reproduce complex stream-aquifer 

interactions (Andreu and Sahuquillo, 1987; Estrela and Sahuquillo, 1997; 

Pulido-Velazquez et al., 2008, 2006a, 2005; Sahuquillo, 1983). 

3.2.1. Immediate benefits 

The immediate benefits 𝐵𝑡 have been divided into two components (Eq. 3.5). 

𝐵𝑡(𝑠𝑡, 𝑟𝑡, 𝑞𝑡) =∑𝐵𝐶𝑡
𝑑

𝑑

+∑𝐵𝐻𝑡
ℎ𝑝𝑝

ℎ𝑝𝑝

 3.5 

Where 𝐵𝐶𝑡
𝑑  benefits associated with consumptive uses; d consumptive 

demand; 𝐵𝐻𝑡
ℎ𝑝𝑝

 benefits associated with hydropower; hpp hydropower 

plant. If desired, economic penalties can also be included to undesired 

situations like non-turbined releases and minimum flow and storage 

violations. 

Consumptive uses 

These benefits can be obtained as the integration of the demand function or 

curve between zero and the level of supply, minus the pumping costs if 

groundwater resources are used (Eq. 3.6). 

𝐵𝐶𝑡
𝑑 = ∫ 𝐷𝐶𝑡

𝑑(𝑥)𝑑𝑥 −∑𝑃𝐶𝑡
𝑑,𝑎𝑞

𝑎𝑞

𝑥=𝑠𝑑𝑡
𝑑

𝑥=0

 3.6 

Where 𝐷𝐶𝑡
𝑑 demand curve for time stage t; 𝑠𝑑𝑡

𝑑 current total net supply 

level (surface and/or groundwater) from the system operation; and 𝑃𝐶𝑡
𝑑,𝑎𝑞

 

pumping costs, calculated as: 

𝑃𝐶𝑡
𝑑,𝑎𝑞

= 𝑈𝑃𝐶𝑡
𝑑,𝑎𝑞

· 𝑝𝑑𝑡
𝑑,𝑎𝑞 3.7 

Where d demand that pumps, aq aquifer from which it pumps; 𝑈𝑃𝐶𝑡
𝑑,𝑎𝑞

 

unitary pumping cost and 𝑝𝑑𝑡
𝑑,𝑎𝑞

 amount of groundwater pumped. The 

unitary pumping cost can be considered as fixed or variable depending on 

the aquifer storage. 

Hydropower benefits 
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The hydropower production formulation is shown in Eq. 3.8. 

𝐻𝑃𝑡
ℎ𝑝𝑝

=
ℎ𝑡
ℎ𝑝𝑝

+ ℎ𝑡+1
ℎ𝑝𝑝

2
· 𝑞𝑟𝑡

ℎ𝑝𝑝
· 𝜂ℎ𝑝𝑝 3.8 

Where 𝐻𝑃𝑡
ℎ𝑝𝑝

 hydropower production obtained in time stage t at power 

plant hpp; ℎ𝑡
ℎ𝑝𝑝

 and ℎ𝑡+1
ℎ𝑝𝑝

 heads in power plant hpp at time stages t and t+1, 

which can be the heads in the associated reservoir (impoundment), or the 

net jump of the power plant (run-of-river); 𝑞𝑟𝑡
ℎ𝑝𝑝

 turbined flow during time 

stage t (equal to the release from the associated system node subject to the 

plant capacity and the existence on minimum flow rates); and 𝜂ℎ𝑝𝑝 

generation efficiency, which equals the global dimensionless efficiency 

coefficient times a conversion factor that depends on the units (if time in 

month, elevation in m, flow in Mm3 and energy in GWh, it equals 0.0027222). 

Once the production is obtained, the benefits are calculated as production 

times the energy price or the value of energy in non-market situations. 

Hydropower production is a potential source of nonconvexities that may 

hinder the applicability of SDDP, which requires the benefit-to-go functions 

to be convex (Tilmant et al., 2008; Tilmant and Kelman, 2007). A way to 

assure that these nonconvexities do not affect the benefit-to-go function 

representation is to assume that the hydropower production is dominated 

by the turbined release rather than the head (Tilmant and Kelman, 2007). 

This assumption is valid if changes in head are small compared with the total 

head (Tilmant et al., 2008). 

3.2.2. Benefit-to-go function representation 

Any SDDP formulation estimates the 𝐹𝑡+1 function using a set of hyperplanes 

(piecewise linear approximations) obtained by sampling and extrapolation 

through a Benders decomposition scheme (Goor, 2010; Pereira and Pinto, 

1985). Each hyperplane is built as follows: a sample point is chosen and a 

linear approximation of the 𝐹𝑡+1 function is calculated using its value and its 

derivatives at this point (Fig. 3.2). The Ft+1 function must be linear or at least 

convex, fulfilling the Kuhn-Tucker conditions for optimality (Goor, 2010), in 

order to ensure that the piecewise linear segments are always offering an 

upper bound of the true benefit function. 
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Fig. 3.2: Function approximation using piecewise linear cuts 

In the one-stage subproblem (Eq. 3.2), 𝐹𝑡+1 is represented as one scalar 

bound to a set of constraints (added to the optimization problem) 

corresponding to the hyperplanes equations:  

{
 
 
 

 
 
 
𝐹𝑡+1 ≤ 𝜑𝑡+1

1 · 𝑠𝑡+1 +𝜔𝑡+1
1 · 𝐺𝑡+1

𝑎𝑞𝑟
+ 𝛾  𝑡+1

1 · 𝑞𝑡 + 𝛽𝑡+1
1

⋮
⋮

𝐹𝑡+1 ≤ 𝜑𝑡+1
𝑙 · 𝑠𝑡+1 +𝜔𝑡+1

𝑙 · 𝐺𝑡+1
𝑎𝑞𝑟

+ 𝛾𝑡+1
𝑙 · 𝑞𝑡 + 𝛽𝑡+1

𝑙

⋮
⋮

𝐹𝑡+1 ≤ 𝜑𝑡+1
𝐿 · 𝑠𝑡+1 +𝜔𝑡+1

𝐿 · 𝐺𝑡+1
𝑎𝑞𝑟

+ 𝛾𝑡+1
𝐿 · 𝑞𝑡 + 𝛽𝑡+1

𝐿

 3.9 

Where l linear approximation of the benefit-to-go function; 𝑠𝑡+1 vector of 

start-of-period storages in t+1; 𝐺𝑡+1
𝑎𝑞𝑟

 vector of start-of-period groundwater 

storages in t+1; 𝑞𝑡 vector of previous inflows to time step t+1; 𝜑𝑙  vector of 

slopes with respect to the storage term; 𝜔𝑙 vector of slopes with respect to 

the groundwater term (one term per aquifer cell); 𝛾𝑙  vector of slopes with 

respect to the previous inflow term; and 𝛽𝑙 vector of independent terms. 

3.2.3. Constraints 

In addition to the constraints introduced by the water mass balance 

conservation (Eq. 3.3 and 3.4), and by the representation of 𝐹𝑡+1 (Eq. 3.9), 

the one-stage subproblem is subject to the limits on storages (capacity and 

dead storage), streamflows (minimum environmental flow and stream 

capacity) and consumptive uses; as well as water losses (evaporation and 

seepage in reservoirs and seepage in streams) and hydropower capacity. 
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3.2.4. Stochastic modeling procedures 

The inflow uncertainty is represented in the SDDP algorithm by an analytical 

stochastic multivariate autoregressive model (AR), as the ones described in 

Hipel and McLeod (1994); and Salas et al. (1980). Although AR models of 

order 2 and higher can be employed in the SDDP method (Maceira and 

Damázio, 2004; Pina et al., 2016), the classical formulation of the SDDP, with 

an AR model of order 1, has been adopted in this thesis. This efficient 

representation avoids the need of discretization schemes that hinder the use 

of the standard SDP in large water resource systems. Assuming a vector of 

previous standard inflows (null mean and unit standard deviation) {𝑧𝑡−1} 

obtained after {𝑞𝑡−1 }, the AR(1) model estimates the standard vector of 

current inflows {𝑧𝑡} as: 

𝑧𝑡 =  𝛿1,𝑡 · 𝑧𝑡−1 +𝜔0,𝑡 · 𝜀𝑡 3.10 

Where 𝛿1,𝑡  statistical relationship between the previous inflows vector 

and the current one; 𝜔0,𝑡  residuals’ coefficients; and 𝜀𝑡  randomly-

distributed residuals that follow a standard normal distribution (white noise). 

If δ and 𝜔0 do not depend on t the model is named to be an AR(1) model 

with constant parameters; otherwise it is named as an AR(1) model with 

periodic parameters (Salas et al., 1980). 

The SDDP algorithm usually assumes normally-distributed inflows. 

However, there are situations in which non-normally inflows must be 

assumed. In these, the SDDP algorithm can be used by building two 

autoregressive models:  

1. One autoregressive model whose features must agree with the inflow 

characteristics, assuming non-normally inflows if necessary, to 

generate inflow time series and openings. Alternative approaches to 

generate inflow openings and time series can be used if found 

adequate. 

2. One AR(1) model assuming normally-distributed inflows, whose δ1,t+1 

coefficients are going to be used in the calculation of the hyperplanes’ 

parameters. This model should not be used to generate openings 

and/or time series unless its adequacy has been properly tested. 
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3.3. MODELING STREAM-AQUIFER INTERACTION  

The distinct feature of the CSG-SDDP, the inclusion of stream-aquifer 

interactions, is made using the conceptual Embedded Multireservoir Model 

(EMM, Pulido-Velazquez et al. 2005). Its formulation is based on the 

structure of the analytical solution of the stream-aquifer interaction problem 

obtained from the groundwater flow equation applied to linear systems 

(confined aquifers or unconfined aquifers with negligible head variations 

compared to its thickness), as well as its analogy with the state equation of 

the groundwater linear reservoir model (Sahuquillo, 1983). This conceptual 

model represents each stream-aquifer interaction modeled as the 

summation of the drainage of one or more reservoirs with discharges linearly 

proportional to the volume stored above the outlet (Fig. 3.3). 

 

Fig. 3.3: Conceptualization of the embedded multireservoir model 
Source: adapted from Pulido-Velazquez et al. (2005) 

Although the EMM is unable to obtain spatially-distributed heads and 

internal groundwater flows, so it cannot be considered as an aquifer model, 

it can provide accurate representations of stream-aquifer interactions while 

maintaining the balance of groundwater resource availability, even in karstic 

aquifers (Estrela and Sahuquillo, 1997). Due to its capability to adequately 

reproduce stream-aquifer interactions, the EMM is used in some general 
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Decision Support System shells, in which a wide range of system 

configurations can be modeled (Andreu et al., 1996). Due to this, combine 

EMM with SDDP is a promising alternative, since the focus of the resulting 

algorithm is kept on the reservoir management rather than on groundwater. 

Further information on analytical and numerical derivations of the EMM and 

its relation with the eigenvalue method (Sahuquillo, 1983) can be found in 

Pulido-Velazquez et al. (2008, 2006a, 2005).  

Each external action or stress applied to the aquifer is divided among a 

set of linear reservoirs with different discharge coefficients 𝛼𝑎𝑞𝑟 according 

to stress allocation factors 𝑏𝑎𝑞𝑟. For each aqr reservoir, the linear problem is 

solved as: 

𝐺𝑡+1
𝑎𝑞𝑟

= 𝐺𝑡
𝑎𝑞𝑟

· 𝑒−𝛼
𝑎𝑞𝑟𝛥𝑡 +

𝑏𝑎𝑞𝑟 · 𝑛𝑅𝑡
𝛼𝑎𝑞𝑟

(1 − 𝑒𝛼
𝑎𝑞𝑟𝛥𝑡) 3.11 

𝑋𝑡
𝑎𝑞𝑟

= 𝐺𝑡
𝑎𝑞𝑟

− 𝐺𝑡+1
𝑎𝑞𝑟

+ 𝑏𝑎𝑞𝑟 · 𝑛𝑅𝑡 3.12 

∑𝑏𝑎𝑞𝑟 = 1

𝑎𝑞𝑟

 3.13 

Where 𝐺𝑡
𝑎𝑞𝑟

 groundwater stored at the start of time stage t in the linear 

reservoir aqr, Δt time increment, 𝑛𝑅𝑡  net recharge (recharge minus 

pumping), and 𝑋𝑡
𝑎𝑞𝑟

 groundwater discharge (outflow) from linear reservoir 

aqr. When 𝐺𝑡
𝑎𝑞𝑟

 becomes negative (storage level below the outlet), 𝑋𝑡
𝑎𝑞𝑟

 

turns into negative too, representing an inflow to the aquifer from the river 

(losing river). Eq. 3.11 calculates the storage at each linear reservoir for the 

end of time stage t (beginning of t+1) and Eq. 3.12 obtains the discharge by 

water balance. Once they are solved for all the linear reservoirs that 

conceptualize the aquifer, the total aquifer storage 𝐺𝑡 and the total outflow 

𝑋𝑡  is the summation over the aqr terms. The EMM assumes no internal 

connections between linear reservoirs, so equations 3.11 to 3.13 are applied 

separately to each one. 

The net groundwater discharge 𝑛𝑅𝑡  is calculated as the sum of all the 

recharge flows (excluding stream-aquifer interaction) minus the 

abstractions. If a linear aquifer response is assumed (valid for confined 

aquifers or unconfined aquifers with negligible head variations compared 

with its thickness), the principle of superposition can be applied, and the 

behavior associated with the whole set of actions can be obtained as the 
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summation of the effects caused by each individual action (pumping, rainfall, 

percolation, artificial recharge, etc.) applied to the aquifer (Pulido-Velazquez 

et al., 2005).  

If this principle can be applied, it is not necessary to reproduce the 

response of the aquifer to the natural stresses, since the natural stream-

aquifer interaction is already included in the natural regime inflow time 

series. The calculation of the aquifer response due to natural stresses is 

cumbersome, since it requires a large amount of hydrological and aquifer 

hydraulic properties for the desired analysis period. If the conditions for a 

linear response cannot be fulfilled, assuming a linear behavior can lead to 

significant errors in the stream-aquifer interaction assessment. 

3.4. CSG-SDDP STAGES 

In the SDDP algorithm, the 𝐹𝑡+1 function is built using an iterative process 

with a backward optimization and a forward simulation (Fig. 3.4). In the 

backward step, the hyperplanes that bind 𝐹𝑡+1 are estimated. In the forward 

one, the 𝐹𝑡+1 representation built is used to optimize the system. At the end 

of each iteration, the accuracy of 𝐹𝑡+1 is evaluated and, if insufficient, it is 

improved adding more sample points and piecewise linear approximations 

(also known as cuts). The process is repeated until enough accuracy is found. 

 

Fig. 3.4: SDDP general flowchart 
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3.4.1. Initial stages 

Sample initialization 

Each time stage t needs a vector of sampled start-of-period storages {𝑠𝑡
𝑜}, a 

vector of sampled previous inflows {𝑞𝑡−1
𝑜 } and a vector of sampled start-of-

period groundwater levels {𝐺𝑡
𝑜}. The inflow samples can be obtained using 

the historical records of the analysis period, or the results of a hydrological 

or autoregressive model. The reservoir and groundwater storage samples for 

the first iteration can be estimated, as done by Pereira and Pinto (1985), by 

using a previous greedy or blind forward-moving optimization, in which the 

one-stage subproblem is solved without considering future benefits. 

Stochastic modeling 

The previously-defined AR model, or any suitable alternative employed for 

inflow generation, is used to obtain the required inflow scenarios: 

• Generate, for all the T time stages of the planning horizon, K inflow 

openings {𝑞𝑡}
𝑘 conditioned by the sampled inflows {𝑞𝑡−1

𝑜 } 

• Generate M inflow scenarios ({𝑞1},… , {𝑞𝑡},… , {𝑞𝑇})
𝑚 conditioned by 

the inflows sampled at t=1 {𝑞0
𝑜} 

3.4.2. Backward optimization 

In the backward optimization the 𝐹𝑡+1 function is estimated, for each time 

stage of the analysis period, solving the one-stage subproblem for L samples 

and K inflow openings per sample (Goor, 2010; Tilmant and Kelman, 2007). 

The number of subproblems solved per iteration is T·L·K. The pseudo-code 

corresponding to the backward optimization, as stated in Goor (2010), is: 

Establish the number L of cuts to be used in the current iteration 

Initialize the end-of-horizon cut values 𝜑𝑇+1
𝑙 , 𝛾𝑇+1

𝑙 , 𝜔𝑇+1
𝑙  and 𝛽𝑇+1

𝑙  

FOR t=T to t=1 

 Retrieve the cut parameters calculated at the stage t+1: 𝜑𝑡+1
𝑙 , 𝛾𝑡+1

𝑙 , 𝜔𝑡+1
𝑙  and 𝛽𝑡+1

𝑙  

 FOR l=1 to L 

  FOR k=1 to K 

   Solve the one-stage SDDP subproblem 

   Calculate cut parameters 𝜑𝑡
𝑙,𝑘, 𝛾𝑡

𝑙,𝑘, 𝜔𝑡
𝑙,𝑘  

  END 
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  Take the expectation over the openings to obtain 𝜑𝑡
𝑙 , 𝛾𝑡

𝑙  and 𝜔𝑡
𝑙  

  Calculate 𝛽𝑡
𝑙  

  Store the total benefit values 𝐹𝑡
𝑙 

 END 

END 

The parameters 𝜑𝑡
𝑙 , 𝛾𝑡

𝑙, 𝜔𝑡
𝑙  and 𝛽𝑡

𝑙 correspond to the vector of slopes with 

respect to the storage, the vector of slopes with respect to the previous 

inflows, the vector of slopes with respect to the aquifer storages, and the 

vector of independent terms. As stated in Goor (2010); Pereira and Pinto 

(1985); and Tilmant and Kelman (2007), their estimation can be done 

regarding to the primal and dual information available after solving the one-

stage subproblem for each sample and opening. 

At stage t+1, after the solution of the one-stage SDDP subproblem, the 

slope with respect to the storages 𝜑𝑡+1
𝑙,𝑘  can be obtained as: 

𝜑
𝑡+1
𝑙,𝑘 =

𝜕𝐹𝑡+1
𝑙,𝑘

𝜕𝑠𝑡+1
= 𝜆𝑡+1

𝑙,𝑘,𝑛𝑒 3.14 

Where 𝜆𝑡+1
𝑙,𝑘,𝑛𝑒 vector of dual variables associated with the mass balance 

equations (Eq. 3.3) of the ne nodes that are reservoirs. The 𝜑𝑡+1
𝑙  parameter 

can be obtained by taking the expectation over all the openings: 

𝜑𝑡+1
𝑙 =

1

𝐾
·∑𝜑𝑡+1

𝑙,𝑘

𝐾

𝑘=1

 3.15 

The slope with respect to the inflows 𝛾𝑡+1
𝑙.𝑘  can be estimated as: 

𝛾𝑡+1
𝑙,𝑘 =

𝜕𝐹𝑡+1
𝑙,𝑘

𝜕𝑞𝑡
=
𝜕𝐹𝑡+1

𝑙,𝑘

𝜕𝑞𝑡+1
·
𝜕𝑞𝑡+1
𝜕𝑞𝑡

= (𝜆𝑡+1
𝑙,𝑘,𝑛𝑞

+ ∑ 𝜆𝑡+1
𝑙,𝑘,𝑐𝑢𝑡 · 𝛾1,𝑡+2

𝑐𝑢𝑡

𝐿

𝑐𝑢𝑡=1

) · ( 𝛿1,𝑡+1 ·
𝜎𝑡+1
𝜎𝑡
) 

3.16 

Where cut piecewise linear approximation of the 𝐹𝑡+2  function (same 

meaning as l but referred to the t+2 stage); 𝜆𝑡+1
𝑙,𝑘,𝑛𝑞

 vector of dual variables 

associated with the mass balance equations of the nq nodes that are 

receiving inflows (Eq. 3.3); 𝜆𝑡+1
𝑙,𝑘,𝑐𝑢𝑡  dual variable associated with the 

constraint that represents the cut piecewise linear approximation of 𝐹𝑡+2 
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(Eq. 3.9); 𝛾1,𝑡+2
𝑐𝑢𝑡  vector of slopes with respect to the immediate previous 

inflows of the cut piecewise linear approximation of 𝐹𝑡+2 ; 𝛿1,𝑡+1  matrix 

obtained from the autoregressive model calculated assuming normally-

distributed inflows; 𝜎𝑡+1 standard deviation of the inflows in stage t+1. The 

𝛾𝑡+1
𝑙  can be calculated as the expectation over all the openings: 

𝛾𝑡+1
𝑙 =

1

𝐾
·∑ 𝛾𝑡+1

𝑙,𝑘

𝐾

𝑘=1

 3.17 

The slope with respect to the groundwater levels 𝜔𝑡+1
𝑙,𝑘  can be calculated 

in CSG-SDDP as: 

𝜔𝑡+1
𝑙,𝑘 =

𝜕𝐹𝑡+1
𝑙,𝑘

𝜕𝐺𝑡+1
= 𝜆𝑡+1

𝑙,𝑘,𝑎𝑞𝑟
· 𝑒−𝛼

𝑎𝑞𝑟
+ 𝜆𝑡+1

𝑙,𝑘,𝑋 3.18 

Where 𝜆𝑡+1
𝑙,𝑘,𝑎𝑞𝑟

 vector of dual variables associated with the calculation of 

the end-of-period groundwater storages (Eq. 3.11); 𝜆𝑡+1
𝑙,𝑘,𝑋  vector of dual 

variables associated with the mass balance equation used to compute the 

groundwater discharge (Eq. 3.12). The 𝜔𝑡+1
𝑙  parameter can be obtained by 

taking the expectation over all the openings: 

𝜔𝑡+1
𝑙 =

1

𝐾
·∑𝜔𝑡+1

𝑙,𝑘

𝐾

𝑘=1

 3.19 

Once 𝜑𝑡+1
𝑙 , 𝛾𝑡+1

𝑙 , and 𝜔𝑡+1
𝑙  are obtained, the independent term 𝛽𝑡+1

𝑙   can 

be calculated as: 

𝛽
𝑡+1
𝑙 =

1

𝐾
·∑𝐹𝑡+1

𝑙,𝑘

𝐾

𝑘=1

− 𝜑
𝑡+1
𝑙 · 𝑠𝑜𝑡+1

𝑙
− 𝛾

𝑡+1
𝑙 · 𝑞𝑜

𝑡
𝑙
− 𝜔𝑡+1

𝑙 · 𝑔𝑤𝑜
𝑡
𝑙  3.20 

Given that the piecewise linear approximations of 𝐹𝑡+1  offer an upper 

bound of its true value, the total benefits obtained each time stage of the 

backward recursion (𝐹𝑡 ) are overestimated. Once the last stage of the 

backward recursion (t=1) is reached, the upper bound Z̅ (overestimation) of 

the true benefits obtained can be defined as the value of 𝐹1 associated with 

the sampled storage and inflow variables in t=1 (Eq. 3.21). 

𝑍̅ = 𝐹1(𝑠
𝑜
1, 𝑞0

𝑜) 3.21 
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3.4.3. Forward simulation 

The estimations of 𝐹𝑡+1 from the backward optimization are employed in a 

forward-moving loop in which the one-stage subproblem is solved for the M 

inflow scenarios previously generated. For each scenario, the total benefits 

obtained Zm  are a lower bound of the true benefits, given that the 𝐹𝑡+1 

functions are overestimated and, consequently, the model favors future 

benefits instead of the current ones. The pseudo-code corresponding to the 

forward simulation stage, as stated in Goor (2010), is: 

FOR m=1 to m=M 

 FOR t=1 to T 

Retrieve cut parameters for stage t+1: 𝜑𝑡
𝑙 , 𝛾𝑡

𝑙 , 𝜔𝑡
𝑙  and 𝜑𝑡

𝑙 , 𝛾𝑡
𝑙 , 𝜔𝑡

𝑙  calculated 
in the backward optimization 

Solve the one-stage SDDP subproblem 

  Store the immediate benefits obtained 𝐵𝑡
𝑚 

 END 

 Obtain the lower bound associated with the m scenario: 𝑍𝑚 

END 

The lower bound for each inflow scenario can be obtained as: 

𝑍𝑚 =∑𝐵𝑡
𝑚

𝑇

𝑡=1

 3.22 

The expected lower bound can be estimated as: 

𝑍 =
1

𝑀
∑ 𝑍𝑚
𝑀

𝑚=1

 3.23 

The standard deviation associated with the expected lower bound is: 

𝜎𝑍 = √
1

𝑀 − 1
· ∑(𝑍𝑚 − 𝑍)

2
𝑀

𝑚=1

 3.24 

Using the expected lower bound and the standard deviation, a 95% 

confidence interval can be built around the expectation: 

[𝑍 − 1.96 ·
𝜎𝑍

√𝑀
 , 𝑍 + 1.96 ·

𝜎𝑍

√𝑀
 ] 3.25 
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3.4.4. Convergence checking 

If the upper bound Z is inside the confidence interval defined around the 

lower one, then the approximation of the 𝐹𝑡+1 function is acceptable and the 

problem is solved. Otherwise, a new iteration is needed: a new set of 

sampled values {𝑠𝑡
𝑜}, {𝐺𝑡

𝑜} and {𝑞𝑡−1
𝑜 } is added to the previous ones and the 

procedure is started again with more hyperplanes representing 𝐹𝑡+1 . The 

natural candidates to the new {𝑠𝑡
𝑜} and {𝐺𝑡

𝑜} sample are the values obtained 

in the last forward simulation stage. As the number of samples increases with 

the iteration number, each new one requires more one-stage subproblems 

to be solved in the backward optimization stage. 

3.4.5. Steady-state optimization 

The main results of the previous methodology are the piecewise linear 

approximations of 𝐹𝑡+1  for each time stage of the planning horizon. To 

obtain steady 𝐹𝑡+1  approximations able to be used in further runs, a 

characteristic year could be chosen from the analysis period, using its 𝐹𝑡+1 

approximations in further optimization operations (Rougé and Tilmant, 

2016). To choose the characteristic year, two requirements must be fulfilled. 

1. Its hydrological characteristics must not depart from the general 

pattern observed in the historical data series period 

2. It must be located far enough from the bounds of the analysis period 

to avoid perturbations caused by either the initial or the final boundary 

conditions 

Once it is chosen, future optimization procedures would consist in solving 

forward the one-stage subproblem using the 𝐹𝑡+1 piecewise linear segments 

corresponding to this year. In this way, a steady decision-making process can 

be reproduced and tested under different conditions. 

3.5. ESPAT TOOL 

A general-purpose DSS shell tool, named Explicit Stochastic Programming 

Advanced Tool (ESPAT), has been created for the implementation of the CSG-

SDDP and alternative optimization approaches. It eases the setup and run of 

stochastic programming models by providing a uniform framework that can 

be applied regardless of the water resource system configuration, avoiding 
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the need of ad hoc codes. The systems to which it could be applied are the 

ones within the applicability limits of the CSG-SDDP algorithm (section 3.2). 

The main parts of the ESPAT tool are the user interface and the codes. The 

latter have been programmed using the GAMS language (General Algebraic 

Modeling System, Brooke et al. 1998). The interface guides the user in the 

introduction of the desired model features (surface hydrology, hydraulic 

infrastructure, economic features, stream-aquifer interaction, seepage 

losses and so on). The codes are executed from the interface, so no 

knowledge about GAMS is required to run ESPAT, being the following: 

• ESPAT_R: solves the SDDP algorithm as presented in Goor (2010); 

Pereira and Pinto (1985, 1991); and Tilmant and Kelman (2007). 

• ESPAT_RA: solves the CSG-SDDP algorithm as presented before. 

• ESPAT_DET: performs a deterministic optimization with the same 

features as the ESPAT_RA module. 

• ESPAT_SDP: solves the SDP algorithm without considering stream-

aquifer interactions. 

3.5.1. ESPAT user interface 

General features 

The user interface employed by the ESPAT tool consists of an MS Excel 

workbook, supported by several macros that communicate it with the codes 

and control their execution. The data are introduced using different Excel 

sheets. The interface plots the progress of the run execution and, if no 

execution errors are found, generates output Excel files according to the 

module executed. All the algorithms share the same interface, so it is easy to 

move from one approach to another. In addition, having the same input 

mechanism ensures that the same system configuration and mathematical 

descriptions of the physical and economic processes and features are used 

by all the algorithms. 

Required inputs 

1. General features of the problem: type of solving procedures, module 

parts to be executed, convergence limits, number of iterations, 

number of inflow scenarios or openings, etc. 
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Fig. 3.5: Model features input table for SDDP and SDP procedures in the ESPAT tool 

2. General features of the system: time horizon, time step, nodes, 

reservoirs, aquifers, hydropower plants, sub-basins, demands, etc. 

3. Connectivity matrices: nodes, wells, reservoirs, sub-basins, intakes. 

4. Reservoir features: minimum and maximum storages, initial state, 

head and surface curves, infiltration curves, aquifer which receives the 

infiltrated flows, evaporation rates, discrete values, etc. 

 

Fig. 3.6: System features input table of the ESPAT tool 

5. Demand features: demand values, return flows, pumped aquifer, 

demand benefits, pumping costs, etc. 

6. Stream features: maximum and minimum flows, infiltration rates, 

aquifer which receives infiltration, connected aquifer, etc. 

7. Hydropower plant features: associated reservoir (if there is one), 

turbine capacity, efficiency, elevation, benefits, etc. 

8. Aquifer features: number of linear reservoirs, initial state, discharge 

coefficients, distribution coefficients for all the actions, etc. 

9. Stochastic prediction scheme features: inflow means, inflow standard 

deviations, autoregressive model lag matrix, openings, time series, 

scenario weights, historical records, Markov chain, etc. 

Regular 1

Piec e by p iec e 2 Type of ESPAT_DET initial point obtention ESPAT as base 4

STIG as base 3 Type of SDDP scenario solving procedure GUSS on all 3

ESPAT as base 4 SDDP codes program execution Whole program 3

Stochastic modeling procedure desired AR-model-based 1

1 Origin of the first storage sample values in SDDP Blind simulation 2

2 Convergence limit in percentaje (only if series=1) 0.00001

3 Confidence interval coefficient (only if series>1) 0.05

Maximum number of iterations 15

Number of starting cuts, or cut number in only reoptimization 1

Number of lag periods of the autoregresive model 1

Number of openings calculated for each sample 20

Number of forward simulation series 20

Starting year of the historical series subsample 38

Number of years of the historical series subsample 5

Number of year to use as steady cut value provider 2

Penalty on minimum flow violation 1.5

Penalty on minimum storage violation 1

MODEL GENERAL FEATURES FOR ESPAT_DET, ESPAT_R AND ESPAT_RA

Type of problem Maximization 1

Recursion primary convergence limit (Benefits) 0.01

Recursion maximum number of iterations 20

Optimization module previously executed? Yes 1

Recursion module previously executed? Yes 1

Reoptimization desired? Yes 1

Optimization module quick mode Enabled 1

Reoptimization interpolation mechanism Piecewise linear 2

Reoptimization module reservoir prevalence mode Enabled 1

Type of reoptimization desired Deterministic 0

MODEL GENERAL FEATURES FOR ESPAT_SDP

Number of temporal stages per year (t) 12

Number of years of the historical period (hist_year) 69

Number of nodes in the system (nod) 11

Number of reservoirs in the system (e) 2

Number of aquifers in the system (aq) 2

Numer of hydropower plants (hpp) 1

Number of hydrological sub-basins (p) 2

Number of demands (d) 4

Coefficients of demand benefit curves (gd) 4

SYSTEM FEATURES
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3.5.2. ESPAT_R 

ESPAT_R solves the SDDP method as presented in Goor (2010); Pereira and 

Pinto (1985, 1991); and Tilmant and Kelman (2007); neither considering 

aquifers nor stream-aquifer interactions. It does not implement any 

autoregressive modeling procedure, whose results (correlation matrices, 

openings and series) must be introduced as inputs. Additionally, the code 

requires the initial sampled values for storages. 

The ESPAT_R code is divided into two modules: the SDDP module and the 

steady-state module. In the first one the SDDP stages are executed. In the 

second one a characteristic year is chosen and the system is optimized 

moving forward using the benefit-to-go functions of this year. The code 

allows the user to execute one of them or both, although the steady-state 

needs a set of 𝐹𝑡+1 functions of the characteristic year as input (Fig. 3.7). 

 

Fig. 3.7: ESPAT_R code general flowchart 

The results offered by this code are the state variables at the reservoir 

nodes (storage, evaporation and seepage losses), streamflows, outflows of 

the system, seepage losses and environmental flows, demand deliveries, 

deficits and demand benefits, turbined flows, energy production and energy 

benefits, and the water values (dual variables) at all the system’s nodes. 
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3.5.3. ESPAT_RA  

ESPAT_RA solves the CSG-SDDP method as presented in this PhD thesis, 

including stream-aquifer interactions. It possesses the same features, 

modular division and flowchart as ESPAT_R. 

3.5.4. ESPAT_SDP  

ESPAT_SDP implements the standard SDP algorithm (Nandalal and Bogardi, 

2007; Stedinger et al., 1984). Originally it was a separate program named 

SDP_GAMS (Macian-Sorribes and Pulido-Velazquez, 2014).  

This code is subject to the curse of dimensionality. It neither includes 

stream-aquifer interaction nor hydropower. After calculating the optimal 

operation, the code interpolates the benefit-to-go functions to use them in 

a forward-moving simulation, as done in Tejada-Guibert et al. (1993). It 

possesses a modular approach in order to optimize its execution (Fig. 3.8.). 

 

Fig. 3.8: ESPAT_SDP code general flowchart 
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Its results are the state variables at the reservoir nodes (storage, 

evaporation and seepage losses), the way water moves between nodes 

(flows, outflows of the system and seepage losses), the consumptive 

demands (deliveries, deficits and benefits), and the water values (dual 

variables) at the system’s nodes. 

3.5.5. ESPAT_DET  

ESPAT_DET performs deterministic optimizations with perfect foresight of 

future inflows. The elements considered and the range of water resource 

systems that can be analyzed are the same as ESPAT_RA. It allows an 

immediate transition between a stochastic steady-state simulation and a 

deterministic optimization. The results obtained are the same as ESPAT_RA. 

Mathematically, it implements a non-linear deterministic programming 

scheme, requiring a suitable initial point, which can be defined using four 

different ways (Fig. 3.9): 

a) Default initial point provided by GAMS (null value or the lower bound). 

b) Piece-by-piece approach, as described in Cai et al. (2001), with the 

following addition scheme: 

i. Performing a blind simulation over the system without hydropower 

and stream-aquifer interaction. 

ii. Solving the system without hydropower and stream-aquifer 

interaction using as initial point the blind simulation results. 

iii. Solving the system without stream-aquifer interactions employing 

as initial point the previous problem solution. 

iv. Solving the system with stream-aquifer interactions but without 

pumping using as initial point the previous problem solution. 

v. Solving the system with its full configuration using as initial point 

the previous problem solution. 

c) Use the results of a simulation code (STIG, explained in section 4.2). 

d) Use the results of a steady-state stochastic optimization procedure 

from ESPAT_R or ESPAT_RA. 
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Fig. 3.9: ESPAT_DET code general flowchart 
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4. METHODS 2: DSS FOR THE 
SEASONAL OPERATION OF A 
MULTIRESERVOIR SYSTEM BASED 
ON EXPERT KNOWLEDGE2 

To ensure a close reproduction of the real decision-making of the system 

operation, a continuous interaction between experts (system operators) and 

modelers is required. The ability of fuzzy logic to acquire expert judgment 

and to combine it with numerical data (see subsection 2.2.3) make it a 

suitable option to merge expert knowledge with optimization results. To do 

so, decision-making processes and mathematical models need to be assessed 

and built in a fully collaborative process, in which experts should be involved 

from the very beginning (Loucks and van Beek, 2005). 

In the approach presented, expert knowledge from system operators is 

used to determine the decision-making processes currently carried out for 

the seasonal operation of a given water resource system, including the inflow 

forecasting mechanisms (if any) and the operating rules. Fuzzy rule-based 

(FRB) systems are used to mathematically reproduce them. The FRB systems 

are quantified using expert knowledge (through the methods presented in 

subsection 2.2.3) and, if required, historical records (which are the product 

of the historical decisions). 

Once the current decision-making processes and operating rules are 

mathematically reproduced, they are improved using the results from an 

optimization algorithm. Therefore, the resulting mathematical 

representation is able to identify what should be changed in the seasonal 

operation while respecting as much as possible the current practices. This 

approach is especially suited to water resource systems in which the 

decision-making stages are set by law or tradition. It is also applicable in 

systems with a large number of stakeholders, in which agree on improving 

                                                           

2  The methodology presented in this Chapter is based on Macian-Sorribes and Pulido-

Velazquez (2017). Its use in this thesis complies with the Copyright Transfer Agreement 

signed between the authors and the American Society of Civil Engineers (ASCE) 
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the current practices would be easier than agree on substantially changing 

them. In these cases, although entirely modifying the course of action may 

offer higher gains than building on top of the current one, it would be more 

difficult to implement in reality. 

4.1. FRAMEWORK 

The objective of the framework is to define a DSS able to reproduce the 

operating rules and decision-making processes used in the management of a 

water resource system. It involves researchers and experts (system 

operators). The key idea is to treat experts not only as future users of the 

tool, but as co-developers of a mathematical model whose goal is to help 

their decision-making, rather than to replace their judgment. The 

methodology described here should be adapted to each specific case study, 

if required, in order to match its specific features. The methodology has two 

main parts (Fig. 4.1): 

➢ The definition of the operating rules, integrating expert knowledge 

and optimization results. FRB systems are used to represent the 

implicit operating rules followed in the current modus operandi of the 

system, linking state variables with decision variables. Results from an 

optimization algorithm can be used to further improve the seasonal 

operation of the system. In this case, the optimized time series of 

results are used in conjunction with expert knowledge. 

➢ An inflow forecasting system, in which the meteorological and 

hydrological information available is used to predict inflows for the 

following time periods (days, months, etc.). This part may be omitted 

if the system operation uses externally-obtained inflow forecasts. 

From the preliminary meetings, in which the system and its operation are 

discussed, the two parts are developed in parallel and then integrated into 

the DSS. The optimization model should also be built in a collaborative 

process, in order to guarantee that it possesses the features desired by the 

system operators. 
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Fig. 4.1: Framework for combining expert knowledge with fuzzy logic 

4.1.1. Preliminary meetings 

The preliminary meetings aim at building confidence between experts and 

modelers, as well as to agree in a common and clear picture of the system 

and the decision-making processes. More specifically, these meetings have 

three main objectives: 

1. Obtain a clear picture of how the system is actually managed, as 

explained by the system operators: goals, physical constraints, legal 

constraints, auto-imposed constraints, decision-making process, etc. 

Modelers should not be biased by their own knowledge of the system 

when collecting the experts’ information. 

2. Introduce fuzzy logic to the experts stating its foundations, how a FRB 

works in general, the way it is intended to be applied to the case study 

and the role experts’ will play during the process. 

3. Agree on the definitions of the key concepts that are going to be used, 

such as low storage, normal operation, drought, etc. Precise 

definitions should be given and they should remain steady during the 

whole process. 
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4.1.2. FRB operating rules 

Fuzzy rule-based (FRB) systems are used for the definition of the implicit 

operating rules currently followed. This process combines the stages 

described in subsection 2.2.1 with the techniques summarized in subsection 

2.2.3. The main FRB features and outputs are decided through interaction 

with the system operators and validated against historical records to ensure 

they reproduce the current operation of the system. The merge between 

expert judgment and optimization algorithms proposed is sequential: 1) 

operating rules are defined, tested and validated using expert knowledge (as 

done in Macian-Sorribes and Pulido-Velazquez, 2017); and 2) the 

optimization results are used to modify the rules created to improve them. 

The first decision consists in establishing the number of FRB systems to 

use. Situations in which it is advisable to use more than one are, for example, 

decision-making processes in which more than one group of operators or 

stakeholders are involved (each FRB should reproduce the behavior of a 

single group), and sequential decision-making processes (in which the output 

of one stage is used as input for the next one). Afterwards, expert knowledge 

is needed in setting the structure of the FRB systems (number of input 

variables, number of classes for each variable, number of rules and number 

of outputs) and quantifying the variables to be used (membership functions 

for the inputs and membership functions or non-fuzzy values for the 

outputs). 

Once this is done, it is important to validate these FRB systems comparing 

them with the reference behavior (e.g. historical records for the case of 

reproducing the current decision-making). This stage can be supported by a 

simulation model, in which the operating rules are introduced to obtain time 

series of variables (storages, demand deliveries, turbined flows, streamflows 

and so on). If validation is not adequate, the build-up process should be re-

started. 

4.1.3. Inflow forecasting 

Although inflow forecasting is independent from the reservoir operating 

rules, it is usually part of decision-making processes if future inflow scenarios 

are estimated by the decision-makers. If the goal is just the estimation of 

operating rules, or if inflow forecasts are obtained from external sources, this 
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stage can be skipped. However, if the analysis aims at giving the system 

operators a DSS tool able to mimic their decision-making processes, the 

inflow forecasting mechanisms used should be included or, if obtained 

externally, they should be added as inputs of the decision-making process. 

Inflow forecasting mechanisms, in general, do not rely on expert 

knowledge as operating rules do. In case it is used, it can be reproduced using 

the same FRB systems as pointed out for the operating rules, or modeled 

using another technique like fuzzy regression (Macian-Sorribes and Pulido-

Velazquez, 2017). 

4.1.4. DSS for seasonal multireservoir management 

The development of the DSS tool requires merging the inflow forecasting 

mechanisms and the FRB systems representing the reservoir operating rules. 

The aim is to reproduce the decision-making process to obtain suitable 

operation decisions using the inflow projections and the initial state of the 

system. 

In this stage, it is very important to agree with the experts on the way in 

which results should be provided by the tool (a single decision, a set of 

alternatives, a probabilistic description and so on), as well as how should 

them be visually presented. This will depend on both the character of the 

inflow forecasts (deterministic, probabilistic, fuzzy and so on) and the 

operators’ desires (for example, some operators feel familiar with probability 

distributions while others refuse them). 

4.1.5. Integration of optimization results 

This stage should be developed after the validation of the expert-based 

operating rules. It consists in building on top of the current processes, 

defining improvements while maintaining the essence of the current modus 

operandi. The optimization model to be used in this stage should be 

developed in close collaboration with the operators in order to match, as 

much as possible, their vision of the system and the constraints that apply to 

its management. After running the model, the optimal decision time series 

obtained should be retrieved and sorted in order to embed them into the 

FRB systems. The variables to introduce depend on how the operating rules 

are defined based on expert knowledge. 
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Fig. 4.2: Combination of optimization algorithms and expert knowledge when building FRB 
systems reproducing optimal rules 

In order to keep a similar FRB structure and the system operators’ 

perception of the state of the system (estimated through the fuzzy inputs 

and rules), the combination of sources proposed affects exclusively the 

outputs of the FRB systems (Fig. 4.2). It consists in replacing (totally or 

partially) the output quantifications provided by the experts by the results of 

the optimization algorithm. In any case, this replacement should be done 

after evaluating carefully the optimization results, as well as contrasting how 

different they are from the expert-based outputs. In this way, changes due 

to the optimization algorithm would not substantially modify the current 

decision-making stages. 

The ways to introduce the optimization results into the outputs of the FRB 

systems are the same as reported in the literature for historical values (Bai 

and Tamjis, 2007; Dubrovin et al., 2002; Shrestha et al., 1996) or optimization 

results (Mousavi et al., 2005; Panigrahi and Mujumdar, 2000; Russell and 

Campbell, 1996). One remarkable difference is that, in this case, the purpose 

of the validation is to compare the obtained rules with the ones built using 

exclusively expert knowledge, as well as with the results from an 

optimization algorithm if desired. In order to validate the optimal operating 

rules, their performance should be superior to the ones built solely with 
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expert knowledge. However, they will usually not reach the efficiency level 

of the optimal decisions obtained by the stochastic programming algorithm. 

4.2. STIG TOOL 

In parallel to the development of the ESPAT tool, the Simulation Tool in GAMS 

(STIG) tool has been created to perform runs subject to pre-defined rules and 

policies, with the possibility to embed FRB systems representing operating 

rules within its structure. The same interface scheme and features as the 

ESPAT tool are used, with the addition of the mathematical representation 

of the operating rules to be employed in the simulation. STIG implements 

two modules, each one of them assuming a different rule form: STIG_ZB and 

STIG_FRB. 

4.2.1. STIG user interface 

ESPAT and STIG share the same interface, so a system model created to be 

run with ESPAT can also be run with STIG and vice versa. The only additional 

inputs required by STIG are the parameters required to define and quantify 

the operating rules desired. These parameters are described in the following 

subsections. 

4.2.2. STIG_ZB  

STIG_ZB defines the operating rules through a system of priorities attached 

to each water use and reservoir, being the latter divided into zones with 

different priorities attached. These priorities are inputs of the model, and 

should be specified by the user. They are weighting factors that guide water 

allocation: the higher the priority is, the earlier the corresponding demand 

will be delivered or the corresponding reservoir will be refilled. By dividing 

the reservoirs into zones with different priorities, one can reproduce 

operating rules as the rule curves or the zone-based operating rules (Lund, 

1996; Lund et al., 2017; Lund and Guzman, 1999). The parameters that the 

user needs to introduce through the interface are the zones in which each 

reservoir is divided and the priorities attached to demands and reservoir 

zones. 

This use of priorities is similar to other DSS shells. The purpose of STIG_ZB 

is not to act as an independent DSS; but to compare ESPAT’s results with the 
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ones obtained using pre-defined rules, taking advantage of having the same 

interface. For this, there is no need to use an external DSS and introduce the 

same inputs twice.  

Mathematically, the STIG_ZB code performs each time stage an 

optimization procedure to maximize the total priority obtained through 

water allocation (Fig. 4.3): 

𝑇𝑃(𝑡) =∑𝑃(𝑡)𝑛,𝑛′ · 𝑚𝑄(𝑡)𝑛,𝑛′
𝑛,𝑛′

+∑𝑃(𝑡)𝑑 · 𝐶(𝑡)𝑑
𝑑

+∑𝑃(𝑡)ℎ𝑝𝑝 · 𝑇(𝑡)ℎ𝑝𝑝
ℎ𝑝𝑝

+∑∑𝑃(𝑡)𝑧,𝑒 · 𝑆(𝑡)𝑧,𝑒
𝑧𝑒

 
4.1 

Where TP(t) total priority; 𝑃(𝑡)𝑛,𝑛′  priority associated with the 

environmental flow at the n-n’ stream; 𝑚𝑄(𝑡)𝑛,𝑛′  environmental flow 

through n-n’; 𝑃(𝑡)𝑑  priority associated with demand d; 𝐶(𝑡)𝑑  water 

delivered to d; 𝑃(𝑡)ℎ𝑝𝑝  priority associated with hydropower plant hpp; 

𝑇(𝑡)ℎ𝑝𝑝 turbined flow by hpp; 𝑃(𝑡)𝑧,𝑒 priority associated with water stored 

in zone z of reservoir e; and 𝑆(𝑡)𝑧,𝑒 water stored in zone z of reservoir e. 

 

Fig. 4.3: STIG_ZB code general flowchart 
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4.2.3. STIG_FRB 

STIG_FRB includes the operating rules as FRB systems. The same priority 

schemes and total priority calculations of STIG-ZB are used. Mathematically, 

the FRBs are introduced as constraints that condition the maximum amount 

of water delivered to each demand and/or the amount of water released 

from each reservoir, unless there is not enough resource or additional spills 

are required for safety reasons (Fig. 4.4). 

The parameters that the user needs to introduce are the same as for 

STIG_ZB, with the addition of the information required to build the FRB 

systems (number of fuzzy inputs, number of fuzzy rules, number of fuzzy 

outputs, and the quantifications associated with the inputs and outputs). 

 

Fig. 4.4: STIG_FRB code general flowchart 
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5. CASE STUDY: THE JUCAR RIVER 
BASIN IN SPAIN 

The Jucar river basin has been, for decades, the most used case study in the 

research carried out by the Universitat Politècnica de València (UPV). This is 

not only due to its physical proximity to the city of Valencia, but also because 

of the specific features of the river. The Mediterranean hydrology, the high 

demands in comparison to the resource, the regional conflicts caused by the 

share of water, the growth of environmental issues during last decades, the 

exploitation of groundwater bodies and so on, make the management of the 

Jucar river a true challenge.  

This Chapter refers exclusively to the presentation of the case study 

features and information sources used to develop the models. The models 

built in the applications of the methodologies developed in this PhD thesis 

are described in subsequent chapters. 

5.1. CASE STUDY DESCRIPTION 

Covering 22,261 Km2, the Jucar is one of the most important rivers in Eastern 

Spain (Fig. 5.1). It starts at the Iberica mountain range, besides the San Felipe 

hill, at 1,585 m height. The river flows along the Cuenca, Albacete and 

Valencia provinces until it meets the Mediterranean Sea. The annual 

precipitation ranges between 309 and 717 mm, with an average of 473 mm. 

Its precipitation pattern is typically Mediterranean: high rainfall in autumn 

(especially in October), with a second peak in April–May, and very little 

precipitation during summer. Its mean total annual discharge is 1,548 

Mm3/year (CHJ, 2013), following the same pattern as rainfall. A significant 

percentage of the total river discharge is provided by groundwater outflow 

through springs and stream–aquifer interaction. 

The main regulation facilities are the reservoirs of Alarcon (1,088 Mm3 

useful storage), Contreras (429 Mm3), and Tous (369 Mm3). There are eight 

additional reservoirs with useful storage greater than 1 Mm3, mainly devoted 

to hydropower (CHJ, 2013). The main aquifers are the Mancha Oriental 

(located in the surroundings of Albacete), which holds the majority of the 

groundwater-irrigated demands and shares a strong stream-aquifer 
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interaction with the Jucar river; the Plana de Valencia Sur (in the lower basin 

of the river), hydraulically connected to the Jucar river and the l’Albufera 

lake; and the Hoces del Cabriel (downstream Contreras) which receives the 

seepage losses from the reservoir and returns them to the Jucar river several 

kilometers downstream. 

 

Fig. 5.1: Jucar river basin location map 

The annual mean consumptive demand in the Jucar river system is 1,505 

Mm3/year for the 2009–2015 period (CHJ, 2013). The largest amount is for 

agricultural use (89%), followed by urban (9%) and industrial uses (2%). The 

most important urban districts supplied by the Jucar river correspond to the 

cities of Valencia, Albacete, and Sagunto. Irrigated crops are found in the 

lower basin and in the Mancha Oriental area. The latter is supplied from the 

Mancha Oriental aquifer, whose overdraft has caused a depletion of the 

Jucar river flows, with an inversion of the stream–aquifer interaction from 

gaining to losing river. The Jucar river system holds 31 hydropower plants 

(with a total installed capacity of 1,272 MW). Furthermore, minimum 

environmental flows are set on 18 reaches located in the Jucar river and its 

tributaries (CHJ, 2013). 
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The upper basin, upstream the Alarcon reservoir, is characterized by the 

absence of important water abstractions (with the exception of the Cuenca 

city supply), and a continuous aquifer discharge to the river due to natural 

springs and stream-aquifer interaction. 

The middle basin, between Alarcon and Tous, can be divided in two: the 

Mancha Oriental plain and the Caroig massif. Once it lefts Alarcon, the river 

flows through the Mancha Oriental plain above Miocene-Pliocene permeable 

limestones with conglomerate intercalations. This plain is a former endorheic 

zone connected to the Jucar river in the 19th century by the Maria Cristina 

Canal. The underlying Mancha Oriental aquifer discharged to the Jucar river 

until the massive groundwater abstractions started in the 1970’s lowered its 

level, moving the Jucar river from a gaining to a losing river. 

After the small Molinar reservoir, the Jucar river enters the Ayora valley, 

a small Triassic clay emergence that separates the Mancha Oriental plain 

from the Caroig massif. The latter is a Cretaceous sandstone aquifer which 

discharges a considerable amount of water to the river via springs and 

stream-aquifer interaction. This discharge is added both upstream (via the 

Jucar and the Escalona rivers) and downstream (through the Jucar and the 

Sellent rivers) of Tous. The most important tributary is the Cabriel, river, 

whose resources are regulated by the Contreras reservoir. 

Downstream Tous, the Jucar river enters its lower basin, flowing over the 

Valencia plain, a Quaternary aquifer in which gravel, sand, mud and clay 

alternate. Its discharge is shared between the Jucar river and the l’Albufera 

lake, an environmental protected area and an icon for the Valencia city and 

region. The landscape is an immense floodplain that holds the majority of the 

river-irrigated crops, existing some of them since the Middle Age. The main 

tributaries of the Jucar river are the Sellent, Albaida and Magro rivers. The 

river meets the Mediterranean Sea 30 Km south of Valencia. 

5.2. SYSTEM’S OPERATION 

Given the Jucar river features previously outlined, its management is subject 

to a considerable amount of physical, environmental and legal constraints. 

Furthermore, management practices have created non-written constraints 

product of tradition. The physical constraints correspond to the reservoir, 

river streams and canals capacity, as well as the daily refill or drawdown 



Optimal operating rules definition using stochastic programming and fuzzy logic 

112  

maximum rates that need to be followed at Tous, since it has a rock-fill dam. 

The environmental constraints are the minimum flows implemented in the 

basin, whose supply is made prior to any other system delivery. Today’s main 

legal constraint is the Alarcon Agreement, described in the following 

subsection. 

5.2.1. The Alarcon Agreement 

The Alarcon Agreement was signed in July 23th 2001 between the Spanish 

Ministry of Environment and the Unidad Sindical de Usuarios del Jucar (Jucar 

Users Union, USUJ), in order to integrate the USUJ-owned Alarcon reservoir 

into the Jucar river basin management strategy. While retaining the legal 

property, USUJ gave the CHJ the right to manage the reservoir as long as the 

Agreement stipulations were fulfilled. Among them, the most important 

regarding water management is the division of Alarcon in two zones by a rule 

curve (Fig. 5.2).  

 

Fig. 5.2: Rule curve established by the Alarcon Agreement for the Alarcon reservoir 

If the storage in Alarcon is above the curve, water can be freely allocated. 

However, if it is below the curve, then water is reserved to the USUJ 

members, being not possible to allocate any resource, from Alarcon or any 

other reservoir, to non-USUJ users. Water would be allocated to non-USUJ 

users under these circumstances if and only if they agree to pay USUJ a 

financial compensation equal to the cost of the alternative sources (pumping 

wells and so on) used by USUJ to meet its demands. 
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5.2.2. Seasonal operation 

Shaped by the physical, environmental and legal constraints, the operation 

of the Jucar river system is made by the Jucar River Basin Management 

Authority (CHJ) Operation Office (in Spanish Oficina de Explotación) and the 

Jucar River Reservoir Releases Commission (with members of the CHJ, 

municipalities, farmers, industries, etc.; in Spanish Comisión de Desembalse). 

The following description of the seasonal decision-making process and 

criteria in the Jucar river system was the result of a collaborative process 

summarized in Macian-Sorribes and Pulido-Velazquez (2017). 

The most important management decisions are made between May and 

September, the irrigation season, in which the agricultural demands of the 

system concentrate. For this season, the CHJ Operation Office predicts future 

inflows between May and September using a deterministic forecast method 

based on inflows during the last months, precipitation projections for the 

next months, rainfall in past months and the expert knowledge of the system 

managers. These inflows, as well the resource available in the reservoirs, are 

used to estimate how much water should be delivered to the users. It is 

discussed, modified if required and approved by the Reservoir Releases 

Commission (Macian-Sorribes and Pulido-Velazquez, 2017). After its 

approval, the Operation Office establishes the amount of water to be 

released from Alarcon, Contreras and Tous in order to guarantee the 

committed deliveries. Then, the Operation Office determines a release plan 

that is monitored, controlled and modified if required on a daily basis. 

The criteria employed in the Jucar river seasonal operation, as explained 

by the CHJ Operation Office, are the following: 

➢ Avoid undesired spills from Tous as much as possible. 

➢ Not storing more than approximately 450 Mm3 in Contreras, as 

stability problems have been found in its secondary dam (Collado). 

➢ Not storing more than approximately 80 Mm3 in Tous at the end of 

September to avoid potential floods in autumn. 

➢ Not storing less than 40 Mm3 or so in Tous, as it would give the 

impression that the supply to Valencia is endangered (people without 

further knowledge on the Jucar river system may think Tous is the only 

supply source to Valencia). 
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➢ Avoid as much as possible to fall below the rule curve defined by the 

Alarcon Agreement. 

➢ Balance Alarcon and Contreras storages. 

During the irrigation season the Reservoir Releases Commission meets 

regularly to re-schedule deliveries if required. Out of this season, the 

operating rules are easier, as agricultural demands are low and water flows 

tend to be higher. In this season, reservoir releases correspond to the 

minimum rates established (large enough to fulfill the few winter agricultural 

demands), the ecological flows and the urban water supply deliveries. 

Considering the other consumptive reservoirs of the system, Forata is 

used by the Magro river users, with no water left for the Jucar ones unless 

the Magro flows are very high; while Bellus’ regulation capacity, around 15 

Mm3/year, is negligible in comparison with the total Jucar river demand. 

With regard to hydropower, no release is made from Alarcon and Contreras 

solely for power production. Therefore, hydropower plants and hydropower-

devoted reservoirs are committed to turbine exclusively the water releases 

arranged for consumptive purposes. On the other hand, the power company 

owning the hydropower reservoirs is allowed to freely manage them as long 

as they do not interfere with the CHJ policies. In addition, the water stored 

in these reservoirs is not required to meet any demand unless there is not 

enough water available in the rest of the system. 

5.3. DATA AND MATERIALS 

A detailed description of the main features of the Jucar river system is given 

in Appendix A1. It has been based on the Jucar River Basin Management Plan 

for the 2009-2015 period (CHJ, 2013), complemented by several master and 

PhD thesis properly cited. Although a new Plan has been developed for the 

2015-2021 period, the system description and features of the 2009-2015 

plan match the analysis period considered (1998-2013). Specific Jucar river 

studies used were properly cited. The GIS files employed in the figures were 

downloaded from the Spanish Ministry of Agriculture, Food and Environment 

(http://servicios2.magrama.es/sia/visualizacion/descargas/mapas.jsp) and 

the download page provided by the Jucar River Basin Management Authority 

(CHJ, http://aps.chj.es/down/html/descargas.html). 

http://servicios2.magrama.es/sia/visualizacion/descargas/mapas.jsp
http://aps.chj.es/down/html/descargas.html
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6. APPLICATION 1: IMPROVING 
CONJUNCTIVE USE OF SURFACE AND 
GROUNDWATER IN THE JUCAR 
RIVER SYSTEM3 

The CSG-SDDP algorithm has been applied to the Jucar river system focusing 

on improving conjunctive use operations in order to enhance the economic 

performance of the system. It has been chosen due to its lack of perfect 

foreknowledge of future inflows, its suitability to be applied to large-scale 

water resource systems, and the capability of the CSG-SDDP algorithm to 

model stream-aquifer interaction and to consider it when obtaining optimal 

decisions. This last issue is decisive given the interaction between the Jucar 

river and the Mancha Oriental aquifer. 

The monthly time scale has been chosen. Given that some aquifers have 

a slow hydraulic response, requiring some time to notice the impacts of a 

change in pumping rates (being the case of the Mancha Oriental aquifer), the 

time horizon of the model has been enlarged up to fifteen years. This length 

is also in line with the hydrological characteristics of the Jucar River Basin, 

subject to multiannual droughts.  

Three main aquifers interact with the Jucar river and play a distinct role 

in its management. The largest is the Mancha Oriental aquifer, with 7.145 

Km2 of extension. Being hydraulically connected to the Jucar river, the 

intense irrigated land development since the 1970s has led to a significant 

drop in groundwater tables. This issue has provoked a remarkable 

streamflow depletion due to stream-aquifer interaction (Sanz et al., 2011).  

The remaining two aquifers are Hoces del Cabriel, underneath Contreras, 

which returns its seepage losses to the Cabriel river downstream; and Plana 

de Valencia Sur, located in the lower basin, mined for agricultural purposes 

                                                           

3 The model description and result presented in this chapter have been adapted from Macian-

Sorribes et al., (2017). Its use complies with the Copyright Transfer Agreement signed 

between the authors and the American Geophysical Union (AGU) 
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during droughts. All of them share some kind of hydraulic connection with 

surface waters, so stream-aquifer interactions should be taken into account 

due to its possible role in improving the efficiency of the Jucar river system. 

6.1. MODELING STREAM-AQUIFER INTERACTION IN 
MANCHA ORIENTAL 

The most relevant stream-aquifer interaction takes place between the Jucar 

river and the Mancha Oriental (MO) aquifer. An embedded multireservoir 

model (EMM) with two linear reservoirs has been developed to reproduce it. 

Its calibration has been based on the Jucar river streamflow records across 

the boundaries of the MO aquifer (stations 08129 and 08144, Fig. 6.1) 

obtained by CEDEX (2013), the pumping rates estimated by remote sensing 

(Castaño et al., 2010; Sanz et al., 2011, 2009) and the simulated time series 

of natural net groundwater discharge. The latter were obtained in previous 

CHJ studies by calibrating a groundwater flow simulation model against 

historical records and then removing the anthropic actions from it. 

 

Fig. 6.1: Mancha Oriental stream-aquifer interaction and location of gauging stations 

Since the natural discharge of the aquifer is already available, there is no 

need to include natural actions in the EMM, since the principle of 
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superposition (section 3.3) can be applied. The Mancha Oriental aquifer 

fulfills the requirements of this principle given that groundwater head 

variations (up to 10 m) are not significant in comparison with the thickness 

(200 m at least). The EMM has been built to represent the impacts of 

anthropic actions on stream-aquifer interaction, which will be added to the 

natural discharge by the water resources management model (which 

includes natural stream-aquifer interaction in the natural inflow time series). 

The anthropic impacts on the stream-aquifer interaction (𝑋𝑡
𝑎𝑞𝑟

 in Eq. 

3.12), can be calculated as the historical stream-aquifer response less the 

natural one. The historical behavior can be estimated as the difference 

between the downstream (08144) and upstream (08129) discharge records, 

since surface runoff is negligible except after exceptional rainfall events (Sanz 

et al., 2011). The anthropic actions (net recharge) are the agricultural 

percolation minus the groundwater abstractions. The EMM (Eqs. 3.11 to 

3.13) was fitted to reproduce the time series of anthropic impacts on stream-

aquifer interactions using a least-square fitting process (Fig. 6.2). 

 

Fig. 6.2: Goodness of fit of the EMM of the Mancha Oriental stream-aquifer interaction 
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The two discharge parameters 𝛼𝑎𝑞𝑟 obtained have been 3.94 and 0.0055 

months-1. The stress allocation coefficients 𝑏𝑎𝑞𝑟 have been estimated as 0.18 

and 0.82 respectively (18% of the recharge and pumping from the first linear 

reservoir and 82% from the second). Negative values on the impact of 

anthropic actions indicate a decrease in the aquifer discharge due to 

pumping. The fitted EMM captures both the seasonal and the long-term 

evolution of the anthropic impacts. There are periods in which it departs 

from the historical records (e.g. 1977-1980 and 1997-2000), although the 

impact on the downstream flow records is limited. It can be considered that 

the fitted EMM is able to adequately reproduce the anthropic impacts on the 

stream-aquifer interaction. 

6.2. CONJUNCTIVE USE OPTIMIZATION MODEL OF 
THE JUCAR RIVER 

A hydroeconomic conjunctive use model has been developed to explore 

strategies to improve the operation of the Jucar river system considering the 

stream-aquifer interactions. It consists of 27 nodes, 8 surface reservoirs, 5 

EMMs, 7 sub-basins, 18 consumptive demands, 9 hydropower plants and 6 

environmental flows (Fig. 6.3). The CSG-SDDP has been used to obtain 

optimal management decisions for both surface and groundwater resources. 

The goal of the stochastic optimization is to maximize the net total benefits 

(current plus expected). 

The physical features of the model have been obtained from CHJ (2013), 

being described in detail in Appendix A2. Apart from the environmental 

minimum flows, the model also takes into account the preservation of the 

l’Albufera lake, the most important water-dependent ecosystem found, 

whose main inflows are the surface returns from the demands of rice 

agriculture. To preserve this ecosystem in the model, the supply to the rice 

demands was considered a constraint, maintaining at least the same supply 

levels than the current operation. 
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Fig. 6.3: Jucar river system conjunctive use model network flow 
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Urban demand curves were estimated using the point expansion method 

(Harou et al., 2009; Jenkins et al., 2004), using as base the data reported in a 

study carried out by Pulido-Velazquez et al. (2006b). The same information 

source obtained agricultural demand functions using Positive Mathematical 

Programming (PMP, Howitt 1995), employing data from previous studies 

(MMA, 2004; Sumpsi et al., 1998). Energy prices between 1998 and 2012 

were obtained from CHJ (2013). A demand function for the Cofrentes nuclear 

power plant was estimated assuming that the marginal value of water is 

equal to the total benefits (production times prices) divided by the demand. 

6.3. PRIORITY-BASED SIMULATION MODEL 

A simulation model has also been developed to compare the optimization 

results with the ones from the current operation. It has been built using 

STIG_ZB (subsection 4.2.2), trying to mimic the historical operation of the 

system. The flow network is the same as for the optimization model. 

However, economics does not drive water allocation; instead, resource is 

delivered based on the priorities attached to the different demands and uses, 

calibrated to reproduce the historical operation of the system. The priorities 

adopted and the calibration results appear in Appendix A2. It has been 

successful in the majority of the system and, especially, in the downstream 

part, so it offers a good representation of the current operation of the Jucar 

river. After the simulation has been run, the economic demand functions 

have been used to obtain the economic benefits for the given deliveries. 

6.4. RESULTS AND DISCUSSION 

6.4.1. System performance 

The model results consist of surface and groundwater allocations, 

streamflows, turbined flows, energy produced, economic benefits and 

stream-aquifer interactions. These results have been obtained for both the 

current operation and the stochastic optimization during the 1998-2013 

period (Table 6.1). Results regarding demand deliveries and benefits are 

presented aggregating them by type of demand and spatial proximity. Tables 

showing separately each demand, as well as the corresponding graphs, are 

provided in Appendix A2.  
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Table 6.1: Average performance results per alternative for the 1998-2013 period 

 Category Consumptive uses Hydropower Environment Systemwide level 

 Type Urban Agricultural1 

Totals 

Mancha 
Oriental 
aquifer 

discharge2 

Urban Agriculture 

 Variable Mancha Valencia Mancha USUJ 
Jucar-Turia 
& Magro 

C
u

rr
en

t 
sy

st
em

 

m
an

ag
em

en
t 

Surface deliveries (Mm3) 14.33 114.51 16.96 540.60 29.49 - - 128.84 587.05 

Groundwater deliveries (Mm3) 16.10 0.00 315.45 0.00 73.10 - - 16.10 388.55 

Energy produced (GWh) - - - - - 372.20 - - - 

Economic benefits (M€) 60.26 228.78 78.89 63.37 51.65 22.26 - 289.04 193.91 

Groundwater discharge (Mm3) - - - - - - -63.31 - - 

St
o

ch
as

ti
c 

p
ro

gr
am

m
in

g 

Surface deliveries (Mm3) 13.64 114.51 29.13 556.73 42.13 - - 128.15 623.17 

Groundwater deliveries (Mm3) 16.79 0.00 238.30 0.00 59.99 - - 16.79 303.11 

Energy produced (GWh) - - - - - 414.03 - - - 

Economic benefits (M€) 60.36 228.78 78.34 65.83 52.21 25.00 - 289.14 196.38 

Groundwater discharge (Mm3) - - - - - - -29.91 - - 

D
if

fe
re

n
ce

s 

Surface deliveries (Mm3) -0.70 0.00 12.17 16.14 12.64 - - -0.70 36.13 

Groundwater deliveries (Mm3) 0.70 0.00 -77.14 0.00 -13.11 - - 0.70 -85.44 

Energy produced (GWh) - - - - - 41.83 - - - 

Economic benefits (M€) 0.10 0.00 -0.55 2.45 0.56 2.73 - 0.10 2.46 

Groundwater discharge (Mm3) - - - - - - 33.40 - - 

 1: not including the economic benefits of rice demands 
 2: a negative value implies a net aquifer recharge by rive seepage 
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The majority of the variables analyzed show similar performance levels. 

This is due to the current operating rules being product of a long 

management experience and intense negotiation processes. The stochastic 

programming does not oppose the current operation, but suggests some 

modifications to further improve its economic benefits. 

The stochastic programming reduces groundwater abstractions due to 

agricultural purposes in the Mancha Oriental aquifer by around 80 

Mm3/year, although the net benefits are only diminished by 0.55 M€/year 

(0.7% of the total benefits). Less pumping increases the streamflow 

downstream the aquifer, due to stream-aquifer interaction, around 33 

Mm3/year. This additional resource substantially contributes to the 

preservation of the environmental flow downstream of the Alarcon reservoir 

during drought periods. It also provides additional resources for the 

downstream agricultural demands, which are curtailed when surface water 

is scarce. The economic benefits in the lower Jucar demands grow by 3 

M€/year, six times greater than the loss of revenue experienced in the 

Mancha Oriental aquifer demands. Part of the success of this tradeoff is 

caused by the aquifer storage recovery, which lowers the pumping costs. The 

increase in surface water availability also results in higher surface deliveries 

to the Mancha Oriental area, as counterpart for the decrease in pumping. 

Stochastic programming improves hydropower production by 42 

GWh/year, 11% of the total current value. This is due to the stream-aquifer 

interaction in the Mancha Oriental, whose increased discharge benefits the 

downstream hydropower plants. Furthermore, the operation done by 

stochastic programming uses Tous as the tail reservoir of the system instead 

of Naranjero, as shown in the operation analysis in the next subsection. 

Hydropower benefits rise by 2.75 M€/year, 12% higher. The slight difference 

between production and benefits is due to a better scheduling of 

hydropower according to the monthly energy price. CSG-SDDP provides a 

systemwide benefit increase of around 5.25 M€/year, 1% of the total net 

returns with the current operation. However, the reduction of the Mancha 

Oriental aquifer pumping adds robustness and resiliency against droughts.  

Table 6.2 shows the system performance during the 2005-2008 drought 

for both alternatives.  
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Table 6.2: Average performance results per alternative for the 2005-2008 drought period 

 Category Consumptive uses Hydropower Environment Systemwide level 

 Type Urban Agricultural1 

Totals 

Mancha 
Oriental 
aquifer 

discharge2 

Urban Agriculture 

 Variable Mancha Valencia Mancha USUJ 
Jucar-Turia 
& Magro 

C
u

rr
en

t 
sy

st
em

 

m
an

ag
em

en
t 

Surface deliveries (Mm3) 6.94 114.51 0.00 439.72 5.71 - - 121.45 445.43 

Groundwater deliveries (Mm3) 23.49 0.00 332.41 0.00 96.88 - - 23.49 429.29 

Energy produced (GWh) - - - - - 278.04 - - - 

Economic benefits (M€) 59.84 228.78 77.89 53.24 50.54 16.59 - 288.62 181.67 

Groundwater discharge (Mm3) - - - - - - -92.43 - - 

St
o

ch
as

ti
c 

p
ro

gr
am

m
in

g 

Surface deliveries (Mm3) 10.67 114.51 17.47 509.62 29.67 - - 125.18 553.36 

Groundwater deliveries (Mm3) 19.76 0.00 213.78 0.00 72.42 - - 19.76 289.60 

Energy produced (GWh) - - - - - 326.30 - - - 

Economic benefits (M€) 60.15 228.78 71.03 64.13 51.68 19.64 - 288.93 186.84 

Groundwater discharge (Mm3) - - - - - - -45.33 - - 

D
if

fe
re

n
ce

s 

Surface deliveries (Mm3) 3.74 0.00 17.47 69.90 23.96 - - 3.74 107.93 

Groundwater deliveries (Mm3) -3.74 0.00 -118.63 0.00 -24.46 - - -3.74 -139.69 

Energy produced (GWh) - - - - - 48.26 - - - 

Economic benefits (M€) 0.31 0.00 -6.86 10.90 1.13 3.04 - 0.31 5.17 

Groundwater discharge (Mm3) - - - - - - 47.09 - - 

 1: not including the economic benefits of rice demands 
 2: a negative value implies a net aquifer recharge by rive seepage 
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Comparing it with the results for the whole period, different management 

strategies against droughts can be found. The current operation treats 

surface and ground waters in isolation, so the main management option 

applied consists in replacing the surface water scarcity by increasing 

groundwater pumping. The Mancha Oriental abstracts 24 Mm3/year more 

than the whole period (on average), inducing a reduction of 29 Mm3/year 

due to stream-aquifer interaction. 

On the contrary, stochastic optimization implements a joint management 

of surface and ground waters. It reduces groundwater pumping by 22 

Mm3/year instead of increasing it, causing a rise in the stream-aquifer 

interaction around 47 Mm3/year compared with the current operation. This 

higher surface flows rise the surface water allocations to agricultural 

demands: from a 140 Mm3/year curtailment to a 71 Mm3/year reduction. 

Concerning economic variables, the Mancha Oriental irrigation district 

suffers the worst impact in the optimal operation, changing from losing 1 

M€/year to 7 M€/year. However, this loss is compensated by increased 

downstream demand allocations, whose loss of 11 M€/year is reduced to 2.5 

M€/year. Hydropower suffers similar impacts in both alternatives, losing 6 

M€/year. It can be concluded that stochastic programming enhances the 

system performance due to a proper management of the stream-aquifer 

interaction between the Mancha Oriental aquifer and the Jucar river. 

6.4.2. Reservoir operation 

The monthly storages in the main reservoirs (Alarcon, Contreras and Tous) 

were analyzed to compare the operation strategies (Fig. 6.4). The rest of the 

reservoirs have very little impact on the system performance due to its low 

capacity (Molinar, Forata and Bellus) or reduced live storage due to 

hydropower operation (Cortes II and Naranjero). This comparison has been 

done using box-whisker plots, showing the mean (small circle) and the 

quantiles for the analysis period (1998-2013). The Alarcon reservoir, with the 

greatest useful capacity, is operated in a similar way in both alternatives, 

consisting in providing carryover storage to move water from wet to dry 

years. This can be determined by the absence of outliers and the smooth 

refill-drawdown cycle, although the stochastic programming shows a clearer 

intra-annual pattern between February and June. 
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Fig. 6.4: Box-whisker plots of monthly storages in the main Jucar river basin reservoirs 

In the Contreras reservoir, the stochastic optimization results present 

both carryover and seasonal storage, as seen in the wideness of the box-

whisker plots, the smooth refill-drawdown cycle and the lack of summer 

outliers. On the other hand, the current operation show a non-negligible in-

year operation, especially between October and April, in which the box-

whisker plots are narrower than in the stochastic programming. 

Nonetheless, no significant differences between alternatives are found. 

The results of Tous, downstream Alarcon and Contreras and with smaller 

capacity, offer remarkable differences between alternatives. The current 

management reproduces a steady refill-drawdown cycle, as noticed by the 

narrow box-whisker plots. This cycle is in line with the irrigation season, 

refilling it from October to April and emptying it from May to September. This 

steady behavior is absent from the stochastic optimization results, as seen in 

the wider box-whisker plots. Furthermore, stochastic programming 

drawdowns Tous differently from the current operation, given the storages 

found between May and September. It lowers Tous in May and June, 

increases the storage a little in July and then drawdowns it again until the 
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end of the irrigation season. This is in line with the use of Tous as the tail 

reservoir of the hydropower system, since energy prices in July are higher 

than in the neighboring months, so the system increases the hydropower 

production and stores the turbined water in Tous. 

On a broader view, differences between the current management and 

stochastic programming focus on Tous. The current operation implements 

similar refill-drawdown strategies regardless of the year. In a distinct way, 

stochastic optimization adapts Tous operation to the hydrological variations, 

as noticed in the wider box-whisker plots in comparison with the current 

management. This is consistent with the algorithm construction, which 

considers inflow forecasts. Furthermore, it increases turbined flows and 

stores them in Tous, in contrast with the current practices. Using Tous as the 

tail reservoir of the hydropower system, increasing carryover storage in 

Contreras employing dynamic inflow forecasts are the main differences 

between the current operation and the stochastic optimization. 

6.4.3. Conjunctive use operation 

The monthly allocations to the demands that have groundwater as their main 

source (Mancha Oriental agricultural demand, MOAD; and canal Jucar-Turia, 

CJT) have been contrasted to determine the conjunctive use operations 

implemented by both alternatives (Fig. 6.5). Differences are larger during 

summer than during winter, since it is the period in which the irrigation 

demands concentrate. As appearing in the MOAD scatterplots, the stochastic 

optimization decreases groundwater abstractions. This is caused by the 

consideration of the stream-aquifer interaction between the Mancha 

Oriental aquifer and the Jucar river. 

Stochastic optimization balances the marginal benefits of allocating water 

to the MOAD with the marginal supply costs plus the opportunity costs of 

increasing downstream flows due to stream-aquifer interaction. In contrast, 

the current operation does not consider the opportunity costs associated 

with the stream-aquifer interaction, leading to higher (and less efficient at 

the systemwide scale) pumping rates. The average decrease offered by 

stochastic optimization is steady across the year, reducing pumping by 24% 

compared to the current operation. The increase in surface deliveries by 
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stochastic programming is also steady, equal to 179% of the current 

situation, although far from the decrease in pumping rates. 

 

Fig. 6.5: Scatterplots of monthly deliveries to Mancha Oriental and Jucar-Turia demands 

The scatterplots corresponding to the CJT demand show a different 

behavior. In them, stochastic optimization allocates a slightly higher amount 

of water resources and reduces pumping by the same quantity. The sum of 

both sources of supply is similar regardless of the alternative (see Table 6.1), 

which is consistent with the absence of stream-aquifer interaction. Since 

there are no significant systemwide opportunity costs, both alternatives 

balance the marginal benefits of supply with the marginal pumping costs. 

Differences between them are caused by the fact that stochastic 

optimization is able to allocate more surface water resources due to the 

improved management achieved in the rest of the basin. The results of the 

stochastic programming show a 15% decrease in the pumping amount, which 

is almost entirely replaced by surface resources. 

6.4.4. Discussion and conclusions 

The management decisions adopted by stochastic programming offer an 

average increase of 1% (5.29 M€/year) in the systemwide benefits. It grows 

to 1.7% (8.52 M€/year) during the drought period experienced between 

2005 and 2008. The reason why this rise in revenues is limited in percentage 

is the efficiency possessed by the current operating rules, which are product 

of a long-term experience. Nevertheless, the stochastic programming is able 
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to allocate water in a more economically-efficient way. The following 

conclusions regarding the method and its application can be drawn: 

➢ The CSG-SDDP extended algorithm, combining the Stochastic Dual 

Dynamic Programming algorithm and the Embedded Multireservoir 

Model, has been successfully applied. It is able to account for stream-

aquifer interactions in the definition of optimal operating decisions. 

➢ Its application to the Jucar river system has been capable of outlining 

changes in the operation of reservoirs and aquifers, taking advantage 

of a joint management of them. The CSG-SDDP is able to define 

optimal conjunctive-use strategies in large-scale water resource 

systems using stochastic programming. 

The main changes identified by the CSG-SDDP algorithm in the Jucar river 

system operation have been: 

➢ Reduce groundwater abstractions from the Mancha Oriental aquifer 

around 80 Mm3/year (responsible of most of the improvement). 

➢ Increase carryover storage in Contreras (although not significant). 

➢ Use Tous as the tail reservoir of the hydropower system. 

➢ Make a joint management of the reservoirs and the Mancha Oriental 

aquifer during droughts, curtailing surface and groundwater 

allocations simultaneously. 

The pumping reduction proposed is in line with the policy objectives set 

by the River Basin Authority on the Mancha Oriental aquifer (CHJ, 2013), 

whose goal is to reduce its overexploitation. However, the main reason 

invoked by the CHJ is the recovery of the Mancha Oriental aquifer levels due 

to environmental reasons. The fact that the CSG-SDDP model, without 

environmental constraints on the Mancha Oriental levels, arrived to a similar 

conclusion, means that recovering the aquifer is not only desirable due to 

environmental reasons, but may also be economically efficient in comparison 

with the statu quo. 

The CSG-SDDP was successfully applied to the Jucar river system due to 

the existence of adequate data to fit the EMMs. The development of an EMM 

would require assessing the natural stream-aquifer interaction, as well as the 

current one, using the principle of superposition if possible. The estimation 

of both needs adequate streamflow records, recharge and pumping 
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measurements and groundwater modeling techniques able to isolate the 

natural and the anthropic components. These premises limit the applicability 

of the CSG-SDDP to systems in which an EMM could be adequately fitted and 

the natural regimen could be reasonably estimated. The algorithm is also 

subject to the SDDP method requirements, including the necessity of convex 

benefit-to-go functions. To be applicable, the CSG-SDDP needs to fulfill both 

the requirements of the SDDP and the EMM algorithms. 

Regarding the computational power needs of the algorithm, each EMM 

increases the dimensionality of the CSG-SDDP as increasing the number of 

reservoirs by one for a SDDP algorithm, as found in tests done with ESPAT_R 

and ESPAT_RA. However, the need of computing power is far from being a 

serious issue. The CSG-SDDP implementation in GAMS (ESPAT_RA), solving 

each one-stage optimization problem with nonlinear programming 

(CONOPT3 solver), spent 1 hour and 22 minutes to solve the Jucar river 

system model previously described in an Intel Core2 Quad CPU with 6.00 GB 

RAM. A deterministic variant of the same problem, solved using ESPAT_DET 

with nonlinear programming (CONOPT3 solver), took 31 minutes. The CSG-

SDDP model implementation in GAMS benefits from the Gather-User-Solver-

Scatter (GUSS) procedure (Bussieck et al., 2011), which distinctly reduces the 

time needs. 

Moreover, the mathematical representation of the system is subject to 

several uncertainties. The demand functions/curves and the economic 

characterization of energy production are the most important as they drive 

the allocation decisions. Further research would be advisable in order to 

improve the economic characterization of the system while keeping a good 

representation of the global picture, which is decisive for systemwide-

focused models. Considering the remaining sources of uncertainty, the 

parameters and mathematical representations assumed by the model are 

the same as used by the CHJ (CHJ, 2013), whose river basin mathematical 

models are product of a continuous development, testing and update 

process started many years ago. 

It should also be remarked that, although the EMM has been found able 

to efficiently reproduce complex stream-aquifer interactions in water 

resource management models at the systemwide scale, for a wide range of 

aquifer behavior including karstic aquifers (Andreu et al., 1996; Estrela and 
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Sahuquillo, 1997; Pulido-Velazquez et al., 2008, 2006a, 2005; Sahuquillo, 

1983), it does not reproduce groundwater heads. Consequently, the 

operational changes obtained by an EMM (such as reduce pumping) should 

be further downscaled to the groundwater body scale by groundwater 

models such as finite-difference ones. Although some complex groundwater 

modeling methods, such as the eigenvalue method (Sahuquillo, 1983), are 

compatible with systemwide optimization models (Andreu et al., 1996; 

Pulido-Velazquez et al., 2006a), they have been so far applied to 

deterministic optimization approaches, and its extension to stochastic 

equivalents is a matter of further research. 

Furthermore, optimization has been done following the common social-

planner paradigm, in which the goal is set on maximizing the systemwide net 

benefits. However, the resulting allocation strategy would imply an 

asymmetrical distribution of revenues causing equity issues. To deal with 

them, cooperation strategies should be explored using, for example, Game 

Theory (Madani, 2010; Madani et al., 2014; Madani and Hipel, 2011), and 

solved applying proper benefit-sharing mechanisms (Arjoon et al., 2016). 

In spite of the slight improvement of the economic results achieved by 

the CSG-SDDP in the Jucar river system, the application can be considered as 

successful, given its capacity to suggest operation changes and the 

consideration of stream-aquifer interactions. It is likely that the application 

of the algorithm to other basins would lead to more significant increases in 

revenues. 
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7. APPLICATION 2: DSS TOOL FOR 
THE JUCAR RIVER SEASONAL 
OPERATION4 

The conjunctive use model successfully outlined several operational changes 

able to improve the efficiency of the Jucar river system management. 

However, the changes affecting the way the reservoirs are balanced need to 

be contrasted with the current decision-making processes of the Jucar River 

Basin Authority (CHJ) Operation Office and Reservoir Releases Commission. 

This comparison is crucial in order to frame the prospected improvements 

within the current practices. 

The optimization results provided by stochastic programming should 

therefore be merged with the current decision-making processes at the 

seasonal scale. Expert knowledge is explicitly required in the reproduction of 

these procedures and in the setup of models and tools able to match the 

goals, criteria, constraints and traditions they take into account. This chapter 

presents the application of the collaborative framework to combine expert 

knowledge and optimization results outlined in chapter 4 to the definition of 

a DSS tool for the seasonal management of the Jucar river. 

The purpose of this application is to improve the seasonal operation of 

the Jucar river system. The monthly time scale is chosen for the simulation 

models developed. Considering the fact that the Jucar river is subject to 

multiannual droughts whose whole extension should be included in the 

analysis period, a time horizon of ten years has been defined for these 

models. Nonetheless, the time scale and time horizon of the DSS tool created 

to support the seasonal decision-making has been defined following the 

desires and needs of the system operators. 

                                                           

4  The application described in this Chapter is partially presented in Macian-Sorribes and 

Pulido-Velazquez (2017). Its use in this thesis complies with the Copyright Transfer 

Agreement signed between the authors and the American Society of Civil Engineers (ASCE) 
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7.1. DSS TOOL FOR THE JUCAR SYSTEM 

To support and further improve the seasonal operation of the Jucar river 

system, it is necessary to build a Decision Support System (DSS) mimicking 

the current decision-making processes. Particularly, it should estimate how 

much water should be allocated to the agricultural users during the irrigation 

season (May-September) and how much should be released from each of the 

main reservoirs (Alarcon, Contreras and Tous) to guarantee the planned 

deliveries. These decisions are currently taken on the basis of expert 

knowledge, without the aid of a formal DSS. This lack implies that the 

operating rules followed are not explicitly stated, hampering the analysis of 

the system response to different inflow scenarios (expert knowledge is 

required to study the implications of each alternative). Under these 

circumstances, a DSS would enable the analysis of more likely scenarios in an 

easier way. It would also provide an explicit mathematical representation of 

the operating rules, and therefore collect and preserve the expert knowledge 

used in their definition. The stages presented in chapter 4 have been used. 

 

Fig. 7.1: Framework for improving decision-making in the Jucar river 
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7.1.1. Previous meetings and model co-development 

The main goal of the preliminary meetings with the system operators (the 

experts) was to obtain a clear picture of how the Jucar river system is 

seasonally managed, to clarify the terms used in the process (avoiding 

potential misunderstandings), and to introduce fuzzy logic to them. These 

meetings have been decisive in creating confidence between researchers 

and system operators. The general modus operandi of the system has been 

described in subsection 5.2.2.  

Before the irrigation season, the CHJ Operation Office predicts inflows 

using a deterministic forecast method based on past observed inflows, 

precipitation projections for the irrigation season, past rainfall observations, 

and expert knowledge. These projections are used to establish the amount 

of water initially expected to be delivered to the users during the irrigation 

season, which is discussed, modified if required, and approved by the 

Reservoir Releases Commission. Then, the CHJ Operation Office determines 

how the storages in Alarcon, Contreras, and Tous should be balanced to 

guarantee the committed deliveries. During the irrigation season, the 

Operation Office establishes a release plan that is monitored, controlled, and 

modified if required, on a daily basis. 

Considering the main features explained by the system operators, a Jucar 

river seasonal operation model has been defined, incorporating the input 

and decision variables the CHJ Operation Office uses in its seasonal decision-

making (Fig. 7.2, features presented in Appendix A3.1). Storage in the main 

reservoirs of the system (Alarcon, Contreras and Tous) and the inflow from 

the four sub-basins they consider (Alarcon, Contreras, middle and lower) are 

the input variables of the Jucar river seasonal operation. The inflows for the 

historical period have been calculated by water balances as done by the 

Operation Office.  
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Fig. 7.2: Jucar river seasonal operation model network flow 
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Three urban demands and eleven irrigation demands are included, in 

accordance with the demand division considered in the seasonal decision-

making of the system. Groundwater pumping rates allowed are not decided 

by the Operation Office, so groundwater demands have not been included 

and mixed demands have been curtailed to the maximum surface amount 

they are entitled to. For the same reason, groundwater bodies have not been 

modeled. The influential stream-aquifer interaction between the Mancha 

Oriental and the Jucar river is already implicit in the middle sub-basin inflow 

time series. The only aquifer explicitly modeled is Hoces del Cabriel, and it 

has been included exclusively to mathematically represent the return of the 

Contreras seepage losses to the Cabriel river (CHJ, 2013). 

Deliveries to the Cofrentes Nuclear Power Plant must be fully guaranteed 

and, consequently, they have been treated as a constraint by subtracting the 

net amount of water consumed from the middle sub-basin inflow time series. 

Hydropower plants are not considered as their schedule is made by the 

power companies, not the CHJ Operation Office, being restricted to not 

turbine more water than the one allocated to the downstream consumptive 

uses (see subsection 5.2.2). The environmental flows included in the model 

are the ones that directly constrain the seasonal management: the minimum 

releases from Alarcon and Contreras and the outflows to the sea. 

Additionally, some links have been added to the model to measure undesired 

spills from Tous and sea outflows higher than planned, as minimizing them is 

one of the goals of the Jucar seasonal management. 

7.1.2. FRB setting: delivery and release FRB systems 

In the Jucar river system, the decision-making process involves two main 

stages. At first, the Reservoir Releases Commission decides how much water 

should be delivered to the users during the upcoming season (May-

September). After this, the system operators (Operation Office) decide how 

to balance the releases/storages from the different reservoirs to meet the 

scheduled deliveries, based on their initial state and the forecasted inflows. 

The period corresponding to the irrigation season (from May to September) 

is taken as a single time step in this decision-making. 

Accordingly, two fuzzy-rule based (FRB) systems were built and linked to 

reproduce the current decision-making processes (Fig. 7.3). The delivery FRB 
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reproduces the decisions made by the Reservoir Releases Commission, 

establishing the amount of water to release from Tous based on the joint 

system storage (Alarcon, Contreras and Tous) and the lower sub-basin 

inflows. The amount of water available for the downstream agricultural users 

is the release from Tous plus these inflows. The release FRB represents the 

decisions made by the Operation Office, establishing the percentage of the 

Tous releases that must be provided from each of the upstream reservoirs, 

Alarcon and Contreras, to guarantee the deliveries scheduled by the 

Reservoir Releases Commission, considering the storages and the forecasted 

inflows from the middle sub-basin. 

 

Fig. 7.3: Jucar river operating rules representation with FRB systems 

Regarding the deliveries to Albacete and the Mancha Oriental, the first is 

always met (it is an urban demand). The second is entitled to 33 Mm3 per 

irrigation season from Alarcon, which is supplied if the Alarcon Agreement 

allows it. So, both demands are not considered by the FRB systems. 

The 2 inputs of the delivery FRB (joint storage and lower sub-basin 

inflows) have been characterized using 5 fuzzy numbers (Fig. 7.4), leading to 

25 fuzzy rules (5·5). The output of this FRB (release from Tous) has been 

characterized as a non-fuzzy number (value in Mm3), whose values are 

defined combining expert knowledge, historical records and optimization 

results. The membership functions of the fuzzy numbers have been 

estimated using the vertical method considering two α cuts associated with 

the degrees of membership 0 and 1 (subsection 2.2.3). A workshop with the 

system operators was organized in order to agree with them on the input 



 Application 2: DSS tool for the Jucar river seasonal operation 

137 

quantification. They were asked about the intervals of the input variables 

that definitely belong or definitely do not belong to each fuzzy number. Then, 

a trapezoidal fuzzy number was set according to their answers. 

  

Fig. 7.4: Fuzzy inputs for the delivery FRB 

The 4 inputs of the release FRB (storage at each reservoir and middle sub-

basin inflows) have been characterized using 3 fuzzy numbers (Fig. 7.5), 

combining together to 81 fuzzy rules (3·3·3·3). The 2 outputs of this FRB 

(releases from Alarcon and Contreras) have been defined as non-fuzzy 

numbers (percentage with respect to Tous), whose values are defined in a 

similar way than the delivery FRB. The membership functions of the fuzzy 

numbers have been estimated, using the same vertical method as for the 

delivery FRB, within the same workshop organized with them. Both the 

inputs and the outputs refer to the whole irrigation season (from May to 

September), so the decisions obtained from the FRB systems need to be 

further downscaled by establishing a release calendar. This downscaling is 

defined, implemented, and supervised by the Operation Office. 

 

Fig. 7.5: Fuzzy inputs for the release FRB 
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7.1.3. FRB outputs for the current operation 

Regarding the delivery FRB, historical records from the 2003-2013 period 

were used to quantify the output values. They were employed as the main 

information source since the decision reproduced by the delivery FRB 

corresponds to the one made by the Reservoir Releases Commission, from 

which enough members could not be approached. A variant of the weighted-

counting algorithm was employed in the quantification process (Shrestha et 

al., 1996). The rules whose outputs could not be determined by historical 

data (because they were never triggered during the historical period) were 

given a value based on the expert knowledge from the system operators of 

the Operation Office. 

For the release FRB, the outputs were defined on the basis of the expert 

knowledge transmitted by the system operators from the Operation Office. 

In a workshop, they were given a set of possible management situations 

(corresponding to different combinations of storages at the beginning of May 

and forecasted inflows between May and September) and asked about the 

decision they would have made under these circumstances. The answers 

obtained were used to derive the outputs of the release FRB. 

The delivery and release FRB systems obtained have been validated 

against the historical records available. This stage has been done with the aid 

of the Jucar river seasonal operation model, which has been introduced in 

the STIG_FRB tool. Since the model works at the monthly scale while the FRB 

systems consider the irrigation season as a whole, it has been necessary to 

downscale them and to define an operation scheme applicable out of the 

irrigation season. 

Given that the agricultural demands out of the irrigation season are low, 

the system operating rules between October and April have been 

approximated by fixing a release ratio between Alarcon and Contreras 

(43%/57%) based on the historical time series, while guaranteeing enough 

joint releases to satisfy the urban demands and the environmental flows. 

The downscaling of the FRB systems’ results to the monthly scale has been 

done with the following operations: 
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• A coefficient has been established as the division between the target 

release from Tous obtained by the delivery FRB and the total 

downstream demand during the irrigation season. 

• A monthly limit to the Tous releases has been established as the 

previous coefficient times the total downstream demand for the given 

month. 

• Alarcon and Contreras releases have been restricted to the percentage 

of Tous obtained from the release FRB, being kept the same during the 

whole irrigation season. This restriction is modeled as a soft constraint, 

so small violations are allowed to guarantee the releases from Tous. 

In the absence of the inflow forecasts employed by the Operation Office 

during the historical period, the inflow values introduced to the FRB systems 

were the historical ones. This means that the FRB systems worked under 

perfect forecast conditions during the validation stage. This is consistent with 

the historical records, with represent the ex post situation. 

The historical records used in the validation stage span between 2003 and 

2012. They consist of storages and releases in the three reservoirs facilitated 

by the CHJ Operation Office, streamflow time series in several locations 

obtained from CEDEX (2013), and demand deliveries recorded by the CHJ 

Operation Office. The validation results appear in Appendix A3. Validation 

has been successful, especially in reproducing the reservoir levels and the 

demand deliveries, so the FRB structure defined, and the outputs quantified 

using expert knowledge and historical records, offer a proper representation 

of the current decision-making processes and the current seasonal operation 

of the Jucar river system. 

7.1.4. Seasonal inflow forecasting in the Jucar river system 

In order to build a DSS able to make ex ante projections of release decisions, 

it is necessary to determine a mechanism to forecast inflows for the 

upcoming irrigation season. For this purpose, an inflow forecasting 

procedure has been developed for the Jucar river system based on fuzzy 

regression (see subsection 2.2.2). A fuzzy linear regression equation was 

fitted for each sub-basin in order to forecast the future seasonal inflow based 

on past meteorological and hydrological variables. The procedure is able to 

accommodate the system operators’ choice of independent variables, it is 
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conceptually simple and offers a way to estimate the imprecision associated 

with the regression process by using fuzzy numbers as outputs. Furthermore, 

it can provide suitable results even when available data records are scarce. 

Regression variables 

To set up the regression equations for each sub-basin, the system operators 

pointed out different variables they consider when making inflow forecasts 

for the next irrigation season, as rainfall and inflows in the past months (up 

to 2 years in advance). For the given candidate variables, a statistical 

correlation analysis between them and the inflows during the irrigation 

season was used to rank them and choose the final input variable set (Table 

7.1). Not all the candidate variables could be used because observations 

cover just 10 irrigation seasons, so it is advisable to reduce its number as 

much as possible. 

Table 7.1: Correlation analysis for inflow forecasting in the Jucar river 

Variable Sub-basin 
Inflows May- September 

Variable Sub-basin 
Inflows May- September 

Alarcon Contreras Middle Lower Alarcon Contreras Middle Lower 

R
ai

n
fa

ll 
in

 p
as

t 

O
ct

-A
p

ri
l 

Alarcon 0.68 - - - 

R
ai

n
fa

ll 
p

as
t 

1
2

 

m
o

n
th

s 

Alarcon 0.68 - - - 
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Alarcon -0.12 - - - 

Contreras - 0.65 - - Contreras - -0.03 - - 

Middle - - 0.50 - Middle - - 0.09 - 

Lower - - - 0.38 Lower - - - 0.13 
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Alarcon 0.69 - - - 
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Alarcon 0.65 - - - 

Contreras - 0.87 - - Contreras - 0.89 - - 

Middle - - 0.80 - Middle - - 0.87 - 

Lower - - - 0.49 Lower - - - 0.47 

Given the correlation coefficients obtained, the following variable 

selection has been made, in which two explanatory variables have been used 

except for the lower sub-basin, whose low correlation coefficients forced the 

definition of three explanatory variables: 

• Alarcon sub-basin: rainfall from previous October to April, and inflow 

in the same period. 
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• Contreras sub-basin: the same as Alarcon. 

• Middle sub-basin: rainfall from previous October to April and inflow in 

the previous month (April) 

• Lower sub-basin: rainfall from previous October to April, inflow during 

the same period and inflow in previous April. 

For the same data scarcity reasons, spatial cross-correlations between 

sub-basins have not been considered. Correlation coefficients are higher in 

the upper sub-basins, decreasing when moving downstream. 

Regression fitting and validation 

The fuzzy coefficients of the regression were fitted for the first 8 years of 

observations (2003-2010), being left the last 2 for validation (2011-2012). 

The membership threshold value (h) was set at 0.25, as higher values would 

enlarge too much the width of the fuzzy coefficients and the fuzzy outputs. 

The resulting equations have been: 

Alarcon: 𝑞̃ = [0.04; 0.08; 0.20] · 𝑃𝑂 𝑡𝑜 𝐴 + [0.02; 0.17; 0.28] · 𝑞𝑂 𝑡𝑜 𝐴 

  
Contreras: 𝑞̃ = [0.01; 0.14; 0.20] · 𝑃𝑂 𝑡𝑜 𝐴 + [0.01; 0.12; 0.22] · 𝑞𝑂 𝑡𝑜 𝐴 

  
Middle: 𝑞̃ = [0; 0.08; 0.09] · 𝑃𝑂 𝑡𝑜 𝐴 + [0.18; 1.83; 3.34] · 𝑞𝐴 

  
Lower: 𝑞̃ = [0.02; 0.12; 0.22] · 𝑃𝑂 𝑡𝑜 𝐴 + [0.11; 0.25; 0.46] · 𝑞𝑂 𝑡𝑜 𝐴

+ [0.01; 0.50; 0.65] · 𝑞𝐴 

Where q inflows; P rainfall; O October and A April. The triangular fuzzy 

numbers have been represented using the notation [lower support, modal 

value, upper support]. 

The results obtained with the fitted equations for the 10 years are shown 

in Fig. 7.6, in which the historical records (red circular markers joined by red 

dashed lines) are shown against the fuzzy predictions (modal values in green 

fill lines and membership functions approximated through blue-shaded 

areas, the darker the higher the membership degree). As expected, the 

vagueness (area covered by the blue shade tones) is higher in the regressions 

of the sub-basins with lower correlation coefficients. In any case, most 
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observations fall in the region of non-pale blue tones, so the adjustment is 

acceptable considering the scarce data available. 

 

Fig. 7.6: Fuzzy linear regression results for the Jucar river basin 

7.1.5. FRB outputs based on stochastic programming 

The stochastic optimization model to be merged with expert knowledge has 

been built using the CSG-SDDP algorithm and the ESPAT tool. The system 

representation adopted is the same as the seasonal operation model (Fig. 

7.2), including the specific constraints. The objective function is the 

maximization of the weighted sum of the current deliveries plus the future 

expected ones, in which the weights are the priorities given to the demands 

for each month (see Appendix A3).  

The optimization model has been run, using the CSG-SDDP implemented 

in ESPAT_RA, for a 10-year period, at the monthly scale, considering 20 

openings in the backward optimization and 20 time series in the forward 

simulation, including the historical inflows. After its execution, the optimal 

storages, flows and deliveries were post-processed to be used in modifying 

the delivery FRB and the release FRB. 

The determination of the FRB outputs corresponding to an optimal 

operation of the system has been made using the results obtained from the 

optimization algorithm for the 20 inflow time series. These results have been 

upscaled from the monthly to the irrigation season scale: 
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➢ For each irrigation season, the initial storages have been defined as 

the ones at the end of April for the corresponding hydrological year. 

➢ The inflows from the middle and lower sub-basins for each irrigation 

season have been defined as the summation of all the inflow values 

between May and September for the given hydrological year. 

➢ The same procedure as for the inflows has been followed to obtain the 

irrigation-period releases. 

Consequently, the resulting 10-year 20 time series represent 200 

irrigation season results. Using them, the same weighted-counting algorithm 

as employed before (Shrestha et al., 1996) has been used to estimate the 

outputs of both FRB systems. Out of the irrigation season, the same 

operating rules as under the current management have been used. 

Only the outputs of the FRB systems have been modified by the stochastic 

programming algorithms. Using the same FRB structure for both the current 

and the optimization-based rules guarantees that the decision-making 

processes are reproduced in the same way, as the only difference between 

them is the decision made. This close reproduction of the current decision-

making processes is crucial in making the optimization-based operation 

applicable to real-life operational decisions. 

7.2. DSS TOOL AND RESULTS 

The FRB systems and the validated fuzzy regression equations have been 

combined into a DSS tool able to make ex ante projections of future inflows, 

likely management decisions and their consequences. Depending on the 

operating rules reproduced by the FRB systems (either the current or the 

optimal), the DSS tool would work considering the current operation of the 

Jucar river system or an optimal management. 

7.2.1. DSS tool reproducing current decision-making 

To be able to use the fuzzy inflow forecasts as inputs of the FRB systems, the 

latter have been adapted to work with fuzzy inputs. The fuzzy input 

composition scheme presented in Jones et al. (2009) has been used. It 

consists in: 
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1. Decomposing each fuzzy input into a set of non-fuzzy inputs, each one 

corresponding to certain membership degree. 

2. Using the non-fuzzy inputs previously obtained for the same 

membership degree (which in practice correspond to the limits of the 

α-cuts of the fuzzy inputs) in a standard fuzzy inference process in 

which non-fuzzy outputs are obtained. Each non-fuzzy output set 

should be attached the corresponding membership degree. 

3. Repeating the process for all the membership degrees in which the 

fuzzy inputs were decomposed. 

4. Build the fuzzy outputs using the non-fuzzy outputs obtained and the 

membership degree attached to each of them. 

After computing the fuzzy outputs, their consequences (water availability 

and end-of-season storages) have been calculated by performing fuzzy water 

balances using fuzzy arithmetic (e.g. Simonovic, 2009). In particular, the 

following equations were used: 

Alarcon storage: 𝐸𝐴̃ = 𝑆𝐴 + 𝐼𝐴̃ − 𝑅𝐴̃  

Contreras storage: 𝐸𝐶̃ = 𝑆𝐶 + 𝐼𝐶̃ − 𝑅𝐶̃   

Tous storage: 𝐸𝑇̃ = 𝑆𝑇 + 𝐼𝑀̃ + 𝑅𝑎̃ + 𝑅𝐶̃ − 𝑅𝑇̃  

Water availability: 𝑊̃ = 𝑅𝑇̃ + 𝐼𝐿̃  

Where 𝑆𝐴 ,  𝑆𝐶  and 𝑆𝑇  storages at the start of the irrigation season in 

Alarcon, Contreras and Tous; 𝐸𝐴̃ ,  𝐸𝐶̃  and 𝐸𝑇̃  storages at the end of the 

season; 𝑅𝐴̃ ,  𝑅𝐶̃  and 𝑅𝑇̃  releases during the season; and 𝐼𝐴̃ ,  𝐼𝐶̃ ,  𝐼𝑀̃  and 𝐼𝐿̃ 

inflows during the season from the Alarcon, Contreras, middle and lower sub-

basins. The DSS has been divided into two tools to properly accommodate 

the two stages found in the seasonal operation of the Jucar river: the system 

state projections and the decisions regarding reservoir releases. These tools 

have been named as the predictive and the decision-making tool. 

Predictive tool 

The predictive tool (Fig. 7.7) makes projections on likely decisions that could 

be made in response to the current system state, and the corresponding 

consequences. 
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Fig. 7.7: DSS predictive tool for the Jucar river system 
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Instead of making a single choice, it forecasts how the system would look 

like in response to the initial system state, the inflows projected and any 

likely decision that would be made regarding them. Therefore, the user has 

a quick view of any likely operating decision to be taken in May (amount of 

water to release between May and September), as well as the prospected 

system state at the end of September and how much water would be 

delivered to the downstream users during the whole irrigation season. 

For the application of the predictive tool, the user has to introduce the 

information required to make the future state projections (white cells), and 

then checking the predicted values of the system state variables in response 

to them (graphs). The information required corresponds to the 

meteorological and hydrological variables needed to make inflow projections 

(past rainfall and discharges), and the initial system state (reservoir storages 

at the beginning of the irrigation season). 

The fuzzy future inflows (salmon graphs) are obtained using the fuzzy 

regression equations shown in subsection 7.1.4, for which the 

meteorological and hydrological inputs are required. The fuzzy release 

decisions (violet graphs) are obtained through performing a fuzzy inference 

procedure with fuzzy inputs (the fuzzy inflow projections) on the FRB systems 

representing the current operating rules. For this, initial storages in the three 

reservoirs are required. The fuzzy end-of-period storages (pale blue graphs) 

are calculated using fuzzy arithmetic employing the fuzzy inflow projections, 

the fuzzy releases prospected by the FRB systems and the initial storage 

values. Water availability and consequences are computed using fuzzy 

arithmetic, requiring the fuzzy releases from Tous and the fuzzy inflows 

forecasted for the Lower sub-basin.  

To ease the interpretation of the fuzzy numbers appearing in the 

predictive tool, a color code attached to linguistic descriptors has been 

employed, associated with the membership degrees (μ) of the fuzzy 

numbers, as follows: 

• Unthinkable (pale red, μ = 0): ex ante decisions within this area should 

not be taken into account, since they will be fully inconsistent with the 

current operating rules. 
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• Exceptional (orange, 0 < μ ≤ 0.25): ex ante decisions within this zone 

would be inconsistent with the operating rules, although they may be 

acceptable under extreme situations not found in the last years. 

• Strange (yellow, 0.25 < μ ≤ 0.50): ex ante decisions in this area may be 

acceptable only if proper reasons support them. 

• Feasible (green, 0.50 < μ ≤ 0.75): any ex ante decision falling within this 

area would be consistent with the operating rules and the inflow 

expectations. 

• Likely (blue, 0.75 < μ): ex ante decisions inside of this zone would be 

the most acceptable ones, being fully consistent with the inflow 

expectations and the operating rules. 

The color codes are the primary metric for comparing release decisions, 

locating and sorting operation options by their likelihood. Any ex ante 

decision falling within the feasible or the likely zones would be in line with 

the expected inflows and the current operating rules. Decisions inside the 

exceptional and strange areas would require additional information in order 

to determine if they are suitable or not. Decisions falling in the unthinkable 

zone should not be considered at all. 

Therefore, the user has an immediate estimation of which decisions are 

the most promising. The visual setup of the tool and the use of linguistic 

descriptors facilitates the understanding and comparison of the decisions. 

The tool screens all possible values of the different variables, so any 

management alternative is explored regardless of its suitability. The 

simultaneous estimation of the end-of-period system state and the water 

availability allows any user to determine if discretional decisions (like 

adopting releases not in line with the current rules, or allow pumping in the 

downstream demands) would be required prior to making the final release 

decision. 

For example, if water availability for the downstream demands shows low 

values for both the feasible and likely intervals, then a discretional decision 

is required. It would consist in increasing the release from Tous, which would 

imply higher releases from Alarcon and Contreras, or in allowing pumping to 

complement the surface deliveries. Similarly, if Tous presents lower storages 

than desired, more water should be released from Alarcon and Contreras 
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than the one in line with the current operating schemes, and the other way 

round if Tous storage is higher than desired. 

Despite ranking any possible decision and offering a global picture of the 

system, the predictive tool does not pick a single option as the best. Making 

a precise decision would oppose the spirit of the tool, which is supposed to 

support, not replace. For this, it provides a set of promising alternatives, 

which can be used as a starting point for negotiation processes between 

users and decision-makers. 

Decision-making tool 

The decision-making tool (Fig. 7.8) aims at estimating the consequences of a 

single decision. It offers a more precise assessment than the predictive tool. 

Here, the user introduces a single decision (releases from Alarcon, Contreras 

and Tous) and its consequences are immediately determined (end-of-season 

storages and downstream water availability). The amount of water to be sent 

to Albacete and the Mancha Oriental crops can be typed in too. The decision-

making tool also shows the inflow forecasts and the reservoir releases 

foreseen by the predictive tool, to easily establish how the introduced 

decision was ranked previously. 

Any decision can be introduced in the decision-making tool, so it is 

possible to explore the whole state space of the variables, although options 

ranked as feasible or likely by the predictive tool have the best chance to be 

finally implemented. The same fuzzy arithmetic operations than in the 

predictive tool are implemented but, in this case, the fuzzy releases 

calculated by the FRBs are replaced by the ones introduced by the user. 

Therefore, the tool estimates immediately the consequences of the decision 

given in order to determine its suitability. This enables the possibility to 

explore in real-time different alternatives, in order to find out one whose 

consequences fit the requirements. 
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Fig. 7.8: DSS decision-making tool for the Jucar river system 
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7.2.2. Validation of optimal operating rules 

The FRB systems whose outputs have been obtained using the optimization 

results need to be validated to determine if they offer an improvement with 

respect to the current situation. For this validation, they need to be 

compared with the FRB systems reproducing the actual operation.  

This comparison has been done for the historical time series (10 years), 

and for twenty ten-year stochastically-generated time series different from 

the ones used in the building of the optimal FRB systems. As for the validation 

of the current operating rules, the optimal FRB systems have been 

introduced in the STIG_FRB model to obtain monthly time series of results, 

applying the same downscaling operation and with the same perfect 

foresight assumption. The CSG-SDDP algorithm has also been run, using the 

ESPAT_RA tool, for all the comparison time series with the same Jucar river 

system configuration. 

Historical time series 

In all the variables obtained, the CSG-SDDP results for the last two years have 

been dismissed to avoid the influence of the final boundary condition. It has 

been considered that removing them is better than prescribing ending 

storage levels or a terminal value for the benefit-to-go function, which would 

add another source of uncertainty. 

The performance of the three alternatives is summarized in Table 7.2. The 

comparison has been done for the whole period (2003-2013) and for the 

drought period within it (2005-2008), in order to identify how the 

alternatives differ in both situations. 

As expected, the stochastic programming offers the upper bound in terms 

of total deliveries, while the current operating rules yield the lowest. The 

optimal rules represent an intermediate situation, being closer to the 

stochastic programming (10.53 Mm3/year below on average) than to the 

current situation (36.56 Mm3/year above on average). Both the optimal rules 

and the stochastic programming show an increase in the deliveries to the 

agricultural demands with elder rights (all but the Jucar-Turia and the 

Mancha ones) and a reduction in the others. 
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Table 7.2: Performance summary of the historical and the optimal operating rules  

Demand 

Average delivery per hydrological year (Mm3/year) 

Full period (2003-2013) Drought period (2005-2008) 

Historical 
rules 

Optimal 
rules 

Stochastic 
optim. 

Historical 
rules 

Optimal 
rules 

Stochastic 
optim. 

Valencia 85.28 85.28 85.28 85.28 85.28 85.28 

Sagunto 6.16 6.16 6.16 6.16 6.16 6.16 

Jucar-Turia 20.86 19.62 17.91 2.54 0.00 0.00 

Acequia Real 178.62 193.75 194.76 137.46 160.29 152.26 

Escalona 28.24 30.34 32.15 23.28 26.18 28.00 

Sueca 174.40 186.84 188.61 150.85 168.90 174.41 

Cuatro 
Pueblos 

21.71 23.65 24.99 18.50 21.42 24.06 

Cullera 103.33 110.58 118.18 89.86 100.64 116.03 

Albacete 16.95 16.95 16.90 16.95 16.95 16.84 

Mancha 18.51 17.38 16.14 2.00 0.00 0.00 

Flowing 19.77 19.83 19.83 19.70 19.83 19.83 

Total urban 108.39 108.39 108.34 108.39 108.39 108.28 

Total 
agricultural 

565.43 601.99 612.57 444.19 497.25 514.58 

Total 
deliveries 

673.82 710.38 720.91 552.58 605.64 622.87 

A similar situation is shown for the 2005-2008 drought, in which both the 

optimal rules and the stochastic optimization outperform the current 

management. The optimal rules are again closer to the stochastic 

programming (17.23 Mm3/year below on average) than to the current 

situation (53.05 Mm3/year above on average). The deliveries to the 

agricultural demands without elder rights decrease, in both the optimal rules 

and the stochastic optimization, compared to the current operation of the 

system.  

The stochastic optimization shows lower surface deliveries to the 

Albacete urban demand during the drought, since the Alarcon reservoir 

becomes empty at some moment. Similarly, the optimal rules show higher 

deliveries to the Acequia Real demand than the stochastic programming. This 

is caused by the fact that the latter drawdowns the reservoirs quicker than 

the optimal rules and, as a result, has to implement higher curtailments than 

them at the end of the dry period. In this case, the Acequia Real bears the 
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highest deficit among all the demands with elder rights due to having the 

highest concentration of pumping wells, which they can use to replace 

surface water. 

The storages and releases of the main reservoirs, as well as the total 

stored water, are presented in Fig. 7.9. As inferred from Table 7.2, the 

optimal rules (Opt) and the stochastic optimization (ESPAT) present in 

general lower storage levels, as seen in the total storage plot, indicating that 

they implement fewer curtailments in advance The optimal rules and the 

stochastic optimization present similar total storage levels, so their hedging 

strategies seem to be equivalent from a systemwide point of view. The 

current operation of the system, on the other hand, shows a cautious 

situation in comparison with the other alternatives, due to the reluctance of 

the operators to empty the reservoirs. 

 

Fig. 7.9: Optimal operating rules validation for reservoir storages 

When looking at each reservoir individually, differences between 

alternatives grow. Both the optimal operating rules and the stochastic 

optimization tend to store more water in Alarcon before the drought than 

the current management. This is consistent with the existence of seepage 

losses in Contreras. Although these losses return to the river several 

kilometers downstream and can be stored downstream if necessary, Tous is 

also subject to seepage losses, so eventually part of this resource may be lost. 
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Consequently, they tend to store more water in Alarcon, in which no seepage 

losses are found. During the 2005-2008 drought, the optimal rules and the 

stochastic optimization show a similar behavior, being the current 

management cautious in comparison. The stochastic optimization is able to 

store more water in Alarcon than the optimal rules, so higher deliveries can 

be arranged as noticed in Table 7.2. The situation in Contreras is the opposite 

than in Alarcon, since both the optimal rules and the stochastic optimization 

offer lower values than the historical management. This situation seems to 

be caused also by the seepage losses in Contreras. During the drought period, 

it can be seen that Contreras’ drawdown is quicker in the optimal rules and 

the stochastic optimization than in the current management, as shown in the 

graph between 2004 and 2005. This is also caused by the seepage losses, 

which induces them to first empty Contreras and then Alarcon. 

The most significant difference between the current and the optimal rules 

and the stochastic optimization is the distinctly lower storages obtained in 

Tous. Since the optimal rules have the same structure as the current ones, 

the non-written constraint consisting in maintaining a minimum pool level in 

Tous at the end of the irrigation season is respected. The stochastic 

optimization algorithm does not consider it. This switch shows advantages 

due to the seepage losses noticed in Tous. 

Comparing the historical and the optimal operating rules, they show 

differences in how Alarcon and Contreras are balanced while maintaining the 

same storage levels in Tous. These regard to the implementation of less 

curtailments in advance more than a significant modification in the upstream 

reservoir balance (it is modified, but not in a distinct way). This is shown in 

the fact that the optimal rules present a similar storage decrease in both 

Alarcon and Contreras. The plots comparing the releases appear in Fig. 7.10. 

The optimal rules release more water from Tous than the historical ones 

during the 2005-2008 drought, especially in 2005, maintaining the same level 

in the rest of the period. The stochastic programming deliveries raise over 

the optimal rules in 2006 and 2007, so its hedging strategy is the best among 

them. A similar pattern is shown in the joint releases from Alarcon and 

Contreras, although in them the stochastic programming offer higher 

releases in 2005 too. 
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Fig. 7.10: Optimal operating rules validation for reservoir releases 

The optimal rules release more water from Alarcon than the historical 

ones at the beginning of the drought (2005), and then release more resource 

from Contreras (2006 and 2007). Both optimal alternatives show a similar 

change in hedging, but stochastic programming is able to maintain high 

releases from Alarcon also in 2006. This is caused by the stochastic 

programming storing more water in Alarcon than the optimal rules. 

The peaks shown by the stochastic programming releases indicate that 

this alternative completely re-evaluates the situation month after month 

and, if necessary, applies a distinctly different decision. On the other hand 

the optimal rules, as the historical ones, make the decision in May and keep 

it during the whole irrigation season. This increased number of decisions is 

able to make an efficient use of the forecasting system employed by 

stochastic programming, since 1-month forecasts are more accurate than 5-

month ones. Moreover, the stochastic optimization tends to store less water 

in Tous than the other alternatives, avoiding seepage losses. This is 

compatible with its use as tail reservoir. 

Stochastically-generated time series 

The same operation options described for the historical time series were 

found in the majority of the 20 stochastically-generated time series analyzed. 
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The comparison has been summarized by calculating the empirical 

distribution associated with the mean annual values of the obtained 

reservoir releases and demand deliveries, as well as the differences in the 

total deliveries. 

The probability distributions of the releases from Alarcon, Contreras and 

Tous are shown in Fig. 7.11. For the Alarcon reservoir, both the historical and 

the optimal operating rules show similar probability distributions, although 

the latter presents a slight increase. The stochastic programming shows in 

general similar releases than the other two, although its lower extreme (up 

to 20%) offers fewer releases. 

 

Fig. 7.11: Releases probability distributions of mean annual values  

The current rules show less releases from Contreras than the other two 

alternatives, whose performance is similar (with a slight increase shown by 

the stochastic programming). The joint releases from the upstream 

reservoirs are lower in the current operating rules than in the remaining two, 

which are similar although a slight increase can be noticed in the stochastic 

programming. The current operating rules offer the lower bound in the Tous 

releases and the stochastic programming the upper one. However, in 

contrast with the upstream reservoirs, the optimal rules’ probability 

distribution is closer to the historical one than to stochastic optimization. 
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The reason why the increase in the upstream reservoir releases noticed 

between the current and the optimal rules does not show to the same extent 

in Tous regards to the storage level in Contreras. Since this reservoir suffers 

seepage losses that return to the river downstream (see Fig. 7.2), higher 

levels in Contreras mean higher seepage losses and higher downstream 

flows. Given that the optimal rules lower Contreras, more resource should 

be release through the Contreras dam to compensate the loss of 

downstream returns. 

An inverse effect can be found comparing the optimal rules and the 

stochastic programming: they offer similar releases from the upstream 

reservoirs while the stochastic optimization increases the outflows from 

Tous. This difference regards to the operation of Tous. In the optimal rules, 

it has a strict drawdown-refill cycle; while in the stochastic programming it is 

treated as the tail reservoir of the system. This consideration seems to be the 

main reason why the stochastic programming outperforms the optimal 

operating rules. 

The probability distributions associated with the deliveries are presented 

in Fig. 7.12. No differences can be found regarding urban deliveries, with the 

exception of a slight decrease in the lower extreme of the optimal rules and 

the stochastic programming. This happens when everything goes wrong and 

all the reservoirs are so empty that even the urban demands need to be 

curtailed. Being more cautious, the current operating rules do not suffer 

urban curtailments. This issue reinforces the fact that, although with 

remarkable advantages, forecasting systems used by stochastic 

programming are not perfect. 

The current operations offer the lower bound, and the stochastic 

programming results the upper one. The optimal rules are located between 

them, being closer to the stochastic programming for the lower extreme and 

to the current operation for the upper one. The pattern shown by the total 

deliveries (urban plus agricultural) is exactly the same. 
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Fig. 7.12: Deliveries probability distributions of mean annual values 

The plot with the differences between the alternatives depicts that, for all 

the inflow scenarios analyzed, the optimal operating rules outperform the 

current ones. This increase can be measured between 8 and 37 Mm3/year, 

with a median value of 25 Mm3/year. As expected, the stochastic 

programming always outperforms the optimal rules, between 5 and 67 

Mm3/year, with a median equal to 25 Mm3/year. 

Although on average both the optimal rules and the stochastic 

programming offer higher deliveries for the whole set of time series 

analyzed, it should be also compared how severe could the situation be 

under a drought. For this, the empirical probability distributions 

corresponding to the annual deliveries for the worst year (the one with the 

lowest deliveries) have been obtained (Fig. 7.13). 

In contrast with the situation depicted for the average values, the current 

operating policies are not the lower bound for all the time series. It can be 

seen that, up to 40% of cumulative probability, the historical rules offer the 

upper bound for both urban and agricultural deliveries, while the stochastic 

programming drives the worst performance. Above 40%, however, the 

situation depicted is similar to the one found in the average values, with the 

historical management outperformed by both the optimal rules and the 



Optimal operating rules definition using stochastic programming and fuzzy logic 

158  

stochastic programming, with the latter offering the upper bound. Optimal 

rules offer a similar performance than stochastic optimization. 

 

Fig. 7.13: Deliveries probability distributions of the annual value for the worst year 

The fact that the optimization algorithm offers the lower bound below 

40% percentile and the upper bound above it, as well as its close similarity 

with the optimal rules, means that less curtailments in advance than the 

current operation are implemented, as noticed in the analysis of the 

historical time series. This increase in deliveries at the beginning of a drought 

shows advantages unless it is so severe. In case of a severe drought, the 

strategies adopted by the optimal rules and the stochastic optimization may 

drawdown the reservoirs too fast, so surface water availability could be 

heavily reduced by the end of the dry period. In contrary, the cautious 

operation of the current rules distributes better the surface resources. 

In spite of the previous remarks, deliveries of the worst year for the 

optimal rules and the stochastic optimization are higher than the current 

management for 60% of the analyzed time series. For this reason, it can be 

concluded that the optimal operating rules are also adequate under drought 

situations since, for the majority of the time series, even in the worst year of 

a drought, they were able to outperform the current operation of the system. 

However, adopting them has some risk of emptying the reservoirs too fast in 

case of an extreme drought. 
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It can be summarized that the operation options outlined for the historical 

inflow time series (implementing less curtailments in advance, using Tous as 

the tail reservoir and a decision-making month by month in the case of 

stochastic programming) are maintained for the 20 inflow scenarios 

analyzed. The optimal operating rules and the stochastic programming are 

less cautious than the current ones, leading to higher deliveries (so it is 

worth), but with some risks (curtailments to urban demands and emptying 

the reservoirs too fast in case of an extreme drought). The limited increase 

shown by the optimal rules and the stochastic programming means that the 

current operating rules offer a good performance, although it can be further 

improved. The improvement obtained by the stochastic optimization means 

that the current decision-making framework could be enhanced by a monthly 

decision-making able to completely modify the rules adopted the month 

before. By doing this, the increase in deliveries with respect to the current 

rules may be between 22 and 88 Mm3/year, with a median of 48 Mm3/year. 

The demands that benefit from this increase are the ones with elder rights. 

7.2.3. DSS tool for optimal decision-making 

The DSS tool implementing the optimal operating rules consisted in replacing 

the expert-based FRB systems employed in the DSS tool previously 

developed (subsection 7.2.1) by the ones representing the optimal operating 

rules. The resulting DSS would have exactly the same format and inflow 

forecasting system than the previous one. The only difference between them 

would be that the predictive tool would suggest different operation decisions 

for managing Alarcon, Contreras and Tous. The decision-making tool would 

remain the same. 

An additional tool has been developed to compare and contrast the 

current and the optimal operating rules and to find overlapping decisions. In 

case they exist, they could be considered both coherent with the current 

operation of the system and optimal. If the overlapping zones are known in 

advance and the system operators are informed about them, the seasonal 

operation can be improved without the need of changing the operating rules, 

but just by adding information to the negotiation process. In order to find 

out and locate the overlapping zones, both operating rules have been 

combined into a DSS tool similar to the predictive tool (Fig. 7.14). 
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Fig. 7.14: DSS contrast tool 

557 Rainfall Oct.-Apr. 593 Rainfall Oct.-Apr.

386 Inflow Oct.-Apr. 287 Inflow Oct.-Apr.
1 1 1

Sto. Alarcon (Mm
3
) Sto. Contreras (Mm

3
)

539 354 Rainfall Oct.-Apr. 444
25 Inflow April

1 1

Sto. Tous (Mm
3
)

228
413 Rainfall Oct.-Apr.
148 Inflow Oct.-Apr.

10.69 Inflow April 0

1 1 1

1

1 1

     Rainfall in mm; Inflow in Mm
3

LOAD
YEAR

ERASE 
HISTORY

Contreras

Alarcón

A
la

rc
ó

n

C
o

n
tr

er
as

M
id

d
le

Lo
w

er

MAKE THE 
DECISION

CLEAN
DATA

0 100 200 300

Alarcon inflows

0 100 200 300

Middle inflows

0 100 200 300

Contreras inflows

0 100 200 300

Lower inflows

0 100 200 300 400 500 600

Alarcon release

0 100 200 300 400 500 600

Contreras release

0 100 200 300 400 500 600

Tous release

0 200 400 600 800 1000

End Alarcon storage

0 100 200 300 400

End Contreras storage

0 100 200 300

End Tous storage

0 200 400 600

Lower basin water

Tous



 Application 2: DSS tool for the Jucar river seasonal operation 

161 

The example data shown in Fig. 7.14 correspond to the irrigation season 

of the hydrological year 2009 (May-September 2010). The results show the 

overlaps found between feasible decisions obtained using the current and 

the optimal operating rules. Presenting overlaps for the feasible level 

guarantees they could be acceptable for decision-makers while having some 

flexibility if possible (overlaps for the strange level would be wider but 

unlikely to be found desirable, while using the likely level would lead to 

narrow overlapping zones or even no overlaps). The color code is a grey-or-

black one: grey decisions are optimal or coherent with the current operating 

rules, while black ones are both current and optimal. Therefore, decisions in 

the black zone are the most promising ones. 

The overlap is not guaranteed, since it can be inexistent (Contreras 

releases for the example year), or too narrow (releases from Tous for the 

example year). By showing them, the tool guides the users to focus on the 

best subset possible within the set of acceptable decisions. It could be 

considered as an intermediate stage between employing the historical 

operating rules and switching to the optimal ones, guiding the users to make 

optimal decision without the need of changing their current practices. 

7.3. SUMMARY AND DISCUSSION OF THE DSS 
DEVELOPMENT 

A Decision Support System (DSS) for the seasonal operation of the Jucar river 

system has been developed combining expert knowledge and historical data. 

Its development relied on a collaborative framework between researchers 

and system operators. Fuzzy logic has been used to represent the operating 

rules followed in the Jucar river seasonal management. Fuzzy regression has 

been chosen to forecast future inflows based on past and present 

meteorological and hydrological variables. The DSS was developed to mimic 

the current seasonal operation of the Jucar river system. 

After validating this DSS against historical records, stochastic 

programming was used to modify the FRB systems representing the 

operating rules in order to improve their performance. The comparison 

between both alternatives shows that the rules developed with stochastic 
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programming outperformed the historical ones, although with some risks 

associated with the possibility to empty too fast the reservoirs. 

The DSS tool offers the system operators a way to preview which 

decisions would be a priori adequate under the current or under optimal 

operating rules, estimating their likely consequences. Furthermore, it 

compares the suitable decisions under the current management with the 

ones corresponding to an optimal strategy, helping users to make decisions 

both optimal and coherent with the current system operation. 

The framework presented has been shaped and built in a continuous way 

during the meetings with the Jucar river system operators. It can be 

extrapolated to other case studies if the same framework development 

strategy is adopted. Such a continuous building mechanism is crucial for 

defining a successful DSS, as new insights on the system and its operation are 

gained during the process. 

The Jucar river system operators declared they were satisfied with the 

tool defined. The main reasons of their approval, as pointed out by them, 

were: 

➢ It takes into account the specificities of the Jucar river that affect its 

seasonal operation. 

➢ They were able to understand the mechanisms implemented by the 

tool even though they were not familiar with fuzzy logic at the 

beginning. 

➢ The tool was simple and easy to be used. 

➢ There were not given a single best decision, but a set of suitable 

alternatives, so they were able to freely choose one of them according 

to their expertise. 

Fuzzy logic has proven to be a suitable approach to acquire and 

mathematically represent expert knowledge, as well as an adequate way to 

combine it with historical records and optimization algorithms. The current 

decision-making processes have been fairly reproduced. The use of an 

optimization algorithm to turn the decisions into optimal has been successful 

and straightforward. 

In spite of the success of the approach in the Jucar river system, there are 

several points of improvement. The first is the quality of the fuzzy regression 
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that, although recommended in cases of scarce data, would be improved 

with more historical records. In particular, the independent variable set was 

limited, so new data would allow the consideration of more input variables, 

including cross-correlation of inflows. Neglecting the latter, especially in the 

Jucar basin in which inflows are cross-correlated, widens the imprecision 

intervals of the fuzzy inflow projections. The inclusion of cross-correlation 

should be considered when enough data gets available. 

Furthermore, the quality of the FRB systems representing the operating 

rules would benefit from finer discretizations of the fuzzy inputs, although it 

could lead to more complex FRB systems and hinder the use of expert 

judgment. Sen (2010) established that characterizations with more than 

seven classes would make the resulting FRB difficult to be understood, since 

differences between the required linguistic terms would be less clear. 

Considering that the tool properly reproduced the current decision-

making processes of the Jucar river system, the fact that the optimal rules 

defined outperformed the current ones, the positive feedback about the tool 

given by the system operators, as well as that the main drawbacks noticed 

regard to data scarcity, it can be concluded that the framework presented in 

chapter 4 to define optimal operating rules has been successfully applied. 
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8. SUMMARY, CONCLUSIONS AND 
FURTHER RESEARCH 

8.1. SUMMARY AND CONCLUSIONS 

This PhD thesis presents a stochastic programming algorithm able to perform 

stochastic optimization runs in large-scale water resource systems taking into 

account stream-aquifer interactions. As it is based on the Stochastic Dual 

Dynamic Programming algorithm (SDDP, Pereira and Pinto 1985, 1991), it has 

been named as CSG-SDDP (Macian-Sorribes et al., 2017). A collaborative 

framework has also been developed to combine historical records with 

expert knowledge in a decision support system (DSS) that mimics the current 

operation of the system. It can contribute to support the seasonal operation 

of a water resource system (Macian-Sorribes and Pulido-Velazquez, 2017). 

The framework relies on the co-development of a DSS tool that is able to 

explicitly reproduce the decision-making processes and criteria considered 

by the system operators. After the reproduction of the historical system 

operation, stochastic programming results are used to improve the defined 

operating rules. 

Fuzzy logic is used to derive the implicit operating rules followed by the 

system operators, based on combining the historical decisions and the expert 

knowledge obtained in the co-development process. Fuzzy regression is 

employed to forecast future inflows based on the meteorological and 

hydrological variables considered by the system operators in their decision-

making stages. Afterwards, the CSG-SDDP algorithm is applied to modify the 

rules, which should then be tested to determine if they improve the historical 

operation of the system. The developed framework and tools offer the 

system operators a way to predefine a set of feasible ex ante management 

decisions, and to explore the consequences associated with any single 

choice. In contrast with alternative approaches, the fuzzy-based method 

used in this study is able to embed inflow vagueness and its effects in the 

definition of the system operation. Furthermore, the method is flexible 

enough to be applied to other water resource systems. 

The CSG-SDDP algorithm and the proposed framework have been applied 

to the Jucar river system in two different ways. In the first application, the 
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algorithm has been used to define economically-optimal conjunctive use 

strategies for a joint operation of reservoirs and groundwater bodies. The 

same system configuration as adopted by the CHJ Planning Office in their 

models (CHJ, 2013) has been employed. The algorithm identified several 

operation options able to improve the system performance: 

➢ Reducing pumping from the Mancha Oriental aquifer to 240 Mm3/year 

on average (including drought years), being partially substituted by 29 

Mm3/year delivered from the Alarcon reservoir. 

➢ Defining pumping curtailments during droughts, in the same way as 

surface water deliveries are curtailed. 

➢ Using Tous as the tail reservoir of the hydropower system. 

In the second application, the framework developed has been used to 

reproduce the current seasonal operation of the Jucar river system, learning 

from historical decisions and expert knowledge. Two FRB systems 

representing the decision-making processes of the Jucar river for the 

irrigation season (May-September) have been co-developed with the system 

operators. A water resources management model has been co-developed 

too, in order to include the variables and processes taken in consideration by 

decision-makers. The combination of this model and the FRB systems 

reproducing expert knowledge has been successfully validated against the 

historical records. A DSS tool has been created to help on the seasonal 

operation of the Jucar river system considering its current modus operandi. 

Once the DSS tool was validated, the CSG-SDDP algorithm was run to 

modify the FRB systems to improve the operating rules. The resulting FRB 

systems have been compared with the historical ones, as well as with optimal 

decisions from CSG-SDDP, showing a better seasonal operation of the system 

due to the following conclusions: 

➢ Less curtailments to the downstream demands can be done at the 

beginning of a drought. 

➢ The balance between Alarcon and Contreras should be slightly 

modified. 

➢ If Tous was fully operated as the tail reservoir of the system, deliveries 

could be increased. 



 Summary, conclusions and further research 

167 

The optimal rules obtained follow the same decision-making processes as 

the current ones, so they could be applied to real-life without modifying 

today’ modus operandi (just the final decision changes). To support the 

implementation of the optimal rules, the DSS has been updated to work with 

the FRB systems adapted to the results of the stochastic optimization. 

Furthermore, the current and the optimal DSS tools have been compared in 

order to find the overlaps between them, giving the users information about 

which decisions could be both coherent with the current operating rules and 

optimal. In this way, system operators could be able to improve the decisions 

they make without changing the processes and criteria they currently use. 

However, the improved operating rules have some risk of having a worse 

worst year in a drought than the current system operation. 

It should be noted that the changes in the system operation outlined by 

the applications to the Jucar river system are complementary, given that they 

regard to the operation of groundwater bodies as well as surface reservoirs: 

the ones from the first application (conjunctive use strategies) are valid for 

managing the main aquifers of the system, while the ones outlined in the 

second application (improve the allocation schedule for the irrigation 

season) refer to the operation of the surface reservoirs. Combining them, 

one could define a complete set of decisions to improve the operation of the 

Jucar river system. This division is also able to take into account the different 

time horizons of the impacts of changes in operation, since they usually need 

more time to show in aquifers than in surface reservoirs. 

With respect to the computational requirements of the CSG-SDDP 

algorithm implementation in GAMS, each EMM increases the dimensionality 

of the problem as if one more reservoir was added. Nonetheless, no strong 

computational power was required. In addition, the execution times of the 

CSG-SDDP algorithm for the Jucar river system were only three times higher 

than the ones of a deterministic equivalent. This was caused by the use of 

the Gather-User-Solver-Scatter (GUSS) procedure (Bussieck et al., 2011) 

implemented in GAMS, which distinctly reduces the time requirements. 

Regarding the methodology employed in this PhD thesis, the tools created 

to properly implement it and the applications developed in the Jucar river 

system, the following conclusions can be drawn: 
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1. Stochastic Dual Dynamic Programming (SDDP) and the Embedded 

Multireservoir Model (EMM) can be combined for the stochastic 

optimization of large-scale water resource systems. The resulting 

extended algorithm takes into account stream-aquifer interactions in 

the definition of optimal operation strategies. 

2. Fuzzy logic is able to mathematically represent the operating rules 

implicitly followed by system operators in the seasonal management 

of the system, integrating historical data with expert knowledge. 

3. The DSS tool presented makes a priori assessments regarding 

management decisions, offering an efficient way to help on the 

seasonal operation of the system. Combined with inflow forecasting 

mechanisms, it can be used by the system operators to foresee 

possible decisions and anticipate likely consequences of them. 

4. Stochastic programming, historical records and expert knowledge can 

be combined for obtaining optimal operating rules respecting the 

current modus operandi of the system. 

The applications of these methods and tools to the Jucar river system 

identified measures to improve its operation considering both the surface 

and the groundwater component of the system. With regard to them, the 

following conclusions can be stated: 

1. The CSG-SDDP algorithm has successfully considered the stream-

aquifer interactions, defining optimal conjunctive use operating rules 

to increase the economic systemwide efficiency 

2. The collaborative framework developed has been able to combine 

historical data and expert knowledge, mimicking the seasonal 

operation of the system. The operating rules obtained were then 

improved employing stochastic programming. 

3. The operation improvements suggested by both applications to the 

Jucar river system cover the operation of surface and groundwater 

resources. 

The optimization results do not present a spectacular increase in benefits 

or deliveries, as the current operating rules already offer acceptable 

efficiency levels. This is coherent with the large experience possessed by the 

Jucar river system planners and operators, improving its operating rules in a 

continuous way. 



 Summary, conclusions and further research 

169 

8.2. LIMITATIONS AND FURTHER RESEARCH 

Despite the successful applications to the Jucar river, the methods and tools 

developed present some weaknesses. The use of the EMM, for instance, 

requires to have enough data to characterize the stream-aquifer interaction 

and the factors that influence it. In addition, it is not capable of representing 

groundwater heads, so operation options affecting groundwaters need to be 

assessed using highly-detailed modes (such as finite difference ones) in order 

to confirm and downscale the results of the EMM. 

Furthermore, the mathematical models of the Jucar river system are 

subject to several sources of uncertainty. An important one is the economic 

characterization of water demands, done with limited information. Another 

weakness of the models is that they work under the social planner 

perspective, seeking to maximize the systemwide efficiency assuming that all 

the users involved will cooperate for the greater good. However, this 

efficiency improvement is not symmetrically distributed, so equity issues 

may arise. These could be examined using, for example, Game Theory (Girard 

et al., 2016; Madani, 2010), and they could be addressed by employing 

benefit-sharing mechanisms (Arjoon et al., 2016). 

Regarding the DSS tools created for aiding the seasonal management of 

the Jucar river system, the quality of the fuzzy regressions for inflow 

projections is hindered by the lack of data, which did not allow the 

consideration of issues like cross-correlation or the inclusion of additional 

variables. These regressions should be updated as soon as more data 

becomes available. 

Another limitation of the research is that stationary conditions were used 

in the analyses developed (first decade of the 21st century). This assumption 

was conditioned by the necessity of validating the mathematical 

representation of the current decision-making processes and operating 

rules. This implies that the improved operating rules are valid for this climate, 

thus not guaranteeing its validity for future climatic conditions. In order to 

ensure this, the analysis and thus the rules obtained should be updated using 

the climate forecasts for the upcoming years. 

This update should also include the changes noticed in the rest of the 

system features: new infrastructures or modifications in the existing ones, 
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changes in demands, modifications in the economic system and thus in the 

demand functions, changes in energy prices, modifications regarding 

environmental requirements and so on. Alternatively, a system dynamics 

approach (e.g. Nikolic, 2015; Simonovic, 2009) could be used to assess 

adaptive management strategies (although this is out of the scope of this PhD 

thesis). 

In any case, collaborative DSS tools, such as the ones developed in this 

thesis, are likely to have the best chance to be implemented in reality, as the 

experts who should use them are directly involved in the process and thus 

feel confident with the resulting tools. 

Considering the methodological developments of this thesis, as well as 

their applications to the Jucar river system, the following future lines of 

investigation can be outlined. 

➢ Improvements on the method. 

o Extending the framework developed to multiobjective, many-

objective and robust optimization. 

o Combining the operating rules defined with other modeling tools 

such as agent-based modeling or system dynamics. 

o Defining optimal pricing policies taking into account the water 

origin (surface, groundwater, reuse water and desalinated water) 

combining the ESPAT tool with the methodology developed by 

Macian-Sorribes et al. (2015). 

➢ Improvements on the tools. 

o Programming a GUI for the ESPAT tool. 

o Enhancing the ESPAT tool to perform multiobjective optimizations 

with non-economic objectives. 

o Including water quality modeling procedures within the ESPAT tool. 

o Validating and further applying the tools and procedures to other 

river basins. 

➢ Improvements on the case study application. 

o Improving the economic representation of the elements of the 

conjunctive use model (demand curves, pumping costs and energy 

benefits), and re-assessing the rest of the elements (EMM, losses, 

etc.). 
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o Including additional processes not considered before in the 

conjunctive use model (emergency wells, l’Albufera, joint 

management of the Jucar and Turia rivers, prospected water 

transfer between the Jucar and the Vinalopo, etc.). 

o Implementing a method to reproduce the updates and corrections 

made to the seasonal decisions and embed them into the model. 

o Assessing the economic impacts of the decisions carried out by the 

seasonal operation model. 

o Increasing the quality of the fuzzy regressions, and improving the 

reproduction of the operating rules with respect to the end storage 

in Tous (finer discretizations). 

o Testing the impact of improved inflow forecasting mechanisms 

such as the ones currently in development under the EU H2020 

project IMPREX (www.imprex.eu). 

o Including non-stationary climate conditions to re-design and re-

assess the operating rules obtained under future hydrological 

behaviors. In this way, the operating rules could be re-assessed 

periodically (e.g. each decade or each five years) updating the 

hydrological conditions and re-starting the calculation processes 

developed in this thesis again. The evolving conditions of the Jucar 

river system should also be updated in these re-assessments 

(infrastructure features, demands, environmental requirements, 

energy prices, economic features and so on). 

http://www.imprex.eu/
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A1. DESCRIPTION OF THE JUCAR 
RIVER SYSTEM 

A1.1. WATER RESOURCES 

The Jucar water resources have mainly two origins: surface and groundwater. 

Regenerated water is currently not allocated to any demand, although 

several of them have the possibility to use it. Besides, there are neither water 

transfers nor desalination plants available in the system. Furthermore, 

emergency wells or emergency pumping from the l’Albufera lake (known as 

rebombeos in Spanish) were not considered due to its extraordinary 

character. 

A1.1.1. Surface water resources 

The Jucar River Basin Management Authority (CHJ) Management Plan for the 

period 2009-2015 (CHJ, 2013) evaluates the surface water resources using 

the fully distributed hydrological model PATRICAL. The resulting values, for 

both the 1940/41-2008/09 and 1980/81-2008/09 periods, are included in the 

following table. 

Total surface water resources in Mm3/year in the Jucar river basin according to the 
PATRICAL model 

1940/41 – 2008/09 (Mm3/year) 1980/81 – 2008/09 (Mm3/year) 

Minimum Average Maximum Minimum Average Maximum 

675.0 1,747.9 3,362.8 675.0 1,548.1 3,362.8 

The surface water resources have suffered a decrease after the 80’s. This 

reduction, found in other Spanish river basins, is known as the 80’s effect. 

Due to it, water resource systems analyses in all the Spanish River Basin 

Management Plans have to be done using two inflow periods: from 1940/41 

and from 1980/81. 

A1.1.2. Groundwater resources 

Groundwater resources play a capital role in the Jucar river. Its surface basin 

is located totally or partially above 32 groundwater bodies. The most 

important among them (colored in brown/orange) are the Mancha Oriental, 

the Hoces del Cabriel and the Plana de Valencia Sur, which hold the more 

relevant stream-aquifer interactions and most of the wells. 
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Jucar river basin groundwater bodies 

Approximately 80% of the surface water resources enumerated earlier 

correspond to groundwater discharge either by spring or by stream-aquifer 

interaction. Besides this water quantity which naturally enters the surface 

system, according to CHJ (2013), the total amount of groundwater renewable 

resource in all the aquifers below the Jucar river basin equals 1,661.9 

Mm3/year. Given that 436.8 Mm3/year cannot be allocated due to 

environmental reasons, the total amount of groundwater resources allowed 

to be pumped is 1,225.1 Mm3/year. This threshold value can be overtaken 

during droughts, in which agricultural users are allowed to use their 

emergency wells to complement their supply, as indicated by the Jucar River 

Drought Management Plan (CHJ, 2007). Despite that, the majority of these 

available groundwater resources cannot be used due to the lack of pumping 

capacity. 

A1.1.3. Stream-aquifer interaction 

The interaction found between surface and ground waters in the basin is 

depicted in the following figure. The main streams in which a gaining river is 

found correspond to the upper Jucar river, the upper and middle Cabriel 

river, part of the middle and lower Jucar river, as well as the upper basins of 

several Jucar tributaries (Arquillo, Magro and Albaida rivers). The most 
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relevant losing river stream is the middle Jucar river, due to the Mancha 

Oriental aquifer overdraft, while the lower Arquillo and Magro also infiltrate 

into groundwater bodies. 

 

Jucar river basin stream-aquifer interaction 

Despite having records of more than 3,000 natural springs, only few of 

them are relevant enough to be gauged regularly. The majority of them are 

located in the upper basins, although some are found in the borders of the 

Caroig massif (in the vicinity of Tous), whose discharge is received by the 

Jucar middle and lower basins. 

 

Springs of Albufera de Anna (left) and l’Ullal Gros (right) 
Sources: www.ayuntamientoanna.es (left) and es.wikiloc.com (right) 

http://www.ayuntamientoanna.es/
http://www.wikiloc.com/
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A1.2. WATER DEMANDS 

The total consumptive demand of the Jucar river basin is around 1,507 Mm3 

(year 2009), being a heavily committed system (demand similar to surface 

resource). The demand can be divided in urban, agricultural and industrial. 

A1.2.1. Urban demands 

The total amount of water required for urban consumption equals 209.9 

Mm3/year at year 2009. Among the 36 Urban Demand Units (UDU) found in 

the basin, the most important are the cities of Valencia, Albacete and 

Sagunto, which combine together to 131.5 Mm3/year. 

A1.2.2. Agricultural demands 

Demanding an amount of 1,347.0 Mm3 at year 2009, agricultural use is, by 

far, the largest of the system. The 10 most important Agricultural Demand 

Units (ADU), combine together to 1,039.8 Mm3/year. These demands are 

divided in surface, groundwater or mixed depending on the resource origin 

employed. Surface and mixed ADUs concentrate in the lower Jucar river, 

while groundwater ones are located in the Mancha Oriental zone, 

surrounding the city of Albacete. 

 

Jucar river basin Agricultural Demand Units (ADU) 
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A1.2.3. Industrial demands 

Without considering power production, industrial demands in the Jucar river 

basin are low in comparison with urban and agricultural uses. Their total 

amount is located around 27.7 Mm3/year in year 2009, being most of them 

supplied by groundwater. With regard to power production, the Jucar River 

basin holds 1 nuclear power plant (Cofrentes), whose consumption is around 

20 Mm3/year; and 31 hydropower plants. 

 

Jucar River basin power plant location 

Although not being consumptive demands, hydropower facilities can 

cause significant modifications in several river streams. Their installed 

capacities range between 0.2 MW and 628.35 MW, with an aggregated value 

of 1,271.88 MW. The most important plants (the larger bolt symbols) are the 

Cofrentes, La Muela de Cortes, Cortes II and Millares II power plants, all of 

them located near the Cofrentes nuclear power plant. 

A1.3. ENVIRONMENTAL REQUIREMENTS 

Environmental flows in the Jucar river basin were traditionally set up 

immediately downstream of the Alarcon, Contreras and Tous reservoirs. As 

requested by the European Water Framework Directive, the Jucar River Basin 

Management Plan (CHJ, 2013) increased the streams in which minimum 
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flows were defined to 18. Among them, 12 are defined in the Jucar river, 3 in 

the Cabriel river and 1 in the Arquillo, Albaida and Magro rivers respectively. 

 

Jucar river basin streams with minimum environmental flows 

Moreover, the Jucar River Basin Management Plan defines an 

environmental requirement for the L’Albufera lake, in order to maintain its 

current ecosystem status. This requirement has been defined around 167 

Mm3 for the whole year and 148 Mm3 for the September-April period. This 

volumes guarantee that the lake entirely renews its water 7 times a year and 

6 times between September and April. 

A1.4. MANAGEMENT INFRASTRUCTURES 

The Jucar river is highly regulated in order to transfer water from wet to dry 

periods. This requires a significant amount of infrastructure (reservoirs). 

Furthermore, conveyance facilities (canals) are required to move water from 

the river streams to the users. 

A1.4.1. Reservoirs 

The Jucar River basin has a total amount of 11 reservoirs with capacity higher 

than 1 Mm3, being 7 of them placed within the Jucar river; 3 in tributary rivers 

and 1 as an off-stream facility. The most important ones are Alarcon, 
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Contreras and Tous, whose main goal is to regulate the river flows and, in the 

case of the latter, to protect from flooding. 

Jucar river basin reservoir features 

Name River 
Built 

in 
Ownership 

Planned 
capacity 

Use 

Alarcon Jucar 1944 USUJ1 1118 Mm3 Cons./ Hydr. 

Molinar Jucar 1989 Iberdrola2 4.3 Mm3 Hydropower 

Contreras Cabriel 1973 State 852 Mm3 Cons./ Hydr. 

Cortes II Jucar 1989 Iberdrola2 118 Mm3 Hydropower 

Naranjero Jucar 1989 Iberdrola2 26.25 Mm3 Hydropower 

Tous3 Jucar 1994 State 379 Mm3 Cons./ Flood 

Escalona Escalona 1997 State 99 Mm3 Flood 

Bellus Albaida 1998 State 69 Mm3 Consumptive 

Forata Magro 1968 State 37 Mm3 Consumptive 

La Muela4 off-stream 1989 Iberdrola2 20 Mm3 Hydropower 

La Toba Jucar 1944 Union Fenosa2 10 Mm3 Hydropower 

1 Unidad Sindical de Usuarios del Jucar (Jucar Users Union). Farmer association 

2 Power company 

3 Built at the same place of the old Tous dam, which was destroyed during a flood in 1982 

4 Water intake and outtake located in the Cortes II reservoir 

 

The Alarcon dam 
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A1.4.2. Canals 

Among the large amount of canals existing in the Jucar river basin, the four 

main ones are the Tajo-Segura canal, the Maria Cristina canal, the Jucar-Turia 

canal and the Acequia Real (English: Royal Canal) canal. 

Jucar river basin canal features 

Name Built in Ownership Length Intake Ending Jucar use 

Tajo-
Segura 

1979 State 292 Km 
Bolarque 
reservoir1 

Talave 
reservoir1 

Urban, 
irrigation2 

Maria 
Cristina 

18053 State 32 Km 
Albacete 

city 
Jucar river 

Lagoon 
drainage 

Jucar-Turia 1979 State 60 Km 
Tous 

reservoir 
Turia river 

Urban, 
irrigation 

Acequia 
Real 

12584 Farmers 60 Km 
Antella 

weir 
Albal town Irrigation 

1 Bolarque reservoir located in the Tajo River basin; Talave reservoir located in the Segura River basin 

2 Built to transfer water between the Tajo and the Segura basins, the CHJ is allowed to convey water to 
the Albacete city and to the Mancha Oriental farmers to reduce aquifer overexploitation 

3 Year when its building started; the end of the site works is undefined (mid XIX century) 

4 Year when the initial canal was built; its length was enhanced between the 13th century and the 17th 
century 

 

Jucar River basin canals 
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A2. JUCAR CONJUNCTIVE USE MODEL 
A2.1. DESCRIPTION 

A2.1.1. Inflows 

The inflows employed were obtained from the information provided by CHJ 

(2013). They were estimated restoring the historical records available in the 

basin to the natural regime by eliminating the effect caused by man-induced 

actions such as dam building, pumping, canal diversion, etc. More details 

about this process can be found in CHJ (2013). 

 

Conjunctive use model sub-basins 

Although inflow data records were available between 1980 and 2012, the 

model runs have been restricted to the 1998-2012 period, since Tous started 

its operation in 1998. However, the 1980-2012 period was used to set up 

autoregressive models in order to increase its parsimony. 
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Conjunctive use model inflows for the 1980-2012 period 

A2.1.2. Reservoirs 

Eight reservoirs are represented in the model, whose locations can be seen 

in the following figure. Their maximum allowed storages per month (in Mm3) 

and their minimum storages (in Mm3) are included in next tables. Their 

characterization was based on the information given by CHJ (2013), reports 

of the CHJ Operation Office and data provided by the Centro de Estudios y 

Experimentación de Obras Públicas (CEDEX, 2013). In some reservoirs the 

maximum storage is less than planned due to technical problems (especially 

in Contreras) and the necessity of having free space to guarantee protection 

against floods. 

With regard to hydropower reservoirs (Molinar, Cortes II and Naranjero), 

it has been considered that the values provided by CHJ (2013) refer to the 

management constraints arranged between the CHJ and the Iberdrola power 

company, rather than their physical constraints. In fact, they do not match 

with the physical features and the historical records on reservoir levels 

provided by CEDEX (2013). Consequently, the minimum and maximum 

storage levels for these have been set as their physical limits. 
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Conjunctive use model reservoirs 
 

Planning model reservoir maximum allowed storage (Mm3) 

Reservoir Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Alarcon 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 

Molinar 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

Contreras 444 444 444 444 444 444 444 444 444 444 444 444 

Cortes II 118 118 118 118 118 118 118 118 118 118 118 118 

Naranjero 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 

Tous 72 72 126 195 170 216 240 217 194 171 148 126 

Forata 15.9 15.9 25.1 26.6 28.4 28.4 28.4 26.5 26.5 31 21 20.2 

Bellus 18.3 18.4 18.3 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 18.3 

 
Conjunctive use model reservoir minimum storages (Mm3) 

Reservoir Alarcon Molinar Contreras Cortes II Naranjero Tous Forata Bellus 

Minimum 30 0.5 15 75 16 10 1 1 

A2.1.3. Aquifers and stream-aquifer interaction 

The inflows shown previously include the stream-aquifer interactions in 

natural regime. Consequently, all the EMMs appearing in the Jucar river 

conjunctive use model reproduce exclusively the anthropic actions (crop 

infiltration minus pumping). Their response is added to the natural aquifer 
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response in the conjunctive use model to estimate the stream-aquifer 

interaction. 

Five EMMs have been introduced in the model. They represent the 

Mancha Oriental aquifer, the most important in terms of stream-aquifer 

interaction; the Hoces del Cabriel aquifer, which receives the seepage losses 

from Contreras and returns them to the Cabriel river several kilometers 

downstream; and the Plana de Valencia Sur (PVS) aquifer, which has been 

divided into three EMMs: 

• The PVS North EMM, to hold the pumping abstractions from the Canal 

Jucar-Turia and Magro demands. 

• The PVS Centre EMM, which receives the infiltration from the Acequia 

Real District and returns part of it to the Jucar river. 

• The PVS South EMM, same as the Centre one but referred to the 

Escalona Irrigation District and the Albaida river 

The mathematical characterizations of all the EMMs but the Mancha 

Oriental one have been obtained from CHJ (2013). 

Conjunctive use model EMM parameters 

Aquifer model 
EMM 
type 

Discharge coefficient α 
(month-1) and action 

distribution coefficient b 
Initial level (Mm3)1 

Mancha Oriental 2-reservoir  
3.94 /  
0.18 

0.0055 /  
0.82 

0.0 -3,392.0 

Hoces del Cabriel 1- reservoir  0.9 8.1 

PVS North 1- reservoir  0 -3,200 

PVS  Centre 1- reservoir  0.18 47.6 

PVS South 1- reservoir  0.18 7.3 

1 A negative value implies that, at the start of the analysis period (1998), the aquifer is below its 
natural state level. A positive one means the opposite, while a zero represents it remains in its natural 
level 

A2.1.4. Canals 

The canals included in the model are the ones enumerated in the system 

description, with the exception of the Maria Cristina canal, whose purpose is 

not to convey but to drain an endorheic zone. Although the capacities of 

these infrastructures are higher enough to guarantee the entire supply to 

their demands, capacity limits have been imposed in sections of the Tajo-
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Segura and the Jucar-Turia canals to take in consideration the maximum 

amount of water they can receive from the Jucar river. 

A2.1.5. Environmental flows 

Among the environmental requirements outlined in the system description, 

the ones included in the model correspond to the streams located in the 

Jucar river downstream Alarcon, in the Mancha Oriental zone, downstream 

Molinar, downstream Naranjero and downstream the Cullera weir; and the 

Cabriel river downstream Contreras. The selected locations (eleven), and 

their monthly requirements in m3/s, are enumerated in the next table. 

Conjunctive use model monthly environmental flows (m3/s) 

Location Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Jucar in 
Alarcon 

2.00 2.00 2.00 2.40 2.40 2.40 2.40 2.40 2.00 2.00 2.00 2.00 

Jucar in 
Mancha 

0.60 0.60 0.60 0.72 0.72 0.72 0.72 0.72 0.60 0.60 0.60 0.60 

Jucar in 
Molinar 

1.70 1.70 1.70 2.04 2.04 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Cabriel in 
Contreras 

0.80 0.80 0.80 0.96 0.96 0.96 0.96 0.96 0.80 0.80 0.80 0.80 

Jucar in 
Naranjero 

1.60 1.60 1.60 1.92 1.92 1.60 1.60 1.60 1.60 1.60 1.60 1.60 

Jucar in 
Cullera 

1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

A2.1.6. Demands 

Three types of demands have been included in the model: urban, agricultural 

and industrial, being the latter devoted to energy production via hydropower 

and nuclear power. 

A2.1.6.1. Urban demands 

The urban demands considered are four, corresponding to the cities of 

Albacete, Valencia, Sagunto and the towns and villages of the Mancha 

Oriental zone. Since the Valencia and Sagunto supplies are shared between 

the Jucar and other river basins in a fixed percentage, the amount of water 

included corresponds exclusively to the Jucar share (next table). The annual 

amounts and their monthly distribution have been estimated using the 

information given in CHJ (2013). 
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Conjunctive use model urban demands main features 

Name Source of supply Demand  

Albacete Surface, but groundwater is possible 17.0 Mm3/year 

Mancha Oriental urban Groundwater 13.4 Mm3/year 

Valencia Surface1 106.8 Mm3/year 

Sagunto Surface1 7.7 Mm3/year 

1 The origin corresponds exclusively to the Jucar share of the demand 

 
Conjunctive use model monthly urban demands (Mm3) 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Albacete 1.45 1.39 1.45 1.45 1.29 1.45 1.39 1.45 1.39 1.45 1.45 1.41 

Mancha 
Oriental 
urban 

1.14 1.10 1.13 1.13 1.02 1.14 1.11 1.14 1.10 1.14 1.15 1.11 

Valencia 9.08 8.76 9.08 8.97 8.12 9.08 8.76 9.08 8.76 9.08 9.18 8.86 

Sagunto 0.64 0.62 0.62 0.62 0.57 0.65 0.64 0.64 0.64 0.70 0.72 0.64 

A2.1.6.2. Agricultural demands 

Thirteen agricultural demands have been considered, corresponding to the 

areas depicted in the system description. Approximately 70% of the total 

demand is located in the lower basin, being the rest placed in the middle 

basin (the Mancha Oriental demand). The lower basin demands have been 

separated between rice and citrus in order to adequately handle their 

different physical and economic features. Their annual and monthly 

requirements have been estimated using the information appearing in CHJ 

(2013) and the data facilitated by the CHJ Management Office. 

Conjunctive use model agricultural demands main features 

Name Source of supply 
Annual demand 

(Mm3) 

Mancha Oriental 
agriculture 

Groundwater, but 33 Mm3 
switched to surface if possible 

332.4 

Jucar-Turia 
Mixed (39.2 Mm3 surface and the 

rest groundwater) 
94.2 

Magro 
Primary surface, but 

groundwater is possible 
8.4 

Flowing1,2 Surface 19.8 
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Name Source of supply 
Annual demand 

(Mm3) 

Escalona1,3 Surface 42.1 

Acequia Real citrus1,3 Surface 119.0 

Acequia Real rice1,3 Surface 75.9 

Sueca citrus1,3 Surface 14.9 

Sueca rice1,3 Surface 166.4 

Cuatro Pueblos 
citrus1,3 

Surface 7.1 

Cuatro Pueblos 
rice1,3 

Surface 20.3 

Cullera citrus1,3 Surface 38.0 

Cullera rice1,3 Surface 85.9 

1 This demand is a member of the Jucar Users Union (USUJ) 

2 Aggregation of very small users located besides the Jucar river banks 

3 During droughts they can use emergency wells not considered in the model 

 
Conjunctive use model monthly agricultural demands (Mm3) 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Mancha 
Oriental 

agriculture 
14.6 0.0 0.0 0.0 0.0 20.9 24.6 34.2 46.5 76.5 79.1 35.9 

Jucar-Turia 5.7 1.3 2.5 1.2 1.9 5.8 5.0 8.8 15.7 20.6 16.3 9.6 

Magro 0.6 0.1 0.2 0.1 0.1 0.4 0.4 0.6 1.4 1.9 1.6 1.0 

Flowing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 3.9 4.0 4.0 3.9 

Escalona 3.1 0.8 1.3 0.6 1.1 3.1 2.4 3.4 6.6 8.4 6.9 4.6 

Acequia Real 
citrus 

8.8 2.3 3.7 1.8 3.0 8.6 6.9 9.5 18.8 23.8 19.2 12.7 

Acequia Real 
rice 

0.0 0.0 0.0 0.0 0.0 0.9 0.7 23.2 14.7 21.8 9.9 4.8 

Sueca citrus 1.1 0.3 0.5 0.2 0.4 1.1 0.9 1.2 2.4 3.0 2.4 1.6 

Sueca rice 11.2 16.4 15.5 9.5 1.9 3.9 4.6 21.4 22.0 28.1 26.6 5.4 
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Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Cuatro 
Pueblos citrus 

0.5 0.1 0.2 0.1 0.2 0.5 0.4 0.6 1.1 1.4 1.1 0.8 

Cuatro 
Pueblos rice 

0.3 1.5 0.9 0.7 0.4 0.0 0.3 4.5 3.4 3.6 4.1 0.6 

Cullera citrus 2.8 0.7 1.2 0.6 1.0 2.7 2.2 3.0 6.0 7.6 6.1 4.1 

Cullera rice 4.3 9.1 8.2 4.8 3.8 3.1 2.7 13.2 11.6 11.3 11.8 2.1 

The return flows of these demands have been estimated by CHJ (2013), in 

which the receiving surface water or groundwater body is specified. The 

return flows have been included in the model graph as shown in its network 

flow schematic. 

A2.1.6.3. Industrial demands 

Two types of industrial demands have been considered: cooling water for 

nuclear power generation and turbined water for hydropower production. 

The nuclear power plant of Cofrentes takes water from Cortes II. It has a total 

demand around 20 Mm3/year with a uniform monthly distribution. Part of 

the abstracted water returns to the Jucar river immediately upstream of the 

intake. This situation creates a partially-closed loop, in which only the 

amount of water lost by evaporation is replaced. The next table shows the 

monthly cooling demand obtained from CHJ (2013). 

Conjunctive use model monthly industrial demands (Mm3) 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Cofrentes 
nuclear 

1.6 1.7 1.7 1.6 1.5 1.6 1.6 1.7 1.7 1.9 2.0 1.6 

With respect to hydropower production, the 31 power plants existing 

have been filtered. Power plants with installed capacity lower than 3.5 MW 

have been discarded. Then, all the power plants upstream of Alarcon or 

Contreras, as well as off-stream, have been not considered. This sent out the 

most important hydropower plant, La Muela de Cortes. It has not been 

considered due to is off-stream location, as well as for being a pumped 

storage facility unable to be modeled at the monthly scale. The next table 

shows the main features of the 9 hydropower facilities included in the model. 

They have been estimated from CHJ (2013). 
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Conjunctive use model hydropower plants features 

Name Type 
Installed 
capacity 

(MW) 

Net head 
(m) 

Turbine 
capacity 
(m3/s) 

Efficiency 

Alarcon Impoundment 16.4 56.0 40.0 0.75 

El Picazo1 Impoundment 18.0 49.0 46.0 0.81 

El Bosque Run-of-river 8.0 21.5 40.0 0.95 

El Tranco del 
Lobo 

Run-of-river 3.8 12.5 42.0 0.75 

Cofrentes Impoundment 124.2 141.6 108.3 0.83 

Contreras II Impoundment 52.5 102.0 80.0 0.66 

Cortes II Impoundment 280.0 96.0 326.0 0.91 

Millares II Impoundment 67.1 137.3 55.0 0.91 

Antella-
Escalona 

Run-of-river 3.6 6.6 40.0 1.00 

1 Associated reservoir not modeled (negligible live storage), so it works as run-of-river in the model 

A2.1.7. Economic features 

A2.1.7.1. Demand curves 

The demand curves employed have been adapted from Pulido-Velazquez et 

al. (2006b). The adaptations made regard to the requirements of the ESPAT 

tool (in which the demand curves must be introduced using polynomial 

equations), several features not acknowledged by the referred study, benefit 

levels from recent research (Kahil et al., 2016), and bug fixing. 

According to the type of water used and the specific economic features, 

three demand types have been identified: urban demands, agricultural 

mixed demands and agricultural citrus demands. Inside each demand type, 

according to Pulido-Velazquez et al. (2006b), different groups of demands 

were established and the same demand curve was employed for each one: 

1. Urban demands 

a. All demands 

2. Agricultural mixed demands 

a. Mancha Oriental agriculture demand 

b. Jucar-Turia Canal and Magro demands 

3. Agricultural citrus demands 

a. Acequia Real, Sueca and Cullera demands 

b. Flowing, Escalona and Cuatro Pueblos demands 
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With regard to the rice demands, they have been considered as a 

constraint, since its supply takes into account environmental reasons 

concerning l’Albufera, fed by the rice return flows. It has been defined in 

order to guarantee that the optimization model allocates, at least, the same 

amounts as done in the current situation. The demand curves are depicted 

in the following figure. 

 

 

 

Demand curves for urban (a), mixed agric. (b) and citrus agric. (c) demands 
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In the study carried out by Pulido-Velazquez et al. (2006b), urban demand 

curves were estimated using the point expansion method (Harou et al., 2009; 

Jenkins et al., 2004). However, this method obtains a demand curve whose 

values are unbounded when moving to supply levels close to zero, being 

impossible to estimate the associated benefits by integrating the curve. In 

order to fix this, an upper bound of 3 €/m3 was set to the urban demands in 

order to match the benefit levels to the ones reported in recent research. 

Then, a polynomial equation in the form a1+a2x+a3x2+a4x3 was fitted to the 

resulting demand curve. The annual equation obtained was downscaled to 

the monthly scale assuming that that the demand curve has the same shape 

every month. After this, it has been checked that the benefits estimated 

using these curves for the historical period 1998-2012 match the levels 

indicated by recent research (Kahil et al., 2016). 

The agricultural demand curves estimated by Pulido-Velazquez et al. 

(2006b), employed Positive Mathematical Programming (PMP, Howitt 1995), 

using as base data obtained from previous studies (MMA, 2004; Sumpsi et 

al., 1998). A polynomial equation was fitted to the demand curves appearing 

in Pulido-Velazquez et al. (2006b), applying a temporal disaggregation 

procedure to downscale them to the monthly scale. After this step, it has 

been checked that these curves provide a benefit level similar to the one 

reported by recent research (Kahil et al., 2016). 

The curve corresponding to the Mancha Oriental agricultural area 

appearing in Pulido-Velazquez et al. (2006b) has been modified to take into 

account the impact of the EU Common Agricultural Policy subsidies. It has 

been considered that these subsidies should be enough, at least, to balance 

the marginal benefits with the marginal pumping costs at a full supply level. 

Since the average pumping costs for the 1998-2012 period have been 

estimated as 0.06 €/m3 as done in Pulido-Velazquez et al. (2006b), the 

original demand curve has been lifted 0.06 €/m3 prior to the treatment 

process previously described. 

A2.1.7.2. Pumping costs 

Groundwater heads are required to estimate pumping costs. However, the 

Embedded Multireservoir Model does not obtain them, but a lumped 

estimation of the groundwater resource in the aquifer associated with the 

modeled stream-aquifer interaction. In order to work out this issue, Pulido-
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Velazquez et al. (2006b) fitted a regression equation between this estimation 

of the groundwater storage of the Mancha Oriental EMM (independent 

variable) and the historical groundwater level records measured at Albacete 

(dependent variable). A quasi-linear relationship between them was found, 

so they determined that groundwater levels, and thus pumping costs, can be 

estimated as a function of the groundwater storages obtained by the 

corresponding EMM. 

A similar linear regression process has been used in this PhD Thesis. 

However, the relationship has been directly established between the 

groundwater storage of the EMM of the Mancha Oriental and the resulting 

pumping cost. In this way, the mathematical process is simpler and does not 

require the use of groundwater head records, whose relationship with the 

groundwater storage of the EMM has already been proven. 

To fit the linear regression equation, two pairs storage-cost are required. 

They have been obtained from Pulido-Velazquez et al. (2006b): 

• The costs associated when the aquifer was in its natural state were 

estimated as 0.039 €/m3. 

• The costs at the beginning of the analysis period, 1998, were equal to 

0.059 €/m3. 

Using both points, the resulting linear equation is defined as: 

𝑃𝐶𝑡 = 0.039 − 0.00000577 ·∑𝐺𝑡
𝑎𝑞𝑟

𝑎𝑞𝑟

  

Where PCt pumping costs at time stage and 𝐺𝑡
𝑎𝑞𝑟

 groundwater storage 

(EMM output). This representation of pumping costs is coarse, but it is an 

adequate estimate considering the size of the system modeled and the fact 

that the focus is on surface water. From a systemwide perspective, the 

approximations driven by this method are adequate, given that the benefit 

levels and management decisions have been trained and validated against 

historical records and past research. Consequently, the model’s results are 

considered accurate enough at the systemwide scale. 

With regard to the rest of the EMMs, the only one subject to groundwater 

mining is the PVS North, from which the Jucar-Turia and Magro agricultural 

demands pump. Nevertheless, the marginal economic value of these 
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demands is way above the pumping costs currently faced by the agricultural 

users (less than 0.10 €/m3). Taking this into account, and in the absence of 

detailed data to estimate the level-cost relationship, the same equation 

obtained for the Mancha Oriental has been employed in the PVS North EMM. 

A2.1.7.3. Energy benefits 

The economic evaluation of energy production has been made balancing 

energy prices with energy generation costs. The energy prices between 1998 

and 2012 were obtained from CHJ (2013), and monthly average values were 

computed (next table). The average value is equal to 0.058 M€/GWh, similar 

to the marginal production cost of fossil-fueled plants according to Pereira-

Cardenal et al. (2014), so the benefits obtained with this procedure would be 

similar if using the alternative cost method (Young, 2005). 

Energy prices assumed for the 1998-2012 period (M€/GWh) 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

0.061 0.058 0.061 0.060 0.059 0.052 0.052 0.054 0.058 0.060 0.058 0.062 

The energy production costs for nuclear power are equal to 0.018 

M€/GWh, while hydropower ones are negligible (Pereira-Cardenal et al. 

2014). The benefits per unit of energy produced are the energy price less the 

production costs. 

Nuclear power production is a consumptive use, thus requiring a demand 

curve. Given that the Cofrentes nuclear power plant is able to generate 700 

GWh/month (Escriva-Bou, 2012), its total benefits can be estimated as the 

product between unitary benefits and energy production. A perfectly elastic 

demand curve has been built for each month, in which the marginal value of 

water is equal to the total benefits divided by the total water supply. The 

resulting marginal values are the highest among all the uses found in the 

system. This is in accordance with the current management policy, in which 

this demand is considered as a strategic use whose supply must be 

guaranteed. 

Marginal water values of the Cofrentes Nuclear demand (€/m3) 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

18.80 16.36 17.58 18.45 19.05 15.02 14.67 14.69 16.47 15.43 13.91 19.27 
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A2.1.8. Priorities 

A priority system must be established in order to run the simulation 

alternative with STIG_ZB. The goal of the priority system of the conjunctive 

use model is to reproduce the current operating rules. The priority given to 

the dead storage in any reservoir is 3000, while the one corresponding to the 

minimum flows is equal to 2500. With regard to consumptive demands, they 

have given the priorities in the next table. 

Conjunctive use model monthly priorities for consumptive demands 

Location Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Albacete 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Mancha 
Oriental 
Urban 

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Valencia 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Sagunto 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Mancha 
Oriental 

agriculture 

800 0 0 0 0 800 800 800 800 800 800 800 

Jucar-Turia 800 0 0 0 0 800 800 800 800 800 800 800 

Magro 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 

Flowing 0 0 0 0 0 0 0 1400 1400 1400 1400 1400 

Escalona 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Acequia 
Real citrus 

1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Acequia 
Real rice 

1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 

Sueca 
citrus 

1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Sueca rice 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 

Cuatro 
Pueblos 

citrus 

1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Cuatro 
Pueblos 

rice 

1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 

Cullera 
citrus 

1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Cullera rice 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 

Cofrentes 
Nuclear 

3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 

The Cofrentes Nuclear power plant demand has the highest priority given 

its strategic character. All urban demands have higher priorities than 
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agricultural uses. The Magro has given the highest priority among agricultural 

demands in order to ensure that Forata is devoted primary to guaranteeing 

its supply. The same priority has been given to the Flowing demand, since it 

is a small one that directly takes water from the river according to ancient 

rights respected in its management. The rice demands are given higher 

priorities than citrus to ensure they are supplied prior to them. The demands 

with the lowest priority are the mixed ones (Mancha Oriental agriculture and 

Jucar-Turia) according to the Alarcon Agreement. 

With regard to hydropower production, priorities equal to 1 were given 

for all the power plants. That ensures the fulfillment of the legal framework, 

in which no single release is made for hydropower, although all the flows 

released for consumptive uses are turbinated if it is possible. The priorities 

and zone division of each reservoir have been treated as calibration 

parameters. 

A2.1.9. Stochastic models 

Two stochastic models have been defined in the Jucar river system. An ARMA 

(1,1) model has been chosen to generate openings and time series, while an 

MPAR (1) model has been employed to estimate the cuts’ parameters 

associated with the inflows. In order to increase their parsimony, the initially 

planned 1998-2012 period has been extended to the 1980 year, providing a 

period between 1980 and 2012. 

Since the MPAR (1) model has not been used to generate neither 

openings nor time series, but as a requirement of the SDDP algorithm, it is 

only needed to estimate the model’s parameters. These are shown in the 

next tables. 

δ1,oct Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.56 0.00 -0.47 -0.21 0.22 0.03 -0.07 

MAM 0.22 0.36 -0.35 -0.29 -0.05 -0.21 0.06 

Contreras 0.45 0.56 -0.22 -0.30 0.28 0.09 -0.08 

MCT 0.13 0.22 -0.38 -0.21 0.16 -0.15 0.04 

Sueca -0.04 -0.05 0.02 0.00 0.20 -0.26 -0.15 

Forata 0.20 0.11 -0.47 -0.39 0.33 -0.18 0.03 

Bellus -0.46 -0.18 0.23 0.25 0.28 -0.03 -0.07 

 

δ1,nov Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.59 0.26 -0.07 -0.20 0.23 -0.07 -0.08 

MAM -0.35 0.97 0.25 -0.27 -0.18 -0.39 0.29 
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δ1,nov Alarcon MAM Contreras MCT Sueca Forata Bellus 

Contreras -0.03 0.37 0.70 0.06 -0.16 -0.33 0.19 

MCT 0.17 -0.09 -0.26 -0.16 -0.14 -0.11 0.68 

Sueca 0.07 0.50 0.13 -0.66 -0.01 -0.12 0.45 

Forata 0.01 0.65 0.18 -0.72 -0.57 0.27 0.34 

Bellus -0.08 -0.07 0.16 0.25 -0.55 0.21 0.65 

 

δ1,dec Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.32 -0.08 0.10 0.08 0.16 0.18 -0.38 

MAM -0.29 0.55 0.42 0.07 -0.07 -0.21 -0.07 

Contreras -0.10 -0.03 0.40 0.23 -0.09 0.66 -0.53 

MCT -0.42 -0.27 0.11 0.68 -0.53 0.63 -0.28 

Sueca -0.36 -0.17 0.26 0.83 -0.35 0.27 -0.54 

Forata -0.22 0.06 -0.13 0.37 -0.80 1.27 -0.31 

Bellus -0.22 -0.16 0.20 0.48 -0.08 -0.13 0.03 

 

δ1,jan Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 1.14 -0.08 -0.60 0.05 0.04 0.14 -0.16 

MAM 0.10 0.77 0.01 0.10 -0.28 0.12 -0.01 

Contreras 0.90 -0.07 -0.19 0.08 -0.02 0.10 -0.15 

MCT 0.20 -0.12 0.10 0.73 -0.01 -0.03 -0.02 

Sueca -0.12 -0.11 0.31 0.14 0.43 0.27 -0.01 

Forata 0.45 -0.17 0.05 0.19 -0.39 0.38 -0.02 

Bellus 0.04 0.07 0.06 0.13 0.10 0.18 0.28 

 

δ1,feb Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon -0.45 -0.18 1.39 -0.24 -0.27 -0.46 0.41 

MAM 0.18 0.81 -0.28 -0.22 0.73 -0.06 -0.18 

Contreras -1.30 -0.11 2.31 -0.09 -0.28 -0.41 0.34 

MCT 0.28 -0.09 -0.37 0.69 -0.04 -0.24 0.12 

Sueca 0.29 -0.10 -0.39 -0.01 0.81 -0.01 -0.01 

Forata 0.12 -0.11 -0.22 -0.19 -0.18 0.50 0.86 

Bellus 0.13 -0.09 -0.13 0.11 0.33 -0.19 -0.02 

 

δ1,mar Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.58 0.17 -0.03 -0.10 -0.39 0.36 0.30 

MAM -0.19 0.77 0.02 -0.32 -0.35 0.20 0.31 

Contreras 0.09 0.18 0.65 -0.11 -0.24 0.23 0.23 

MCT -0.23 -0.02 0.24 0.47 0.06 0.05 0.04 

Sueca 0.26 0.12 -0.55 -0.13 0.76 0.47 -0.07 

Forata -0.18 0.09 0.27 0.11 0.26 0.60 -0.24 

Bellus -0.07 0.05 -0.01 0.10 0.13 -0.01 0.68 

 

δ1,apr Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.42 -0.06 0.04 0.03 0.12 0.24 -0.25 

MAM -0.61 0.63 0.51 -0.21 0.13 0.34 -0.25 
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δ1,apr Alarcon MAM Contreras MCT Sueca Forata Bellus 

Contreras -0.08 0.06 0.60 0.04 0.15 0.46 -0.21 

MCT 0.49 -0.25 -0.83 0.33 -0.06 0.53 0.24 

Sueca -0.23 0.12 0.17 0.05 0.53 0.45 -0.08 

Forata 0.02 0.17 -0.07 0.18 0.15 0.36 -0.32 

Bellus -0.31 -0.04 0.33 0.23 0.14 0.02 0.42 

 

δ1,may Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.68 -0.04 -0.03 -0.05 -0.12 0.06 -0.06 

MAM -0.05 0.27 0.45 -0.24 0.10 -0.06 0.03 

Contreras 0.07 -0.03 0.87 -0.09 -0.25 -0.08 0.12 

MCT 0.58 0.37 -0.86 0.50 0.14 -0.13 0.24 

Sueca 0.06 0.28 0.16 0.37 0.22 -0.37 0.22 

Forata 0.18 0.01 0.43 0.19 0.08 0.04 0.05 

Bellus 0.02 0.12 0.02 0.22 0.58 -0.56 0.30 

 

δ1,jun Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.35 -0.17 0.60 -0.12 -0.29 0.11 0.19 

MAM 0.16 0.52 -0.01 -0.22 -0.09 -0.15 0.56 

Contreras -0.33 -0.08 1.22 -0.10 -0.06 -0.05 0.05 

MCT -0.02 -0.13 -0.16 0.51 -0.37 -0.11 0.51 

Sueca 0.10 -0.41 0.31 0.01 1.04 -0.41 0.00 

Forata -0.24 0.07 0.14 -0.41 -0.54 0.76 0.33 

Bellus -0.03 -0.13 0.20 -0.05 -0.23 0.02 0.73 

 

δ1,jul Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.78 -0.11 -0.18 -0.23 0.21 0.21 0.17 

MAM -0.51 0.55 -0.09 -0.18 0.16 0.67 -0.47 

Contreras -0.31 0.05 1.13 -0.08 0.00 0.06 -0.04 

MCT 0.00 0.06 -0.13 0.13 -0.36 -0.27 0.59 

Sueca -0.01 -0.08 -0.11 -0.18 1.20 0.39 -0.71 

Forata -0.36 0.12 0.24 0.14 -0.35 0.61 0.26 

Bellus -0.42 0.04 0.26 0.29 -0.19 0.13 0.66 

 

δ1,aug Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.57 -0.35 0.04 -0.20 0.08 0.06 -0.19 

MAM -0.48 0.41 0.30 0.06 0.13 0.03 0.07 

Contreras 0.01 -0.06 0.98 -0.03 0.02 -0.10 -0.01 

MCT -0.41 -0.16 -0.25 0.43 0.18 0.19 0.24 

Sueca -0.14 -0.03 0.02 0.13 1.03 0.18 -0.26 

Forata -0.15 -0.10 -0.24 -0.16 0.08 1.14 -0.25 

Bellus -0.03 0.00 -0.12 -0.01 0.14 0.35 0.64 

 

δ1,sep Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.81 0.00 0.14 -0.03 0.01 -0.19 0.25 

MAM -0.27 0.47 0.45 0.43 -0.11 0.10 -0.18 
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δ1,sep Alarcon MAM Contreras MCT Sueca Forata Bellus 

Contreras 0.04 0.06 0.97 0.09 -0.09 -0.09 0.05 

MCT 0.47 0.14 -0.43 0.25 0.25 -0.05 -0.02 

Sueca -0.24 -0.38 0.52 0.57 0.41 0.13 0.06 

Forata -0.06 -0.37 -0.08 -0.17 0.17 0.03 0.53 

Bellus -0.30 -0.37 0.35 0.46 0.13 0.03 -0.13 

The ARMA(1,1) model has been picked up in order to cope with the long-

run significant autocorrelation coefficients found in the Jucar river system. 

The number of data records per parameter is equal to 8.93, low but above 

the threshold of 6 pointed out by Salas et al. (1980). A total amount of 20 

openings and 20 time series has been generated using MS Excel. 

δ1 Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.76 -0.08 -0.02 -0.23 0.03 -0.08 0.12 

MAM -0.19 0.80 0.27 0.24 -0.04 -0.06 -0.10 

Contreras -0.03 -0.05 0.79 -0.32 0.05 0.03 0.11 

MCT 0.10 0.06 -0.14 0.53 0.21 -0.23 0.20 

Sueca -0.09 -0.12 0.04 -0.18 0.66 0.01 0.20 

Forata -0.07 -0.14 0.03 -0.21 0.16 0.71 0.03 

Bellus -0.13 -0.12 0.04 -0.04 0.15 0.02 0.70 

 

ω0 Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon 0.65 0.00 0.00 0.00 0.00 0.00 0.00 

MAM 0.02 0.76 0.00 0.00 0.00 0.00 0.00 

Contreras 0.33 0.11 0.36 0.00 0.00 0.00 0.00 

MCT 0.09 0.01 0.16 0.81 0.00 0.00 0.00 

Sueca 0.07 0.25 0.15 0.18 0.68 0.00 0.00 

Forata 0.18 0.18 0.18 0.23 0.16 0.68 0.00 

Bellus 0.07 0.13 0.11 0.24 0.21 0.20 0.60 

 

ω1 Alarcon MAM Contreras MCT Sueca Forata Bellus 

Alarcon -0.01 -0.08 -0.13 -0.12 0.01 -0.09 0.14 

MAM 0.02 0.33 0.11 0.21 -0.08 -0.11 -0.03 

Contreras -0.05 0.00 -0.01 -0.21 0.09 0.03 0.12 

MCT 0.02 0.22 0.02 0.20 0.17 -0.21 0.11 

Sueca -0.11 0.03 0.08 -0.14 0.17 0.11 0.15 

Forata -0.06 0.01 0.04 -0.09 0.25 0.20 -0.01 

Bellus -0.05 -0.03 0.01 -0.06 0.22 0.09 0.16 

A2.2. CALIBRATION 

The conjunctive use model calibration has two main objectives: 

• Determine if the system representation assumed is adequately 

reproducing reality. 
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• Establish if the management rules assumed by the simulation model 

are a good estimation of the current operating rules. 

Due to the short length of the available data (1998-2012 in the best case), 

the whole records available have been used in the calibration. These 

consisted of storage and releases in the main reservoirs of the system 

(Alarcon, Contreras and Tous), streamflows in several points of the basin, 

deliveries to the system’s demands and long-term average water use 

intensity and water productivity in the hydropower plants. These average 

values and records have been obtained from the CHJ Operation Office, the 

Jucar River Basin Management Plan (CHJ, 2013), and CEDEX (2013). 

A2.2.1. Consumptive use reservoirs 

Calibration of the main reservoirs’ storage is rather good, with an average R-

squared value of 0.80 (0.91, 0.88 and 0.63). The model reproduction of the 

monthly releases from Contreras (0.20) is worse than Alarcon (0.49) and Tous 

(0.82), although Contreras storage is adequately fitted, which implies that 

the total outflows from the reservoir (turbined, released through the dam 

and lost by seepage) are fairly reproduced as a whole. 

With respect to the rest of the reservoirs, the ones devoted exclusively to 

hydropower (Molinar, Cortes II and Naranjero) have not been trained due to 

the impossibility to capture the steep drawdown-refill cycles, caused by its 

hydropower operation, in a basinwide monthly-scale model. Alternatively, 

the productivity and use intensity of their associated hydropower plants has 

been trained with adequate results. The two remaining reservoirs (Forata 

and Bellus), have R-squared coefficients of 0.41 and 0.53 for the storage and 

0.07 and 0.35 for the releases. Given its reduced capacity and local relevance, 

no more efforts were made to calibrate them. 
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A2.2.2. Hydropower plants 

Power plant Production  
(GWh/year) 

Water use intensity  
(m3/Kwh) 

Water use productivity  
(€/m3) 

Observed1 Simulated Observed2 Simulated Observed2 Simulated 

Alarcon - 14.34 9.00 13.01 0.008 0.004 

El Picazo - 24.16 - 9.26 - 0.006 

El Bosque - 8.91 20.00 17.99 0.004 0.003 

El Tranco del 
Lobo 

- 4.09 33.00 39.18 0.003 0.002 

Cofrentes 51.00 33.49 4.00 3.13 0.015 0.019 

Contreras II - 13.47 6.00 7.00 0.009 0.009 

Cortes II 120.00 119.26 5.00 4.27 0.013 0.014 

Millares II 141.00 148.64 4.00 3.06 0.015 0.020 

Antella - 
Escalona 

- 5.85 - 55.66 - 0.001 

 1: data obtained from Iberdrola 

 2: data obtained from the CHJ 

 



Optimal operating rules definition using stochastic programming and fuzzy logic 

230  

A2.2.3. Streamflows 

Several gauging stations have been used to calibrate the model. In the middle 

Jucar river basin, the calibration results are so-so, with an average R-squared 

of 0.40 (0.47 downstream of Alarcon, 0.34 in Los Frailes and 0.40 in Alcala del 

Jucar). The calibration of this zone is hindered by two limitations of the 

model: 

• The model assumes that the inflows and the stream-aquifer 

interaction exchanges are added to the Jucar river at specific points, 

while the real stream-aquifer interaction is diffuse. 

• The model considers that the features of the Mancha Oriental demand 

remain steady during the whole period. In fact, the high crop mosaic 

variability induces large water demand variability. Although a more 

detailed representation of this demand could have been introduced, it 

would increase the complexity of the model and, more important, it 

would make it difficult to extract operating rules. The demand 

characterization introduced, based on CHJ (2013), reflects the long-

term patterns, and thus has been considered representative. 

The streamflow records in the lower Jucar river basin show an adequate 

calibration, with an average R-squared value of 0.65 (0.80 in Tous, 0.47 in 

Antella and 0.68 in Huerto de Mulet). The records in Antella measure the 

discharge over the Antella weir, and may be affected by the canal diversions 

and returns located in the area. Huerto de Mulet records are affected by the 

downstream Sueca weir, which can partially inundate the location of the 

gauging station. 

 



A2. Jucar conjunctive use model  

231 

 

A2.2.4. Demand deliveries 

To calibrate the demand deliveries, the model results on citrus and rice 

deliveries for the same demand have been added, since the available records 

do not distinguish between them. The delivery calibration offered by the 

model is good, with an average R-squared value of 0.69 ranging between 0.50 

and 0.79. The lowest value corresponds to the surface deliveries to the 

Mancha Oriental demand, for which only 3 years of data were available. This 

adequate reproduction of the demand deliveries is crucial, since it will 

directly affect the economic benefits obtained. 
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A2.2.5. Summary 

The model is fairly reproducing the storages in the three main reservoirs 

(Alarcon, Contreras and Tous), the long-term energy production and benefits 

of the hydropower plants, as well as the consumptive demands. The model’s 

best calibration of system flows has been found in the lower basin 



A2. Jucar conjunctive use model  

233 

(streamflows and deliveries), in which the majority of the water-consuming 

economic activities are located. The model successfully represents the 

processes found in the most important and complex part of the system, 

enhancing the validity of its assessments. 

The so-so representation that the model provides in the middle Jucar 

seems to be caused by limitations of the modeling procedures assumed 

rather than bad calibration. However, the long-term trends are adequately 

reproduced. Increasing the quality of the calibration in this zone will imply 

the adoption of more detailed techniques, which would have a negative 

impact on the systemwide vision of the model. 

The points in which the model calibration could be improve are the 

representation of the Contreras reservoir outflows (although the overall 

resource release is adequately represented), the calibration of the storages 

associated with the hydropower reservoirs, as well as the calibration of 

Forata and Bellus. Enhancing the model performance in all these points, 

apart from Forata and Bellus, would require more data and a detailed 

representation of these flows. Furthermore, the impact of Forata and Bellus 

in the overall system performance is limited and would not justify the time 

spent in improving their calibration. 
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A2.3. RESULTS 

A2.3.1. Urban demands 

 Category Consumptive uses 

 Type Urban 

 Variable (1998-2011 period) Albacete Mancha Valencia Sagunto 

C
u

rr
en

t 

o
p

er
at

io
n

 

Surface deliveries (Mm3/year) 14.33 0.00 106.81 7.70 

Groundwater deliveries (Mm3/year) 2.69 13.41 0.00 0.00 

Economic benefits (M€/year) 34.18 26.08 213.32 15.46 

O
p

ti
m

al
 

d
ec

is
io

n
s Surface deliveries (Mm3/year) 13.64 0.00 106.81 7.70 

Groundwater deliveries (Mm3/year) 3.38 13.41 0.00 0.00 

Economic benefits (M€/year) 34.26 26.10 213.32 15.46 

D
if

fe
re

n
ce

 

Surface deliveries (Mm3/year) -0.70 0.00 0.00 0.00 

Groundwater deliveries (Mm3/year) 0.70 0.00 0.00 0.00 

Economic benefits (M€/year) 0.08 0.02 0.00 0.00 
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A2.3.2. Agricultural demands 

 Category Consumptive uses 

 Type Agricultural1 

 Variable (1998-2011 period) Mancha 
Jucar-
Turia 

Magro Flowing Escalona Ac. Real Sueca 
Cuatro 
Pueblos 

Cullera 

C
u

rr
en

t 

o
p

er
at

io
n

 

Surface deliveries (Mm3/year) 16.96 25.19 4.30 19.13 40.71 181.31 173.61 27.34 117.62 

Groundwater deliveries (Mm3/year) 315.45 69.00 4.10 0.00 0.00 0.00 0.00 0.00 0.00 

Economic benefits (M€/year) 78.89 47.34 4.31 5.82 12.39 33.97 4.18 2.12 10.71 

O
p

ti
m

al
 

d
ec

is
io

n
s Surface deliveries (Mm3/year) 29.13 36.27 5.86 19.13 41.24 189.60 176.95 27.26 121.69 

Groundwater deliveries (Mm3/year) 238.30 57.47 2.52 0.00 0.00 0.00 0.00 0.00 0.00 

Economic benefits (M€/year) 78.34 47.83 4.38 5.85 12.51 35.42 4.43 2.12 11.35 

D
if

fe
re

n
ce

 

Surface deliveries (Mm3/year) 12.17 11.08 1.56 0.00 0.52 8.28 3.34 -0.09 4.07 

Groundwater deliveries (Mm3/year) -77.14 -11.53 -1.58 0.00 0.00 0.00 0.00 0.00 0.00 

Economic benefits (M€/year) -0.55 0.49 0.07 0.03 0.12 1.45 0.25 -0.01 0.64 

 1: not including the economic benefits of rice demands 
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A2.3.3. Hydropower plants 

 Category Energy production 

 Type Hydropower 

 Variable Alarcon El Picazo El Bosque 
El Tranco 
del Lobo 

Cofrentes Contreras II Cortes II Millares II 
Antella - 
Escalona 

C
u

rr
en

t 
o

p
er

at
io

n
 

Turbined flow (Mm3/year) 186.50 223.60 160.29 160.29 104.68 94.31 509.46 455.31 325.55 

Energy produced (GWh/year) 14.34 24.16 8.91 4.09 33.49 13.47 119.26 148.64 5.85 

Economic benefits (M€/year) 0.83 1.45 0.53 0.24 2.01 0.81 7.14 8.91 0.35 

Water use intensity (m3/Kwh) 13.01 9.26 17.99 39.18 3.13 7.00 4.27 3.06 55.66 

Water use productivity (€/m3) 0.004 0.006 0.003 0.002 0.019 0.009 0.014 0.020 0.001 

O
p

ti
m

al
 d

ec
is

io
n

s Turbined flow (Mm3/year) 196.11 219.78 189.87 189.87 134.31 111.96 550.17 495.27 366.37 

Energy produced (GWh/year) 14.90 23.75 10.56 4.85 42.52 16.06 127.20 167.62 6.58 

Economic benefits (M€/year) 0.88 1.43 0.64 0.29 2.58 0.97 7.68 10.13 0.39 

Water use intensity (m3/Kwh) 13.17 9.26 17.99 39.18 3.16 6.97 4.33 2.95 55.66 

Water use productivity (€/m3) 0.004 0.007 0.003 0.002 0.019 0.009 0.014 0.020 0.001 

D
if

fe
re

n
ce

 

Turbined flow (Mm3/year) 9.61 -3.82 29.58 29.58 29.63 17.65 40.70 39.96 40.82 

Energy produced (GWh/year) 0.56 -0.41 1.64 0.76 9.03 2.59 7.94 18.99 0.73 

Economic benefits (M€/year) 0.05 -0.01 0.10 0.05 0.58 0.16 0.54 1.22 0.04 

Water use intensity (m3/Kwh) 0.16 0.00 0.00 0.00 0.03 -0.03 0.05 -0.11 0.00 

Water use productivity (€/m3) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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A3. JUCAR SEASONAL OPERATION 
MODEL  

A3.1. DESCRIPTION 

A3.1.1. Inflows 

The inflow data used by the seasonal operation model was calculated from 

the information provided by the Operation Office and from CHJ (2013). This 

information consisted of inflows, outflows and storages for each reservoir, 

as well as the discharge from the sub-basins located downstream of the Tous 

reservoir. Storages and outflows were obtained by direct measurement at 

the dams, while inflows to the reservoirs and the discharge downstream Tous 

were calculated by performing water balances. The inflows used in the model 

were estimated as: 

• Alarcon sub-basin: inflows to Alarcon provided by the Operation Office 

plus evaporation losses. 

• Contreras sub-basin: inflows to Contreras provided by the Operation 

Office plus evaporation and seepage losses. 

• Middle sub-basin: inflows to Tous provided by the Operation Office 

plus evaporation and seepage losses minus Alarcon and Contreras 

releases and Hoces del Cabriel aquifer discharge. 

• Lower sub-basin: inflow time series provided by the Operation Office. 

 

Seasonal operation model inflows 
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Although the inflow records available span from October 1998 to 

September 2013, the final analysis period selected spans from October 2003 

to September 2013. This guarantees a steady framework for the system 

operation, since the Alarcon Agreement was signed in 2001. 

A3.1.2. Reservoirs 

The decision-making processes in the Jucar river system take explicitly into 

account Alarcon, Contreras and Tous. The remaining facilities are devoted 

exclusively to hydropower (Molinar, Cortes II and Naranjero) or are not large 

enough to play a basinwide role in seasonal management (Forata and Bellus). 

Consequently, only Alarcon, Contreras and Tous were considered, with the 

same features as the conjunctive use model. 

A3.1.3. Aquifers and stream-aquifer interaction 

In spite of the stream-aquifer interactions noticed, groundwater bodies are 

not taken into account in the seasonal operation of the Jucar river system. 

On the contrary, groundwater management is addressed by the long-term 

planning. Therefore, no stream-aquifer interactions were necessary in the 

seasonal operation model. The stream-aquifer interaction shared between 

the Jucar river and the Mancha Oriental aquifer was not explicitly modeled, 

but added to the middle sub-basin inflows. The only stream-aquifer 

interaction required is the one between the Cabriel river and the Hoces del 

Cabriel aquifer. Since the latter is recharged by the seepage losses from 

Contreras, a change in the reservoir operation affects the stream-aquifer 

interaction. The stream-aquifer interaction has been modeled using an EMM 

whose parameters were defined as done in CHJ (2013). 

A3.1.4. Canals 

The same canals included in the conjunctive use model were considered in 

the seasonal operation one. The differences between the type of elements 

used to model them (stream and intake) regards to modeling choices that do 

not affect the way in which water is distributed. 

A3.1.5. Environmental flows 

Besides the minimum flows established downstream Alarcon and Contreras, 

the model takes into account the minimum flow rates through the Antella 

weir (the Acequia Real intake location), the Sueca weir (the Sueca irrigation 
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demand intake location), the Cullera weir (the Cullera irrigation demand 

intake location) and the Marquesa weir (outflows to the Jucar mouth in the 

Mediterranean Sea). The rest of the minimum environmental flows have not 

been included due to modeling decisions. Anyway, the fulfillment of all the 

minimum flows in river streams that have an equivalent in the seasonal 

operation model has been checked. 

The Jucar minimum flow downstream Alarcon do not correspond to the 

minimum flow required to be released through the dam (which can be 

diverted to the Tajo-Segura canal and to the river); but to the minimum flow 

downstream the Molinar reservoir, in order to reproduce the flows at the 

end of the modeled stream. 

Seasonal operation model monthly environmental flows (m3/s) 

Location Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Jucar in 
Alarcon 

2.00 2.00 2.00 2.40 2.40 2.40 2.40 2.40 2.00 2.00 2.00 2.00 

Cabriel in 
Contreras 

0.80 0.80 0.80 0.96 0.96 0.96 0.96 0.96 0.80 0.80 0.80 0.80 

Jucar in 
Antella 

1.80 1.80 1.80 2.16 2.16 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Sueca weir 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Marquesa 
weir 

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

A3.1.6. Demands 

Two different types of demands have been considered: urban and 

agricultural. No industrial demands were taken into account due to: 

• The Cofrentes nuclear power plant demand must be always satisfied 

due to strategic reasons, so no decision is made with regard to it. Its 

effect has been already taken into account in the middle sub-basin 

inflows, which lumps all the water flows of the middle Jucar. 

• Neither the Reservoir Releases Commission nor the Operation Office 

decide on hydropower generation. Due to that, no hydropower plant 

has been taken into account. 

A3.1.6.1. Urban demands 

The urban demands considered were the Albacete, Valencia and Sagunto 

municipalities. The rest of the system demands are supplied using 

groundwater, so they have not been taken into account. The monthly values 
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have been obtained from the data provided by the CHJ Operation Office 

(2003-2013 period) for the Jucar-Turia canal (which supplies the cities of 

Valencia and Sagunto, as well as the Jucar-Turia agricultural demand) and for 

the Tajo-Segura canal (which supplies the Albacete city, as well as the part of 

the Mancha Oriental demand whose source was switched from groundwater 

to surface water). This information has been compared and contrasted with 

the one from CHJ (2013) 

Seasonal operation model monthly urban demands (Mm3) 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Albacete 1.44 1.39 1.44 1.44 1.30 1.44 1.39 1.44 1.39 1.44 1.45 1.39 

Valencia 7.26 7.01 7.18 7.18 6.50 7.26 7.01 7.26 7.01 7.26 7.34 7.01 

Sagunto 0.51 0.50 0.50 0.50 0.46 0.52 0.51 0.51 0.51 0.56 0.58 0.51 

A3.1.6.2. Agricultural demands 

No separation was assumed between citrus and rice, since no economic 

calculations are going to be made. Since only surface agricultural demands 

have been considered, the vast majority of the agricultural water use is 

located downstream Tous. Monthly agricultural amounts have been 

obtained from the data provided by the CHJ Operation Office, from 2003 to 

2013, for the Tajo-Segura canal, the Jucar-Turia canal and the main irrigation 

canals or acequias (Acequia Real, Escalona, Cuatro Pueblos, Sueca and 

Cullera). Each canal has been considered as a single demand. In addition, the 

CHJ Operation Office acknowledges the existence of small agricultural 

demands located besides the Jucar river bed, which abstract water directly 

from it. These demands use, according to the Operation Office, around 1.5 

m3/s during the irrigation season. 

Seasonal operation model monthly agricultural demands (Mm3) 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Jucar-Turia 2.46 1.31 0.51 0.68 1.00 0.99 1.80 3.66 6.52 8.56 6.76 4.00 

Acequia Real 8.70 6.99 1.45 3.89 6.48 6.12 10.15 37.98 39.79 42.44 41.12 32.15 

Escalona 1.91 1.00 0.24 0.57 0.66 0.79 1.32 2.94 6.20 7.87 7.60 5.20 

Sueca 12.12 16.36 15.71 9.51 2.25 4.84 5.37 26.24 29.31 38.01 36.20 6.89 



A3. Jucar seasonal operation model  

245 

Demand Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Cuatro Pueblos 0.43 1.39 0.58 0.50 0.14 0.32 0.66 4.49 4.15 5.21 5.34 2.71 

Cullera 5.94 8.36 7.75 4.49 2.64 3.77 4.46 16.92 17.31 19.66 19.24 9.77 

Mancha 
Oriental 

agricultural 
surface 

1.45 0.00 0.00 0.00 0.00 2.08 2.44 3.40 4.62 7.59 7.85 3.56 

Flowing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.02 3.89 4.02 4.02 3.89 

No agricultural returns to the Jucar river have been considered. They have 

been dismissed because the lower sub-basin inflows, calculated using a 

water balance, already take them into account. Furthermore, representing 

them would depart from the current practices of the CHJ Operation Office, 

which does not taken them into account in decision-making. 

A3.1.7. Priorities 

In the seasonal operation model, demand priorities have been used in both 

the optimization and the simulation runs. In the first, they guide the optimal 

decisions made by the model in order to maximize the amount of water 

allocated according to the CHJ Operation Office’s goals. In the latter, 

priorities mimic the current observed behavior and water right prevalence. 

Seasonal operation model monthly demand priorities 

Location Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Valencia 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Sagunto 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Jucar-Turia 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 

Acequia Real 650 650 650 650 650 650 650 1500 1500 1500 1500 1500 

Escalona 650 650 650 650 650 650 650 1500 1500 1500 1500 1500 

Sueca 650 650 650 650 650 650 650 1500 1500 1500 1500 1500 

Cuatro 
Pueblos 

650 650 650 650 650 650 650 1500 1500 1500 1500 1500 

Cullera 650 650 650 650 650 650 650 1500 1500 1500 1500 1500 

Albacete 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Mancha 
Oriental 

agriculture 
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Flowing 0 0 0 0 0 0 0 1800 1800 1800 1800 1800 
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The highest priority corresponds to the urban water uses, according to 

the Spanish legal framework. Among the agricultural users, the highest 

priority is given to the Flowing demand, since it abstracts water directly from 

the river. The lowest priority among the agricultural demands is given to the 

Jucar-Turia and the Mancha Oriental, which do not have elder rights. 

However, out of the irrigation season (from October to April) the situation 

inverts because water availability is higher and less resource is required in 

the downstream demands, being also more flexible to deficits. On the other 

hand, the Mancha Oriental and the Jucar-Turia demands implement crop 

mosaics differing from the downstream ones, being more sensitive to deficits 

between October and April. 

A3.1.8. Specific constraints 

The main constraint considered by the seasonal operation model is the 

Alarcon Agreement, explained in section 5.2. It has been added through a 

storage limit in the Alarcon reservoir. If the storage is below the limit, no 

delivery is made to the Jucar-Turia and the Mancha Oriental agricultural 

demands. 

Although not affecting the reservoir releases, one important factor 

regarding deliveries is the existence of emergency wells. These have an 

impact on how the surface resource is allocated during drought periods due 

to its asymmetric distribution. The irrigation districts with higher 

concentrations of emergency wells (Acequia Real and Sueca, CHJ 2013) 

support the highest deficit of surface waters during water scarcity periods, 

replacing them with the emergency wells. Constraints have been added to 

represented this assymetric deficit distribution. 

A3.1.9. Stochastic models 

An ARMA (1,1) model has been chosen to generate openings and time 

series, while an MPAR (1) model has been employed to estimate the cuts’ 

parameters associated with the inflows. In this case, the number of data 

records per parameter is 3.33, way below the 6 threshold value (Salas et al., 

1980). A set of 20 openings and two sets of 20 times series were generated. 

The first time series set has been used in the CSG-SDDP run, while the second 

has been employed to compare the current operating rules with the optimal 

ones. 
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The MPAR (1) parameters correspond to: 

 

δ1,oct Alarcon Contreras Middle Lower 

Alarcon 0.40 -0.58 -0.26 0.64 

Contreras 0.35 0.01 0.46 -0.02 

Middle -0.62 0.64 0.65 -0.48 

Lower -1.55 1.17 0.35 0.33 

 

δ1,nov Alarcon Contreras Middle Lower 

Alarcon 0.71 0.04 0.32 -0.19 

Contreras 0.22 0.76 0.35 -0.14 

Middle -0.11 0.00 0.66 -0.27 

Lower -0.08 0.22 0.01 0.92 

 

δ1,dec Alarcon Contreras Middle Lower 

Alarcon -0.26 0.77 -0.61 0.28 

Contreras -0.62 1.15 -0.52 0.20 

Middle -0.57 0.33 0.42 0.55 

Lower -0.37 0.58 0.06 0.56 

 

δ1,jan Alarcon Contreras Middle Lower 

Alarcon 0.72 -0.07 0.36 -0.01 

Contreras 0.37 0.38 0.28 -0.05 

Middle -0.66 1.04 1.12 -0.90 

Lower -0.20 -0.11 -0.81 1.39 

 

δ1,feb Alarcon Contreras Middle Lower 

Alarcon 2.26 -1.47 0.23 0.12 

Contreras 0.72 0.14 0.24 0.17 

Middle 3.18 -2.82 0.30 -0.09 

Lower -0.72 0.40 -0.31 0.56 

 

δ1,mar Alarcon Contreras Middle Lower 

Alarcon 1.36 -0.58 -0.30 -0.18 

Contreras 0.55 0.46 -0.30 -0.11 

Middle 0.86 -0.32 0.30 -0.03 

Lower -0.08 0.30 -0.11 0.96 

 

 

δ1,apr Alarcon Contreras Middle Lower 

Alarcon 1.44 -0.74 0.15 0.26 

Contreras 0.31 0.64 0.05 0.13 

Middle 0.74 -0.46 0.21 -0.19 

Lower 0.48 0.33 -0.74 0.79 

 

δ1,may Alarcon Contreras Middle Lower 

Alarcon -0.20 0.61 0.43 0.56 

Contreras -0.45 1.10 0.25 0.28 

Middle 0.40 0.02 0.57 0.21 

Lower 0.03 0.00 0.46 0.74 

 

δ1,jun Alarcon Contreras Middle Lower 

Alarcon -0.22 1.25 -0.12 -0.12 

Contreras -0.71 1.63 -0.07 -0.15 

Middle 0.41 -0.51 0.73 0.02 

Lower -0.59 -0.07 0.57 0.91 

 

δ1,jul Alarcon Contreras Middle Lower 

Alarcon 1.31 -0.37 -0.26 0.37 

Contreras 0.03 0.98 -0.30 0.15 

Middle -0.45 0.42 0.53 0.23 

Lower -0.23 0.95 -0.42 0.90 

 

δ1,aug Alarcon Contreras Middle Lower 

Alarcon 0.59 0.09 0.27 0.20 

Contreras -0.10 1.10 -0.01 -0.04 

Middle -0.99 0.03 -0.02 0.88 

Lower -0.35 0.03 -0.44 1.37 

 

δ1,sep Alarcon Contreras Middle Lower 

Alarcon 0.63 0.22 -0.13 0.11 

Contreras 0.14 0.77 0.01 0.14 

Middle 0.25 -0.75 0.34 0.83 

Lower 1.07 -0.91 -0.26 0.41 
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The ARMA (1,1) parameters correspond to: 

δ1 Alarcon Contreras Middle Lower 

Alarcon 0.79 0.00 0.02 0.10 

Contreras -0.05 0.92 0.05 0.05 

Middle -0.02 -0.03 0.84 0.03 

Lower -0.07 0.15 -0.08 0.60 

 

ω0 Alarcon Contreras Middle Lower 

Alarcon 0.61 0.00 0.00 0.00 

Contreras 0.31 0.26 0.00 0.00 

Middle 0.11 0.19 0.76 0.00 

Lower -0.04 0.08 0.15 0.67 

 
 

 

ω1 Alarcon Contreras Middle Lower 

Alarcon 0.10 -0.21 0.05 0.04 

Contreras 0.02 -0.04 0.07 0.01 

Middle -0.03 -0.06 0.39 -0.02 

Lower 0.00 -0.06 0.00 -0.12 

 

 

A3.2. VALIDATION 

A3.2.1. Reservoir storages and releases 

The validation of storages is good, with an average R-squared coefficient of 

0.91 (0.97, 0.96, 0.74 and 0.98). The validation for the Alarcon and Contreras 

releases is better considering them jointly (R-squared equal to 0.61) than in 

isolation (0.37 and 0.56 respectively). The reproduction of the summer 

releases in Contreras is better than the Alarcon ones, although the other way 

round is found when moving out of the irrigation season. 

 



A3. Jucar seasonal operation model  

249 

 

 

These differences can be explained by the fact that the FRB systems 

represent an ex ante situation, while the historical records correspond to the 

ex post one. The difference between both is that the CHJ Operation Office 

monitors the releases and adjusts them, if necessary, on a daily basis. These 

updates of the operation decisions are not accounted by the model. They are 

especially sensitive to the inflows to Alarcon and Contreras, not taken into 

account in the ex ante evaluation. This issue explains why the joint releases 

offer a better adjustment than comparing them in isolation. 

The releases from Tous offer a close reproduction of the historical ones 

(R-squared of 0.81), without a noticeable effect of the difference between 

the ex ante and the ex post evaluation. This is caused by two facts: 

• Historical records, which depict an ex post situation, were the main 

driver of the delivery FRB determining the Tous releases. 

• The releases from Tous, rather than a variable, are perceived as a 

commitment, so the CHJ Operation Office tries to guarantee them 

unless exceptional conditions are found. 

Considering that the releases from Tous, which are the most important, 

are well reproduced by the model, as well as the good reproduction of the 
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storage levels, it has been considered that the model is adequately 

reproducing the historical performance of the system. 

A3.2.2. Streamflows 

Some gauging stations in the Jucar river basin have been used to validate 

the FRB systems. In the middle streams of the system, the validation done at 

El Picazo (Jucar river, R-squared 0.36) is not good, since it is affected by the 

same issues pointed out for the Alarcon release. The reproduction of the 

middle Jucar is worse than the lower one, since it is not modeled in detail. 

The validation for the lower sub-basin (downstream of Tous) gauging stations 

is better, with an average R-squared value of 0.70 (0.84 in Tous, 0.68 in 

Antella and 0.56 in Huerto de Mulet). The Huerto de Mulet records are 

affected by the Sueca weir. 

 

A3.2.3. Demand deliveries 

Regarding the deliveries and the sea outflows, almost all the demands 

included in the seasonal operation model have historical records to validate 

them (with the exception of Albacete and the flowing demands). An average 

R-squared value of 0.76 has been found, ranging from 0.62 to 0.87. 

The hedging experienced by the demands is fairly reproduced by the 

model, as well as the historical periods in which no surface water was 
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allocated to the Mancha Oriental and Jucar-Turia agricultural districts. 

Furthermore, the sea outflows are properly reproduced by the model, one 

key aspect since it directly impacts the water resources that can be devoted 

to agricultural purposes in the lower Jucar. 
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A3.2.4. Summary 

On a broader view, the Jucar river system seasonal operation model seems 

to be valid, so the operating rules represented by the FRB systems offer a 

quite reasonable approximation of its historical performance. The storages 

in the three reservoirs is adequately reproduced, although some deviations 

regarding the balance between the Alarcon and Contreras releases has been 

found. 

The validation of the model for the lower basin (downstream Tous) has 

been good for both streamflows and deliveries, with no R-squared coefficient 

lower than 0.56. The surface deliveries to the demands reproduce the in-year 

pattern, the hedging and the time stages in which no supply was made to the 

Jucar-Turia and the Mancha Oriental agricultural demands due to the Alarcon 

Agreement. Consequently, it can be assumed that the model represents in a 

proper way the reservoir operation and the demand-meeting strategies 

followed by the CHJ Reservoir Releases Commission and the CHJ Operation 

Office. 

The clear improvement of the model is the balance between the Alarcon 

and Contreras releases. However, it does not have significant impacts on the 

long-term storage levels. Although the representation of the middle Jucar is 

also not good due to the lack of detail, the CHJ Operation Office focus is on 

the downstream part of the system, so no improvement in this area is 

necessary so far. 
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