Resolvability of ball structures

I. V. Protasov

Abstract

A ball structure is a triple $\mathbb{B}=(X, P, B)$ where X, P are nonempty sets and, for any $x \in X, \alpha \in P, B(x, \alpha)$ is a subset of X, which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for any $x \in X, \alpha \in P$. A subset $Y \subseteq X$ is called large if $X=B(Y, \alpha)$ for some $\alpha \in P$ where $B(Y, \alpha)=\bigcup_{y \in Y} B(y, \alpha)$. The set X is called a support of \mathbb{B}, P is called a set of radiuses. Given a cardinal κ, \mathbb{B} is called κ-resolvable if X can be partitioned to κ large subsets. The cardinal res $\mathbb{B}=\sup \{\kappa: \mathbb{B}$ is κ-resolvable $\}$ is called a resolvability of \mathbb{B}. We determine the resolvability of the ball structures related to metric spaces, groups and filters.

2000 AMS Classification: 54A25, 05A18.
Keywords: ball structures, resolvability, coresolvability.

1. Introduction

Let $\mathbb{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbb{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures, $f: X_{1} \longrightarrow$ X_{2}. We say that f is a \prec-mapping if, for every $\alpha \in P_{1}$, there exists $\beta \in P_{2}$ such that $f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)$ for every $x \in X$. A bijection f is called an isomorphism if f and f^{-1} are \prec-mappings.

The results from [10], [11], [12] show that the ball structures (with the isomorphisms defined above) are the natural asymptotic counterparts of topological spaces. A good motivation to study ball structures related to metric spaces is in the survey [5].

A topological spaces is called κ-resolvable (κ is a cardinal) if it can be partitioned to κ dense subsets. For resolvability of topological spaces and topological groups see the surveys [3], [4], [9].

Let $\mathbb{B}=(X, P, B)$ be a ball structure. A subset $Y \subseteq X$ is called large if there exists $\alpha \in P$ such that $X=B(Y, \alpha)$. The large subsets of ball structure can be considered as the duplicates of the dense subspaces of topological space. Given a cardinal κ, we say that \mathbb{B} is κ-resolvable if X can be partitioned to κ large subsets. The resolvability of \mathbb{B} is the cardinal

$$
\operatorname{res} \mathbb{B}=\sup \{\kappa: \mathbb{B} \text { is } \kappa-\text { resolvable }\} .
$$

A subset $Y \subseteq X$ is called small if $X \backslash B(Y, \alpha)$ is large for every $\alpha \in P$. The small subsets of ball structure can be considered as the duplicates of the nowhere dense subsets of topological space. Assume that every singleton of X is small. Given a cardinal κ, we say that \mathbb{B} is κ-coresolvable if X can be covered by κ small subsets. The coresolvability of \mathbb{B} is the cardinal

$$
\operatorname{cores} \mathbb{B}=\min \{\kappa: \mathbb{B} \text { is } \kappa-\text { coresolvable }\} .
$$

The referee pointed out that the coresolvability can be considered as the asymptotic duplicate of the Novak number of topological space X
$n(X)=\min \{|\mathcal{U}|: \mathcal{U}$ is a cover of X consisting of nowhere dense subsets $\}$.
In this paper we determine (or evaluate) the cardinal invariants res \mathbb{B} and cores \mathbb{B} for a wide spectrum of ball structures \mathbb{B} related to metric spaces, groups and filters. We begin with exposition of results (2), continue with proofs (3) and conclude the paper with comments and open problems (4).

All ball structures under consideration are supposed to be uniform. A ball structure $\mathbb{B}=(X, P, B)$ is called uniform if \mathbb{B} is symmetric and multiplicative. We say that \mathbb{B} is symmetric if, for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x, \alpha) \subseteq B^{*}(x, \beta)$ for every $x \in X$ and vice versa, where $B^{*}(x, \beta)=$ $\{y \in X: x \in B(y, \beta)\}$. A ball structure \mathbb{B} is called multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma(\alpha, \beta) \in P$ such that $B(B(x, \alpha), \beta) \subseteq B(x, \gamma(\alpha, \beta))$ for every $x \in X$. Note that if \mathbb{B} is uniform and $Y \subseteq X$ is large, then there is $\gamma \in P$ such that $B(x, \gamma) \bigcap Y \neq \varnothing$ for all $x \in X$. For more detailed information concerning the uniform ball structures as the asymptotic counterparts of the uniform topological spaces see [11]. Initially, the problem of resolvability of ball structures was motivated by the following question [1]: can every infinite group be partitioned onto two large subsets? For the positive answer to this question see [14] or [15].

2. Results

Let $\mathbb{B}=(X, P, B)$ be a ball structure, κ be a cardinal. We say that a subset $Y \subseteq X$ is κ-crowded if there exists $\alpha \in P$ such that $|B(y, \alpha) \bigcap Y| \geq \kappa$ for every $y \in Y$. A ball structure \mathbb{B} is called κ-crowded if its support X is κ-crowded. The crowdedness of \mathbb{B} is the cardinal

$$
\operatorname{cr} \mathbb{B}=\sup \{\kappa: \mathbb{B} \text { is } \kappa-\text { crowded }\} .
$$

Define the preodering \leq on P by the rule $\alpha \leq \beta$ if and only if $B(x, \alpha) \subseteq$ $B(x, \beta)$ for every $x \in X$. A subset $P^{\prime} \subseteq P$ is called cofinal if, for every $\alpha \in P$, there exists $\beta \in P^{\prime}$ such that $\alpha \leq \beta$. The cofinality $c f \mathbb{B}$ is the minimal cardinality of the cofinal subsets of P.

Proposition 2.1. For every ball structure $\mathbb{B}=(X, P, B)$, the following statements hold
(i) if \mathbb{B} is κ-crowded, then \mathbb{B} is κ-resolvable;
(ii) cr $\mathbb{B} \leq$ res $\mathbb{B} \leq c r \mathbb{B} \cdot c f \mathbb{B}$;
(iii) if κ is a finite cardinal and \mathbb{B} is κ-resolvable, then \mathbb{B} is κ-crowded.

By van Douwen-Illanes' theorem [7], if a topological space is n-resolvable for every natural number n, then it can be partitioned to countably many dense subsets. The referee pointed out that the generalization of van Douwen-Illanes' theorem for the case of countable cofinality lies in [2]. In view of Proposition 2.1 (iii), the following statement can be considered as the analogue of this generalization.
Proposition 2.2. Let $\mathbb{B}=(X, P, B)$ be a ball structure, $\left\langle\kappa_{n}>_{n \in \omega}\right.$ be an increasing sequence of cardinals, $\kappa=\sup \left\{\kappa_{n}: n \in \omega\right\}$. If \mathbb{B} is κ_{n}-crowded for every $n \in \omega$, then X can be partitioned in κ large subsets.

Let (X, d) be a metric space. For any $x \in X, r \in \mathbb{R}^{+}$, put

$$
B_{d}(x, r)=\{y \in X: d(x, y) \leq r\}
$$

The ball structure $\left(X, \mathbb{R}^{+}, B_{d}\right)$ induced by the metric space (X, d) is denoted by $\mathbb{B}(X, d)$. A ball structure \mathbb{B} is called metrizable if \mathbb{B} is isomorphic to $\mathbb{B}(X, d)$ for the appropriate metric space (X, d). By $[8], \mathbb{B}$ is metrizable if and only if \mathbb{B} is uniform, connected and $c f \mathbb{B} \leq \aleph_{0}$. A ball structure $\mathbb{B}=(X, P, B)$ is called connected if, for any $x, y \in X$, there exists $\alpha \in P$ such that $x \in B(y, \alpha)$, $y \in B(x, \alpha)$.

Theorem 2.3. For every metric space (X, d), res $\mathbb{B}(X, d)=c r \mathbb{B}(X, d)$ and X can be partitioned in cr $\mathbb{B}(X, d)$ large subsets.

Let G be an infinite group with the identity e and let κ be an infinite cardinal with $\kappa \leq|G|$. Denote by $\Im(G, \kappa)$ the family of all subsets of G of cardinality $<\kappa$ containing e. For all $g \in G, F \in \Im(G, \kappa)$, put

$$
B_{l}(g, F)=F g, B_{r}(g, F)=g F
$$

Denote by $\mathbb{B}_{l}(G, \kappa)$ and $\mathbb{B}_{r}(G, \kappa)$ the ball structures $\left(G, \Im(G, \kappa), B_{l}\right)$ and $\left(G, \Im(G, \kappa), B_{r}\right)$. Observe that the mapping $g \longmapsto g^{-1}$ is an isomorphism between $\mathbb{B}_{l}(G, \kappa)$ and $\mathbb{B}_{r}(G, \kappa)$. We say that a subset $Y \subseteq X$ is left κ-large (left κ-small) if Y is large (small) in the ball structure $\mathbb{B}_{l}(G, \kappa)$. In other words, Y is called left κ-large if there exists a subset $F \subseteq G$ such that $|F|<\kappa$ and $G=F Y$.

Theorem 2.4. Let G be an infinite group, κ be an infinite cardinal and $\kappa \leq|G|$. Then G can be partitioned in κ left κ-large subsets.

Let $\mathbb{B}=(X, P, B)$ be a ball structure. A subset $Y \subseteq X$ is called bounded if there exist $x \in X, \alpha \in P$ such that $Y \subseteq B(x, \alpha)$. We say that \mathbb{B} is bounded if X is bounded. Assume that \mathbb{B} is unbounded and connected. Then every bounded subset of X is small. Since $X=\bigcup\{B(x, \alpha): \alpha \in P\}$ for every $x \in X$, we
conclude that cores $\mathbb{B} \leq c f \mathbb{B}$. In particular, cores $\mathbb{B}(X, d) \leq \aleph_{0}$ for every unbounded metric space (X, d). On the other hand, the family of all small subsets of an arbitrary ball structure is an ideal in the Boolean algebra of all subsets of X (see [11]). Thus, cores $\mathbb{B} \geq \aleph_{0}$ for every unbounded ball structure \mathbb{B}. Hence, cores $\mathbb{B}(X, d)=\aleph_{0}$ for every unbounded metric space (X, d). The following theorem shows that cores \mathbb{B} could be much more less than $c f \mathbb{B}$.

Theorem 2.5. Let G be an infinite group, κ be an infinite cardinal and $\kappa \leq|G|$. If $\kappa<c f(|G|)$, then cores $\mathbb{B}_{l}(G, \kappa)=\aleph_{0}$.

Let G be a topological group, $\mathcal{C}(G)$ be a family of all compact subsets of G containing the identity of G. A ball structure $\left(G, \mathcal{C}(G), B_{l}\right)$ is denoted by $\mathbb{B}_{l}(G, \mathcal{C})$. Clearly, $\mathbb{B}_{l}(G, \mathcal{C})=\mathbb{B}_{l}\left(G, \aleph_{0}\right)$ for every discrete group G.

Theorem 2.6. Let G be a non-compact locally compact group, then cores $\mathbb{B}_{l}(G, \mathcal{C})=\aleph_{0}$.

Let X be a set and let φ be a filter on X such that $\bigcap \varphi=\varnothing$. For any $x \in X$, $F \in \varphi$, put

$$
B(x, F)= \begin{cases}X \backslash F, & \text { if } x \notin F \\ \{x\}, & \text { if } x \in F\end{cases}
$$

and denote by $\mathbb{B}(X, \varphi)$ the ball structure (X, φ, B).
Theorem 2.7. Let X be a set, φ be a filter on X such that $\bigcap \varphi=\varnothing$. Then res $\mathbb{B}=1$, cores $\mathbb{B}=\min \{|\psi|: \psi \subseteq \varphi, \bigcap \psi=\varnothing\}$.

3. Proofs

Proof of Proposition 2.1. (i) Choose $\alpha \in P$ such that $|B(x, \alpha)| \geq \kappa$ for every $x \in X$. By Zorn lemma, there exists a subset $Y \subseteq X$ such that the family $\{B(y, \alpha): y \in Y\}$ is pairwise disjoint and, for every $x \in X$, there exists $y \in Y$ such that $B(x, \alpha) \bigcap B(y, \alpha) \neq \varnothing$. Since $|B(y, \alpha)| \geq \kappa$ for every $y \in Y$, there exists a family \Im of κ-many pairwise disjoint subsets of X such that $|F \bigcap B(y, \alpha)|=1$ for all $y \in Y$ and $F \in \Im$. In view of uniformity of \mathbb{B} and by choice of Y, every subset $F \in \Im$ is large. Hence, \mathbb{B} is κ-resolvable.
(ii) The left inequality follows from (i). Let \Im be an arbitrary pairwise disjoint family of large subsets of X. Pick a cofinal subset $P^{\prime} \subseteq P$ with $\left|P^{\prime}\right|=$ $c f \mathbb{B}$. For every $\alpha \in P^{\prime}$, put

$$
\Im(\alpha)=\left\{F \in \Im: B^{*}(F, \alpha)=X\right\}
$$

where $B^{*}(F, \alpha)=\bigcup_{x \in F} B^{*}(x, \alpha)$.
Take any $x \in X$ and $\alpha \in P^{\prime}$. Since $B(x, \alpha) \bigcap F \neq \varnothing$ for every $F \in \Im(\alpha)$, we have $|\Im(\alpha)| \leq|B(x, \alpha)|$. Hence, $|\Im(\alpha)| \leq c r \mathbb{B}$ and the right inequality holds.
(iii) Let $F_{1}, F_{2}, \ldots, F_{m}$ be pairwise disjoint large subsets of X. Choose $\alpha \in P$ such that $B^{*}\left(F_{i}, \alpha\right)=X$ for every $i \in\{1,2, \ldots, m\}$. Then $B(x, \alpha) \bigcap F_{i} \neq \varnothing$ for all $x \in X$ and $i \in\{1,2, \ldots, m\}$. It follows that $|B(x, \alpha)| \geq m$ and \mathbb{B} is m-crowded.

Proof of Proposition 2.2. It suffices to partition $X=Y \bigcup Z$ so that Y is a disjoint union of κ_{0} large subset and Z is κ_{n}-crowded for every $n \in \omega$. We may suppose that $\kappa_{0}>0$. Choose $\alpha \in P$ such that $|B(x, \alpha)| \geq 2 \kappa_{0}$ for every $x \in X$. By Zorn lemma, there exists a subset $A \subseteq X$ such that $\{B(a, \alpha): a \in A\}$ is a maximal disjoint family. For every $a \in A$, partition $B(a, \alpha)=C(a) \bigcup D(a)$ so that $|C(a)|=\kappa_{0},|D(a)| \geq \kappa_{0}$. Put $Y=\bigcup_{a \in A} C(a), Z=X \backslash Y$ and note that Y can be partitioned in κ_{0}-many large subsets. Fix $n \in \omega$ and choose $\beta \in P$ such that $|B(x, \beta)| \geq 2 \kappa_{n}$ for every $x \in X$. Since \mathbb{B} is multiplicative, there exists $\gamma \in P$ such that $B(B(x, \beta), \alpha) \subseteq B(x, \gamma)$ for every $x \in X$. Then $|B(z, \gamma) \cap Z| \geq \kappa_{n}$ for every $z \in Z$ and Z is κ_{n}-crowded.

Proof of Theorem 2.3. Since $c f \mathbb{B}(X, d)=\aleph_{0}$, the first statement follows from Proposition 2.1. The second statement follows from Proposition 2.2.

To prove the next three theorems we use the filtrations of groups.
Let G be an infinite group with the identity e. A filtration of G is a family $\left\{G_{\alpha}: \alpha<|G|\right\}$ of subgroups of G such that
(i) $G_{0}=\{e\}, G=\bigcup\left\{G_{\alpha}: \alpha<|G|\right\}$;
(ii) $G_{\alpha} \subset G_{\beta}$ for all $\alpha<\beta<|G|$;
(iii) $\bigcup\left\{G_{\alpha}: \alpha<\beta\right\}=G_{\beta}$ for every limit ordinal β;
(iv) $G_{\alpha}<|G|$ for every $\alpha<|G|$.

Using a minimal well-ordering of G it is easy to construct a filtration of G provided that G is not finitely generated. In particular, every uncountable group admits a filtration.

For each $\alpha<|G|$, decompose $G_{\alpha+1} \backslash G_{\alpha}$ to right cosets by G_{α} and fix some set X_{α} of representatives so $G_{\alpha+1} \backslash G_{\alpha}=G_{\alpha} X_{\alpha}$. Take an arbitrary element $g \in G, g \neq e$ and choose the smallest subgroup G_{α} with $g \in G_{\alpha}$. By (iii), $\alpha=\alpha_{1}+1$ for some ordinal $\alpha_{1}<|G|$. Hence, $g \in G_{\alpha_{1}+1} \backslash G_{\alpha_{1}}$ and there exist $g_{1} \in G_{\alpha_{1}}, x_{\alpha_{1}} \in X_{\alpha_{1}}$ such that $g=g_{1} x_{\alpha_{1}}$. If $g_{1} \neq e$, we choose the ordinal α_{2}, the elements $g_{2} \in G_{\alpha_{2}+1} \backslash G_{\alpha_{2}}$ and $x_{\alpha_{2}} \in X_{\alpha_{2}}$ such that $g_{1}=g_{2} x_{\alpha_{2}}$. Since the set of ordinals $<|G|$ is well-ordered, after finite number of steps we get the representation

$$
g=x_{\alpha_{s(g)}} x_{\alpha_{s(g)-1}} \ldots x_{\alpha_{2}} x_{\alpha_{1}}, \quad \alpha_{s(g)}<\ldots<\alpha_{1}, x_{\alpha_{i}} \in X_{\alpha_{i}} .
$$

Note that this representation is unique and put

$$
\gamma_{1}(g)=\alpha_{1}, \quad \gamma_{2}(g)=\alpha_{2}, \ldots, \gamma_{s(g)}(g)=\alpha_{s(g)}, \quad \Gamma(g)=\left\{\gamma_{1}(g), \ldots, \gamma_{s(g)}(g)\right\}
$$

For every natural number n, denote

$$
D_{n}=\{g \in G: s(g)=n\} .
$$

Proof of Theorem 2.4. First suppose that $|G|=\kappa$. If G is countable, then $\mathbb{B}_{l}(G, \kappa)$ is metrizable and we can apply Theorem 2.3. Assume that G is uncountable and use the above filtration. For every $\alpha<|G|$, put

$$
F_{\alpha}=\left\{g \in G: \gamma_{s(g)}(g)=\alpha\right\}
$$

and note that $\left\{F_{\alpha}: \alpha<G\right\}$ is a pairwise disjoint family of left κ-large subsets.

If $\kappa<|G|$, we choose a subgroup H of G with $|H|=\kappa$. By above paragraph, there exists a partition \mathcal{P} of H such that each subset $P \in \mathcal{P}$ is large in $\mathbb{B}_{l}(H, \kappa)$. Decompose G to right cosets by H and fix some set X or representatives so $G=H X$. Then $\{P X: P \in \mathcal{P}\}$ is a pairwise disjoint family of left κ-large subsets of G.

Proof of Theorem 2.5. If G is countable, then $\mathbb{B}_{l}(G, \kappa)$ is metrizable and we have cores $\mathbb{B}_{l}(G, \kappa)=\aleph_{0}$. Suppose that G is uncountable and use the above filtration. Observe that $G \backslash\{e\}=\bigcup_{n=1}^{\infty} D_{n}$, fix a natural number n and show that D_{n} is small in $\mathbb{B}_{l}(G, \kappa)$. Take an arbitrary subset $F \in \Im(G, \kappa)$. By assumption, there exists $\beta \in P$ such that $F \subseteq G_{\beta}$ so $F D_{n} \subseteq G_{\beta} D_{n}$. Show that $G \backslash G_{\beta} D_{n}$ is left \aleph_{0}-large. Choose the elements $a_{1}, a_{2}, \ldots, a_{n+1}$ of G such that

$$
\alpha_{1} \in G_{\beta+1} \backslash G_{\beta}, a_{2} \in G_{\beta+2} \backslash G_{\beta+1}, \ldots, a_{n+1} \in G_{\beta+n+1} \backslash G_{\beta+n}
$$

Take an arbitrary element $g \in G_{\beta} D_{n}$ and put $g=g_{0}$. If $\beta+n \in \Gamma(g)$, put $\varepsilon_{0}=0$, otherwise $\varepsilon_{0}=1$. Note that $\beta+n \in \Gamma\left(a_{n+1}^{\varepsilon_{0}} g_{0}\right)$ and put $g_{1}=$ $a_{n+1}^{\varepsilon_{0}} g_{0}$. If $\beta+n-1 \in \Gamma\left(g_{1}\right)$, we put $\varepsilon_{1}=0$, otherwise $\varepsilon_{1}=1$. Note that $\{\beta+n-1, \beta+n\} \subseteq \Gamma\left(a_{n+1}^{\varepsilon_{1}} g_{1}\right)$ and put $g_{2}=a_{n}^{\varepsilon_{1}} g_{1}$. After $n+1$ steps we get

$$
\{\beta, \beta+1, \ldots, \beta+n\} \subseteq \Gamma\left(a_{1}^{\varepsilon_{n}} a_{2}^{\varepsilon_{n-1}} \ldots a_{n+1}^{\varepsilon_{0}} g\right)
$$

It follows that $\left(a_{1}^{\varepsilon_{n}} a_{2}^{\varepsilon_{n-1}} \ldots a_{n+1}^{\varepsilon_{0}} g\right) \notin G_{\beta} D_{n}$. Put $A=\left\{e, a_{1}, a_{2}, \ldots, a_{n+1}\right\}$, $K=A^{n}$. We have shown that $G_{\beta} D_{n} \subseteq K^{-1}\left(G \backslash G_{\beta} D_{n}\right)$. Hence, $G=K^{-1}(G \backslash$ $\left.G_{\beta} D_{n}\right)$ and $G \backslash G_{\beta} D_{n}$ is left \aleph_{0}-large.

Proof of Theorem 2.6. If G is σ-compact, then $c f \mathbb{B}_{l}(G, \mathcal{C})=\aleph_{0}$ and $\mathbb{B}_{l}(G, \mathcal{C})$ is metrizable. Hence, cores $\mathbb{B}_{l}(G, \mathcal{C})=\aleph_{0}$. Assume that G is not σ-compact. Then we can easily construct a filtration $\left\{G_{\alpha}: \alpha<|G|\right\}$ so that every subgroup $G_{\alpha}, \alpha>0$ is open. Repeat the arguments proving Theorem 2.5.

Proof of Theorem 2.7. Two easy observations. A subset $Y \subseteq X$ is large if and only if $Y \in \varphi$. A subset $Y \subseteq X$ is small if and only if $X \backslash Y$ is large.

4. Comments and open problems

Problem 4.1. Let $\mathbb{B}=(X, P, B)$ be a ball structure, κ be a cardinal such that \mathbb{B} is κ^{\prime}-crowded for every $\kappa^{\prime}<\kappa$. Can X be partitioned in κ large subsets? By Proposition 2.2, this is so if $c f \kappa=\aleph_{0}$.
Problem 4.2. Let G be an infinite group, κ be an infinite cardinal, $\kappa \leq|G|$. Can G be κ-partitioned so that each cell of the partition is left and right κ-large? If $\kappa=\aleph_{0}$, this is so [14].

Let G be an infinite amenable (in particular, Abelian) group, μ be a Banach measure on G. Clearly, $\mu(A)>0$ for every left \aleph_{0}-large subset A of G. It follows, that res $\mathbb{B}_{l}\left(G, \aleph_{0}\right)=\aleph_{0}$. On the other hand, every free group of infinite rank κ can be partitioned in κ left \aleph_{0}-large subsets [11].

Problem 4.3. Let G be a free Abelian group of rank \aleph_{2}. Can G be partitioned in $\aleph_{2} \aleph_{1}$-large subsets.

Problem 4.4. Let G be an infinite group, κ be an infinite cardinal, $\kappa \leq|G|$. Can G be partitioned in \aleph_{0} left κ-small subsets? By Theorem 2.5, this is so if $|G|$ is a regular cardinal.

A topological space is called irresolvable if it can not be partitioned in two dense subsets. Let us say that a ball structure \mathbb{B} is irresolvable if res $\mathbb{B}=1$. By Proposition 2.1, \mathbb{B} is irresolvable if and only if $\operatorname{cr} \mathbb{B}=1$.

A topological space X is called κ-extraresolvable if X admits a family \Im, $|\Im|=\kappa$ of dense subsets such that $F_{1} \bigcap F_{2}$ is nowhere dense for all distinct subsets $F_{1}, F_{2} \in \Im$. It is important to remark that if $1<\kappa<\omega$ then κ-extraresolvability is equivalent to κ-resolvability. The concept of κ extraresolvability was introduced by V. I. Malykhin [8]. As the referee pointed out, the published paper where this concept appears for the first time in the literature is [6].

Let us say that a ball structure $\mathbb{B}=(X, P, B)$ is κ-extraresolvable if X admits a family $\Im,|\Im|=\kappa$ of large subsets such that $F_{1} \bigcap F_{2}$ is small for all distinct subsets $F_{1}, F_{2} \in \Im$.

If \mathbb{B} is unbounded and κ-crowded, then there exists a family $\Im,|\Im|=\kappa^{\aleph_{0}}$ of large subset of X such that $F_{1} \bigcap F_{2}$ is finite for all distinct subsets $F_{1}, F_{2} \in \Im$, so \mathbb{B} is $\kappa^{\aleph_{0}}$-extraresolvable. The extraresolvability of \mathbb{B} is the cardinal sup $\{\kappa: \mathbb{B}$ is κ-extraresolvable\}.

Problem 4.5. Determine (or evaluate) extraresolvability of ball structures of metric spaces and groups.

The referee asked "what about the infinite case in (iii) of Proposition 2.1?" Let k be an uncountable ordinal and let G be a free group of rank k. By [13], $\mathbb{B}_{l}\left(G, \aleph_{0}\right)$ can be partitioned in k-many large subsets, but cr $\mathbb{B}_{l}\left(G, \aleph_{0}\right)=\aleph_{0}$. On the other hand, the statement (iii) remains true for $k=\aleph_{0}$.

Acknowledgements. I would like to thank the referee for the long list of corrections and suggestions to the previous version of the paper.

References

[1] A. Bella and V. I. Malykhin, Small and other subsets of a group, Q and A in General Topology, 11 (1999), 183-187.
[2] K.P.S. Bhaskara Rao, On \aleph-resolvability, unpublished manuscript.
[3] W. W. Comfort, O. Masaveau and H. Zhou, Resolvability in Topology and Topological groups, Annals of New York Acad. of Sciences, $\mathbf{7 6 7}$ (1995), 17-27.
[4] W. W. Comfort and S. Garcia-Ferreira, Resolvability: a selective survey and some new results, Topology Appl. 74 (1996), 149-167.
[5] A. Dranishnikov, Asymptotic topology, Russian Math. Survey 55 (2000), 71-116.
[6] S. Garcia-Ferreira, V. I. Malykhin and A. H. Tomita, Extraresolvable spaces, Topology Appl. 101 (2000), 257-271.
[7] A. Illanes, Finite and ω-resolvability, Proc. Amer. Math. Soc. 124 (1996), 1243-1246.
[8] V. I. Malykhin, Irresolvability is not descriptive good, unpublished manuscript.
[9] I. V. Protasov, Resolvability of groups (in Russian), Matem.Stud. 9 (1998), 130-148.
[10] I. V. Protasov, Metrizable ball structures, Algebra and Discrete Math. 2002, N 1, 129141.
[11] I. V. Protasov, Uniform ball structures, Algebra and Discrete Math., 2003, N 1, 93-102.
[12] I. V. Protasov, Normal ball structures, Matem. Stud. (to appear).
[13] I. V. Protasov, Combinatorial size of subsets of groups and graphs, Algebraic Systems and their Applications, Proc. Inst. Math. NAN Ukraine, 2002, 333-345.
[14] I. V. Protasov, Quasiray decompositions of graphs, Matem.Stud. 17 (2002), 220-222.
[15] I. V. Protasov and T. Banakh,Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser. 11 (2003).

Received March 2003
Accepted February 2004

I. V. Protasov (kseniya@profit.net.ua)
Department of Cybernetics, Kyiv University, Volodimirska 64, Kiev 01033, UKRAINE

