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Abstract. The paper is devoted to build for some pairs of contin-
uous single-valued maps a coincidence point index. The class of pairs
(f, g) satisfies the condition that f induces an epimorphism of the
∨

Cech homology groups with compact supports and coefficients in the
field of rational numbers Q. Using this concept one defines for a class of
multi-valued mappings a fixed point degree. The main theorem states
that if the general coincidence point index is different from {0}, then
the pair (f, g) admits at least a coincidence point. The results may be
considered as a generalization of the above Eilenberg-Montgomery the-
orems [12], they include also, known fixed-point and coincidence-point
theorems for single-valued maps and multi-valued transformations.
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1. Introduction

Let f, g : X −→ Y be two continuous single valued maps of Hausdorff topo-
logical spaces. The coincidence problem, which is a generalization of the fixed
point problem, is concerned with conditions which guarantees the existence of
a solution for the equation f(x) = g(x). A such point x ∈ X is called a coin-
cidence point of the pair of maps (f, g). The study of this problem has been
treated first in 1946 by Eilenberg-Montgomery [12]. Note that the Eilenberg-
Montgomery theorem is a natural generalization of the Lefschetz fixed point
theorem, it implies also, the fixed point theorems of Kakutani [21] and Wallace
[30]. Topological invariants for different classes of pairs of maps have been stud-
ied by many authors [9], [14], [15], [20], [22], [23], [27] and others. The purpose
of this note is to describe a generalized coincidence point index for a new class
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88 N. M. Benkafadar and M. C. Benkara-Mostefa

of pairs of continuous maps (f, g) which satisfy the condition that f induces
a r-homomorphism [3], [4] for homology with compact carries. Moreover, one
gives several applications of the general coincidence point index in fixed point
theory for multi-valued mappings.

One uses the Dold’s fundamental class around a compact of a finite euclidean

space En [10], H denotes the
∨

Cech homology functor with compact carries and
coefficients in the field of rational numbers Q, from the category Top(2 ) of
Hausdorff topological pairs and continuous maps to the category Lg of graded
vector spaces over the set of rational numbers Q and linear maps of degree zero
[13], [18], [29].

2. Maps n-decomposing.

Let G1 and G2 be two additive abelian groups, τ : G1 −→ G2 be a homo-
morphism.

Definition 2.1 ([3]). A homomorphism τ is a called a r-homomorphism if τ
admits a right-inverse homomorphism.

The definition signifies, since τ : G1 −→ G2 is a r-homomorphism then there
exists a homomorphism σ : G2 −→ G1 such that τ ◦ σ = IdG2

, where IdG2
is

the automorphism identity on G2.

The following properties are satisfied.

Proposition 2.2. A homomorphism τ : G1 −→ G2 is a r-homomorphism if
and only if the following conditions are satisfied :

(1) τ is an epimorphism;
(2) G1 = Ker τ ⊕ G , where G is a subgroup of G1.

Proposition 2.3. If G1 and G2 are two modules over a field K and if τ :
G1 −→ G2 is an epimorphism then τ is a r-homomorphism.

Proposition 2.4 ([3]). Let τ1 : G1 −→ G2 and τ2 : G2 −→ G3 be two r-
homomorphisms then their composition τ = τ2 ◦ τ1 : G1 −→ G3 is also a
r-homomorphism.

The notion of r-homomorphisms has been introduced by Borsuk and Kosinsk
[3], [4].

Let (X,A) and (Y,B) be two objects of the category Top(2 ) of Hausdorff

topological pairs and continuous maps and f : (X,A) −→ (Y,B) be a morphism
from the Hausdorff pair (X,A) into an other Hausdorff pair (Y,B).

Let H be the
∨

Cech homology functor with compact carries and coefficients
in the field of rational numbers Q, from the category Top(2 ) of Hausdorff topo-
logical pairs and continuous maps to the category Lg of graded vector spaces
over the set of rational numbers Q and linear maps of degree zero [13], [18],
[29].
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Definition 2.5. A continuous single-valued map f : (X,A) −→ (Y,B) is said
to be n-decomposing in the rank n ≥ 0 on the Hausdorff pair (Y,B) if the ho-
momorphism f∗ : Hn(X,A)→ Hn(Y,B) induced by f , is a r-homomorphism.

The set of the right-inverse homomorphisms of f∗ on (Y,B) will be denoted
by Ω(f∗;Y,B).

The following propositions and corollaries, prove that the class of n-decomposing
maps is vast.

Definition 2.6 ([3]). A continuous single-valued map f : (X,A) −→ (Y,B) is
called a r-map if f admits a continuous right inverse.

Proposition 2.7. Let f : (X,A) −→ (Y,B) be a single-valued map which is a
r-map, then f is n-decomposing on (Y,B) for every rank n ≥ 0.

Corollary 2.8. A retraction r of a pair (X,A) onto (X ′, A′) is n-decomposing
on the retract (X ′, A′) of (X,A).

Definition 2.9 ([3]). A continuous single-valued map f : (X,A) −→ (Y,B)
is said to be a h-map if there exists a continuous single-valued g : (Y,B) −→
(X,A) such that their composition f◦g and the identity map Id(Y,B) : (Y,B) −→
(Y,B) are homotopic.

Proposition 2.10. If f : (X,A) −→ (Y,B) is a h-map, then f is n-decomposing
on (Y,B) for every n ≥ 0.

Corollary 2.11. A lower retraction r : (X,A) −→ (X ′, A′) is n-decomposing
on each lower retract (X ′, A′) of (X,A).

Proposition 2.12. Let f : (X,A) −→ (Y,B) be a continuous single-valued
map. If there exists a continuous single-valued map g : (Z,C) −→ (X,A)
such that their composition f ◦ g is n-decomposing on (Y,B), then f is also
n-decomposing on (Y,B).

Corollary 2.13. Let f : (X,A) −→ (Y,B) be a continuous single-valued map
and (Z,C) ⊆ (X,A). If the restriction of f on (Z,C) is n-decomposing on
(Y,B), then f is also n-decomposing on (Y,B).

Proposition 2.14. Let f : (X,A) −→ (Y,B) be a n-decomposing on (Y,B)
and g : (Y,B) −→ (Z,C) be a n-decomposing on (Z,C), then their composition
g ◦ f is n-decomposing on (Z,C).

Definition 2.15 ([5]). A space X is Q-acyclic provided: (i) X is non-empty,
(ii) Hq(X) = 0 for all q > 1 and (iii) H0(X) ≈ Q.

Proposition 2.16. Let f : (X,A) −→ (Y,B) be a continuous single-valued
map such that:

(1) f is proper and surjective;
(2) f−1(B) = A;
(3) f−1(y) is Q-acyclic for every y ∈ Y.

Then the map f is n-decomposing on (Y,B) for every n ≥ 0.
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Proposition 2.17. Let U be an open subset of an Euclidean space En and K
be a compact subset of U, then the injection i : (U,U\K) −→ (En, En\K) is
n-decomposing on (En, En\K).

3. Generalized coincidence point index

Let U be an open subset of an euclidean vector space En which has a fixed
orientation.

Let (f, g) be a pair of continuous single-valued maps defining as follows:

(3.1) U
f
←− X

g
−→ En

where X is an arbitrary Hausdorff topological space.

Definition 3.1. An element x ∈ X is said to be a coincidence point of the
pair (f, g) if f(x) = g(x).

Let S(f, g) be the set of all coincidence points of the pair (f, g) and F(f, g)
be the subset of U defined as follows:

F(f, g) = {u ∈ U | u ∈ g(f−1(u)}.

Lemma 3.2. One has the equality f(S(f, g)) = F(f, g).

Proof. The proof is obvious. �

Let K be a compact subset of U which contains F(f, g). Thus, one obtains
the following diagram:

(3.2) (U,U\K)
f
←− (X,X\f−1(K))

f−g
−→ (En, En\ {θ})

Definition 3.3. A pair of continuous single-valued maps (f, g) as above de-
fined, is called n-admissible on (U,U\K) if f is n-decomposing on (U,U\K).

The set of all n-admissible pairs on (U,U\K) is denoted PD(U,U\K).

Let (f, g) ∈ PD(U,U \K), then if σ ∈ Ω(f∗;U,U\K) the diagram (3.2)
induces the following diagram:

(3.3)

Hn(U,U\K)
f∗←− Hn(X,X\f−1(K))

(f−g)∗
−→ Hn(E

n, En\ {θ})

σ ց m

Hn(X,X\f−1(K))

Let OK ∈ Hn(U,U\K) be the image of 1 under the composite map:

Z = Hn(S
n) −→ Hn(S

n, Sn\K) ≅ Hn(U,U\K)

and O{θ} ∈ Hn(E
n, En\ {θ}) be the image of 1 under the composition map:

Z = Hn(S
n) −→ Hn(S

n, Sn\ {θ}) ≅ Hn(E
n, En\ {θ})

where Sn = En ∪ {∞}.
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The elements OK and O{θ} are called the fundamental classes around the
compacts K and {θ} respectively [9], [10].

Definition 3.4. Let (f, g) be a n-admissible pair on (U,U\K). The generalized
coincidence point index of (f, g) relatively σ ∈ Ω(f∗;U,U\K) is defined as being
the rational number Iσ(f, g) which verifies the equality (f − g)∗ ◦ σ(OK) =
Iσ(f, g) · O{θ}.

Definition 3.5. Let (f, g) be a n-admissible pair on (U,U\K). The generalized
coincidence point index of (f, g) is defined as being the set of rational numbers
I(f, g) = {Iσ(f, g) | σ ∈ Ω(f∗;U,U\K)}.

Proposition 3.6. If the single-valued map f : (X,X\f−1(K)) −→ (U,U\K)
verifies the conditions of the proposition (2.16), then the pair (f, g) is n-
admissible on (U,U\K) and I(f, g) = {I(f∗)−1(f, g)}.

Proof. The single-valued map f : (X,X\f−1(K)) −→ (U,U\K) induces an iso-
morphism f∗ : Hn(X,X\f−1(K)) −→ Hn(U,U\K) therefore Ω(f∗;U,U\K) =
{(f∗)−1}. �

Proposition 3.7. If F(f, g) = ∅, then I(f, g) = {0}.

Proof. Suppose that F(f, g) = ∅ then using lemma (3.2) one deduces that
S(f, g) = ∅. This equality means that f(x) 6= g(x) for each x ∈ X. Therefore
for every σ ∈ Ω(f∗;U,U\K) we have the following commutative diagram:

Hn(U,U\K)
σ
−→ Hn(X,X\f−1(K))

(f−g)∗
−→ Hn(E

n, En\{θ})

(f − g)∗ ց m
Hn(E

n\{θ}, En\{θ})

where (f − g) = f − g. One concludes the proof remarking that (f − g)∗ is
the trivial homomorphism. �

Corollary 3.8. If I(f, g) 6= {0}, then the pair (f, g) admits at least a coinci-
dence point.

Proof. This is a consequence of lemma (3.2). �

Let g : U −→ En be a continuous single-valued map defined from an open
subset U of an Euclidean vector space En and K be a compact subset of U
which contains Fix(g) = {x ∈ U | x = g(x)}. The fixed point index of g defined
in [9] is the rational Ig which verifies the equality:

(i− g)n∗ (OK) = Ig · O{θ},

where i : U −→ En is the natural injection.

Proposition 3.9. The generalized coincidence point index of the pair (i, g) is
defined and equal to the fixed point index of g.
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Proof. First note that F(i, g) = Fix(g) = {x ∈ U | x = g(x)}. Let K be
a compact subset of En which contains F(i, g) = Fix(g). So, one has the
diagram:

Hn(E
n, En\K)

i∗

←− Hn (U,U\K)
(i−g)∗
−→ Hn(E

n, En\ {θ}).

Therefore, I(i, g) · O{θ} = (i − g)∗ ◦ i−1
∗ (OK) = (i − g)∗(OK) = Ig ·O{θ}.

�

Corollary 3.10. If I(i, g) 6= {0} then g admits at least a fixed point.

Let (f, g) and (f1, g1) be two pairs of continuous single-valued maps defining
as follows:

(3.4) U
f
←− X

g
−→ En

and

(3.5) V
f1←− X1

g1−→ En,

where U and V are two open subsets of En and X and X1 are two Hausdorff
topological spaces.

Let K and K1 be two compact subsets of En which contain F(f, g) and
F (f1, g1) respectively and such that K ⊂ K1 ⊂ V ⊂ V ⊂ U.

For instance, one obtains the following diagrams:

(3.6) (U,U\K)
f
←− (X,X\f−1(K))

f−g
−→ (En, En\{θ})

and

(3.7) (V, V \K1)
f1←− (X1, X1\f

−1
1 (K1))

f1−g1−→ (En, En\{θ}).

Proposition 3.11. Under the above hypotheses, assume that h : (X1, X1\f
−1
1 (K1)) −→

(X,X\f−1(K)) is a continuous single-valued map such that the following dia-
gram is commutative:

(V, V \K1)
f1←− (X1, X1\f

−1
1 (K1))

f1−g1−→ (En, En\ {θ})
i ↓ ↓ h m

(U,U\K)
f
←− (X,X\f−1(K))

f−g
−→ (En, En\ {θ})

where i is the natural injection. Then if the pair (f1, g1) ∈ PD(V, V \K1) one
can infer that (f, g) ∈ PD(U,U \K) and I(f1, g1) ⊂ I(f, g).

Proof. Of course, i induces an isomorphism i∗ : Hn(V, V \K1) −→ Hn(U,U\K)
which takes OK1

in OK . Moreover, if σ ∈ Ω(f1∗, V, V \K1), then h∗ ◦ σ ◦ i−1
∗ ∈

Ω(f∗, U, U\K). �

Let (f, g) be a pair of continuous single-valued maps such that:

U
f
←− X

g
−→ En

and h : X1 −→ X be a continuous single-valued map defined between two
Hausdorff topological spaces X1 and X .
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Proposition 3.12. If h : (X1, X1\(f ◦ h)−1(K)) −→ (X,X\f−1(K)) is n-
decomposing on (X,X\f−1(K)) and the pair (f, g) is n-admissible on (U,U\K),
then (f ◦ h, g ◦ h) ∈ PD(U,U \K) and I(f ◦ h, g ◦ h) ⊂ I(f, g).

Proof. Note that F(f ◦ h, g ◦ h) ⊆ F(f, g) ⊆ K, the composition f ◦ h is n-
decomposing on (U,U\K) (see proposition 2.14), and one has the following
diagram:

(U,U\K)
f◦h
←− (X1, X1\(f ◦ h)−1(K))

f◦h−g◦h
−→ (En, En\ {θ})

Let k ∈ I(f ◦ h, g ◦ h), then there exists σ ∈ Ω((f ◦ h)∗ , U, U\K) such that
(f ◦ h − g ◦ h)∗ ◦ σ(OK ) = k · Oθ, therefore (f − g)∗ ◦ h∗ ◦ σ(OK) = k · Oθ.
Because h∗ ◦ σ ∈ Ω(f∗;U,U\K), one deduces that k ∈ I(f, g). �

Definition 3.13. Two pairs of continuous single-valued maps defined as fol-
lows:

U
fi←− X

gi−→ En, i = 0, 1,

are called equivariant on a compact K ⊂ En if there exist:

(1) a Hausdorff pair (X,X\X ′) such that:

(U,U\K)
fi←− (X,X\X ′)

fi−gi−→ (En, En\ {θ}), i = 0, 1,

(2) a pair of continuous maps (ϕ, ψ) n-admissible on (U,U\K) such that:

(U,U\K)
ϕ
←− (X,X\ϕ−1(K))

ϕ−ψ
−→ (En, En\ {θ})

(3) a single-valued map h : (X,X\ϕ−1(K)) −→ (X,X\X ′) n-decomposing
on (X,X\X ′) such that the following diagram is commutative:

(U,U\K)
f0←− (X,X\X ′)

f0−g0−→ (En, En\ {θ})
m ↑ h m

(U,U\K)
ϕ
←− (X,X\ϕ−1(K))

ϕ−ψ
−→ (En, En\ {θ})

m ↓ h m

(U,U\K)
f1←− (X,X\X ′)

f1−g1−→ (En, En\ {θ})

Proposition 3.14. If (fi, gi), i = 0, 1 are two equivariant pairs on a compact
K ⊂ En, then (fi, gi) ∈ PD(U,U \K), i = 0, 1, and I(f0, g0) = I(f1, g1).

Proof. Assume (f0, g0) and (f1, g1) are equivariant, then f0∗ ◦ h∗ = ϕ∗ =
f1∗ ◦ h∗ therefore f0∗, f1∗ are both n-decomposing on (U,U\K) and f0∗ = f1∗.
Moreover, (f0−g0)∗◦h∗ = (ϕ−ψ)∗ = (f1−g1)∗◦h∗ so (f0−g0)∗ = (f1−g1)∗. �

Definition 3.15. Two pairs (fi, gi), i = 0, 1 defined as follows:

(U,U\K)
fi←− (X,X\X ′)

fi−gi−→ (En, En\{θ}), i = 0, 1,

are called homotopic on a compact K ⊂ En if the following conditions are
verified:
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(1) there exists a pair of single-valued maps (ϕ, ψ) n-admissible on (U,U\K)×
[0, 1] such that:

(U,U\K)× [0, 1]
ϕ
←− (X,X\ϕ−1(K × [0, 1]))

ϕ−Ψ
−→ (En, En\{θ}),

(2) there exists a single valued map

h : (X,X\X ′) −→ (X,X\ϕ−1(K × [0, 1])),

n-decomposing on (X,X\ϕ−1(K × [0, 1])),
(3) the following diagram is commutative:

(U,U\K)
f0←− (X,X\X ′)

f0−g0−→ (En, En\{θ})
χ0 ↓ h ↓ m

(U,U\K)× [0, 1]
ϕ
←− (X,X\ϕ−1(K × [0, 1]))

ϕ−Ψ
−→ (En, En\{θ})

χ1 ↑ h ↑ m

(U,U\K)
f1←− (X,X\X ′)

f1−g1−→ (En, En\{θ})

where χi(x) = (x, i), for every x ∈ U and i = 0, 1.

Proposition 3.16. If (f0, g0) and (f1, g1) are homotopic on a compact K ⊂ En

then (fi, gi) ∈ PD(U,U \K), i = 0, 1 and I(f0, g0) = I(f1, g1).

Proof. Of course, χ0∗ and χ1∗ are both isomorphisms and are equal, so f0∗ =
f1∗ . One deduces also that f0∗ and f1∗ are both n-decomposing on (U,U\K).
In an other hand, from the commutativity of the diagram one obtains that
(f0−g0)∗ ◦h∗ = (f1−g1)∗ ◦h∗ = (ϕ−ψ)∗ therefore (f0−g0)∗ = (f0−g0)∗. �

Let (f, g) and (f ′, g′) be two pairs defined by the following way:

U
f
←− X

g
−→ En

and

U ′ f ′

←− X
g′

−→ Em

where U and U ′ are two open subsets of En and Em respectively.
LetK be a compact subset ofEn which containsF(f, g) andK ′ be a compact

subset E which contains F(f ′, g′).

Proposition 3.17. If the pairs (f, g) and (f ′, g′) are n-admissible on (U,U\K)
and (U ′, U ′\K ′) respectively then the pair (f × f ′, g× g′) is (n+m)-admissible
on (U × U ′, U × U ′\K ×K ′) and I(f × f ′, g × g′) ⊃ I(f, g) · I(f ′, g′).

Proof. One has the following equalities:

F(f × f ′, g × g′) = F(f, g)× F(f ′, g′),

OK×K′ = OK ×OK′ ∈ Hn+m [(U,U\K)× (U ′, U ′\K ′)] =
Hn+m(U × U ′, U × U ′\K ×K ′) and the inclusion:

K ×K ′ ⊃ F(f, g)× F(f ′, g′).

Therefore, if (σ, σ′) ∈ Ω(f∗, U,K) × Ω(f ′
∗, U

′,K ′) one obtains the equalities:
(f × f ′ − g × g′)∗ ◦ (σ × σ′)(OK×K′) =
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[(f − g)∗ ◦ σ × (f ′ − g′)∗ ◦ σ′] (OK ×OK′) =
(f − g)∗ ◦ σ(OK)× (f ′ − g′)∗ ◦ σ′(OK) = [Iσ(f, g) · Iσ′ (f ′, g′)]O{θ}. �

4. Generalized fixed point degree of multi-valued mappings

Let X and Y be two Hausdorff topological spaces. A multi-valued mapping
taking X to Y is a relation F which associates to each element x ∈ X a non
empty subset F (x) ⊂ Y. Let K(Y ) be the collection of all non empty compact
subsets of Y and F : X −→ K(Y ) be a multi-valued mapping.

The subset:

ΓX(F ) = {(x, y) ∈ X × Y | y ∈ F (x)} ,

of X × Y is called the graph of the multi-valued mapping F on X .
In this case one could define two natural projectors:

tF : ΓX(F ) −→ X

and

rF : ΓX(F ) −→ Y

such tF (x, y) = x, rF (x, y) = y for every (x, y) ∈ ΓX(F ).
For each element x ∈ X one has the equality F (x) = rF (t

−1
F (x)). The quin-

tuple [X,Y,ΓX(F ), tF , rF ] is called the canonical representation of the multi-
valued F : X −→ K(Y ).

Let [X1, X2, X0, f1, f2] be a quintuple constituted of Hausdorff topological
spaces Xi, i = 0, 1, 2 and continuous maps fj : X0 −→ Xi, j = 1, 2 and such
that f1 is onto and the inverse image of each element x ∈ X1 is compact, then
the equality F (x) = g ◦ f−1(x) defines a multi-valued mapping F : X1 −→
K(X2). In this case the quintuple [X1, X2, X0, f1, f2] is called a representation
of F : X1 −→ K(X2).

Two quintuples [X1, X2, X0, f1, f2], [X1, X2, X0, g1, g2] are called equivalents
if g1 ◦ f

−1
1 (x) = F (x) = g2 ◦ f

−1
2 (x) for each x ∈ X1.

A multi-valued mapping F : X −→ K(Y ) is called upper semi continuous if
F−1
+ (V ) = {x ∈ X | F (x) ⊂ V } is an open subset of Y for every open subset
V of X.

A multi-valued G : X −→ K(Y ) is said to be a selector of F : X −→ K(Y )
if G(x) ⊆ F (x) for every element x ∈ X.

Let H be the
∨

Cech homology functor with compact carries and coefficient
in the set of rational numbers Q. A multi-valued mapping F : X −→ K(Y ) is
called to be Q-acyclic provided the image F (x) is Q-acyclic for every element
x ∈ X, F is said to be compact provided F (X) is contained in a compact
subset of Y .

More properties on multi-valued mappings can be found in [24].

Let F : U −→ K(En) be a multi-valued mapping and K be a compact
subset of U ⊆ En. In this case F(tF , rF ) = {x ∈ U | x ∈ rF (t

−1
F )(x)} = {x ∈

U | x ∈ F (x)} = Fix(F ).
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Definition 4.1. A multi-valued mapping F : U −→ K(En) is called n-admissible
on (U,U\K) if the pair (tF , rF ) of projectors:

U
tF←− ΓU (F )

rF−→ En

satisfies the following conditions:

(1) K ⊃ Fix(F ) = {x ∈ U | x ∈ F (x)};
(2) the pair (tF , rF ) is n-admissible on (U,U\K).

Lemma 4.2. Let F : U −→ K(En) be a multi-valued mapping n-admissible
on (U,U\K), then one has the following diagram:

Hn(U,U\K)
(tF )

∗←− Hn(ΓU (F ),ΓU\K(F ))
(tF−rF )

∗−→ Hn(E
n, En\ {θ})

Proof. The proof is obvious. �

Definition 4.3. The generalized fixed point degree of a n-admissible multi-
valued mapping F on (U,U\K) is defined as the following set of rational num-
bers:

I(F ;U,K) = I(tF , rF ) = {Iσ(tF , rF ) | σ ∈ Ω((tF )∗ ;U,U\K)}

Let us describe some properties of this generalized fixed point degree.

Theorem 4.4. If I(F ;U,K) 6= {0} then F admits at least a fixed point i.e. a
point x ∈ U such that x ∈ F (x).

Proof. This is a consequence of corollary (3.8). �

Definition 4.5. A representation ρ = [U,En, Z, f, g] of a multi-valued mapping
F : U −→ K(En) is called n-admissible on (U,U\K) if the pair (f, g) is n-
admissible on (U,U\K) and {x ∈ U | x ∈ F (x)} ⊆ K.

Let U and V be two open subsets of En, K and K1 be two compact subsets

of En such that K ⊂ K1 ⊂ V ⊂ V ⊂ U. If the restriction
∼

F : V −→ K(En)

of F : U −→ K(En) defined by the rule
∼

F (x) = F (x) for every x ∈ V admits
a representation ρ = [V,En, Z, f, g] n-admissible on (V, V \K1), so one can
consider the following diagram:

(4.8) (V, V \K1)
f
←− (Z,Z\f−1(K1))

f−g
−→ (En, En\{θ})

Let Ω(f∗;V, V \K1) be the set of the right inverse homomorphisms of:

f∗ : Hn(Z,Z\f
−1(K1)) −→ Hn(V, V \K1).

In this case one can define:

Iρ(
∼

F ;V,K1) = {Iσ(f, g) | σ ∈ Ω(f∗;V, V \K1)}.

Proposition 4.6. If a multi-valued mapping F : U −→ K(En) has a re-

striction
∼

F : V −→ K(En) which admits a representation ρ = [V,En, Z, f, g]
n-admissible on (V, V \K1) then the multi-valued mapping F is n-admissible on

(U,U\K) and Iρ(
∼

F ;V,K1) ⊂ I(F ;U,K).
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Proof. The proof is a consequence of proposition (3.11) and the following com-
mutative diagram:

Hn(V, V \K1)
f∗←− Hn(Z,Z\f−1(K1))

(f−g)∗
−→ Hn(E

n, En\{θ})
i∗ ↓ ↓ α∗ m

Hn(U,U\K)
(tF )∗
←− Hn(ΓU (F ),ΓU\K(F ))

(tF−rF )∗
−→ Hn(E

n, En\{θ})

where α(z) = (f(z), g(z)) for each z ∈ Z. �

Corollary 4.7. If a multi-valued mapping F : U −→ K(En) admits a repre-
sentation ρ = [V,En, Z, f, g] n-admissible on (V, V \K1), then F is n-admissible
on (U,U\K) and Iρ(F ;V,K1) ⊂ I(F ;U,K).

Proposition 4.8. Let F : U −→ K(En) be a multi-valued mapping and
Φ : U −→ K(En) be a selector of F, then if Φ is a multi-valued mapping
n-admissible on (U,U\K) the multi-valued mapping F is also n-admissible on
(U,U\K) and I(Φ;U,K) ⊂ I(F ;U,K).

Proof. The proof is a consequence of the following commutative diagram:

Hn(U,U\K)
(tΦ)∗
←− Hn(ΓU (Φ),ΓU\K(Φ))

(tΦ−rΦ)∗
−→ Hn(E

n, En\{θ})
m i∗ ↓ m
Hn(U,U\K) ←−

(tF )∗
Hn(ΓU (Φ),ΓU\K(Φ)) −→

(tF−rF )∗
Hn(E

n, En\{θ})

where i is the canonical injection. �

Definition 4.9. A continuous single-valued map λ : [0, 1]×U ×En −→ En is
said to be a distortion of En if for each element x ∈ U the single-valued map
λ(0, x, .) : En −→ En is the map identity.

Definition 4.10. A multi-valued F : U −→ K(En) n-admissible on (U,U\K)
distorts into the multi-valued G : U −→ K(En) if there exists a distortion of
En such that :

(1) λ(1, x, F (x)) = G(x) for every x ∈ U ;
(2) x /∈ λ(t, x, F (x)) for every t ∈ [0, 1] and x ∈ (U\K) .

Proposition 4.11. If a multi-valued F : U −→ K(En) n-admissible on
(U,U\K) distorts into the multi-valued G : U −→ K(En), then G is n–
admissible on (U,U\K) and I(F ;U,K) ⊂ I(G;U,K).

Proof. Consider ξ : (ΓU (F ),ΓU\K(F )) −→ (ΓU (G),ΓU\K(G)) defined by the
rule ξ(x, u) = (x, λ(1, x, u)) for every (x, u) ∈ ΓU (F ). Form the equality tF =
tG ◦ ξ one deduces that G is n-admissible on (U,U\K) . In an other hand, the
continuous single-valued maps (tF − rF ), (tG− rG) ◦ ξ : (ΓU (F ),ΓU\K(F )) −→
(En, En\ {θ}) are homotopic by the homotopy h(t, (x, u) = x − λ(t, x, u) for
every t ∈ [0, 1] and (x, u) ∈ ΓU (F ). Let σ ∈ Ω ((tF )∗) , then ξ∗ ◦ σ ∈ Ω ((tG)∗)
and one has the equalities: Iσ · O{θ} = (tF − rF )∗ ◦ σ(OK) = (tG − rG)∗ ◦ ξ∗ ◦
σ(OK) = Iξ∗◦σ · O{θ}, which means that I(F ;U,K) ⊂ I(G;U,K). �
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Assume that U and V are two open subsets of En, K and K1 are two
compact subsets of En such that K ⊂ K1 ⊂ V ⊂ V ⊂ U.

Proposition 4.12. Let F : U −→ K(En) be a multi-valued mapping upper
semi continuous compact and Q-acyclic. If G : U −→ K(En) is a selector of F
and n-admissible on (V, V \K1), then I(G;V,K1) = I(F ;U,K) = {k}, where
k is the rational number which verifies the equality (tF − rF )∗ ◦ (tF )−1

∗ (OK) =
k ·O{θ}.

Proof. The proof is a consequence of the Vietoris maps theorems [12], propo-
sition (4.8) and the following commutative diagram:

Hn(V, V \K1)
tG∗←− Hn(ΓV (G),ΓV \K1

(G))
(tG−rG)∗
−→ Hn(E

n, En\ {θ})
i∗ ↓ j∗ ↓ m
Hn(U,U\K) ←−

tF∗

Hn(ΓU (F ),ΓU\K(F )) −→
(tF−rF )∗

Hn(E
n, En\ {θ})

where i : (V, V \K1) −→ (U,U\K) and j : (ΓV (G),ΓV \K1
(G)) −→ (ΓU (F ),ΓU\K(F ))

are the natural injections. �

Proposition 4.13. Let K be a compact Q-acyclic subset of En and F : U −→
K(En) be a multi-valued mapping such that F (U) ⊂ K, then F is n-admissible
on (U,U\K) and I(F ;U,K) = {1}.

Proof. Consider x0 ∈ K and let f : U −→ K(En) be the map defined by
the rule f(x) = {x0} for each x ∈ U. The quintuple ρ = [U,En, U, IdU , f ]
is a representation n-admissible on (U,U\K) of f . Consider the following
commutative diagram:

Hn(U,U\K)
(IdU )

∗←− Hn(U,U\K)
(IdU−f)

∗−→ Hn(E
n, En\ {θ})

j∗ ↓ m
Hn(E

n, En\{x0}) −→
(IdEn−f)

∗

Hn(E
n, En\ {θ})

where j∗ is an isomorphism induced by the natural injection and (IdEn −f)∗ is
the isomorphism induced by the homeomorphism (IdEn − f) : (En, En\{x0}) −→
(En, En\ {θ}) defined by the rule (IdEn − f)(x) = x − x0 for every x ∈ En.
For instance, one deduces that Iρ(f ;U,K) = {1}. In an other hand, consider
the following commutative diagram:

Hn(U,U\K)
(IdU )

∗←− Hn(U,U\K)
(IdU−f)

∗−→ Hn(E
n, En\ {θ})

m ↓ µ∗ m
Hn(U,U\K) ←−

(tF )
∗

Hn(ΓU (i−R),ΓU\K(i−R)) −→
(tF−rF )

∗

Hn(E
n, En\ {θ})

where µ(x) = (x, f(x)), for each x ∈ U. The multi-valued mapping F is n-
admissible on (U,U\K) because (IdU )∗ is an isomorphisms. From the propo-
sitions (3.9), (4.7) and the commutativity of the above diagram one infers
Iρ(f ;U,K) ⊂ I(F ;U,K). The multi-valued mapping F : U −→ K(En) is
a selector of the upper semi continuous, compact and Q-acyclic multi-valued
mapping G : U −→ K(En) defined by the rule G(x) = K for each x ∈ U.
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Using the proposition (4.12), one deduces I(F ;U,K) = I(G;U,K) = {k} so
k = 1. �

Proposition 4.14. Let C be a compact subset of En which is a neighborhood
retract. Let F : C −→ K(C) be an upper semi continuous and Q-acyclic
multi-valued mapping. Then F admits at least a fixed point.

Proof. Consider U an open subset of En and let ρ : U −→ C be a retraction
from U into C. The multi-valued G = F ◦ ρ : U −→ K(C) ⊂ K(En) is upper
semi continuous compact with Q-acyclic values, therefore I(G;U,C) = {1}.
One deduces that G admits in U, at least, a fixed point x ∈ G(x) = F (ρ(x)).
However, x ∈ C then ρ(x) = x. �
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