

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 6, No. 1, 2005 pp. 87-100

A generalized coincidence point index

N. M. Benkafadar and M. C. Benkara-Mostefa¹

ABSTRACT. The paper is devoted to build for some pairs of continuous single-valued maps a coincidence point index. The class of pairs (f,g) satisfies the condition that f induces an epimorphism of the $\stackrel{\vee}{C}$ ech homology groups with compact supports and coefficients in the field of rational numbers Q. Using this concept one defines for a class of multi-valued mappings a fixed point degree. The main theorem states that if the general coincidence point index is different from $\{0\}$, then the pair (f,g) admits at least a coincidence point. The results may be considered as a generalization of the above Eilenberg-Montgomery theorems [12], they include also, known fixed-point and coincidence-point theorems for single-valued maps and multi-valued transformations.

2000 AMS Classification: 54C60, 54H25, 55M20. 58C06.

Keywords: Fixed point, Concidence point, Index, Degree, Multi-valued mapping.

1. INTRODUCTION

Let $f, g: X \longrightarrow Y$ be two continuous single valued maps of Hausdorff topological spaces. The coincidence problem, which is a generalization of the fixed point problem, is concerned with conditions which guarantees the existence of a solution for the equation f(x) = g(x). A such point $x \in X$ is called a coincidence point of the pair of maps (f, g). The study of this problem has been treated first in 1946 by Eilenberg-Montgomery [12]. Note that the Eilenberg-Montgomery theorem is a natural generalization of the Lefschetz fixed point theorem, it implies also, the fixed point theorems of Kakutani [21] and Wallace [30]. Topological invariants for different classes of pairs of maps have been studied by many authors [9], [14], [15], [20], [22], [23], [27] and others. The purpose of this note is to describe a generalized coincidence point index for a new class

¹The authors acknowledge the support of A.N.D.R.U., (Contract No 03/06 Code CU 19905) and M.E.R.S., (Project No B*2501/04/04), Laboratory M.M.E.R.E.

of pairs of continuous maps (f, g) which satisfy the condition that f induces a *r*-homomorphism [3], [4] for homology with compact carries. Moreover, one gives several applications of the general coincidence point index in fixed point theory for multi-valued mappings.

One uses the Dold's fundamental class around a compact of a finite euclidean space E^n [10], H denotes the $\stackrel{\vee}{C}$ ech homology functor with compact carries and coefficients in the field of rational numbers Q, from the category $Top_{(2)}$ of Hausdorff topological pairs and continuous maps to the category L_g of graded vector spaces over the set of rational numbers Q and linear maps of degree zero [13], [18], [29].

2. Maps *n*-decomposing.

Let G_1 and G_2 be two additive abelian groups, $\tau: G_1 \longrightarrow G_2$ be a homomorphism.

Definition 2.1 ([3]). A homomorphism τ is a called a r-homomorphism if τ admits a right-inverse homomorphism.

The definition signifies, since $\tau : G_1 \longrightarrow G_2$ is a *r*-homomorphism then there exists a homomorphism $\sigma : G_2 \longrightarrow G_1$ such that $\tau \circ \sigma = Id_{G_2}$, where Id_{G_2} is the automorphism identity on G_2 .

The following properties are satisfied.

Proposition 2.2. A homomorphism $\tau : G_1 \longrightarrow G_2$ is a r-homomorphism if and only if the following conditions are satisfied :

- (1) τ is an epimorphism;
- (2) $G_1 = Ker \tau \oplus \mathcal{G}$, where \mathcal{G} is a subgroup of G_1 .

Proposition 2.3. If G_1 and G_2 are two modules over a field K and if τ : $G_1 \longrightarrow G_2$ is an epimorphism then τ is a r-homomorphism.

Proposition 2.4 ([3]). Let $\tau_1 : G_1 \longrightarrow G_2$ and $\tau_2 : G_2 \longrightarrow G_3$ be two r-homomorphisms then their composition $\tau = \tau_2 \circ \tau_1 : G_1 \longrightarrow G_3$ is also a r-homomorphism.

The notion of r-homomorphisms has been introduced by Borsuk and Kosinsk [3], [4].

Let (X, A) and (Y, B) be two objects of the category $Top_{(2)}$ of Hausdorff topological pairs and continuous maps and $f: (X, A) \longrightarrow (Y, B)$ be a morphism from the Hausdorff pair (X, A) into an other Hausdorff pair (Y, B).

Let H be the Cech homology functor with compact carries and coefficients in the field of rational numbers Q, from the category $Top_{(2)}$ of Hausdorff topological pairs and continuous maps to the category L_g of graded vector spaces over the set of rational numbers Q and linear maps of degree zero [13], [18], [29]. **Definition 2.5.** A continuous single-valued map $f : (X, A) \longrightarrow (Y, B)$ is said to be n-decomposing in the rank $n \ge 0$ on the Hausdorff pair (Y, B) if the homomorphism $f_* : H_n(X, A) \to H_n(Y, B)$ induced by f, is a r-homomorphism.

The set of the right-inverse homomorphisms of f_* on (Y, B) will be denoted by $\Omega(f_*; Y, B)$.

The following propositions and corollaries, prove that the class of n-decomposing maps is vast.

Definition 2.6 ([3]). A continuous single-valued map $f : (X, A) \longrightarrow (Y, B)$ is called a r-map if f admits a continuous right inverse.

Proposition 2.7. Let $f : (X, A) \longrightarrow (Y, B)$ be a single-valued map which is a *r*-map, then f is *n*-decomposing on (Y, B) for every rank $n \ge 0$.

Corollary 2.8. A retraction r of a pair (X, A) onto (X', A') is n-decomposing on the retract (X', A') of (X, A).

Definition 2.9 ([3]). A continuous single-valued map $f : (X, A) \longrightarrow (Y, B)$ is said to be a h-map if there exists a continuous single-valued $g : (Y, B) \longrightarrow (X, A)$ such that their composition $f \circ g$ and the identity map $Id_{(Y,B)} : (Y, B) \longrightarrow (Y, B)$ are homotopic.

Proposition 2.10. If $f : (X, A) \longrightarrow (Y, B)$ is a h-map, then f is n-decomposing on (Y, B) for every $n \ge 0$.

Corollary 2.11. A lower retraction $r : (X, A) \longrightarrow (X', A')$ is n-decomposing on each lower retract (X', A') of (X, A).

Proposition 2.12. Let $f : (X, A) \longrightarrow (Y, B)$ be a continuous single-valued map. If there exists a continuous single-valued map $g : (Z, C) \longrightarrow (X, A)$ such that their composition $f \circ g$ is n-decomposing on (Y, B), then f is also n-decomposing on (Y, B).

Corollary 2.13. Let $f: (X, A) \longrightarrow (Y, B)$ be a continuous single-valued map and $(Z, C) \subseteq (X, A)$. If the restriction of f on (Z, C) is n-decomposing on (Y, B), then f is also n-decomposing on (Y, B).

Proposition 2.14. Let $f : (X, A) \longrightarrow (Y, B)$ be a n-decomposing on (Y, B)and $g : (Y, B) \longrightarrow (Z, C)$ be a n-decomposing on (Z, C), then their composition $g \circ f$ is n-decomposing on (Z, C).

Definition 2.15 ([5]). A space X is Q-acyclic provided: (i) X is non-empty, (ii) $H_q(X) = 0$ for all $q \ge 1$ and (iii) $H_0(X) \approx Q$.

Proposition 2.16. Let $f : (X, A) \longrightarrow (Y, B)$ be a continuous single-valued map such that:

- (1) f is proper and surjective;
- (2) $f^{-1}(B) = A;$
- (3) $f^{-1}(y)$ is Q-acyclic for every $y \in Y$.

Then the map f is n-decomposing on (Y, B) for every $n \ge 0$.

Proposition 2.17. Let U be an open subset of an Euclidean space E^n and K be a compact subset of U, then the injection $i : (U, U \setminus K) \longrightarrow (E^n, E^n \setminus K)$ is n-decomposing on $(E^n, E^n \setminus K)$.

3. Generalized coincidence point index

Let U be an open subset of an euclidean vector space E^n which has a fixed orientation.

Let (f, g) be a pair of continuous single-valued maps defining as follows:

$$(3.1) U \xleftarrow{J} X \xrightarrow{g} E^n$$

where X is an arbitrary Hausdorff topological space.

Definition 3.1. An element $x \in X$ is said to be a coincidence point of the pair (f,g) if f(x) = g(x).

Let $\mathbf{S}(f,g)$ be the set of all coincidence points of the pair (f,g) and $\mathbf{F}(f,g)$ be the subset of U defined as follows:

$$\mathbf{F}(f,g) = \{ u \in U \mid u \in g(f^{-1}(u)) \}.$$

Lemma 3.2. One has the equality $f(\mathbf{S}(f,g)) = \mathbf{F}(f,g)$.

Proof. The proof is obvious.

Let K be a compact subset of U which contains $\mathbf{F}(f, g)$. Thus, one obtains the following diagram:

(3.2)
$$(U, U \setminus K) \xleftarrow{f} (X, X \setminus f^{-1}(K)) \xrightarrow{f-g} (E^n, E^n \setminus \{\theta\})$$

Definition 3.3. A pair of continuous single-valued maps (f,g) as above defined, is called n-admissible on $(U, U \setminus K)$ if f is n-decomposing on $(U, U \setminus K)$.

The set of all n-admissible pairs on $(U, U \setminus K)$ is denoted $\mathcal{PD}(U, U \setminus K)$.

Let $(f,g) \in \mathcal{PD}(U, U \setminus K)$, then if $\sigma \in \Omega(f_*; U, U \setminus K)$ the diagram (3.2) induces the following diagram:

$$H_n(U, U \setminus K) \quad \stackrel{f_*}{\longleftarrow} \quad H_n(X, X \setminus f^{-1}(K)) \quad \stackrel{(f-g)_*}{\longrightarrow} \quad H_n(E^n, E^n \setminus \{\theta\})$$

(3.3)

 $\sigma \searrow$

 $H_n(X, X \backslash f^{-1}(K))$

1

Let $O_K \in H_n(U, U \setminus K)$ be the image of 1 under the composite map:

$$Z = H_n(S^n) \longrightarrow H_n(S^n, S^n \setminus K) \cong H_n(U, U \setminus K)$$

and $O_{\{\theta\}} \in H_n(E^n, E^n \setminus \{\theta\})$ be the image of 1 under the composition map: $Z = H_n(S^n) \longrightarrow H_n(S^n, S^n \setminus \{\theta\}) \cong H_n(E^n, E^n \setminus \{\theta\})$

where $S^n = E^n \cup \{\infty\}$.

The elements O_K and $O_{\{\theta\}}$ are called the fundamental classes around the compacts K and $\{\theta\}$ respectively [9], [10].

Definition 3.4. Let (f,g) be a n-admissible pair on $(U, U \setminus K)$. The generalized coincidence point index of (f,g) relatively $\sigma \in \Omega(f_*; U, U \setminus K)$ is defined as being the rational number $I_{\sigma}(f,g)$ which verifies the equality $(f - g)_* \circ \sigma(O_K) = I_{\sigma}(f,g) \cdot O_{\{\theta\}}$.

Definition 3.5. Let (f,g) be a n-admissible pair on $(U, U \setminus K)$. The generalized coincidence point index of (f,g) is defined as being the set of rational numbers $I(f,g) = \{I_{\sigma}(f,g) \mid \sigma \in \Omega(f_*; U, U \setminus K)\}.$

Proposition 3.6. If the single-valued map $f : (X, X \setminus f^{-1}(K)) \longrightarrow (U, U \setminus K)$ verifies the conditions of the proposition (2.16), then the pair (f,g) is nadmissible on $(U, U \setminus K)$ and $I(f,g) = \{I_{(f_*)}^{-1}(f,g)\}.$

Proof. The single-valued map $f : (X, X \setminus f^{-1}(K)) \longrightarrow (U, U \setminus K)$ induces an isomorphism $f_* : H_n(X, X \setminus f^{-1}(K)) \longrightarrow H_n(U, U \setminus K)$ therefore $\Omega(f_*; U, U \setminus K) = \{(f_*)^{-1}\}.$

Proposition 3.7. If $\mathbf{F}(f,g) = \emptyset$, then $I(f,g) = \{0\}$.

Proof. Suppose that $\mathbf{F}(f,g) = \emptyset$ then using lemma (3.2) one deduces that $\mathbf{S}(f,g) = \emptyset$. This equality means that $f(x) \neq g(x)$ for each $x \in X$. Therefore for every $\sigma \in \Omega(f_*; U, U \setminus K)$ we have the following commutative diagram:

$$\begin{array}{cccc} H_n(U,U\backslash K) & \stackrel{\sigma}{\longrightarrow} & H_n(X,X\backslash f^{-1}(K)) & \stackrel{(J-g)_*}{\longrightarrow} & & H_n(E^n,E^n\backslash\{\theta\}) \\ & & \overline{(f-g)_*}\searrow & & & \\ & & & & \\ & & & & H_n(E^n\backslash\{\theta\},E^n\backslash\{\theta\}) \end{array}$$

where $\overline{(f-g)} = f - g$. One concludes the proof remarking that $\overline{(f-g)}_*$ is the trivial homomorphism.

Corollary 3.8. If $I(f,g) \neq \{0\}$, then the pair (f,g) admits at least a coincidence point.

Proof. This is a consequence of lemma (3.2).

Let $g: U \longrightarrow E^n$ be a continuous single-valued map defined from an open subset U of an Euclidean vector space E^n and K be a compact subset of U which contains $Fix(g) = \{x \in U \mid x = g(x)\}$. The fixed point index of g defined in [9] is the rational I_g which verifies the equality:

$$(i-g)_{n*}(O_K) = I_g \cdot O_{\{\theta\}},$$

where $i: U \longrightarrow E^n$ is the natural injection.

Proposition 3.9. The generalized coincidence point index of the pair (i, g) is defined and equal to the fixed point index of g.

Proof. First note that $\mathbf{F}(i,g) = Fix(g) = \{x \in U \mid x = g(x)\}$. Let K be a compact subset of E^n which contains $\mathbf{F}(i,g) = Fix(g)$. So, one has the diagram:

$$H_n(E^n, E^n \setminus K) \xleftarrow{i_*} H_n (U, U \setminus K) \xrightarrow{(i-g)_*} H_n(E^n, E^n \setminus \{\theta\}).$$

Therefore, $I(i,g) \cdot O_{\{\theta\}} = (i-g)_* \circ i_*^{-1}(O_K) = (i-g)_*(O_K) = I_g \cdot O_{\{\theta\}}.$

Corollary 3.10. If $I(i,g) \neq \{0\}$ then g admits at least a fixed point.

Let (f, g) and (f_1, g_1) be two pairs of continuous single-valued maps defining as follows:

$$(3.4) U \xleftarrow{f} X \xrightarrow{g} E^n$$

and

$$(3.5) V \xleftarrow{f_1} X_1 \xrightarrow{g_1} E^n$$

where U and V are two open subsets of E^n and X and X_1 are two Hausdorff topological spaces.

Let K and K_1 be two compact subsets of E^n which contain $\mathbf{F}(f,g)$ and $F(f_1,g_1)$ respectively and such that $K \subset K_1 \subset V \subset \overline{V} \subset U$.

For instance, one obtains the following diagrams:

$$(3.6) \qquad (U,U\backslash K) \xleftarrow{f} (X,X\backslash f^{-1}(K)) \xrightarrow{f-g} (E^n, E^n\backslash \{\theta\})$$

and

$$(3.7) (V,V\backslash K_1) \xleftarrow{f_1} (X_1,X_1\backslash f_1^{-1}(K_1)) \xrightarrow{f_1-g_1} (E^n,E^n\backslash \{\theta\}).$$

Proposition 3.11. Under the above hypotheses, assume that $h : (X_1, X_1 \setminus f_1^{-1}(K_1)) \longrightarrow (X, X \setminus f^{-1}(K))$ is a continuous single-valued map such that the following diagram is commutative:

where *i* is the natural injection. Then if the pair $(f_1, g_1) \in \mathcal{PD}(V, V \setminus K_1)$ one can infer that $(f, g) \in \mathcal{PD}(U, U \setminus K)$ and $I(f_1, g_1) \subset I(f, g)$.

Proof. Of course, *i* induces an isomorphism $i_* : H_n(V, V \setminus K_1) \longrightarrow H_n(U, U \setminus K)$ which takes O_{K_1} in O_K . Moreover, if $\sigma \in \Omega(f_{1*}, V, V \setminus K_1)$, then $h_* \circ \sigma \circ i_*^{-1} \in \Omega(f_*, U, U \setminus K)$.

Let (f, g) be a pair of continuous single-valued maps such that:

$$U \xleftarrow{f} X \xrightarrow{g} E^n$$

and $h: X_1 \longrightarrow X$ be a continuous single-valued map defined between two Hausdorff topological spaces X_1 and X.

Proposition 3.12. If $h : (X_1, X_1 \setminus (f \circ h)^{-1}(K)) \longrightarrow (X, X \setminus f^{-1}(K))$ is ndecomposing on $(X, X \setminus f^{-1}(K))$ and the pair (f, g) is n-admissible on $(U, U \setminus K)$, then $(f \circ h, g \circ h) \in \mathcal{PD}(U, U \setminus K)$ and $I(f \circ h, g \circ h) \subset I(f, g)$.

Proof. Note that $\mathbf{F}(f \circ h, g \circ h) \subseteq \mathbf{F}(f, g) \subseteq K$, the composition $f \circ h$ is *n*-decomposing on $(U, U \setminus K)$ (see proposition 2.14), and one has the following diagram:

$$(U, U \setminus K) \quad \stackrel{f \circ h}{\longleftarrow} \quad (X_1, X_1 \setminus (f \circ h)^{-1}(K)) \quad \stackrel{f \circ h - g \circ h}{\longrightarrow} \quad (E^n, E^n \setminus \{\theta\})$$

Let $k \in I(f \circ h, g \circ h)$, then there exists $\sigma \in \Omega((f \circ h)_*, U, U \setminus K)$ such that $(f \circ h - g \circ h)_* \circ \sigma(O_K) = k \cdot O_{\theta}$, therefore $(f - g)_* \circ h_* \circ \sigma(O_K) = k \cdot O_{\theta}$. Because $h_* \circ \sigma \in \Omega(f_*; U, U \setminus K)$, one deduces that $k \in I(f, g)$.

Definition 3.13. Two pairs of continuous single-valued maps defined as follows:

$$U \xleftarrow{f_i} X \xrightarrow{g_i} E^n, \ i = 0, 1$$

are called equivariant on a compact $K \subset E^n$ if there exist:

(1) a Hausdorff pair $(X, X \setminus X')$ such that:

$$(U, U \setminus K) \xleftarrow{J_i} (X, X \setminus X') \xrightarrow{J_i - g_i} (E^n, E^n \setminus \{\theta\}), \ i = 0, 1,$$

(2) a pair of continuous maps (φ, ψ) n-admissible on $(U, U \setminus K)$ such that:

$$(U, U \setminus K) \quad \stackrel{\varphi}{\longleftarrow} \quad (X, X \setminus \varphi^{-1}(K)) \quad \stackrel{\varphi - \psi}{\longrightarrow} \quad (E^n, E^n \setminus \{\theta\})$$

(3) a single-valued map $h: (X, X \setminus \varphi^{-1}(K)) \longrightarrow (X, X \setminus X')$ n-decomposing on $(X, X \setminus X')$ such that the following diagram is commutative:

Proposition 3.14. If (f_i, g_i) , i = 0, 1 are two equivariant pairs on a compact $K \subset E^n$, then $(f_i, g_i) \in \mathcal{PD}(U, U \setminus K)$, i = 0, 1, and $I(f_0, g_0) = I(f_1, g_1)$.

Proof. Assume (f_0, g_0) and (f_1, g_1) are equivariant, then $f_{0*} \circ h_* = \varphi_* = f_{1*} \circ h_*$ therefore f_{0*}, f_{1*} are both *n*-decomposing on $(U, U \setminus K)$ and $f_{0*} = f_{1*}$. Moreover, $(f_0 - g_0)_* \circ h_* = (\varphi - \psi)_* = (f_1 - g_1)_* \circ h_*$ so $(f_0 - g_0)_* = (f_1 - g_1)_*$. \Box

Definition 3.15. Two pairs (f_i, g_i) , i = 0, 1 defined as follows:

$$(U, U \setminus K) \xleftarrow{f_i} (X, X \setminus X') \xrightarrow{f_i - g_i} (E^n, E^n \setminus \{\theta\}), \ i = 0, 1,$$

are called homotopic on a compact $K \subset E^n$ if the following conditions are verified:

(1) there exists a pair of single-valued maps (φ, ψ) n-admissible on $(U, U \setminus K) \times [0, 1]$ such that:

$$U, U \backslash K) \times [0, 1] \xleftarrow{\varphi} (X, X \backslash \varphi^{-1}(K \times [0, 1])) \xrightarrow{\varphi - \Psi} (E^n, E^n \backslash \{\theta\}),$$

(2) there exists a single valued map

$$h: (X, X \setminus X') \longrightarrow (X, X \setminus \varphi^{-1}(K \times [0, 1])),$$

n-decomposing on $(X, X \setminus \varphi^{-1}(K \times [0, 1])),$

(3) the following diagram is commutative:

where $\chi_i(x) = (x, i)$, for every $x \in U$ and i = 0, 1.

Proposition 3.16. If (f_0, g_0) and (f_1, g_1) are homotopic on a compact $K \subset E^n$ then $(f_i, g_i) \in \mathcal{PD}(U, U \setminus K)$, i = 0, 1 and $I(f_0, g_0) = I(f_1, g_1)$.

Proof. Of course, χ_{0*} and χ_{1*} are both isomorphisms and are equal, so $f_{0*} = f_{1*}$. One deduces also that f_{0*} and f_{1*} are both *n*-decomposing on $(U, U \setminus K)$. In an other hand, from the commutativity of the diagram one obtains that $(f_0 - g_0)_* \circ h_* = (f_1 - g_1)_* \circ h_* = (\varphi - \psi)_*$ therefore $(f_0 - g_0)_* = (f_0 - g_0)_*$. \Box

Let (f, g) and (f', g') be two pairs defined by the following way:

$$U \stackrel{f}{\longleftarrow} X \stackrel{g}{\longrightarrow} E^n$$

and

$$U' \xleftarrow{f'} X \xrightarrow{g'} E^m$$

where U and U' are two open subsets of E^n and E^m respectively.

Let K be a compact subset of E^n which contains $\mathbf{F}(f, g)$ and K' be a compact subset E which contains $\mathbf{F}(f', g')$.

Proposition 3.17. If the pairs (f,g) and (f',g') are n-admissible on $(U, U \setminus K)$ and $(U', U' \setminus K')$ respectively then the pair $(f \times f', g \times g')$ is (n+m)-admissible on $(U \times U', U \times U' \setminus K \times K')$ and $I(f \times f', g \times g') \supset I(f,g) \cdot I(f',g')$.

Proof. One has the following equalities:

$$\mathbf{F}(f \times f', g \times g') = \mathbf{F}(f, g) \times \mathbf{F}(f', g'),$$

 $O_{K \times K'} = O_K \times O_{K'} \in H_{n+m} [(U, U \setminus K) \times (U', U' \setminus K')] = H_{n+m}(U \times U', U \times U' \setminus K \times K')$ and the inclusion:

$$K \times K' \supset \mathbf{F}(f,g) \times \mathbf{F}(f',g').$$

Therefore, if $(\sigma, \sigma') \in \Omega(f_*, U, K) \times \Omega(f'_*, U', K')$ one obtains the equalities: $(f \times f' - g \times g')_* \circ (\sigma \times \sigma')(O_{K \times K'}) =$

94

(

A generalized coincidence point index

$$[(f-g)_* \circ \sigma \times (f'-g')_* \circ \sigma'] (O_K \times O_{K'}) = (f-g)_* \circ \sigma(O_K) \times (f'-g')_* \circ \sigma'(O_K) = [I_{\sigma}(f,g) \cdot I_{\sigma'}(f',g')] O_{\{\theta\}}.$$

4. Generalized fixed point degree of multi-valued mappings

Let X and Y be two Hausdorff topological spaces. A multi-valued mapping taking X to Y is a relation F which associates to each element $x \in X$ a non empty subset $F(x) \subset Y$. Let K(Y) be the collection of all non empty compact subsets of Y and $F: X \longrightarrow K(Y)$ be a multi-valued mapping.

The subset:

$$\Gamma_X(F) = \{(x, y) \in X \times Y \mid y \in F(x)\},\$$

of $X \times Y$ is called the graph of the multi-valued mapping F on X. In this case one could define two natural projectors:

$$t_F: \Gamma_X(F) \longrightarrow X$$

and

$$r_F: \Gamma_X(F) \longrightarrow Y$$

such $t_F(x,y) = x$, $r_F(x,y) = y$ for every $(x,y) \in \Gamma_X(F)$.

For each element $x \in X$ one has the equality $F(x) = r_F(t_F^{-1}(x))$. The quintuple $[X, Y, \Gamma_X(F), t_F, r_F]$ is called the canonical representation of the multivalued $F: X \longrightarrow K(Y)$.

Let $[X_1, X_2, X_0, f_1, f_2]$ be a quintuple constituted of Hausdorff topological spaces X_i , i = 0, 1, 2 and continuous maps $f_j : X_0 \longrightarrow X_i$, j = 1, 2 and such that f_1 is onto and the inverse image of each element $x \in X_1$ is compact, then the equality $F(x) = g \circ f^{-1}(x)$ defines a multi-valued mapping $F : X_1 \longrightarrow K(X_2)$. In this case the quintuple $[X_1, X_2, X_0, f_1, f_2]$ is called a representation of $F : X_1 \longrightarrow K(X_2)$.

Two quintuples $[X_1, X_2, X_0, f_1, f_2]$, $[X_1, X_2, X_0, g_1, g_2]$ are called equivalents if $g_1 \circ f_1^{-1}(x) = F(x) = g_2 \circ f_2^{-1}(x)$ for each $x \in X_1$. A multi-valued mapping $F : X \longrightarrow K(Y)$ is called upper semi continuous if

A multi-valued mapping $F: X \longrightarrow K(Y)$ is called upper semi continuous if $F_+^{-1}(V) = \{x \in X \mid F(x) \subset V\}$ is an open subset of Y for every open subset V of X.

A multi-valued $G: X \longrightarrow K(Y)$ is said to be a selector of $F: X \longrightarrow K(Y)$ if $G(x) \subseteq F(x)$ for every element $x \in X$.

Let H be the Cech homology functor with compact carries and coefficient in the set of rational numbers Q. A multi-valued mapping $F: X \longrightarrow K(Y)$ is called to be Q-acyclic provided the image F(x) is Q-acyclic for every element $x \in X$, F is said to be compact provided F(X) is contained in a compact subset of Y.

More properties on multi-valued mappings can be found in [24].

Let $F : U \longrightarrow K(E^n)$ be a multi-valued mapping and K be a compact subset of $U \subseteq E^n$. In this case $\mathbf{F}(t_F, r_F) = \{x \in U \mid x \in r_F(t_F^{-1})(x)\} = \{x \in U \mid x \in F(x)\} = Fix(F).$

Definition 4.1. A multi-valued mapping $F : U \longrightarrow K(E^n)$ is called n-admissible on $(U, U \setminus K)$ if the pair (t_F, r_F) of projectors:

$$U \xleftarrow{t_F} \Gamma_U(F) \xrightarrow{r_F} E^n$$

satisfies the following conditions:

- (1) $K \supset Fix(F) = \{x \in U \mid x \in F(x)\};$
- (2) the pair (t_F, r_F) is n-admissible on $(U, U \setminus K)$.

Lemma 4.2. Let $F : U \longrightarrow K(E^n)$ be a multi-valued mapping n-admissible on $(U, U \setminus K)$, then one has the following diagram:

$$H_n(U,U\backslash K) \stackrel{(t_F)_*}{\longleftarrow} H_n(\Gamma_U(F),\Gamma_{U\backslash K}(F)) \stackrel{(t_F-r_F)_*}{\longrightarrow} H_n(E^n,E^n\backslash \{\theta\})$$

Proof. The proof is obvious.

Definition 4.3. The generalized fixed point degree of a n-admissible multivalued mapping F on $(U, U \setminus K)$ is defined as the following set of rational numbers:

$$\mathcal{I}(F; U, K) = I(t_F, r_F) = \{ I_\sigma(t_F, r_F) \mid \sigma \in \Omega((t_F)_*; U, U \setminus K) \}$$

Let us describe some properties of this generalized fixed point degree.

Theorem 4.4. If $\mathcal{I}(F; U, K) \neq \{0\}$ then F admits at least a fixed point *i.e.* a point $x \in U$ such that $x \in F(x)$.

Proof. This is a consequence of corollary (3.8).

Definition 4.5. A representation $\rho = [U, E^n, Z, f, g]$ of a multi-valued mapping $F : U \longrightarrow K(E^n)$ is called *n*-admissible on $(U, U \setminus K)$ if the pair (f, g) is *n*-admissible on $(U, U \setminus K)$ and $\{x \in U \mid x \in F(x)\} \subseteq K$.

Let U and V be two open subsets of E^n , K and K_1 be two compact subsets of E^n such that $K \subset K_1 \subset V \subset \overline{V} \subset U$. If the restriction $\widetilde{F}: V \longrightarrow K(E^n)$ of $F: U \longrightarrow K(E^n)$ defined by the rule $\widetilde{F}(x) = F(x)$ for every $x \in V$ admits a representation $\rho = [V, E^n, Z, f, g]$ *n*-admissible on $(V, V \setminus K_1)$, so one can consider the following diagram:

(4.8)
$$(V, V \setminus K_1) \xleftarrow{f} (Z, Z \setminus f^{-1}(K_1)) \xrightarrow{f-g} (E^n, E^n \setminus \{\theta\})$$

Let $\Omega(f_*; V, V \setminus K_1)$ be the set of the right inverse homomorphisms of:

$$f_*: H_n(Z, Z \setminus f^{-1}(K_1)) \longrightarrow H_n(V, V \setminus K_1).$$

In this case one can define:

$$\mathcal{I}_{\rho}(F; V, K_1) = \{ I_{\sigma}(f, g) \mid \sigma \in \Omega(f_*; V, V \setminus K_1) \}.$$

Proposition 4.6. If a multi-valued mapping $F : U \longrightarrow K(E^n)$ has a restriction $\widetilde{F} : V \longrightarrow K(E^n)$ which admits a representation $\rho = [V, E^n, Z, f, g]$ *n*-admissible on $(V, V \setminus K_1)$ then the multi-valued mapping F is *n*-admissible on $(U, U \setminus K)$ and $\mathcal{I}_{\rho}(\widetilde{F}; V, K_1) \subset \mathcal{I}(F; U, K)$.

Proof. The proof is a consequence of proposition (3.11) and the following commutative diagram:

$$\begin{array}{cccc} H_n(V,V\backslash K_1) & \xleftarrow{f_*} & H_n(Z,Z\backslash f^{-1}(K_1)) & \stackrel{(f-g)_*}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \\ i_*\downarrow & & \downarrow \alpha_* & & \updownarrow \\ H_n(U,U\backslash K) & \xleftarrow{(t_F)_*} & H_n(\Gamma_U(F),\Gamma_{U\backslash K}(F)) & \stackrel{(t_F-r_F)_*}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \\ \text{where } \alpha(z) = (f(z),g(z)) & \text{for each } z \in Z. & \Box \end{array}$$

Corollary 4.7. If a multi-valued mapping $F : U \longrightarrow K(E^n)$ admits a representation $\rho = [V, E^n, Z, f, g]$ n-admissible on $(V, V \setminus K_1)$, then F is n-admissible on $(U, U \setminus K)$ and $\mathcal{I}_{\rho}(F; V, K_1) \subset \mathcal{I}(F; U, K)$.

Proposition 4.8. Let $F : U \longrightarrow K(E^n)$ be a multi-valued mapping and $\Phi : U \longrightarrow K(E^n)$ be a selector of F, then if Φ is a multi-valued mapping *n*-admissible on $(U, U \setminus K)$ the multi-valued mapping F is also *n*-admissible on $(U, U \setminus K)$ and $\mathcal{I}(\Phi; U, K) \subset \mathcal{I}(F; U, K)$.

Proof. The proof is a consequence of the following commutative diagram:

$$\begin{array}{cccc} H_n(U,U\backslash K) & \stackrel{(t_{\Phi})_*}{\longleftarrow} & H_n(\Gamma_U(\Phi),\Gamma_{U\backslash K}(\Phi)) & \stackrel{(t_{\Phi}-r_{\Phi})_*}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \\ & & & & & & \\ \uparrow & & & & & \\ H_n(U,U\backslash K) & \underset{(t_F)_*}{\longleftarrow} & H_n(\Gamma_U(\Phi),\Gamma_{U\backslash K}(\Phi)) & \underset{(t_F-r_F)_*}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \end{array}$$

where i is the canonical injection.

Definition 4.9. A continuous single-valued map $\lambda : [0,1] \times U \times E^n \longrightarrow E^n$ is said to be a distortion of E^n if for each element $x \in U$ the single-valued map $\lambda(0,x,.): E^n \longrightarrow E^n$ is the map identity.

Definition 4.10. A multi-valued $F : U \longrightarrow K(E^n)$ n-admissible on $(U, U \setminus K)$ distorts into the multi-valued $G : U \longrightarrow K(E^n)$ if there exists a distortion of E^n such that :

- (1) $\lambda(1, x, F(x)) = G(x)$ for every $x \in U$;
- (2) $x \notin \lambda(t, x, F(x))$ for every $t \in [0, 1]$ and $x \in (U \setminus K)$.

Proposition 4.11. If a multi-valued $F : U \longrightarrow K(E^n)$ n-admissible on $(U, U \setminus K)$ distorts into the multi-valued $G : U \longrightarrow K(E^n)$, then G is n-admissible on $(U, U \setminus K)$ and $\mathcal{I}(F; U, K) \subset \mathcal{I}(G; U, K)$.

Proof. Consider $\xi : (\Gamma_U(F), \Gamma_{U\setminus K}(F)) \longrightarrow (\Gamma_U(G), \Gamma_{U\setminus K}(G))$ defined by the rule $\xi(x, u) = (x, \lambda(1, x, u))$ for every $(x, u) \in \Gamma_U(F)$. Form the equality $t_F = t_G \circ \xi$ one deduces that G is n-admissible on $(U, U\setminus K)$. In an other hand, the continuous single-valued maps $(t_F - r_F), (t_G - r_G) \circ \xi : (\Gamma_U(F), \Gamma_{U\setminus K}(F)) \longrightarrow (E^n, E^n \setminus \{\theta\})$ are homotopic by the homotopy $h(t, (x, u) = x - \lambda(t, x, u)$ for every $t \in [0, 1]$ and $(x, u) \in \Gamma_U(F)$. Let $\sigma \in \Omega((t_F)_*)$, then $\xi_* \circ \sigma \in \Omega((t_G)_*)$ and one has the equalities: $I_{\sigma} \cdot O_{\{\theta\}} = (t_F - r_F)_* \circ \sigma(O_K) = (t_G - r_G)_* \circ \xi_* \circ \sigma(O_K) = I_{\xi_* \circ \sigma} \cdot O_{\{\theta\}}$, which means that $\mathcal{I}(F; U, K) \subset \mathcal{I}(G; U, K)$.

 \square

Assume that U and V are two open subsets of E^n , K and K_1 are two compact subsets of E^n such that $K \subset K_1 \subset V \subset \overline{V} \subset U$.

Proposition 4.12. Let $F : U \longrightarrow K(E^n)$ be a multi-valued mapping upper semi continuous compact and Q-acyclic. If $G : U \longrightarrow K(E^n)$ is a selector of Fand n-admissible on $(V, V \setminus K_1)$, then $\mathcal{I}(G; V, K_1) = \mathcal{I}(F; U, K) = \{k\}$, where k is the rational number which verifies the equality $(t_F - r_F)_* \circ (t_F)_*^{-1}(O_K) =$ $k \cdot O_{\{\theta\}}$.

Proof. The proof is a consequence of the Vietoris maps theorems [12], proposition (4.8) and the following commutative diagram:

$$\begin{array}{cccc} H_n(V,V\setminus K_1) & \stackrel{t_{G*}}{\longleftrightarrow} & H_n(\Gamma_V(G),\Gamma_{V\setminus K_1}(G)) & \stackrel{(t_G-r_G)_*}{\longrightarrow} & H_n(E^n,E^n\setminus\{\theta\}) \\ i_*\downarrow & & j_*\downarrow & & & \\ H_n(U,U\setminus K) & \xleftarrow{}_{F_*} & H_n(\Gamma_U(F),\Gamma_{U\setminus K}(F)) & \stackrel{\longrightarrow}{\longrightarrow} & H_n(E^n,E^n\setminus\{\theta\}) \end{array}$$

where $i: (V, V \setminus K_1) \longrightarrow (U, U \setminus K)$ and $j: (\Gamma_V(G), \Gamma_{V \setminus K_1}(G)) \longrightarrow (\Gamma_U(F), \Gamma_{U \setminus K}(F))$ are the natural injections.

Proposition 4.13. Let K be a compact Q-acyclic subset of E^n and $F: U \longrightarrow K(E^n)$ be a multi-valued mapping such that $F(U) \subset K$, then F is n-admissible on $(U, U \setminus K)$ and $\mathcal{I}(F; U, K) = \{1\}$.

Proof. Consider $x_0 \in K$ and let $f : U \longrightarrow K(E^n)$ be the map defined by the rule $f(x) = \{x_0\}$ for each $x \in U$. The quintuple $\rho = [U, E^n, U, Id_U, f]$ is a representation *n*-admissible on $(U, U \setminus K)$ of f. Consider the following commutative diagram:

$$\begin{array}{cccc} H_n(U,U\backslash K) & \stackrel{(Id_U)_*}{\longleftarrow} & H_n(U,U\backslash K) & \stackrel{(Id_U-f)_*}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \\ & & j_*\downarrow & & & \\ & & H_n(E^n,E^n\backslash\{x_0\}) & \stackrel{\longrightarrow}{\longrightarrow} & H_n(E^n,E^n\backslash\{\theta\}) \end{array}$$

where j_* is an isomorphism induced by the natural injection and $(Id_{E^n} - f)_*$ is the isomorphism induced by the homeomorphism $(Id_{E^n} - f) : (E^n, E^n \setminus \{x_0\}) \longrightarrow$ $(E^n, E^n \setminus \{\theta\})$ defined by the rule $(Id_{E^n} - f)(x) = x - x_0$ for every $x \in E^n$. For instance, one deduces that $\mathcal{I}_{\rho}(f; U, K) = \{1\}$. In an other hand, consider the following commutative diagram:

$$\begin{array}{cccc} H_n(U,U\backslash K) & \stackrel{(Id_U)_*}{\longleftarrow} & H_n(U,U\backslash K) & \stackrel{(Id_U-f)_*}{\longrightarrow} & H_n(E^n,E^n\backslash \{\theta\}) \\ & & \downarrow \mu_* & & & \\ H_n(U,U\backslash K) & \stackrel{(Id_U)_*}{\longleftarrow} & H_n(\Gamma_U(i-R),\Gamma_{U\backslash K}(i-R)) & \stackrel{(Id_U-f)_*}{\longrightarrow} & H_n(E^n,E^n\backslash \{\theta\}) \end{array}$$

where $\mu(x) = (x, f(x))$, for each $x \in U$. The multi-valued mapping F is *n*admissible on $(U, U \setminus K)$ because $(Id_U)_*$ is an isomorphisms. From the propositions (3.9), (4.7) and the commutativity of the above diagram one infers $\mathcal{I}_{\rho}(f; U, K) \subset \mathcal{I}(F; U, K)$. The multi-valued mapping $F : U \longrightarrow K(E^n)$ is a selector of the upper semi continuous, compact and Q-acyclic multi-valued mapping $G : U \longrightarrow K(E^n)$ defined by the rule G(x) = K for each $x \in U$. Using the proposition (4.12), one deduces $\mathcal{I}(F; U, K) = \mathcal{I}(G; U, K) = \{k\}$ so k = 1.

Proposition 4.14. Let C be a compact subset of E^n which is a neighborhood retract. Let $F : C \longrightarrow K(C)$ be an upper semi continuous and Q-acyclic multi-valued mapping. Then F admits at least a fixed point.

Proof. Consider U an open subset of E^n and let $\rho: U \longrightarrow C$ be a retraction from U into C. The multi-valued $G = F \circ \rho: U \longrightarrow K(C) \subset K(E^n)$ is upper semi continuous compact with Q-acyclic values, therefore $\mathcal{I}(G; U, C) = \{1\}$. One deduces that G admits in U, at least, a fixed point $x \in G(x) = F(\rho(x))$. However, $x \in C$ then $\rho(x) = x$.

References

- Y. G. Borisovitch, Topological characteristics and the investigation of solvability for nonlinear problems, Izvestiya VUZ'ov, Mathematics 2 (1997), 3–23.
- [2] Y. G. Borisovitch, Topological characteristics of infinite-dimensional mappings and the solvability of nonlinear boundary value problems, Proceedings of the Steklov Institute of Mathematics 3 (1993), 43–50.
- [3] K. Borsuk, *Theory of retracts*, Monografie Matematyczne 44 (Polska Academia NAUK, Warszawa, 1967).
- [4] K. Borsuk, A. Kosinski, On connections between the homology properties of a set and its frontiers, Bull. Acad. Pol. Sc., 4 (1956), 331–333.
- [5] E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. 2 (1950), 534–543.
- [6] J. Bryszewski, On a class of multi-valued vector fields in Banach spaces, Fund. Math. 2 (1977), 79–94.
- [7] N. M. Benkafadar, B. D. Gel'man, On some generalized local degrees, Topology Proceedings 25 summer 2000 (2002), 417–433.
- [8] N. M. Benkafadar, B. D. Gel'man, On a local degree of one class of multivalued vector fields in infinite-dimensional Banach spaces, Abstract And Applied Analysis 4 (1996), 381–396.
- [9] A. Dold, Fixed point index and fixed point theorems for euclidean neighborhood retracts, Topology 4 (1965), 1–8.
- [10] A. Dold, Lectures on Algebraic Topology, (Springer-Verlag, Berlin, 1972).
- [11] Z. Dzedzej, Fixed point index theory for a class of nonacyclic multivalued maps, Rospr. Math. 25, 3 (Warszawa, 1985).
- [12] S. Eilenberg, D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 58 (1946), 214–222.
- [13] S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology, (Princeton, 1952).
- [14] A. Granas, The Leray-Shauder index and fixed point theory for arbitrary ANR-s, Bull. Soc. Math. Fr. 100 (1972), 209–228.
- [15] L. Gorniewiecz, A. Granas, Some general theorems in coincidence Theory I., J. Math. pures et appl. 61 (1981), 361–373.
- [16] A. Granas, Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans des espaces de Banach, Bull. Acad. polon. Sci. 7 (1959), 181–194.
- [17] A. Granas, J. W. Jaworowski, Some theorems on multi-valued maps of subsets of the Euclidean space, Bull. Acad. Polon. Sci. 6 (1965), 277–283.
- [18] L. Gorniewicz, Homological methods in fixed point theory of multi-valued maps, Dissert. Math. 129 (Warszawa, 1976).

- [19] B. D. Gel'man, Topological characteristic for multi-valued mappings and fixed points, Dokl. Acad. Naouk 3 (1975), 524–527.
- [20] B. D. Gel 'man, Generalized degree for multi-valued mappings, Lectures notes in Math. 1520, (1992), 174–192.
- [21] S. Kakutani, A Generalization of Brouwer's fixed point theorem, Duke Mathematical Journal, 8 (1941), 457–459.
- [22] Z. Kucharski, A coincidence index, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. et Phys. 4 (1976), 245–252.
- [23] Z. Kucharski, Two consequences of the coincidence index, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. et Phys. 6 (1976), 437–444.
- [24] K. Kuratowski, Topology, Vol. I, II, (Academic Press New York And London 1966)
- [25] W. Kryszewski, Topological and approximation methods of degree theory of set-valued maps, Dissert. Math. 336, (Warszawa, 1994).
- [26] A. Lasota, Z.Opial, An approximation theorem for multi-valued mappings, Podst. Sterow. 1 (1971), 71–75.
- [27] M. Powers, Lefschetz fixed point Theorems for a new class of multi-valued maps, Pacific J. Math. 68 (1970), 619–630
- [28] Z. Siegberg, G. Skordev, Fixed point index and chain approximation, Pacific J. Math. 2 (1982), 455–486.
- [29] E. H. Spanier, Algebraic Topology, (McGraw-Hill, 1966).
- [30] A. D. Wallace, A fixed point theorem for trees, Bulletin of American Mathematical Society, 47 (1941), 757–760.
- [31] J. Warga, Optimal control of differential and functional equations, (Acad. Press, New York and London, 1975).

Received May 2004

Accepted December 2004

N. M. BENKAFADAR (benkafadar@caramail.com) Department of Mathematics, Faculty of Sciences, University of Constantine, Road of Ain El Bey 25000, Constantine, Algeria

M. C. BENKARA-MOSTEFA (karamos@yahoo.fr) Department of Mathematics, Faculty of Sciences, University of Constantine, Road of Ain El Bey 25000, Constantine, Algeria