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A note on locally ν-bounded spaces

D. N. Georgiou and S. D. Iliadis

Abstract. In this paper, on the family O(Y ) of all open subsets
of a space Y (actually on a complete lattice) we define the so called
strong ν-Scott topology, denoted by τ s

ν
, where ν is an infinite cardinal.

This topology defines on the set C(Y,Z) of all continuous functions on
the space Y to a space Z a topology ts

ν
. The topology ts

ν
, is always

larger than or equal to the strong Isbell topology (see [8]). We study
the topology ts

ν
in the case where Y is a locally ν-bounded space.
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1. Basic Notions

Let X be a space and G a map of X into C(Y, Z). By G̃ we denote the map

of X × Y to Z such that G̃(x, y) = G(x)(y) for every (x, y) ∈ X × Y .
A topology t on C(Y, Z) is called admissible if for every space X , the con-

tinuity of a map G : X → Ct(Y, Z) implies that of the map G̃ : X × Y → Z.
Equivalently, a topology t on C(Y, Z) is admissible if the evaluation map
e : Ct(Y, Z)× Y → Z defined by relation e(f, y) = f(y), (f, y) ∈ C(Y, Z)× Y ,
is continuous (see [1]).

Let L be a poset. The Scott topology τω (see, for example, [5]) is the family
of all subsets IH of L such that:

(α) IH =↑ IH , where ↑ IH = {y ∈ L : (∃x ∈ IH) x ≤ y}, and
(β) for every directed subset D of L with supD ∈ IH , D ∩ IH 6= ∅.
Below, we consider the poset O(Y ) of all open subsets of the space Y on

which the inclusion is considered as the order.
The Isbell topology tω on C(Y, Z) (see, for example, [8], [11] and [9]) is the

topology for which the family of all sets of the form

(IH,U) = {f ∈ C(Y, Z) : f−1(U) ∈ IH},
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where U ∈ O(Z) and IH ∈ τω, constitute a subbasis for this topology.
The notion of a bounded subset was introduced in [3] and the notion of a

locally bounded space in [7]. Some generalizations of locally bounded spaces are
given in [10]. The notion of the strong Scott topology (defined on a complete
lattice) was given in [8]. This topology determines on the set C(Y, Z) a topology
called the strong Isbell topology (see [8]). It is proved that a space Y is locally
bounded if and only if the strong Isbell topology on C(Y,2), where 2 is the
Sierpinski space, is admissible. In the case, where Y is locally bounded and Z

is an arbitrary space, it is proved that the strong Isbell topology on C(Y, Z) is
admissible.

In this paper we denote by ν a fixed infinite cardinal.
A subset D of a poset L is called ν-directed if every subset of D with

cardinality less than ν has an upper bound in D (see [4]).
Suppose that L is a complete lattice. We say that x is ν-way below y and

write x <<ν y (see [4]) if for every ν-directed subset D of L the relation
y ≤ supD implies the existence of d ∈ D with x ≤ d.

In particular, for two elements U and V of the complete lattice O(Y ) we
have: U <<ν V if for every open cover {Wi : i ∈ I} of V there is a subcollection
{Wi : i ∈ J ⊆ I} of this cover such that |J | < ν and U ⊆ ∪{Wi : i ∈ J}. It is
clear that if U ⊆ V <<ν Y , then U <<ν Y .

2. Other notions

Definition 2.1. A subset B of Y is called ν-bounded if every open cover of Y
contains a cover of B of cardinality less than that of ν. (For the related notion
of an (m,n)-bounded subset see [6].)

A space is called locally ν-bounded if it has a basis for the open subsets
consisting of ν-bounded sets. (For the related notion of a local P-space see
[10].)

Definition 2.2. Let (L,≤) be a fixed complete lattice and 1 the maximal ele-
ment of L. By τsν we denote the family of all subsets IH of L such that:

(α) IH =↑ IH, where ↑ IH = {y ∈ L : (∃x ∈ IH) x ≤ y}, and
(β) for every ν-directed subset D of L with supD = 1 we have D ∩ IH 6= ∅.
It is clear that, the family τsν is a T0 topology on L called the strong ν-Scott

topology.

In the case, where L = O(Y ), a subset IH of O(Y ) belongs to the strong
ν-Scott topology if the following properties are true:

Property (α). The conditions U ∈ IH , V ∈ O(Y ), and U ⊆ V imply V ∈ IH .
Property (β). For every open cover {Ui : i ∈ I} of Y there exists a subset J

of I of cardinality less than ν such that ∪{Ui : i ∈ J} ∈ IH.

Remark 2.3. If µ is an infinite cardinal such that µ ≤ ν, then τsω ⊆ τsµ ⊆ τsν ,

where ω is the first infinite cardinal.

Definition 2.4. Let L be a complete lattice. An element x ∈ L is called
ν-bounded if x <<ν 1.
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The lattice L is called weakly ν-continuous if for all x ∈ L

x = sup{u ∈ L : u ≤ x and u <<ν 1}.

In the case, where L = O(Y ), a set U ∈ O(Y ) is ν-bounded if U <<ν Y .

Notation. We denote by tsν the topology on the set C(Y, Z) for which the sets
of the form:

(IH,U) = {f ∈ C(Y, Z) : f−1(U) ∈ IH},

where U ∈ O(Z) and IH ∈ τsν , compose a subbasis.
Obviously, if ω ≤ µ ≤ ν, then tsω ⊆ tsµ ⊆ tsν .

Remark 2.5. For ν = ω the notions of an ω-bounded subset, a locally ω-
bounded space, and a weakly ω-continuous lattice coincide with the notions of
a bounded subset, a locally bounded space, and a weakly continuous lattice,
respectively.

Also, the topologies τsω and tsω coincide with the strong Scott topology and
the strong Isbell topology, respectively.

3. The results

Proposition 3.1. If Y is locally ν-bounded, then the topology tsν on C(Y, Z)
is admissible.

Proof. It is sufficient to prove that the evaluation map

e : Cts
ν

(Y, Z)× Y → Z

is continuous.
Let (f, y) ∈ Cts

ν

(Y, Z)× Y , W ∈ O(Z), and e(f, y) = f(y) ∈ W. We need to
prove that there exist IH ∈ τsν , U ∈ O(Z), and an open neighborhood V of y
in Y such that f ∈ (IH,U) and

e((IH,U)× V ) ⊆ W.

Since Y is locally ν-bounded and y ∈ f−1(W ) there exists an open ν-
bounded set V such that:

y ∈ V ⊆ f−1(W ).

We consider the set

IH = {P ∈ O(Y ) : V ⊆ P}

and prove that IH ∈ τsν , that is IH satisfies Properties (α) and (β).
Property (α) is clear.
Property (β). Let {Ui : i ∈ I} be an open cover of Y . Since V is ν-

bounded there exists a subset J of I of cardinality less than of ν such that
V ⊆

⋃
{Ui : i ∈ J}. By the definition of IH we have

⋃
{Ui : i ∈ J} ∈ IH. Since

V ⊆ f−1(W ) we have f−1(W ) ∈ IH and therefore f ∈ (IH,W ). Thus, the
subset (IH,W ) × V is a neighborhood of (f, y) in Cτs

ν

(Y, Z)× Y .
Now, we prove that e((IH,W ) × V ) ⊆ W . Let (g, z) ∈ (IH,W ) × V . Then

g−1(W ) ∈ IH , z ∈ V , and V ⊆ g−1(W ). Therefore e((g, z)) = g(z) ∈ W.



146 D. N. Georgiou and S. D. Iliadis

Thus, the map e is continuous which means that tsν is admissible. �

Proposition 3.2. For the space Y the following statements are equivalent:

(1) Y is locally ν-bounded.
(2) For every space Z the evaluation map e : Cts

ν

(Y, Z) × Y → Z is con-
tinuous.

(3) The evaluation map e : Cts
ν

(Y,2)× Y → 2 is continuous.
(4) For every open neighborhood V of a point y of Y there is an open set

IH ∈ τsν such that V ∈ IH and the set ∩{P : P ∈ IH} is a neighborhood
of y in Y .

(5) The lattice O(Y ) is weakly ν-continuous.

Proof. (1) =⇒ (2) Follows by Proposition 3.1.
(2) =⇒ (3) It is obvious.
(3) =⇒ (4) Let V be an open neighborhood of y in Y . Consider the sets

O(Y ) and C(Y,2). We identify each element U of O(Y ) with the element
fU of C(Y,2) for which fU (U) ⊆ {0} and fU (Y \ U) ⊆ {1}. Then, each
topology on one of the above sets can be considered as a topology on the other.
In this case tsν = τsν and the map e : O(Y ) × Y → 2 is continuous. Since
e(V, y) = e(fV , y) = fV (y) = 0, the continuity of e implies that for the open
neighborhood {0} of e(V, y) in 2 there exist an open neighborhood IH ∈ τsν of
V in O(Y ) and an open neighborhood V ′ of y in Y such that e(IH×V ′) ⊆ {0}.

Obviously, V ∈ IH . We need to prove that the relation

V ′ ⊆ ∩{P : P ∈ IH}

is true. Indeed, in the opposite case, there exist z ∈ V ′ and P ∈ IH such that
z 6∈ P . Then, e(P, z) = e(fP , z) = fP (z) = 1 which contradicts the fact that
e(IH × V ′) ⊆ {0}. Thus, the set ∩{P : P ∈ IH} is a neighborhood of y in Y .

(4) =⇒ (5) Let V be an open subset of Y . It suffices to prove that for
every y ∈ V there exists an open ν-bounded neighborhood U of y such that
U ⊆ V . By assumption there exists a set IH ∈ τsν such that V ∈ IH and
∩{P : P ∈ IH} ≡ Q is a neighborhood of y in Y . We prove that the set Q

is ν-bounded. Let {Ui : i ∈ I} be an open cover of Y . Since IH ∈ τsν , by the
definition of τsν there exists a subset J of I of cardinality less than of ν such
that ∪{Ui : i ∈ J} ∈ IH and therefore Q ⊆ ∪{Ui : i ∈ J}, which means that Q
is ν-bounded. The required open neighborhood of y is an open subset U of Y
such that y ∈ U ⊆ Q.

(5) =⇒ (1) Let y ∈ Y and V be an open neighborhood of y. Since O(Y ) is
weakly ν-continuous we have

V = ∪{U ∈ O(Y ) : U ⊆ V and U <<ν Y }

and therefore there exists an open ν-bounded subset U of Y such that

y ∈ U ⊆ V.

�
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Proposition 3.3. If Y is ν-locally bounded, then the usual compositions oper-
ations (see [2])

i) T : Ctco(X,Y )× Cts
ν

(Y, Z) → Ctco(X,Z) and
ii) T : Ctω (X,Y )× Cts

ν

(Y, Z) → Ctω (X,Z),

where tco and tω is the compact open and the Isbell topology, respectively, are
continuous for arbitrary spaces X and Z.

Proof. We prove only the statement ii). The proof of the case i) is similar. Let
(f, g) ∈ Ctω (X,Y ) × Cts

ν

(Y, Z), IH a Scott open subset of X , and U ∈ O(Z)
such that T (f, g) = g ◦ f ∈ (IH,U). It suffices to prove that there exist open
neighborhoods IH1 and IH2 of f and g in Ctω (X,Y ) and Cts

ν

(Y, Z), respectively,
such that

T (IH1 × IH2) ⊆ (IH,U).

We consider the open set g−1(U) of Y . By locally ν-boundedness of Y ,
for each point y ∈ g−1(U) ∈ O(Y ), there is an open set Vy of Y such that
y ∈ Vy ⊆ g−1(U) and Vy <<ν Y . Therefore

g−1(U) = ∪{Vy : y ∈ g−1(U)}

and
f−1(g−1(U)) = f−1(∪{Vy : y ∈ g−1(U)})

or
(g ◦ f)−1(U) = ∪{f−1(Vy) : y ∈ g−1(U)}.

Since g ◦ f ∈ (IH,U) we have (g ◦ f)−1(U) ∈ IH or

∪{f−1(Vy) : y ∈ g−1(U)} ∈ IH.

Thus there exists a finite subset J of g−1(U) such that ∪{f−1(Vy) : y ∈ J} ∈ IH.

Let V = ∪{Vy : y ∈ J}. Then f−1(V ) ∈ IH and V is a ν-bounded open set of
Y .

The set
IH(V ) = {W ∈ O(Y ) : V ⊆ W}

is strong ν-Scott open (see the proof of Proposition 3.1). Since

V = ∪{Vy : y ∈ J ⊆ g−1(U)}

and
g−1(U) = ∪{Vy : y ∈ g−1(U)}

we have that V ⊆ g−1(U) and therefore g−1(U) ∈ IH(V ).
Setting IH1 = (IH, V ) and IH2 = (IH(V ), U) we have that the set

IH1 × IH2 = (IH, V )× (IH(V ), U)

is an open neighborhood of (f, g) in Ctω (X,Y )× Cts
ν

(Y, Z).
Finally, we prove that

T ((IH, V )× (IH(V ), U)) ⊆ (IH,U).

Let (p, q) ∈ (IH, V )× (IH(V ), U). Then, p−1(V ) ∈ IH and q−1(U) ∈ IH(V ).
Therefore V ⊆ q−1(U). Thus, p−1(V ) ⊆ p−1(q−1(U)) = (q ◦ p)−1(U). Since
p−1(V ) ∈ IH , (q ◦ p)−1(U) ∈ IH , and therefore q ◦ p ∈ (IH,U). �
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