
@ Applied General Topology

c© Universidad Politécnica de Valencia
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Abstract. We present a construction which shows that the Ti-
ordered reflection (i ∈ {0, 1, 2}) of a partially ordered topological space
(X, τ,≤) exists and is an ordered quotient of (X, τ,≤). We give an
explicit construction of the T0-ordered reflection of an ordered topolog-
ical space (X, τ,≤), and characterize ordered topological spaces whose
T0-ordered reflection is T1-ordered.
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1. Introduction

The T0-, T1-, and T2-reflections of a topological space have long been of inter-
est to categorical topologists. Methods of constructions of these in the category
TOP are described in the references given in [3] (see p. 302). Here, we consider
the corresponding concepts of Ti-ordered reflections in the category ORDTOP
of partially ordered topological spaces with continuous increasing functions as
morphisms. In Section 2, we construct the Ti-ordered reflection (i = 0, 1, 2, S2)
of a partially ordered topological space (X, τ,≤). The construction is extrinsic,
occurring in the category PREORDTOP of preordered topological spaces with
continuous increasing functions as morphisms, which contains ORDTOP as a
subcategory. In Section 3, we give an intrinsic construction of the T0-ordered
reflection of a partially ordered space (X, τ,≤) and examine some properties of
this reflection.

A preordered topological space (X, τ,�) is a set X with a topology τ and a
preorder �. Following the notation of Nachbin ([7]), for A ⊆ X , the increasing
hull of A is i(A) = {y ∈ X : ∃a ∈ A with a � y}. A set A is an increasing set
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if A = i(A). The closed increasing hull I(A) of A ⊆ X is the smallest closed
increasing set containing A. Decreasing sets, decreasing hulls d(A), and closed
decreasing hulls D(A) are defined dually. A set is monotone if it is increasing or
decreasing. There are many compatibility conditions between the topology and
order of a preordered topological space which one may stipulate. These include
the convex topology condition (τ has a subbase of monotone open sets) or the
ordered separation axioms, some of which are defined below. Our preordered
spaces need not satisfy any of these compatibility conditions.

Suppose (X, τ,�) is a preordered topological space. It is well-known that the
preorder � induces an equivalence relation ∼= G(�) ∩ G(�−1) on X defined
by x ∼ y if and only if x � y and y � x. The preordered topological space
(X, τ,�) is said to be T0-preordered if any of the following equivalent statements
holds.

(a) x 6∼ y ⇒ [I(x) 6= I(y) OR D(x) 6= D(y)]
(b) If I(x) = I(y) and D(x) = D(y), then x ∼ y.
(c) If x 6∼ y, there exist a monotone open neighborhood of one of the points

which does not contain the other point.

Observe that if � is a partial order, then the relation ∼ is equality.
A preordered topological space (X, τ,�) is T1-preordered if i(x) and d(x) are

closed for every x ∈ X , or equivalently, if x 6� y in X implies there exists an
open increasing neighborhood of x which does not contain y and there exists
an open decreasing neighborhood of y which does not contain x.

A preordered topological space (X, τ,�) is T2-preordered if there is an in-
creasing neighborhood of x disjoint from some decreasing neighborhood of y
whenever x 6� y. Equivalently, (X, τ,�) is T2-preordered if the preorder � is
closed in (X, τ) × (X, τ).

A preordered topological space (X, τ,�) is strongly T2-preordered , or for
notational convenience, TS2-preordered, if there is an increasing open neigh-
borhood of x disjoint from some decreasing open neighborhood of y whenever
x 6� y.

If � is a partial order, then (X, τ,�) is a partially ordered topological space,
or simply an ordered topological space. If the preorder of a Ti-preordered
topological space (X, τ,≤) is a partial order, we will say (X, τ,≤) is Ti-ordered.
We will typically denote preorders by � and partial orders by ≤. To avoid
confusion when indicating inclusions, we may represent a preorder ⊑ by its
graph G(⊑).

2. Existence of Ti-ordered reflections

A special quotient. The definition of a T0-preordered topological space
(X, τ,�) involved the equivalence relation ∼ on X defined by a ∼ b if and
only if a � b and b � a. For any preordered topological space (X, τ,�), we ob-
tain a partially ordered topological space by giving X/ ∼ the quotient topology
τ/ ∼ and the order ≤ defined by [a] ≤ [b] if and only if a � b. The following
properties of this quotient construction are easily verified.
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Proposition 2.1. Suppose � is a preorder on a set X, ∼ is the equivalence
relation G(�) ∩ G(�−1) on X, and ≤ is the partial order on X/ ∼ defined by
[a] ≤ [b] if and only if a � b.

(a) Any �-increasing or �-decreasing set is ∼-saturated.
(b) The quotient map q : X → X/ ∼ carries increasing (decreasing) sets to

increasing (decreasing) sets. Specifically, q(i�(A)) = i≤(q(A)) for any
subset A ⊆ X, and dually.

(c) If �∗ is a preorder on X with G(�) ⊆ G(�∗) and ∼∗ is defined from �∗

as ∼ is defined from �, then the ∼∗-equivalence classes are ∼-saturated.

Preorders induced by functions. Any continuous increasing function f :
(X, τ,≤) → (Y, γ,⊑) between two partially ordered topological spaces induces
a preorder �f on X defined by a �f b if and only if f(a) ⊑ f(b). Furthermore,
G(≤) ⊆ G(�f ).

Suppose (Y, γ,⊑) is Ti-ordered for some i ∈ {0, 1, 2, S2}. Now G(�f ) =
(f−1×f−1)(⊑). Noting that f−1 and f−1×f−1 carry open (respectively, closed,
⊑-increasing, ⊑-decreasing, disjoint) sets to open (respectively, closed, �f -
increasing, �f -decreasing, disjoint) sets and that the Ti-(pre)ordered properties
(i ∈ {0, 1, 2, S2}) are defined in terms of open/closed/increasing/decreasing/
disjoint sets, it follows that (X, τ,�f ) is Ti-preordered.

Also, if ∼f is the equivalence relation G(�f ) ∩ G(�−1
f ), observe that the

∼f -equivalence class of a ∈ X is [a] = f−1(f(a)), a fiber of the map f . Thus,
�f is a partial order if and only if f is injective.

We now apply the special quotient construction described above to the pre-
order �f induced by a function f . Suppose f : (X, τ,≤) → (Y, γ,⊑) is a
continuous increasing function between partially ordered spaces (X, τ,≤) and
(Y, γ,⊑), �f is the preorder on X defined by a �f b if and only if f(a) ⊑ f(b),
∼f is the equivalence relation on X defined by a ∼f b if and only if a �f b and
b �f a, and ≤f is the partial order on X/ ∼f defined by [a] ≤f [b] if and only
if a �f b. We now show that if (Y, γ,⊑) is Ti-ordered for some i ∈ {0, 1, 2, S2},
then the partially ordered space (X/ ∼f , τ/ ∼f ,≤f) is also Ti-ordered. Define
h : (X/ ∼f , τ/ ∼f ,≤f) → (Y, γ,⊑) by h([a]) = h(f−1f(a)) = f(a), that is,
h([a]) = fq−1[a] where q : X → X/ ∼f is the natural quotient map. Now h
is continuous, for if U is open in Y , then h−1(U) = qf−1(U) which is open
since f is continuous and the quotient map carries saturated open sets to open
sets. The definitions of ≤f ,�f , h, and �h respectively imply the following
implications:

[a] ≤f [b] ⇐⇒ a �f b ⇐⇒ f(a) ⊑ f(b) ⇐⇒ h([a]) ⊑ h([b]) ⇐⇒ [a] �h [b].

Thus, h is increasing and �h=≤f . By the remarks of the second paragraph
after Proposition 2.1, it follows that (X/ ∼f , τ/ ∼f ,≤f) is Ti-ordered.
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Proposition 2.2. Suppose (X, τ,�) is a preordered topological space, ∼ is the
equivalence relation on X defined by a ∼ b if and only if a � b and b � a, and
≤ is the partial order on X/ ∼ defined by [a] ≤ [b] if and only if a � b. Then
for i ∈ {0, 1, S2}, (X, τ,�) is Ti-preordered if and only if (X/ ∼, τ/ ∼,≤) is
Ti-ordered.

Proof. Suppose i ∈ {0, 1, S2} and (X/ ∼, τ/ ∼,≤) is Ti-ordered. The two
paragraphs following Proposition 2.1 remain valid for a function f from a pre-
ordered space to a partially ordered space, and if f is taken to be the quotient
map q from (X, τ,�) to (X/ ∼, τ/ ∼,≤), then �f=�. Thus, (X, τ,�) is
Ti-preordered.

For the converse, first suppose that (X, τ,�) is T0-preordered. If [a] 6= [b] in
X/ ∼, then there is a �-monotone open neighborhood N of one of the points
a or b which does not contain the other. Now q(N) is a ≤-monotone open
neighborhood of one of the points [a] or [b] in X/ ∼ which does not contain the
other, soX/ ∼ is T0-ordered. Now suppose (X, τ,�) is T1-preordered. For [x] ∈
X/ ∼, we have i≤([x]) = i≤(q(x)) = q(i�(x)) by Proposition 2.1 (b). Since
i�(x) is closed and saturated, q(i�(x)) will be closed in X/ ∼. With the dual
argument, this shows thatX/ ∼ is T1-ordered. Finally, suppose (X, τ,�) is TS2-
preordered. If [a] 6≤ [b] in X/ ∼, then a 6� b in X , so there exist a �-increasing
τ -open neighborhood Na of a and a �-decreasing τ -open neighborhood Nb of b
in X which are disjoint. By Proposition 2.1 (a) and (b), it follows that q(Na)
and q(Nb) are the required ≤-monotone τ/ ∼-open neighborhoods separating
[a] and [b] in X/ ∼. �

The result of Proposition 2.2 does not hold for i = 2. While the reasoning
of the first paragraph of the proof shows that if (X/ ∼, τ/ ∼,≤) is T2-ordered
then (X, τ,�) is T2-preordered, the example below shows that the converse
fails.

Example 2.3. If (X, τ,�) is a T2-preordered space, ∼ is the equivalence rela-
tion on X defined by a ∼ b if and only if a � b and b � a, and ≤ is the partial
order on X/ ∼ defined by [a] ≤ [b] if and only if a � b, then (X/ ∼, τ/ ∼,≤)
need not be T2-ordered.

Let γ be the Euclidean topology on R. Define a topology τ on X = R as
follows: Each point ofQ\{0} is isolated. For x ∈ (R\Q)∪{0}, a τ -neighborhood
of x is {x} ∪ (U ∩Q) where U is a γ-neighborhood of x.

Define a preorder � on X by a � b if and only if a = b or {a, b} ⊆ R\Q. (In
fact, � is already an equivalence relation, so ∼=�.) The graph of � is (R \
Q)2 ∪∆X . Because each γ-neighborhood of x ∈ X contains a τ -neighborhood
of x, it follows that (X, τ) is T2, and thus ∆X is closed in X×X . Observe that
Q is a neighborhood of each of its points, so R \ Q is closed in X . It follows
that G(�) = (R \Q)2 ∪∆X is closed in X ×X , so � is T2-preordered.

To see that (X/ ∼, τ/ ∼,≤) is not T2-ordered, suppose to the contrary that
it is. Now π 6� 0 in X , so [π] 6≤ [0] in X/ ∼, and thus there exist disjoint
sets M,N , where M is a ≤-increasing τ/ ∼-neighborhood of [π] and N is a
≤-decreasing τ/∼-neighborhood of [0]. If q : X → X/ ∼ is the quotient map,
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then q−1(N) contains a τ -neighborhood {0}∪(B∩Q) of 0, where B is a γ-open
neighborhood of 0. For any b ∈ B \ Q, we have b ∈ R \ Q = [π] ⊆ q−1(M).
Now q−1(M) is a �-increasing τ -neighborhood of b. But a �-increasing τ -
neighborhood of b ∈ R \Q has form (R \Q) ∪ U where U is a γ-neighborhood
of b. Now U ∩B 6= ∅ ⇒ U ∩ (B ∩Q) 6= ∅ ⇒ q−1(M) ∩ q−1(N) 6= ∅, contrary
to M ∩N = ∅. Thus, (X/ ∼, τ/ ∼,≤) is not T2-ordered.

The existence construction. Suppose (X, τ,≤) is a given partially ordered
topological space. For i ∈ {0, 1, 2, S2}, let

Pi = {�∗ : �∗ is a preorder on X, G(≤) ⊆ G(�∗),

and (X/ ∼∗, τ/ ∼∗,≤
∗) is Ti−ordered}.

Note that Pi 6= ∅ sinceX×X belongs to it. If i ∈ {0, 1, S2}, by Proposition 2.2,
we have

Pi = {�∗: G(≤) ⊆ G(�∗) and (X, τ,�∗) is Ti−preordered}.

Let G(�i) =
⋂
Pi. As an intersection of preorders containing G(≤), �i is also

a preorder containing G(≤).

Proposition 2.4. For i ∈ {0, 1, 2, S2}, (X/ ∼i, τ/ ∼i,≤
i) is Ti-ordered.

Proof. i = 0: Suppose [x] 6= [y] in (X/ ∼0, τ/ ∼0,≤
0). Then x 6∼0 y in X , so

for some �∗∈ P0, there exists a �∗-monotone open neighborhood N of a which
does not contain b, where {a, b} = {x, y}. Applying Proposition 2.1 (b), we
obtain a ≤∗-monotone open neighborhood N ′ of [a]∼∗

which does not contain
[b]∼∗

. Since G(≤0) ⊆ G(�∗), Proposition 2.1 (c) implies the existence of a
natural increasing quotient map q : X/ ∼0→ X/ ∼∗, and q−1(N ′) is a ≤0-
monotone open neighborhood of [a]∼0

which does not contain [b]∼0
. Thus,

(X/ ∼0, τ/ ∼0,≤
0) is T0-ordered.

i = 1: Because the increasing hull of x in �1=
⋂
P1 is the intersection of the

increasing hulls of x in each �∗ in P1, and each of these latter increasing hulls is
closed, it follows that i�1(x) is closed for any x ∈ X . With the dual argument,
we have (X, τ,�1) is T1-preordered. By Proposition 2.2, (X/ ∼1, τ/ ∼1,≤

1) is
T1-ordered.

i = 2: Suppose [a] 6≤ [b] in (X/ ∼2, τ/ ∼2,≤
2). Then there exists �∗∈ P2

such that [a]∼∗
6≤∗ [b]∼∗

in the T2-ordered space (X/ ∼∗, τ/ ∼∗,≤
∗). Let Na

and Nb be disjoint τ/ ∼∗ neighborhoods of [a]∼∗
and [b]∼∗

respectively, with
Na being ≤∗-increasing and Nb being ≤∗-decreasing. Since G(≤2) ⊆ G(�∗),
the natural quotient map q from X/ ∼2 to X/ ∼∗ yields q−1(Na) and q−1(Nb)
as oppositely directed monotone neighborhoods separating [a] and [b] in X/ ∼2.
Thus, (X/ ∼2, τ/ ∼2,≤

2) is T2-ordered.
Taking Na and Nb above to be open sets proves the case i = S2. �

We are now ready for the main result of this section.

Theorem 2.5. Suppose (X, τ,≤) is a partially ordered topological space and
i ∈ {0, 1, 2, S2}. Then the Ti-ordered reflection of (X, τ,≤) is (X/ ∼i, τ/ ∼i,
≤i).
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Proof. Suppose i ∈ {0, 1, 2, S2} is given, (Y, γ,⊑) is Ti-ordered, and f : (X, τ,
≤) → (Y, γ,⊑) is continuous and increasing. From the paragraph preceding
Proposition 2.2, it follows that (X/ ∼f , τ/ ∼f ,≤f ) is a Ti-ordered space with
G(≤) ⊆ G(�f ). From the definition of �i, we have G(�i) ⊆ G(�f ). From
Proposition 2.1 (c), there is a natural continuous increasing quotient map q :
(X/ ∼i, τ/ ∼i,≤

i) → (X/ ∼f , τ/ ∼f ,≤f) which carries [a]∼i
to [a]∼f

. We have
shown above that there is a continuous increasing function h : (X/ ∼f , τ/ ∼f ,
≤f) → (Y, γ,⊑). Now hq : X/ ∼i→ Y is continuous and increasing. Thus,
each continuous increasing function f : X → Y can be lifted through X/ ∼i,
and from the construction, this lifting is unique. Thus, X/ ∼i is the Ti-ordered
reflection of X . �

It is easy to verify that this construction gives the property Q reflection of
(X, τ,≤) as a quotient for any property Q for which

(a) (X/ ∼Q, τ/ ∼Q,≤
Q) has property Q where a ∼Q b if and only if a �Q b

and b �Q a; G(�Q) =
⋂
{G(�∗) : G(≤) ⊆ G(�∗) and (X/∼∗, τ/∼∗,

≤∗) is an ordered space with property Q}; and [a] ≤Q [b] in X/ ∼Q if
and only if a �Q b in X .

(b) If (Y, γ,⊑) has property Q and f : (X, τ,≤) → (Y, γ,⊑) is continuous
and increasing, then (X/ ∼f , τ/ ∼f ,≤f) has property Q.

Furthermore, the methods of this section can be used to find the Ti reflection
(i = 0, 1, 2) of a topological space (X, τ) by considering (X, τ) as a discretely
ordered topological space (X, τ,=) and taking all preorders to be equivalence
relations, so that the resulting quotients are discretely ordered.

3. The T0-ordered reflection

The construction of the Ti-ordered reflections in the previous section was
an extrinsic construction—working from outside the space (X, τ,≤)—which
produced the Ti-ordered reflection as a quotient based on the intersection of all
suitable preorders on X for which the indicated quotient construction would
yield a Ti-ordered space. In this section, we present an intrinsic construction of
the T0-ordered reflection and discuss some other properties of the T0-ordered
reflection. Intrinsic constructions of the other Ti-ordered reflections (i > 0)
studied in the previous section appear to be much more complicated.

In a T0-ordered space, D(x) = D(y) and I(x) = I(y) would imply x = y. If
our space is not T0-ordered, then there may be distinct elements x and y with
D(x) = D(y) and I(x) = I(y). Our strategy will be to say two such points are
equivalent and mod out by this equivalence relation.

Suppose (X, τ,≤) is an ordered topological space. For x, y ∈ X , define
x ≈ y if and only if D(x) = D(y) and I(x) = I(y). Order the set X/ ≈ of
≈-equivalence classes by the finite step order:

[z0] ≤
0 [zn] ⇐⇒ ∃[z1], [z2], . . . , [zn−1] and ∃z′i, z

∗
i ∈ [zi](i = 0, 1, . . . , n)

with z′i ≤ z∗i+1 ∀i = 0, 1, . . . , n− 1.
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First note that this is indeed antisymmetric and therefore is a partial order:
Suppose [z0] ≤

0 [zn] and [zn] ≤
0 [z0]. Then there exist [zi] (i = 1, . . . , n, . . . ,m)

with [z0] = [zm] and there exist z′i, z
∗
i ∈ [zi] such that z′i ≤ z∗i+1 for all i =

0, . . . ,m− 1. To show [z0] = [zn], suppose not. Then either D(z0) 6= D(zn) or
I(z0) 6= I(zn). Now

z′i ≤ z∗i+1 ⇒ z∗i+1 ∈ I(z′i) ⇒ I(z∗i+1) ⊆ I(z′i) ⇒ I(zi+1) ⊆ I(zi).

Applying this for i = 0, . . . ,m − 1 gives I(z0) ⊇ I(z1) ⊇ · · · ⊇ I(zm) = I(z0).
Thus, I(zi) = I(z0) ∀i ∈ {1, . . . ,m}. Dually, D(zi) = D(z0) ∀i ∈ {1, . . . ,m}.
It follows that zi ≈ z0 ∀i ∈ {1, . . . ,m}, so [z0] = [zn], and ≤ is antisymmetric.

In fact, the argument above shows that

[x] ≤0 [y] ⇒ I(y) ⊆ I(x) and D(x) ⊆ D(y).

At this point, one can verify that the equivalence relation ≈ agrees with
∼0 introduced in the previous section and that the finite step order described
above agrees with the order ≤0 defined in the previous section by [a] ≤0 [b] if
and only if a �0 b where G(�0) =

⋂
P0, and thus the T0-ordered reflection of

(X, τ,≤) is (X/ ≈, τ/ ≈,≤0). However, we will continue our intrinsic approach
and prove this directly.

It is easy to show that any closed or open monotone set in X is ≈-saturated
and that the quotient map f : X → X/ ≈ carries closed increasing sets to
closed increasing sets and open increasing sets to open increasing sets. The
dual statement (obtained by replacing “increasing” by “decreasing”) also holds.
It follows that f is an ordered quotient map as defined in Definition 6 of [6]. It
is easily verified that if D = {f−1(y) : y ∈ X/ ≈} is the decomposition of X
associated with the quotient map f : X → X/ ≈, then for each [x] ∈ D and
each increasing (decreasing) open set U containing [x], there exists a saturated
increasing (decreasing) open set containing [x] which is contained in U . We
have A is closed and increasing in X if and only if f(A) is closed and increasing
in X/ ≈, and B is closed and increasing in X/ ≈ if and only if f−1(B) is
closed and increasing in X . Furthermore, because I(x) =

⋂
C where C is the

collection of closed increasing sets containing x and f(
⋂
C) =

⋂
f(C) for any

collection C of ≈-saturated sets, it follows that f(I(x)) = IX/≈([x]). Dually,
f(D(x)) = DX/≈([x]).

Theorem 3.1. Suppose (X, τ,≤) is a partially ordered topological space, and
a ≈ b if and only if D(a) = D(b) and I(a) = I(b). Then X/ ≈ with the quotient
topology and the finite-step order is the T0-ordered reflection of X.

Proof. First we will show that X/ ≈ is T0-ordered. Suppose IX/≈([x]) =
IX/≈([y]) and DX/≈([x]) = DX/≈([y]). If f : X → X/ ≈ is the natural or-
dered quotient map, then we have f(I(x)) = f(I(y)) and f(D(x)) = f(D(y)).
Applying f−1 to the equalities above and recalling that I(x) and D(x) are sat-
urated, we have I(x) = I(y) and D(x) = D(y), which implies [x] = [y]. Thus,
X/ ≈ is T0-ordered.

Now suppose Y is any T0-ordered space and g : X → Y is continuous and
increasing. We will show that {g−1(y) : y ∈ Y } is saturated with respect
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to D = {f−1([x]) : [x] ∈ X/ ≈}. Suppose to the contrary that there exists
y ∈ Y such that g−1(y) is not D-saturated. Then there exist b ∈ g−1(y) and
a ∈ X \ g−1(y) such that [a] = [b] (that is, f(a) = f(b)).

Now g−1(IY (g(b)) is a closed increasing set in X which contains g−1(g(b))
and therefore contains b. But

[a] = [b] ⇒ I(a) = I(b)

⇒ a is an element of every closed increasing set containing b

⇒ a ∈ g−1(IY (g(b))

⇒ g(a) ∈ IY (g(b))

⇒ IY (g(a)) ⊆ IY (g(b)).

Repeating the argument of the last paragraph with a and b interchanged
shows the reverse inclusion, so IY (g(a)) = IY (g(b)). The dual argument shows
that DY (g(a)) = DY (g(b)). Since Y is T0-ordered, this implies g(a) = g(b),
contrary to a ∈ X \ g−1(y) and b ∈ g−1(y).

Now since {g−1(y) : y ∈ Y } is D-saturated, there is a natural quotient map
h from X/D = X/ ≈ to Y , and hf = g. From the definition of the finite step
order on X/ ≈, it is clear that h is increasing, and h is clearly unique from the
construction. Thus, X/ ≈ is the T0-ordered reflection of X . �

The theorem below characterizes those spaces whose T0-ordered reflections
are T1-ordered. Similar results for the non-ordered setting can be found in [1],
where a T(i,j)-space is defined to be one whose Ti-reflection satisfies the Tj

separation axiom (0 ≤ i < j ≤ 2). Comparing Theorem 3.5(iv) of [1] with
Theorem 2(b) of [2], we note that T(0,1)-spaces have been studied by Davis and
others subsequently under the name of R0-spaces.

Theorem 3.2. The following are equivalent.
(a) The T0-ordered reflection X/ ≈ of X is T1-ordered.
(b) [x] 6≤0 [y] in X/ ≈ implies there exists an open increasing neighborhood of
x not containing y and there exists an open decreasing neighborhood of y not
containing x.
(c) i([x]) =

⋂
{N : N is an open increasing neighborhood of x} for any x ∈ X,

and
d([x]) =

⋂
{N : N is an open decreasing neighborhood of x} for any x ∈ X.

Proof. (a) ⇒ (c): Because closed or open increasing sets are saturated, we
have i([x]) ⊆

⋂
{N : N is an open increasing neighborhood of x}. Suppose

M =
⋂
{N : N is an open increasing neighborhood of x} 6⊆ i([x]). Then there

exists y ∈ M \ i([x]), and since M is saturated, [y] 6⊆ i([x]). In particular,
[x] 6≤0 [y] in the T1-ordered space X/ ≈, so there exists an increasing open
neighborhood J of [x] in X/ ≈ disjoint from [y]. Now if f : X → X/ ≈ is the
quotient map, f−1(J) is an open increasing neighborhood of x disjoint from
y. This contradicts y ∈ M . This proves that i([x]) =

⋂
{N : N is an open

increasing neighborhood of x} for any x ∈ X . The other statement is proved
dually.
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(c) ⇒ (a): Suppose (c). If X/ ≈ is not T1-ordered, then there exist [x] 6≤0 [y]
such that either (i) every increasing open neighborhood of [x] in X/ ≈ contains
[y], or (ii) every decreasing open neighborhood of [y] in X/ ≈ contains [x]. If (i)
holds, then [y] ∈

⋂
{N : N is an open increasing neighborhood of x} = i([x]),

contrary to [x] 6≤0 [y]. If (ii) holds, then [x] ∈
⋂
{N : N is an open decreasing

neighborhood of y} = d([y]), contrary to [x] 6≤0 [y].
(a) ⇒ (b): Suppose (a). Now [x] 6≤0 [y] in X/ ≈ implies there exists an open

increasing (respectively, decreasing) neighborhood of [x] (respectively, [y]) not
containing [y] (respectively, [x]). Taking f−1 of these neighborhoods gives the
desired neighborhoods in X .

(b) ⇒ (a): If [x] 6≤0 [y] in X/ ≈, then by (b) there exists an open increas-
ing neighborhood N of x not containing y and there exists an open decreasing
neighborhood M of y not containing x. Now M and N are saturated, and since
f is an ordered quotient map, f(M) and f(N) are monotone open neighbor-
hoods of [y] and [x], respectively, which show that X/ ≈ is T1-ordered. �

A set A which satisfies A = I(A) ∩ D(A) is called a c-set. In [4], maximal
filters of c-sets are used to construct the Wallman ordered compactification of
an ordered space with convex topology. The Wallman ordered compactification
w0X is a universal compact T1 extension. In [5], conditions involving c-sets are
given to insure w0X is T1-ordered. Thus, one might expect c-sets to play a role
in the T1-ordered or even T0-ordered reflection. Let C(A) = I(A)∩D(A), that
is, let C(A) be the smallest c-set containing A.

Proposition 3.3. Suppose (X, τ,≤) is an ordered topological space and let ≈
be the equivalence relation on X defined by x ≈ y if and only if D(x) = D(y)
and I(x) = I(y). Then x ≈ y if and only if C(x) = C(y).

Proof. Suppose C(x) = C(y). Then x ∈ C(y) ⊆ I(y), so I(x) ⊆ I(y). Inter-
changing x and y shows that I(y) ⊆ I(x), so I(x) = I(y). Dually, D(x) = D(y),
so x ≈ y. The converse is immediate. �

Thus, the equivalence classes of the T0-ordered reflection are determined by
the closure operator C(·). If X has a convex topology, this closure operator is
especially nice.

Theorem 3.4. If the ordered topological space (X, τ,≤) has a convex topology,
then the topological space (X ′, τ ′) underlying its T0-ordered reflection (X ′, τ ′,≤′)
is simply the T0 reflection of (X, τ).

Proof. Suppose X has a convex topology. We will show that C(x) = I(x) ∩
D(x) = cl{x}. Clearly y ∈ cl{x} ⇒ y ∈ I(x)∩D(x). For the converse, suppose
y 6∈ cl{x}. Then there exist an increasing open neighborhood Ny of y and a
decreasing open neighborhood My of y with x 6∈ Ny ∩My. Thus, either x 6∈ Ny

or x 6∈ My, and taking complements shows that y 6∈ D(x) or y 6∈ I(x), that is,
y 6∈ I(x) ∩D(x), as needed.

By Proposition 3.3, x ≈ y if and only if cl{x} = cl{y}. It is well-known that
the T0 reflection of (X, τ) is given by the quotient topology on the quotient set
X/ ≃ where x ≃ y if and only if cl{x} = cl{y}. �
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