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Abstract

This paper presents a methodology to address lexical disambiguation in a standard
phrase-based statistical machine translation system. Similarity among source con-
texts is used to select appropriate translation units. The information is introduced
as a novel feature of the phrase-based model and it is used to select the translation
units extracted from the training sentence more similar to the sentence to trans-
late. The similarity is computed through a deep autoencoder representation, which
allows to obtain effective low-dimensional embedding of data and statistically sig-
nificant BLEU score improvements on two different tasks (English-to-Spanish and
English-to-Hindi).

Keywords: Natural language processing, Neural nets and related approaches,
Semantics

1. Introduction

Source context is usually very relevant when translating texts. However, stan-
dard phrase-based statistical machine translation (SMT) systems use a source con-
text limited to the words that compose the translation units. The source-context in-
formation becomes specially necessary when translating from different domains.
Also, the source-context information is important when the source language has
source words with the same form (spelling) that can be translated into a different
form target words.
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Addressing the two different motivations, source context information has been
introduced in the phrase-based system from different perspectives: lexical seman-
tics or topic adaptation (Section 2). The former uses different classification tech-
niques to decide the meaning of words with multiple translations. The latter ex-
plore different topic feature functions.

In this paper, we propose to enhance the context-awareness of translation units
by taking into account the semantic context provided by the source sentence to be
translated (Section 3). This allows to introduce a new feature function for each
translation unit that informs about the similarity of the input sentence to be trans-
lated with the source sentence from which the translation unit was extracted from.
The methodology proposed and evaluated in this work is based on the source
context similarity approach presented in (Banchs and Costa-jussa, 2011) that use
latent semantic analysis (LSA) to compute similarity among different contexts.
Different from that work, we introduce the use of auto-encoders to construct a
deep representation of sentences in a reduced space before computing similari-
ties among sentences (used as source context of the translation units). Our algo-
rithm was tested in the international evaluation of the Workshop on Statistical Ma-
chine Translation 2014 (Costa-jussa et al., 2014). We evaluate the use of features
learned by deep autoencoders as the modelling framework for assessing semantic
similarity among sentences (Section 4). Deep learning has shown to outperform
compared to other generative models like the already mentioned LSA (Hinton
and Salakhutdinov, 2006) and LDA (Salakhutdinov and Hinton, 2009; Srivastava
et al., 2013). After the introduction of the unsupervised pretraining (Hinton and
Salakhutdinov, 2006; Erhan et al., 2010), deep autoencoders, used in this work
to estimate similarity between sentences in the contextual latent space, can effi-
ciently be trained. Deep learning algorithms implemented using GPUs are highly
scalable. Domain adaptation for already trained model, which is an important is-
sue of contextual similarity methods, can very effectively be handled with deep
learning methods Glorot et al. (2011); Bengio (2012). For similar methods like
LSA, the context matrix has to be factorized from the scratch for the adaptation.
With this methodology, the goal is to improve the translation output in terms of
lexical selection.

Experiments on standard data collections for English-Spanish and English-
Hindi translation tasks show the proposed method performs significantly (statisti-
cally) better than the baselines (Section 5). We also present a thorough analysis
and scalability aspects of the proposed method.

The rest of the paper is organized as follows. Section 2 reports an overview of
the related work on introducing source context information and using deep learn-
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ing in standard SMT systems. Section 3 presents how the phrase-based model
is extended with source context information. Section 4 explains the deep repre-
sentation of sentences, which is used to better compute similarities among source
contexts. Section 5 describes the experiments where we proof the relevance of the
technique and section 6 concludes.

2. Related Work

Since the main novelty of this paper is adding source context knowledge by
means of deep learning techniques in a standard phrase-based SMT system, we
give an overview of some relevant works (without aiming at completeness) in this
area.

2.1. Adding source context in SMT

As mentioned in the previous Section, addressing the two different motiva-
tions, source context information has been introduced in the phrase-based system
from different perspectives: lexical semantics or topic adaptation.

As lexical semantics works, Carpuat and Wu (2005) introduce word sense dis-
ambiguation techniques. Bonet et al. (2009) train local classifiers using linguistic
and context information to translate a phrase. Haque (2010) use different syntactic
and lexical features which are proposed for incorporating information about the
neighbouring words and report a complete state-of-the-art on introducing source
context in a phrase-based system that the reader can refer to.

From the topic adaptation perspective, works basically focus on addressing
the challenge of translating in different domains. For example, Banchs and Costa-
jussa (2011) use latent semantic analysis (LSA) to compute similarity among dif-
ferent contexts. More recently, Chen et al. (2013) compute phrase pair features
from vector space representations that capture domain similarity to a develop-
ment. Hasler et al. (2014) use latent Dirichlet allocation (LDA) to compute topic
feature functions.

2.2. Using Deep Learning techniques in SMT

For the last 10 years, there has been an increase of studies on MT that use
different strategies based on deep learning. What is worth noticing is that there has
been a huge explosion of works on this topic in the last big conferences of ACL,
NAACL and EMNLP. Most of the approaches try to modify some feature or model
from a standard SMT system. Other few works propose novel MT architectures.



First works in adding deep learning in SMT systems are those that use continuous-

space or neural language models, e.g. Schwenk et al. (2006); Vaswani et al.
(2013). Other ones smooth bilingual language models inspired on the previous
ones, e.g. Schwenk et al. (2007); Zamora-Martinez et al. (2010) After that, Liu et
al. (2013) use deep learning algorithms to improve translation and target language
modeling in MT Son et al. (2012); Kalchbrenner and Blunsom (2013). More re-
cent works use deep learning to model phrase probabilities, e.g. Cho et al. (2014);
new reordering models, e.g. Li et al. (2013); or new different features Lu et al.
(2014). Different neural architectures to face bilingual translations have been pre-
sented in e.g. Sundermeyer et al. (2014); Kalchbrenner and Blunsom (2013).

2.3. Dimesionality reduction techniques for similarity estimation

The field of similarity estimation in continuous space has also advanced in the
recent past. The early models based on LSA (Dumais et al., 1988) laid the founda-
tion for dimensionality reduction techniques to incorporate context in form of cor-
relation matrix. Same formulation was exploited by some more advanced linear
models such as oriented principle component analysis (OPCA) (Platt et al., 2010)
and S2Net (Yih et al., 2011). The other non-linear extensions which outperform to
linear counterparts include use of deep autoencoders (Hinton and Salakhutdinov,
2006; Srivastava et al., 2013; Gupta et al., 2014). In this work, we exploit the deep
autoencoders based model to estimate source context similarity.

3. Extended Phrase-based Model

This section describes the standard phrase-based SMT system and the method-
ology of the integration of source contexts in this system both from the theoretical
and practical point of view.

3.1. Phrase-based SMT

Given a source string s{ = s1...5;...s; to be translated into a target string
tI =t,...t;...t;, a phrase-based SMT system aims to choose, among all possi-
ble target strings, the string with the highest probability:

t~{ = argmax P(t!]s])
tf

where [ and .J are the number of words of the target and source sentence, re-
spectively. The phrase-based system segments the source sentence into segments,



then translates each segment by using phrases which contain source and target
sequence of words (s;..5,]|||t1..t,,). Finally, the system composes the target sen-
tence. Standard implementations of the phrase-based system use several features
to give probabilities to combine the relative frequencies together with the: target
language model, word and phrase bonus and source-to-target and target-to-source
lexical models and reordering model Koehn et al. (2007).

3.2. Theoretical Integration Methodology

The idea of an extended concept of translation unit or phrase (p) is defined by a
unit of three elements: phrase-source (ps), phrase-target (pt) and source-sentence

(s5).

p = {ps|lpt]l|ss} (D)

From this definition identical source-target phrase pairs that have been extracted
from different training sentences (or source sentences) are regarded as different
translation units. According to this, the relatedness of contexts can be considered
as an additional (hereinafter, source-context) feature function (scf) for each phrase
and input sentence.

p = {pslllpt|l|scf} )

The source-context feature function consists of a similarity measurement between
the input sentence to be translated and the source context component of the avail-
able translation units as illustrated in Fig. 1.

This scf is included for each phrase in addition to the standard feature func-
tions, i.e. conditional (cp) and posterior (pp) probability, lexical weights (1, (2)
and phrase bonus (pb). Therefore, we are extending the phrases.

p = {psl||pt|||cp, pp, (1,12, pb, scf} (3)

This schema is similar to previous work with Banchs and Costa-jussa (2011).
Differently from the previous work, for computing similarities between the input
sentence to be translated and the original sentences, we compute a cosine distance
between the deep representation of sentences, which is explained in Section 4.



S1: the hotel did not book more rooms

T1: el hotel no reservaba mas habitaciones

S2: everybody wants to write a book about himself

T2: todo el mundo quiere escribir un libro sobre si mismo

Input: i am reading a nice book

S2
_..w Input

book : libro \/

book : reservar
51 X

Figure 1: Ilustration of the proposed similarity feature to help choosing translation units.

3.3. Practical Integration Implementation

The source-context feature function is dynamic because it depends on the input
sentence to be translated. At the moment, this feature function is integrated in the
standard phrase-based SMT system as described by the following procedure.

Ty = M training sentences (¢s)
Vn = N validation sentences (vs)
for each ts,, € Ty,
for each vs,, € Vy
Winn = w (S, vs,) = similarity(ts,,,
VSy,)
end for
end for
for each vs,, € Vy
P, = Phrase List € T, used for decoding
p = Phrase Entry ||| ts,, € P,
foreachp € P,

P = Il W
end for

translate vs,, with P}

end for

Figure 2: Source-context feature implementation algorithm.

Fig. 2 shows the procedure for implementing the source-context feature func-
tion. For each training (¢s) and validation (vs) (either development or test) sen-
tence, we compute the similarity measure and build the similarity matrix (W)
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between the training and the validation set. Then, for each sentence in the vali-
dation set (vs,) we extract a phrase list (F,) that can be used for decoding. Each
phrase entry (p) in the phrase list is an extended translation unit that contains the
training sentence (ts,,) from which it was extracted. Then, the phrase entry is
assigned the corresponding source-context similarity from matrix W between vs,,
and ts,,, which is position W,,,,. Finally, each sentence in the validation set vs,,
is translated with its corresponding extended phrase table () that now includes
the source-context feature. The flow of the system is depicted in Fig. 3.

One-time Indexing

Parallel Corpus Phrase Table

source | target ps

—+
wn
w0

Lexical
Selector

i

— p = {pslllptlllscf}

hinput

Input Source Sentence

Figure 3: Workflow of the system.

4. Deep Representation of Sentences

We represent the sentences in a latent space through non-linear dimensionality
reduction technique. Our method is based on the deep autoencoder architecture
which allows to obtain effective low-dimensional embeddings of text data. The
autoencoder is a network which tries to learn an approximation of the identity
function so as the output is similar to input. The input and output dimensions of



the network are the same (n). The autoencoder approximates the identity function
in two steps: i) reduction, and ii) reconstruction. The reduction step takes the
input v € R" and maps it to h € R™ where m < n which can be seen as a
function h = g(v) with ¢ : R® — R™. On the other hand, the reconstruction
step takes the output of the reduction step h and maps it to v € R" in such a way
v ~ v which is considered as a v = f(h) with function f : R™ — R". The full
autoencoder can be seen as f(g(v)) ~ v.

In a neural network based implementation of the autoencoder, the visible layer
corresponds to the input v and the hidden layer corresponds to h. When the m is
sufficently small the autoencoder is able to derive powerful low-dimensional rep-
resentation of data in the latent space Hinton and Salakhutdinov (2006). There
are two variants of autoencoders: i) with a single hidden layer, and ii) with mul-
tiple hidden layers. If there is only one single hidden layer, the optimal solution
remains the PCA projection even with the added non-linearities in the hidden
layer Bourlard and Kamp (1988). The PCA limitations are overcome by stack-
ing multiple encoders, constituting what is called a deep architecture. This deep
construction is what leads to a truly non-linear and powerful reduced space repre-
sentation Hinton and Salakhutdinov (2006). The deep architecture is constituted
by stacking multiple restricted boltzmann machines (RBM) on top of each other.

Code
Layer

Input Layer Output Layer

Figure 4: The architecture of the autoencoder. (a) deep formation of stacked RBMs. (b) Unrolling
during the fine-tuning.

Let visible units v € {0,1}" be binary bag-of-words representation of text
documents and hidden units h € {0,1}"™ be the hidden latent variables. The
energy of the state {v, h} is as follows,

E(v,h) = — zn: a;v; — i bjh; — Z vihjw; 4)
i=1 Jj=1

1]

8



where v;, h; are the binary states of visible unit 7 and hidden unit j, a;, b; are their
biases and wj; is the weight between them.
Then, it becomes easy to sample the data in both directions as shown below,

p(vi = 1]h) = ola; + Y h;Wy) S)

J

p(h] = 1|V) = U(bj + Z UiWij) (6)

where o(x) = 1/(1 + exp(—=x)) is the logistic sigmoid function.

The architecture of the autoencoder is shown in Fig. 4. Latent space represen-
tation h® for a sentence s can be obtained as shown in Eq. 6. The sentences in
the latent space can be compared by means of cosine similarity as shown below:

w(sl,s2) = cosine(hg) Vs1, hg) [Vs2) (7)

5. Experiments

This section describes the experimental framework used to test the introduc-
tion of deep context features in a standard phrase-based SMT system.

We report details on the data sets used, the baseline system, the training of
the deep structure from which similarities among sentences are extracted, the im-
provements of our technique in terms of BLEU score Papineni et al. (2002) and,
finally, the scalability of the technique.

5.1. Data Sets and Baseline

We used an English-to-Spanish parallel corpus extracted from the Bible, which
is publicly available and constitutes an excellent corpus for experimenting with
and testing the proposed methodology as it provides a rich variety of contexts. The
corpus contains around 30,000 sentences of training with around 800,000 words,
and 500 sentences each development and test sets. Additionally, as a larger data
set, we used an English-to-Hindi corpus available from WMT 2014 Bojar et al.
(2014). The training sentences are 300,000 sentences, with 3,500,000 words,
429 sentences of development and 500 sentences of test. Our baseline system
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is a standard state-of-the-art phrase-based built using Moses toolkit Koehn et al.
(2007). We used the following options to train the system, which include: grow-
diagonal-final-and word alignment symmetrization, lexicalized reordering, rela-
tive frequencies (conditional and posterior probabilities) with phrase discounting,
lexical weights and phrase bonus for the translation model (with phrases up to
length 10), a 5-gram language model using Kneser-Ney smoothing and a word
bonus model. In order to further compare our technique we built a contrastive
system with a context feature based on LSA Banchs and Costa-jussa (2011) as an-
other baseline. The systems were computed on a 2Intel Xeon E52670 v3 2,3Ghjz
12N processors server.

5.2. Autoencoder training

To model the sentences in the autoencoder framework we consider the vocab-
ulary after removing the least frequent terms which appear in less than £ sentences
in the training partition of the dataset. We remove the stopwords and apply stem-
mer. For Bible and WMT 14 dataset, the considered vocabulary sizes (n) are 3543
(k=5) and 7299 (k=20) respectively .

The autoencoder was first pretrained using Contrastive Divergence (CD) with
step size 1 (Hinton, 2002). Minibatches of size 20 and 100 were used during
pretraining and fine-tuning respectively. The architecture of the autoencoder was
n-500-128-500-n 2 as shown in Figure 4. Weight decay was used to prevent over-
fitting. Additionally, in order to encourage sparsity in the hidden units, Kullback-
Leibler sparsity regularization was used. We used GPU? based implementation of
autoencoder to train the models which took around 45 minutes for Bible dataset
while around 4.5 hours for WMT 14 dataset.

5.3. Latent Semantic Analysis

LSA basically performs singular value decomposition of the sentence-term
matrix D in the lines of principal component analysis (PCA) (Dumais et al., 1988).
LSA obtains top k principal components of D which is considered as projection
space and sentences are compared in this space. The inherent idea is semantically

'The value of k is decided considered based on the size of the dataset and the size of vocabulary

Different architectures were tried with a rule of higher layers not larger than the previous
layers (because of sparsity in the data) but no statistical difference in results was observed. We
also tried three layers n-500-250-128-250-500-n which produced worse results, so we did not go
beyond 3-layers.

SNVIDIA GeForce GTX Titan with Memory 6 GiB and 2688 CUDA cores
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similar terms (dimensions of D) will correspond to similar latent components and
these sentences are near to each other in the reduced comparison space.

This method can also be looked as eigenproblem which is formulated as be-
low:

CUj = /\jUj, (8)

where, )\, is the j largest eigenvalue, v; is corresponding eigenvector and C
is correlation matrix (DT D). LSA uses top k eigenvectors for projection.

5.4. Results

Table 1 shows the improvements in terms of BLEU Papineni et al. (2002) of
adding deep context over the baseline system for English-to-Spanish (En2Es) and
English-to-Hindi (En2Hi), respectively over development and test sets. Note that
the En2Es quality is higher than En2Hi because the former is an easier translation
task than the latter and with a higher training corpus. As shown in the Tables, the
proposed method performs significantly better than the baseline and than the LSA
method for both translation tasks consistently.

En2Es En2Hi
Dev Test Dev Test
baseline | 36.81 37.46 9.42 14.99
+LSA 37.20* | 37.84* | 9.83* 15.12*
+Deep | 37.28T | 38.19*T | 10.40*T | 15.43*1

Table 1: BLEU scores for En2Es and En2Hi translation tasks. * and T depicts statistical signifi-
cance (p-value<0.05) wrt Baseline and LSA respectively.

It can be noticed that the results from En2Es and En2Hi are consistently im-
proved. We can argue that both Hindi and Spanish have a higher vocabulary varia-
tion compared to English, with richer morphology. The benefits of adding source-
context information are better reflected in cases where the source phrase can have
various target word translations. The improvements in translation proves that the
deep representation helps finding the adequate contextual similarities among train-
ing and test sentences. BLEU scores show improvement over all tasks and trans-
lation directions. Further analysis of the translation outputs presented in Table 2
using ASIYA 4 shows some examples of how the translation is improved in terms

“http://www.asiya.lsi.upc.edu
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System Translation
Source but he brake the bands
Baseline | pero él rompi0 las tropas

+Deep pero él rompio6 las cuerdas
Reference | pero él rompi6 las ataduras
Source soft cry from the depth

Baseline | MEXTSAT & TATIAH T &1
+Deep | TEITSAT & JATIH AI|
Reference | TE¥TEAT & HIEA 919

Table 2: Manual analysis of translation outputs. Adding the deep feature allows for a more ade-
quate lexical selection.

of lexical selection which is the goal of the methodology presented in the paper.
Examples are shown in Table 2.

cp | pp | sef
bands|||tropas | 0.31 | 0.17 | 0.01
bands|||cuerdas | 0.06 | 0.07 | 0.23
cry|||TT= 0.23 | 0.06 | 0.85
cry||[F= | 0.15 | 0.04 | 0.90

Table 3: Probability values a phrase-based system) for the word bands and two Spanish transla-
tions; and the word cry a nd two Hindi translations.

In Table 3, we further analyse why our method improves. It can be noticed
in the Table 3 that the most probable sense of bands in our considered dataset is
tropas, which literally means “troups”. The idea of the proposed source-context
feature is to use the contextual similarity between the input sentence (IN) and the
sentences in the training set as an additional source of information used during
decoding. Therefore, given the entire input sentence: And he was kept bound with
chains and in fetters ; and he brake the bands, the method is be able to infer the
correct sense for the word bands (i.e. in this case cuerdas, which literally means
“ropes”, a synonym of the reference ataduras, which literally means “tying with
ropes”’) by considering its similarity to the training sentences: (S1) and the lord
sent against him bands of the chaldees , and bands of the syrians and (S2) they
shall put bands upon thee , and shall bind thee with them. In this case, w(s2,in) >
w(sl,in) as seen in Table 3. Similarly, in the Hindi example, the most frequent
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sense of word cry is TIAIT, which literally means “to cry” while the example in
Table 2 refers to the sense of cry as ST, which means to scream. Our method
could identify the context and hence the scf(cry||[FT) > scf(cry||[TT).

This source-context feature is capable of choosing better translation units given
the context but only if the correct translation has been seen in the training data.

5.5. Scalability

There are two components of this method: i) Incorporation of source-context
features during the tuning phase of MT and projection of training sentences in the
latent space; and ii) similarity estimation of the input sentence with the training
sentences in the latent space. The former step is computationally expensive but
being one-time and offline, it is not a big concern. While the similarity estimation
is online, it can be very efficiently computed using multi-cores CPU or GPU as it
is essentially a matrix multiplication. However, we plan to further integrate this
similarity estimation in the translation decoding.

6. Conclusions

This work has shown a novel methodology exploiting deep representation
techniques to effectively include a deep learning based contextual similarity es-
timation method which handles source context and its incorporation in the end-to-
end SMT system.

The proposed method shows statistically significant improvements compared
to the strong baseline systems in English-to-Spanish and English-to-Hindi trans-
lation tasks.

Manual analysis clearly illustrates the advantages in choosing the appropriate
translation unit taking into account the information of the input sentence context
and the deep relation with the training sentences.

The presented method also scales during the run-time.

Interesting further work would be to include shorter contexts, experiment with
deeper auto-encoders and better integrate the dynamic feature into translation de-
coding. Also, to speed-up search we could divide the feature space in chunks and
search hierarchically, perform clustering or use kd-trees.
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