

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 7, No. 1, 2006 pp. 103-107

Tightness of function spaces

Shou Lin*

ABSTRACT. The purpose of this paper is to give higher cardinality versions of countable fan tightness of function spaces obtained by A. Arhangel'skiĭ. Let $\operatorname{vet}(X), \omega \operatorname{H}(X)$ and $\operatorname{H}(X)$ denote respectively the fan tightness, ω -Hurewicz number and Hurewicz number of a space X, then $\operatorname{vet}(C_n(X)) = \omega \operatorname{H}(X) = \sup \{ \operatorname{H}(X^n) : n \in \mathbb{N} \}.$

2000 AMS Classification: 54C35; 54A25; 54D20; 54D99.

Keywords: Function spaces; fan tightness; Hurewicz spaces; cardinal functions.

The general question in the theory of function spaces is to characterize topological properties of the space, C(X), of continuous real-valued functions on a topological space X. A study of some convergence properties in function spaces is an important task of general topology. It have been obtained interested results on some higher cardinal properties of first-countability, Fréchet properties, tightness[2, 4, 6, 9]. Arhangel'skiĭ-Pytkeev theorem[2] is a nice result about tightness of function spaces: $t(C_p(X)) = \sup\{L(X^n) : n \in \mathbb{N}\}$ for any Tychonoff space X. The following result on countable fan tightness of function spaces is shown by A. Arhangel'skiĭ[1]: $C_p(X)$ has countable fan tightness if and only if X^n is a Hurewicz space for each $n \in \mathbb{N}$ for an arbitrary space X. In this paper the higher cardinality versions of countable fan tightness of $C_p(X)$ are obtained.

In this paper all spaces will be Tychonoff spaces. Let α be a network of compact subsets of a space X, which is closed under finite unions and closed subsets. Then the space $C_{\alpha}(X)$ is the set C(X) with the set-open topology as follows[9]: The subbasic open sets of the form $[A, V] = \{f \in C(X) : f(A) \subset V\}$, where $A \in \alpha$ and V is open in \mathbb{R} . Then $C_{\alpha}(X)$ is a topological vector space[9]. The family of all compact subsets of X generates the compact-open topology,

^{*}Supported by the NNSF of China (10271026).

denoted by $C_k(X)$. Also the family of all finite subsets of X generates the topology of pointwise convergence, denoted by $C_p(X)$. For each $f \in C(X)$, a basic neighborhood of f in $C_p(X)$ can be expressed as $W(f, K, \varepsilon)$ for each finite subset K of X and $\varepsilon > 0$, here $W(f, K, \varepsilon) = \{g \in C(X) : |f(x) - g(x)| < \varepsilon$ for each $x \in K\}$. In this paper the alphabet λ is an infinite cardinal number, γ is an ordinal number, and i, m, n, j, k are natural numbers.

The fan tightness of a space X is defined by $\operatorname{vet}(X) = \sup\{\operatorname{vet}(X, x) : x \in X\}$, here $\operatorname{vet}(X, x) = \omega + \min\{\lambda : \text{for each family } \{A_{\gamma}\}_{\gamma < \lambda} \text{ of subsets of } X$ with $x \in \bigcap_{\gamma < \lambda} \overline{A_{\gamma}}$ there is a subset $B_{\gamma} \subset A_{\gamma}$ with $|B_{\gamma}| < \lambda$ for each $\gamma < \lambda$ such that $x \in \bigcup_{\gamma < \lambda} B_{\gamma}\}$. A space X has countable fan tightness[1] if and only if $\operatorname{vet}(X) = \omega$. An α -cover of a space X is a family of subsets of X such that every member of α is contained in some member of this family. An α -cover is called a k-cover if α is the set of all compact subsets of X. Also an α -cover is called an ω -cover if α is the set of all finite subsets of X. The α -Hurewicz number of X is defined by $\alpha H(X) = \omega + \min\{\lambda : \text{for each family } \{\mathcal{U}_{\gamma}\}_{\gamma < \lambda} \text{ of open } \alpha$ -covers of X there is a subset $\mathcal{B}_{\gamma} \subset \mathcal{U}_{\gamma}$ with $|B_{\gamma}| < \lambda$ for each $\gamma < \lambda$ such that $\bigcup_{\gamma < \lambda} B_{\gamma}$ is an α -cover of X}. The α -Hurewicz number of X is called the Hurewicz number of X and written H(X) if α consists of the singleton of X. A space X is Hurewicz space[5] if and only if $H(X) = \omega$.

Theorem 1. $vet(C_{\alpha}(X)) = \alpha H(X)$ for any space X.

Proof. Let $\lambda = \operatorname{vet}(\mathcal{C}_{\alpha}(X))$, and let $\{\mathcal{U}_{\gamma}\}_{\gamma < \lambda}$ be any family of open α -covers of X. For each $\gamma < \lambda$, put $A_{\gamma} = \{f \in \mathcal{C}_{\alpha}(X) : \text{there is } U \in \mathcal{U}_{\gamma} \text{ such that } f(X \setminus U) \subset \{0\}\}$. Then A_{γ} is dense in $\mathcal{C}_{\alpha}(X)$. In fact, let $\bigcap_{i \leq m} [K_i, V_i]$ be a non-empty basic open set of $\mathcal{C}_{\alpha}(X)$, fix $f \in \bigcap_{i \leq m} [K_i, V_i]$. There is $U \in \mathcal{U}_{\gamma}$ such that $\bigcup_{i \leq m} K_i \subset U$ because \mathcal{U}_{γ} is an α -cover on X. Since $\bigcup_{i \leq m} K_i$ is compact in Tychonoff space X, there is $g \in \mathcal{C}_{\alpha}(X)$ such that $g_{|\bigcup_{i \leq m} K_i} = f_{|\bigcup_{i \leq m} K_i}$ and $g(X \setminus U) \subset \{0\}$. Then $g \in A_{\gamma} \cap (\bigcap_{i < m} [K_i, V_i])$, and $\overline{A_{\gamma}} = \mathcal{C}_{\alpha}(X)$.

Take $f_1 \in C(X)$ with $f_1(X) = \{1\}$, then $f_1 \in \bigcap_{\gamma < \lambda} \overline{A}_{\gamma}$. For each $\gamma < \lambda$ there is a subset $B_{\gamma} \subset A_{\gamma}$ with $|B_{\gamma}| < \lambda$ such that $f_1 \in \overline{\bigcup_{\gamma < \lambda} B_{\gamma}}$ by $\lambda =$ $\operatorname{vet}(C_{\alpha}(X))$. Denote $B_{\gamma} = \{f_{\kappa}\}_{\kappa \in \Phi_{\gamma}}$, here $|\Phi_{\gamma}| < \lambda$. There is $U_{\kappa} \in \mathcal{U}_{\gamma}$ such that $f_{\kappa}(X \setminus U_{\kappa}) \subset \{0\}$ for each $\kappa \in \Phi_{\gamma}$. Put $\mathcal{U}'_{\gamma} = \{U_{\kappa}\}_{\kappa \in \Phi_{\gamma}}$. Then $\bigcup_{\gamma < \lambda} \mathcal{U}'_{\gamma}$ is an α -cover of X. In fact, for each $A \in \alpha$, since $f_1 \in [A, (0, 2)]$, there are $\gamma < \lambda$ and $\kappa \in \Phi_{\gamma}$ such that $f_{\kappa} \in [A, (0, 2)]$, then $A \subset U_{\kappa}$, so $\bigcup_{\gamma < \lambda} \mathcal{U}'_{\gamma}$ is an α -cover of X. This shows that $\alpha H(X) \leq \operatorname{vet}(C_{\alpha}(X))$.

To show the reverse inequality, let $\lambda = \alpha H(X)$. Since $C_{\alpha}(X)$ is a topological vector space, it is homogeneous. It suffices to show that $\operatorname{vet}(C_{\alpha}(X), f_0) \leq \lambda$, here $f_0 \in C(X)$ with $f_0(X) = \{0\}$. Suppose that $f_0 \in \bigcap_{\gamma < \lambda} \overline{A}_{\gamma}$ with each $A_{\gamma} \subset C_{\alpha}(X)$. For each $\gamma < \lambda$ and $n \in \mathbb{N}$, put $\mathcal{U}_{\gamma,n} = \{f^{-1}(O_n) : f \in A_{\gamma}\}$, here $\{O_n\}_{n \in \mathbb{N}}$ is a decreasing local base of 0 in \mathbb{R} . Then $\mathcal{U}_{\gamma,n}$ is an open α -cover of X. In fact, for each $A \in \alpha, f_0 \in [A, O_n]$, there is $f \in [A, O_n] \cap A_{\gamma}$, thus $A \subset f^{-1}(O_n) \in \mathcal{U}_{\gamma,n}$. **Case 1.** $\lambda > \omega$. For each $n \in \mathbb{N}$, since $\{\mathcal{U}_{\gamma,n}\}_{\gamma < \lambda}$ is a family of open α covers of X, there is a subset $\mathcal{U}'_{\gamma,n} \subset \mathcal{U}_{\gamma,n}$ with $|\mathcal{U}'_{\gamma,n}| < \lambda$ for each $\gamma < \lambda$ such that $\bigcup_{\gamma < \lambda} \mathcal{U}'_{\gamma,n}$ is an open α -cover of X. Denote $\mathcal{U}'_{\gamma,n} = \{U_{\tau}\}_{\tau \in \Phi_{\gamma,n}}$. There is $f_{\tau} \in A_{\gamma}$ such that $U_{\tau} = f_{\tau}^{-1}(O_n)$ for each $\tau \in \Phi_{\gamma,n}$. Let $B_{\gamma} = \{f_{\tau} : \tau \in \Phi_{\gamma,n}, n \in \mathbb{N}\}$. Then $B_{\gamma} \subset A_{\gamma}$ and $|B_{\gamma}| < \lambda$. We show that $f_0 \in \bigcup_{\gamma < \lambda} B_{\gamma}$. For arbitrary basic neighborhood [A, V] of f_0 in $C_{\alpha}(X)$, there is $n \in \mathbb{N}$ such that $O_n \subset V$. Since $\bigcup_{\gamma < \lambda} \mathcal{U}'_{\gamma,n}$ is an open α -cover of X, there are $\gamma < \lambda$ and $\tau \in \Phi_{\gamma,n}$ such that $A \subset U_{\tau} = f_{\tau}^{-1}(O_n)$, hence $f_{\tau}(A) \subset V$, i.e., $f_{\tau} \in [A, V]$, so $f_0 \in \{f_{\tau} : \tau \in \Phi_{\gamma,n}, n \in \mathbb{N}, \gamma < \lambda\} = \bigcup_{\gamma < \lambda} B_{\gamma}$.

Case 2. $\lambda = \omega$. Put $M = \{n \in \mathbb{N} : X \in \mathcal{U}_{n,n}\}$. If M is infinite, there is $m \in M$ such that $O_m \subset V$ for arbitrary basic neighborhood [A, V] of f_0 in $C_{\alpha}(X)$. By the definition of $\mathcal{U}_{m,m}$, there is $g_m \in A_m$ such that $X = g_m^{-1}(O_m)$, then $g_m(X) \subset V$, so $g_m \in [A, V]$, thus the sequence $\{g_m\}_{m \in M}$ converges to f_0 . If M is finite, there is $n_0 \in \mathbb{N}$ such that for each $m \ge n_0$ and $g \in A_m$, $g^{-1}(O_m) \neq X$. Since $\{\mathcal{U}_{m,m}\}_{m \geq n_0}$ is a sequence of open α -covers of X, there is a finite subset \mathcal{U}'_m of $\mathcal{U}_{m,m}$ for each $m \geq n_0$ such that $\bigcup_{m \geq n_0} \mathcal{U}'_m$ is an open α -cover of X. Denote $\mathcal{U}'_m = \{U_{m,j}\}_{j \leq i(m)}$. There is $f_{m,j} \in A_m$ such that $U_{m,j} = f_{m,j}^{-1}(O_m)$ for each $m \ge n_0, j \le i(m)$. Next, we shall show that $f_0 \in \overline{\{f_{m,j} : m \ge n_0, j \le i(m)\}}$. For arbitrary basic neighborhood [A, V] of f_0 in $C_{\alpha}(X)$, let $F = \{(m, j) \in \mathbb{N}^2 : m \ge n_0, j \le i(m) \text{ and } A \subset U_{m,j}\}$. Obviously, $F \neq \emptyset$. If F is finite, take $x_{m,j} \in X \setminus U_{m,j}$ for each $(m,j) \in F$ because $U_{m,j} \neq X$. There is $K \in \alpha$ with $A \cup \{x_{m,j} : (m,j) \in F\} \subset K$. Then K is not contained by any element of $\bigcup_{m \ge n_0} \mathcal{U}'_m$, so $\bigcup_{m \ge n_0} \mathcal{U}'_m$ is not an α -cover of X, a contradiction. Hence F is infinite, and there are $m \ge n_0$ and $j \le i(m)$ such that $A \subset U_{m,j} = f_{m,j}^{-1}(O_m)$ and $O_m \subset V$, so $f_{m,j}(A) \subset V$, i.e., $f_{m,j} \in [A, V]$. Thus $f_0 \in \{f_{m,j} : m \ge n_0, j \le i(m)\}.$

This shows that $\operatorname{vet}(\mathcal{C}_{\alpha}(X)) \leq \alpha \mathcal{H}(X)$.

By Theorem 1, $C_p(X)$ has countable fan tightness if and only if for each sequence $\{\mathcal{U}_n\}$ of open ω -covers of X there is a finite subset $\mathcal{U}'_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{U}'_n$ is an ω -cover of X.

Theorem 2. $vet(C_p(X)) = sup\{H(X^n) : n \in \mathbb{N}\}$ for any space X.

Proof. Let $\lambda = \operatorname{vet}(\mathcal{C}_p(X))$ and $n \in \mathbb{N}$. Suppose that $\{\mathcal{U}_\gamma\}_{\gamma < \lambda}$ is a family of open covers of the space X^n . For each $\gamma < \lambda$, a family \mathcal{V} of subsets of X is called having a property $P_{n,\gamma}$ if for each $\{V_i\}_{i \leq n} \subset \mathcal{V}$ there is $U \in \mathcal{U}_\gamma$ such that $\prod_{i \leq n} V_i \subset U$. Denote by $\Gamma_{n,\gamma}$ the family of the all finite sets, which has the property $P_{n,\gamma}$, of open sets in X. For each $\mathcal{V} \in \Gamma_{n,\gamma}$, let $F_{\mathcal{V}} = \{f \in \mathcal{C}_p(X) : f(X \setminus \bigcup \mathcal{V}) \subset \{0\}\}$. We show that the set $A_\gamma = \bigcup \{F_{\mathcal{V}} : \mathcal{V} \in \Gamma_{n,\gamma}\}$ is dense in $\mathcal{C}_p(X)$.

Let $W(f, K, \varepsilon)$ be any basic neighborhood of f in $C_p(X)$. Since K is finite, there is a finite family \mathcal{W} of open subsets in X such that for any $(x_1, x_2, ..., x_n) \in K^n$ there are $U \in \mathcal{U}_{\gamma}$ and a finite subset $\{W_i\}_{i \leq n} \subset \mathcal{W}$ such that $(x_1, x_2, ..., x_n) \in \prod_{i \leq n} W_i \subset U$. Then $K \subset \bigcup \mathcal{W}$. For each $x \in K$, put $V_x = \bigcap \{W \in \mathcal{W} : x \in W\}$, and $\mathcal{V} = \{V_x : x \in K\}$. Then $K \subset \bigcup \mathcal{V}$ and the family \mathcal{V} has the property $P_{n,\gamma}$. In fact, take an arbitrary $(x_1, x_2, ..., x_n) \in K^n$, there are $\{W_i\}_{i \leq n} \subset \mathcal{W}$ and $U \in \mathcal{U}$ such that $(x_1, x_2, ..., x_n) \in \prod_{i \leq n} W_i \subset U$. Since each $V_{x_i} \subset W_i$, $\prod_{i \leq n} V_{x_i} \subset U$. Now, take $g \in C_p(X)$ such that $f_{|K} = g_{|K}$ and $g(X \setminus \bigcup \mathcal{V}) = \{0\}$, then $g \in F_{\mathcal{V}} \subset A_{\gamma}$, so $W(f, K, \varepsilon) \cap A_{\gamma} \neq \emptyset$. Thus $\overline{A_{\gamma}} = C_p(X)$.

Let $f_1 \in \mathcal{C}(X)$ with $f_1(X) = \{1\}$. Then $f_1 \in \bigcap_{\gamma < \lambda} \overline{A_{\gamma}}$. There is a subset $B_{\gamma} \subset A_{\gamma}$ with $|B_{\gamma}| < \lambda$ for each $\gamma < \lambda$ such that $f_1 \in \bigcup_{\gamma < \lambda} \overline{B_{\gamma}}$. Then there is a subset $\Delta_{n,\gamma} \subset \Gamma_{n,\gamma}$ with $|\Delta_{n,\gamma}| < \lambda$ such that $B_{\gamma} \subset \bigcup \{F_{\mathcal{V}} : \mathcal{V} \in \Delta_{n,\gamma}\}$. Let $\mathcal{V} \in \Delta_{n,\gamma}$. For each $\xi = (V_1, V_2, ..., V_n) \in \mathcal{V}^n$, take $G_{\xi} \in \mathcal{U}_{\gamma}$ such that $\prod_{i \leq n} V_i \subset G_{\xi}$. Put $\mathcal{G}_{\gamma} = \{G_{\xi} : \xi \in \mathcal{V}^n, \mathcal{V} \in \Delta_{n,\gamma}\}$. Clearly, $|\mathcal{G}_{\gamma}| < \lambda$ and $\mathcal{G}_{\gamma} \subset \mathcal{U}_{\gamma}$. We show that $\bigcup_{\gamma < \lambda} \mathcal{G}_{\gamma}$ covers X.

For an arbitrary $(x_1, x_2, ..., x_n) \in X^n$, let $F = \{f \in C_p(X) : f(x_i) > 0$ for each $i \leq n\}$. Then F is an open neighborhood of f_1 in $C_p(X)$. Since $f_1 \in \bigcup_{\gamma < \lambda} B_{\gamma}$, there is $\gamma < \lambda$ such that $F \cap B_{\gamma} \neq \emptyset$. Then $F \cap F_{\mathcal{V}} \neq \emptyset$ for some $\mathcal{V} \in \Delta_{n,\gamma}$. Let $g \in F \cap F_{\mathcal{V}}$. Then $g(X \setminus \bigcup \mathcal{V}) = 0$ and $g(x_i) > 0$ for each $i \leq n$. Take $V_i \in \mathcal{V}$ such that $x_i \in V_i$ for each $i \leq n$, then there is $G_{\xi} \in \mathcal{G}_{\gamma}$ such that $(x_1, x_2, ..., x_n) \in \prod_{i \leq n} V_i \subset G_{\xi}$. So $(x_1, x_2, ..., x_n) \in \bigcup(\bigcup_{\gamma < \lambda} \mathcal{G}_{\gamma})$. Hence $H(X^n) \leq \operatorname{vet}(C_p(X))$.

Conversely, suppose $\lambda = \sup\{\operatorname{H}(X^n) : n \in \mathbb{N}\}$. Fix $f \in \operatorname{C}_p(X)$ and a family $\{A_{\gamma}\}_{\gamma < \lambda}$ of subsets in $\operatorname{C}_p(X)$ such that $f \in \bigcap_{\gamma < \lambda} \overline{A}_{\gamma}$. For each $n \in \mathbb{N}, \, \gamma < \lambda$ and $x = (x_1, x_2, ..., x_n) \in X^n$, there is $g_{x,\gamma} \in W(f, \{x_1, x_2, ..., x_n\}, 1/n) \bigcap A_{\gamma}$. For each $i \leq n$, since $|g_{x,\gamma}(x_i) - f(x_i)| < 1/n$, by the continuity of f and $g_{x,\gamma}$, there is an open neighborhood O_i of x_i in X such that $|g_{x,\gamma}(y_i) - f(y_i)| < 1/n$ if $y_i \in O_i$. The set $U_{x,\gamma} = \prod_{i \leq n} O_i$ is a neighborhood of x in X^n . Thus $\mathcal{U}_{n,\gamma} = \{U_{x,\gamma} : x \in X^n\}$ covers X^n , and $|g_{x,\gamma}(y_i) - f(y_i)| < 1/n$ for each $(y_1, y_2, ..., y_n) \in U_{x,\gamma}$.

Case 1. $\lambda > \omega$. Since $H(X^n) \leq \lambda$, there is a family $\{S_{n,\gamma}\}_{\gamma < \lambda}$ of subsets in X^n with $|S_{n,\gamma}| < \lambda$ for each $\gamma < \lambda$ such that $\bigcup_{\gamma < \lambda} S_{n,\gamma}$ covers X^n , here each $S_{n,\gamma} = \{U_{x,\gamma} : x \in S_{n,\gamma}\}$. For each $\gamma < \lambda$, let $B_{n,\gamma} = \{g_{x,\gamma} : x \in S_{n,\gamma}\}$, and $B_{\gamma} = \bigcup_{n \in \mathbb{N}} B_{n,\gamma}$. Then $B_{\gamma} \subset A_{\gamma}, |B_{\gamma}| < \lambda$, and $f \in \bigcup_{\gamma < \lambda} B_{\gamma}$.

In fact, let $W(f, \{y_1, y_2, ..., y_n\}, \varepsilon)$ be a basic neighborhood of f in $C_p(X)$ with $1/n < \varepsilon$. There is $\gamma < \lambda$ such that $(y_1, y_2, ..., y_n) \in \bigcup S_{n,\gamma}$, thus there is $x \in S_{n,\gamma}$ such that $(y_1, y_2, ..., y_n) \in U_{x,\gamma}$, so $g_{x,\gamma} \in B_{n,\gamma}$ and $|g_{x,\gamma}(y_i) - f(y_i)| < 1/n < \varepsilon$ for each $i \leq n$, hence $g_{x,\gamma} \in W(f, \{y_1, y_2, ..., y_n\}, \varepsilon) \cap B_{\gamma}$. This shows that $f \in \bigcup_{\gamma < \lambda} B_{\gamma}$.

Case 2. $\lambda = \omega$. Replace $\gamma < \lambda$ by $k \ge n$, and let $B_k = \bigcup_{n \le k} B_{n,k}$ in the proof of Case 1, then B_k is finite subset of A_k and $f \in \overline{\bigcup_{k \in \mathbb{N}} B_k}$.

In a word, $\operatorname{vet}(\mathcal{C}_p(X)) \leq \sup\{\mathcal{H}(X^n) : n \in \mathbb{N}\}.$

The following result obtained by A. Arhangel'skii[1] is generalized: $C_p(X)$ has countable fan tightness if and only if X^n is a Hurewicz space for each $n \in \mathbb{N}$.

106

Tightness of function spaces

References

- A. Arhangel'skiĭ, Hurewicz spaces, analytic sets, and fan tightness of functions, Soviet Math. Dokl. 33(1986), 396-399.
- [2] A. Arhangel'skil, *Topological function spaces* (Kluwer Academic Publishers, Dordrecht, 1992).
- [3] R. Engelking, General Topology(revised and completed edition)(Heldermann Verlag, Berlin, 1989).
- [4] J. Gerlits, Zs. Nagy and Z. Szentmiklossy, Some convergence properties in function space, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium(Heldermann Verlag, Berlin, 1988), 211-222.
 [5] W. Hurewicz, Über folgen stetiger fukktionen, Fund. Math. 9(1927), 193-204.
- [6] W. Hulewer, over joigen see of functionen, Fund. Math. 9(1521), 159-204.
- [6] Lj. D. Kočinac, On radiality of function spaces, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium(Heldermann Verlag, Berlin, 1988), 337-344.
- [7] Lj. D. Kočinac, Closure properties of function spaces, Applied General Topology 4(2003)(2), 255-261.
- [8] S. Lin, C. Liu and H. Teng, Fan tightness and strong Fréchet property of $C_k(X)$, Adv. Math.(China) **23:3**(1994), 234-237(in Chinese).
- [9] R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., No. 1315(Springer Verlag, Berlin, 1988).

Received August 2004

Accepted May 2005

SHOU LIN (linshou@public.ndptt.fj.cn)

Department of Mathematics, Zhangzhou Teachers' College, Fujian 363000, P. R. China

Department of Mathematics, Ningde Teachers' College, Fujian 352100, P. R. China