Applied General Topology
(C) Universidad Politécnica de Valencia

Volume 7, No. 1, 2006
pp. 103-107

Tightness of function spaces

Shou Lin*

Abstract

The purpose of this paper is to give higher cardinality versions of countable fan tightness of function spaces obtained by A. Arhangel'skii. Let $\operatorname{vet}(X), \omega \mathrm{H}(X)$ and $\mathrm{H}(X)$ denote respectively the fan tightness, ω-Hurewicz number and Hurewicz number of a space X, then $\operatorname{vet}\left(\mathrm{C}_{p}(X)\right)=\omega \mathrm{H}(X)=\sup \left\{\mathrm{H}\left(X^{n}\right): n \in \mathbb{N}\right\}$.

2000 AMS Classification: 54C35; 54A25; 54D20; 54D99.
Keywords: Function spaces; fan tightness; Hurewicz spaces; cardinal functions.

The general question in the theory of function spaces is to characterize topological properties of the space, $\mathrm{C}(X)$, of continuous real-valued functions on a topological space X. A study of some convergence properties in function spaces is an important task of general topology. It have been obtained interested results on some higher cardinal properties of first-countability, Fréchet properties, tightness $[2,4,6,9]$. Arhangel'skiǐ-Pytkeev theorem[2] is a nice result about tightness of function spaces: $\mathrm{t}\left(\mathrm{C}_{p}(X)\right)=\sup \left\{\mathrm{L}\left(X^{n}\right): n \in \mathbb{N}\right\}$ for any Tychonoff space X. The following result on countable fan tightness of function spaces is shown by A. Arhangel'skiî[1]: $\mathrm{C}_{p}(X)$ has countable fan tightness if and only if X^{n} is a Hurewicz space for each $n \in \mathbb{N}$ for an arbitrary space X. In this paper the higher cardinality versions of countable fan tightness of $\mathrm{C}_{p}(X)$ are obtained.

In this paper all spaces will be Tychonoff spaces. Let α be a network of compact subsets of a space X, which is closed under finite unions and closed subsets. Then the space $\mathrm{C}_{\alpha}(X)$ is the set $\mathrm{C}(X)$ with the set-open topology as follows[9]: The subbasic open sets of the form $[A, V]=\{f \in \mathrm{C}(X): f(A) \subset V\}$, where $A \in \alpha$ and V is open in \mathbb{R}. Then $\mathrm{C}_{\alpha}(X)$ is a topological vector space[9]. The family of all compact subsets of X generates the compact-open topology,

[^0]denoted by $\mathrm{C}_{k}(X)$. Also the family of all finite subsets of X generates the topology of pointwise convergence, denoted by $\mathrm{C}_{p}(X)$. For each $f \in \mathrm{C}(X)$, a basic neighborhood of f in $\mathrm{C}_{p}(X)$ can be expressed as $W(f, K, \varepsilon)$ for each finite subset K of X and $\varepsilon>0$, here $W(f, K, \varepsilon)=\{g \in \mathrm{C}(X):|f(x)-g(x)|<\varepsilon$ for each $x \in K\}$. In this paper the alphabet λ is an infinite cardinal number, γ is an ordinal number, and i, m, n, j, k are natural numbers.

The fan tightness of a space X is defined by $\operatorname{vet}(X)=\sup \{\operatorname{vet}(X, x): x \in$ $X\}$, here $\operatorname{vet}(X, x)=\omega+\min \left\{\lambda\right.$: for each family $\left\{A_{\gamma}\right\}_{\gamma<\lambda}$ of subsets of X with $x \in \bigcap_{\gamma<\lambda} \bar{A}_{\gamma}$ there is a subset $B_{\gamma} \subset A_{\gamma}$ with $\left|B_{\gamma}\right|<\lambda$ for each $\gamma<\lambda$ such that $x \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$. A space X has countable fan tightness[1] if and only if $\operatorname{vet}(X)=\omega$. An α-cover of a space X is a family of subsets of X such that every member of α is contained in some member of this family. An α-cover is called a k-cover if α is the set of all compact subsets of X. Also an α-cover is called an ω-cover if α is the set of all finite subsets of X. The α-Hurewicz number of X is defined by $\alpha \mathrm{H}(X)=\omega+\min \left\{\lambda\right.$: for each family $\left\{\mathcal{U}_{\gamma}\right\}_{\gamma<\lambda}$ of open α-covers of X there is a subset $\mathcal{B}_{\gamma} \subset \mathcal{U}_{\gamma}$ with $\left|B_{\gamma}\right|<\lambda$ for each $\gamma<\lambda$ such that $\bigcup_{\gamma<\lambda} B_{\gamma}$ is an α-cover of $\left.X\right\}$. The α-Hurewicz number of X is called the Hurewicz number of X and written $\mathrm{H}(X)$ if α consists of the singleton of X. A space X is Hurewicz space[5] if and only if $\mathrm{H}(X)=\omega$.

Theorem 1. $\operatorname{vet}\left(C_{\alpha}(X)\right)=\alpha H(X)$ for any space X.

Proof. Let $\lambda=\operatorname{vet}\left(\mathrm{C}_{\alpha}(X)\right)$, and let $\left\{\mathcal{U}_{\gamma}\right\}_{\gamma<\lambda}$ be any family of open α-covers of X. For each $\gamma<\lambda$, put $A_{\gamma}=\left\{f \in \mathrm{C}_{\alpha}(X)\right.$: there is $U \in \mathcal{U}_{\gamma}$ such that $f(X \backslash U) \subset\{0\}\}$. Then A_{γ} is dense in $\mathrm{C}_{\alpha}(X)$. In fact, let $\bigcap_{i \leq m}\left[K_{i}, V_{i}\right]$ be a non-empty basic open set of $\mathrm{C}_{\alpha}(X)$, fix $f \in \bigcap_{i \leq m}\left[K_{i}, V_{i}\right]$. There is $U \in \mathcal{U}_{\gamma}$ such that $\bigcup_{i \leq m} K_{i} \subset U$ because \mathcal{U}_{γ} is an α-cover on X. Since $\bigcup_{i \leq m} K_{i}$ is compact in Tychonoff space X, there is $g \in \mathrm{C}_{\alpha}(X)$ such that $g_{\mid \cup_{i \leq m} K_{i}}=f_{\mid \cup_{i \leq m} K_{i}}$ and $g(X \backslash U) \subset\{0\}$. Then $g \in A_{\gamma} \cap\left(\bigcap_{i \leq m}\left[K_{i}, V_{i}\right]\right)$, and $\bar{A}_{\gamma}=\mathrm{C}_{\alpha}(X)$.

Take $f_{1} \in \mathrm{C}(X)$ with $f_{1}(X)=\{1\}$, then $f_{1} \in \bigcap_{\gamma<\lambda} \bar{A}_{\gamma}$. For each $\gamma<\lambda$ there is a subset $B_{\gamma} \subset A_{\gamma}$ with $\left|B_{\gamma}\right|<\lambda$ such that $f_{1} \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$ by $\lambda=$ $\operatorname{vet}\left(\mathrm{C}_{\alpha}(X)\right)$. Denote $B_{\gamma}=\left\{f_{\kappa}\right\}_{\kappa \in \Phi_{\gamma}}$, here $\left|\Phi_{\gamma}\right|<\lambda$. There is $U_{\kappa} \in \mathcal{U}_{\gamma}$ such that $f_{\kappa}\left(X \backslash U_{\kappa}\right) \subset\{0\}$ for each $\kappa \in \Phi_{\gamma}$. Put $\mathcal{U}_{\gamma}^{\prime}=\left\{U_{\kappa}\right\}_{\kappa \in \Phi_{\gamma}}$. Then $\bigcup_{\gamma<\lambda} \mathcal{U}_{\gamma}^{\prime}$ is an α-cover of X. In fact, for each $A \in \alpha$, since $f_{1} \in[A,(0,2)]$, there are $\gamma<\lambda$ and $\kappa \in \Phi_{\gamma}$ such that $f_{\kappa} \in[A,(0,2)]$, then $A \subset U_{\kappa}$, so $\bigcup_{\gamma<\lambda} \mathcal{U}_{\gamma}^{\prime}$ is an α-cover of X. This shows that $\alpha \mathrm{H}(X) \leq \operatorname{vet}\left(\mathrm{C}_{\alpha}(X)\right)$.

To show the reverse inequality, let $\lambda=\alpha \mathrm{H}(X)$. Since $\mathrm{C}_{\alpha}(X)$ is a topological vector space, it is homogeneous. It suffices to show that $\operatorname{vet}\left(\mathrm{C}_{\alpha}(X), f_{0}\right) \leq \lambda$, here $f_{0} \in \mathrm{C}(X)$ with $f_{0}(X)=\{0\}$. Suppose that $f_{0} \in \bigcap_{\gamma<\lambda} \bar{A}_{\gamma}$ with each $A_{\gamma} \subset \mathrm{C}_{\alpha}(X)$. For each $\gamma<\lambda$ and $n \in \mathbb{N}$, put $\mathcal{U}_{\gamma, n}=\left\{f^{-1}\left(O_{n}\right): f \in A_{\gamma}\right\}$, here $\left\{O_{n}\right\}_{n \in \mathbb{N}}$ is a decreasing local base of 0 in \mathbb{R}. Then $\mathcal{U}_{\gamma, n}$ is an open α-cover of X. In fact, for each $A \in \alpha, f_{0} \in\left[A, O_{n}\right]$, there is $f \in\left[A, O_{n}\right] \cap A_{\gamma}$, thus $A \subset f^{-1}\left(O_{n}\right) \in \mathcal{U}_{\gamma, n}$.

Case 1. $\lambda>\omega$. For each $n \in \mathbb{N}$, since $\left\{\mathcal{U}_{\gamma, n}\right\}_{\gamma<\lambda}$ is a family of open α covers of X, there is a subset $\mathcal{U}_{\gamma, n}^{\prime} \subset \mathcal{U}_{\gamma, n}$ with $\left|\mathcal{U}_{\gamma, n}^{\prime}\right|<\lambda$ for each $\gamma<\lambda$ such that $\bigcup_{\gamma<\lambda} \mathcal{U}_{\gamma, n}^{\prime}$ is an open α-cover of X. Denote $\mathcal{U}_{\gamma, n}^{\prime}=\left\{U_{\tau}\right\}_{\tau \in \Phi_{\gamma, n}}$. There is $f_{\tau} \in A_{\gamma}$ such that $U_{\tau}=f_{\tau}^{-1}\left(O_{n}\right)$ for each $\tau \in \Phi_{\gamma, n}$. Let $B_{\gamma}=\left\{f_{\tau}: \tau \in\right.$ $\left.\Phi_{\gamma, n}, n \in \mathbb{N}\right\}$. Then $B_{\gamma} \subset A_{\gamma}$ and $\left|B_{\gamma}\right|<\lambda$. We show that $f_{0} \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$. For arbitrary basic neighborhood $[A, V]$ of f_{0} in $\mathrm{C}_{\alpha}(X)$, there is $n \in \mathbb{N}$ such that $O_{n} \subset V$. Since $\bigcup_{\gamma<\lambda} \mathcal{U}_{\gamma, n}^{\prime}$ is an open α-cover of X, there are $\gamma<\lambda$ and $\tau \in \Phi_{\gamma, n}$ such that $A \subset U_{\tau}=f_{\tau}^{-1}\left(O_{n}\right)$, hence $f_{\tau}(A) \subset V$, i.e., $f_{\tau} \in[A, V]$, so $f_{0} \in \overline{\left\{f_{\tau}: \tau \in \Phi_{\gamma, n}, n \in \mathbb{N}, \gamma<\lambda\right\}}=\overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$.

Case 2. $\lambda=\omega$. Put $M=\left\{n \in \mathbb{N}: X \in \mathcal{U}_{n, n}\right\}$. If M is infinite, there is $m \in M$ such that $O_{m} \subset V$ for arbitrary basic neighborhood $[A, V]$ of f_{0} in $\mathrm{C}_{\alpha}(X)$. By the definition of $\mathcal{U}_{m, m}$, there is $g_{m} \in A_{m}$ such that $X=g_{m}^{-1}\left(O_{m}\right)$, then $g_{m}(X) \subset V$, so $g_{m} \in[A, V]$, thus the sequence $\left\{g_{m}\right\}_{m \in M}$ converges to f_{0}. If M is finite, there is $n_{0} \in \mathbb{N}$ such that for each $m \geq n_{0}$ and $g \in A_{m}$, $g^{-1}\left(O_{m}\right) \neq X$. Since $\left\{\mathcal{U}_{m, m}\right\}_{m \geq n_{0}}$ is a sequence of open α-covers of X, there is a finite subset \mathcal{U}_{m}^{\prime} of $\mathcal{U}_{m, m}$ for each $m \geq n_{0}$ such that $\bigcup_{m \geq n_{0}} \mathcal{U}_{m}^{\prime}$ is an open α-cover of X. Denote $\mathcal{U}_{m}^{\prime}=\left\{U_{m, j}\right\}_{j \leq i(m)}$. There is $f_{m, j} \in A_{m}$ such that $U_{m, j}=f_{m, j}^{-1}\left(O_{m}\right)$ for each $m \geq n_{0}, j \leq i(m)$. Next, we shall show that $f_{0} \in \overline{\left\{f_{m, j}: m \geq n_{0}, j \leq i(m)\right\}}$. For arbitrary basic neighborhood $[A, V]$ of f_{0} in $\mathrm{C}_{\alpha}(X)$, let $F=\left\{(m, j) \in \mathbb{N}^{2}: m \geq n_{0}, j \leq i(m)\right.$ and $\left.A \subset U_{m, j}\right\}$. Obviously, $F \neq \varnothing$. If F is finite, take $x_{m, j} \in X \backslash U_{m, j}$ for each $(m, j) \in F$ because $U_{m, j} \neq X$. There is $K \in \alpha$ with $A \cup\left\{x_{m, j}:(m, j) \in F\right\} \subset K$. Then K is not contained by any element of $\bigcup_{m \geq n_{0}} \mathcal{U}_{m}^{\prime}$, so $\bigcup_{m \geq n_{0}} \mathcal{U}_{m}^{\prime}$ is not an α-cover of X, a contradiction. Hence F is infinite, and there are $m \geq n_{0}$ and $j \leq i(m)$ such that $A \subset U_{m, j}=f_{m, j}^{-1}\left(O_{m}\right)$ and $O_{m} \subset V$, so $f_{m, j}(A) \subset V$, i.e., $f_{m, j} \in[A, V]$. Thus $f_{0} \in \overline{\left\{f_{m, j}: m \geq n_{0}, j \leq i(m)\right\}}$.

This shows that $\operatorname{vet}\left(\mathrm{C}_{\alpha}(X)\right) \leq \alpha \mathrm{H}(X)$.
By Theorem $1, \mathrm{C}_{p}(X)$ has countable fan tightness if and only if for each sequence $\left\{\mathcal{U}_{n}\right\}$ of open ω-covers of X there is a finite subset $\mathcal{U}_{n}^{\prime} \subset \mathcal{U}_{n}$ for each $n \in \mathbb{N}$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}^{\prime}$ is an ω-cover of X.

Theorem 2. $\operatorname{vet}\left(C_{p}(X)\right)=\sup \left\{H\left(X^{n}\right): n \in \mathbb{N}\right\}$ for any space X.
Proof. Let $\lambda=\operatorname{vet}\left(\mathrm{C}_{p}(X)\right)$ and $n \in \mathbb{N}$. Suppose that $\left\{\mathcal{U}_{\gamma}\right\}_{\gamma<\lambda}$ is a family of open covers of the space X^{n}. For each $\gamma<\lambda$, a family \mathcal{V} of subsets of X is called having a property $P_{n, \gamma}$ if for each $\left\{V_{i}\right\}_{i \leq n} \subset \mathcal{V}$ there is $U \in \mathcal{U}_{\gamma}$ such that $\prod_{i \leq n} V_{i} \subset U$. Denote by $\Gamma_{n, \gamma}$ the family of the all finite sets, which has the property $P_{n, \gamma}$, of open sets in X. For each $\mathcal{V} \in \Gamma_{n, \gamma}$, let $F_{\mathcal{V}}=\left\{f \in \mathrm{C}_{p}(X)\right.$: $f(X \backslash \bigcup \mathcal{V}) \subset\{0\}\}$. We show that the set $A_{\gamma}=\bigcup\left\{F_{\mathcal{V}}: \mathcal{V} \in \Gamma_{n, \gamma}\right\}$ is dense in $\mathrm{C}_{p}(X)$.

Let $W(f, K, \varepsilon)$ be any basic neighborhood of f in $C_{p}(X)$. Since K is finite, there is a finite family \mathcal{W} of open subsets in X such that for any $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}$ there are $U \in \mathcal{U}_{\gamma}$ and a finite subset $\left\{W_{i}\right\}_{i \leq n} \subset \mathcal{W}$ such that $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i \leq n} W_{i} \subset U$. Then $K \subset \bigcup \mathcal{W}$. For each $x \in K$,
put $V_{x}=\bigcap\{W \in \mathcal{W}: x \in W\}$, and $\mathcal{V}=\left\{V_{x}: x \in K\right\}$. Then $K \subset \bigcup \mathcal{V}$ and the family \mathcal{V} has the property $P_{n, \gamma}$. In fact, take an arbitrary $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}$, there are $\left\{W_{i}\right\}_{i \leq n} \subset \mathcal{W}$ and $U \in \mathcal{U}$ such that $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i \leq n} W_{i} \subset U$. Since each $V_{x_{i}} \subset W_{i}, \prod_{i \leq n} V_{x_{i}} \subset U$. Now, take $g \in \mathrm{C}_{p}(X)$ such that $f_{\mid K}=g_{\mid K}$ and $g(X \backslash \bigcup \mathcal{V})=\{0\}$, then $g \in F_{\mathcal{V}} \subset A_{\gamma}$, so $W(f, K, \varepsilon) \cap A_{\gamma} \neq \varnothing$. Thus $\bar{A}_{\gamma}=\mathrm{C}_{p}(X)$.

Let $f_{1} \in \mathrm{C}(X)$ with $f_{1}(X)=\{1\}$. Then $f_{1} \in \bigcap_{\gamma<\lambda} \bar{A}_{\gamma}$. There is a subset $B_{\gamma} \subset A_{\gamma}$ with $\left|B_{\gamma}\right|<\lambda$ for each $\gamma<\lambda$ such that $f_{1} \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$. Then there is a subset $\Delta_{n, \gamma} \subset \Gamma_{n, \gamma}$ with $\left|\Delta_{n, \gamma}\right|<\lambda$ such that $B_{\gamma} \subset \bigcup\left\{F_{\mathcal{V}}: \mathcal{V} \in \Delta_{n, \gamma}\right\}$. Let $\mathcal{V} \in \Delta_{n, \gamma}$. For each $\xi=\left(V_{1}, V_{2}, \ldots, V_{n}\right) \in \mathcal{V}^{n}$, take $G_{\xi} \in \mathcal{U}_{\gamma}$ such that $\prod_{i \leq n} V_{i} \subset G_{\xi}$. Put $\mathcal{G}_{\gamma}=\left\{G_{\xi}: \xi \in \mathcal{V}^{n}, \mathcal{V} \in \Delta_{n, \gamma}\right\}$. Clearly, $\left|\mathcal{G}_{\gamma}\right|<\lambda$ and $\mathcal{G}_{\gamma} \subset \mathcal{U}_{\gamma}$. We show that $\bigcup_{\gamma<\lambda} \mathcal{G}_{\gamma}$ covers X.

For an arbitrary $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$, let $F=\left\{f \in \mathrm{C}_{p}(X): f\left(x_{i}\right)>0\right.$ for each $i \leq n\}$. Then F is an open neighborhood of f_{1} in $\mathrm{C}_{p}(X)$. Since $f_{1} \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$, there is $\gamma<\lambda$ such that $F \cap B_{\gamma} \neq \varnothing$. Then $F \cap F_{\mathcal{V}} \neq \varnothing$ for some $\mathcal{V} \in \Delta_{n, \gamma}$. Let $g \in F \cap F_{\mathcal{V}}$. Then $g(X \backslash \bigcup \mathcal{V})=0$ and $g\left(x_{i}\right)>0$ for each $i \leq n$. Take $V_{i} \in \mathcal{V}$ such that $x_{i} \in V_{i}$ for each $i \leq n$, then there is $G_{\xi} \in \mathcal{G}_{\gamma}$ such that $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i \leq n} V_{i} \subset G_{\xi}$. So $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \bigcup\left(\bigcup_{\gamma<\lambda} \mathcal{G}_{\gamma}\right)$. Hence $\mathrm{H}\left(X^{n}\right) \leq \operatorname{vet}\left(\mathrm{C}_{p}(X)\right)$.

Conversely, suppose $\lambda=\sup \left\{\mathrm{H}\left(X^{n}\right): n \in \mathbb{N}\right\}$. Fix $f \in \mathrm{C}_{p}(X)$ and a family $\left\{A_{\gamma}\right\}_{\gamma<\lambda}$ of subsets in $\mathrm{C}_{p}(X)$ such that $f \in \bigcap_{\gamma<\lambda} \bar{A}_{\gamma}$. For each $n \in \mathbb{N}, \gamma<\lambda$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$, there is $g_{x, \gamma} \in W\left(f,\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, 1 / n\right) \bigcap A_{\gamma}$. For each $i \leq n$, since $\left|g_{x, \gamma}\left(x_{i}\right)-f\left(x_{i}\right)\right|<1 / n$, by the continuity of f and $g_{x, \gamma}$, there is an open neighborhood O_{i} of x_{i} in X such that $\left|g_{x, \gamma}\left(y_{i}\right)-f\left(y_{i}\right)\right|<1 / n$ if $y_{i} \in O_{i}$. The set $U_{x, \gamma}=\prod_{i<n} O_{i}$ is a neighborhood of x in X^{n}. Thus $\mathcal{U}_{n, \gamma}=\left\{U_{x, \gamma}: x \in X^{n}\right\}$ covers X^{n}, and $\left|g_{x, \gamma}\left(y_{i}\right)-f\left(y_{i}\right)\right|<1 / n$ for each $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in U_{x, \gamma}$.

Case 1. $\lambda>\omega$. Since $\mathrm{H}\left(X^{n}\right) \leq \lambda$, there is a family $\left\{S_{n, \gamma}\right\}_{\gamma<\lambda}$ of subsets in X^{n} with $\left|S_{n, \gamma}\right|<\lambda$ for each $\gamma<\lambda$ such that $\bigcup_{\gamma<\lambda} \mathcal{S}_{n, \gamma}$ covers X^{n}, here each $\mathcal{S}_{n, \gamma}=\left\{U_{x, \gamma}: x \in S_{n, \gamma}\right\}$. For each $\gamma<\lambda$, let $B_{n, \gamma}=\left\{g_{x, \gamma}: x \in S_{n, \gamma}\right\}$, and $B_{\gamma}=\bigcup_{n \in \mathbb{N}} B_{n, \gamma}$. Then $B_{\gamma} \subset A_{\gamma},\left|B_{\gamma}\right|<\lambda$, and $f \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$.

In fact, let $W\left(f,\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}, \varepsilon\right)$ be a basic neighborhood of f in $\mathrm{C}_{p}(X)$ with $1 / n<\varepsilon$. There is $\gamma<\lambda$ such that $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \bigcup \mathcal{S}_{n, \gamma}$, thus there is $x \in S_{n, \gamma}$ such that $\left(y_{1}, y_{2}, . ., y_{n}\right) \in U_{x, \gamma}$, so $g_{x, \gamma} \in B_{n, \gamma}$ and $\left|g_{x, \gamma}\left(y_{i}\right)-f\left(y_{i}\right)\right|<$ $1 / n<\varepsilon$ for each $i \leq n$, hence $g_{x, \gamma} \in W\left(f,\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}, \varepsilon\right) \cap B_{\gamma}$. This shows that $f \in \overline{\bigcup_{\gamma<\lambda} B_{\gamma}}$.

Case 2. $\lambda=\omega$. Replace $\gamma<\lambda$ by $k \geq n$, and let $B_{k}=\bigcup_{n \leq k} B_{n, k}$ in the proof of Case 1, then B_{k} is finite subset of A_{k} and $f \in \overline{\bigcup_{k \in \mathbb{N}} B_{k}}$.

In a word, $\operatorname{vet}\left(\mathrm{C}_{p}(X)\right) \leq \sup \left\{\mathrm{H}\left(X^{n}\right): n \in \mathbb{N}\right\}$.

The following result obtained by A. Arhangel'skiǐ[1] is generalized: $\mathrm{C}_{p}(X)$ has countable fan tightness if and only if X^{n} is a Hurewicz space for each $n \in \mathbb{N}$.

References

[1] A. Arhangel'skiǐ, Hurewicz spaces, analytic sets, and fan tightness of functions, Soviet Math. Dokl. 33(1986), 396-399.
[2] A. Arhangel'skiǐ, Topological function spaces (Kluwer Academic Publishers, Dordrecht, 1992).
[3] R. Engelking, General Topology(revised and completed edition)(Heldermann Verlag, Berlin, 1989).
[4] J. Gerlits, Zs. Nagy and Z. Szentmiklossy, Some convergence properties in function space, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium(Heldermann Verlag, Berlin, 1988), 211-222.
[5] W. Hurewicz, Über folgen stetiger fukktionen, Fund. Math. 9(1927), 193-204.
[6] Lj. D. Kočinac, On radiality of function spaces, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium(Heldermann Verlag, Berlin, 1988), 337-344.
[7] Lj. D. Kočinac, Closure properties of function spaces, Applied General Topology 4(2003)(2), 255-261.
[8] S. Lin, C. Liu and H. Teng, Fan tightness and strong Fréchet property of $C_{k}(X)$, Adv. Math.(China) 23:3(1994), 234-237(in Chinese).
[9] R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., No. 1315(Springer Verlag, Berlin, 1988).

Received August 2004
Accepted May 2005

Shou Lin (linshou@public.ndptt.fj.cn)
Department of Mathematics, Zhangzhou Teachers' College, Fujian 363000, P. R. China

Department of Mathematics, Ningde Teachers' College, Fujian 352100,P. R. China

[^0]: *Supported by the NNSF of China (10271026).

