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On nearly Hausdorff compactifications

Sejal Shah and T. K. Das

Abstract. We introduce and study here the notion of nearly Haus-

dorffness, a separation axiom, stronger than T 1 but weaker than T 2.

For a space X, from a subfamily of the family of nearly Hausdorff

spaces, we construct a compact nearly Hausdorff space rX containing

X as a densely C*-embedded subspace. Finally, we discuss when rX is

βX.
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1. Introduction

A closed subset F in a topological space X is called a regular closed set if
F = Cl(IntF ). We denote the family of all regular closed subsets of X by
R(X). Observe that R(X) is closed under finite union. Also, if F ∈ R(X),
then Cl(X − F ) = X − IntF ∈ R(X). In Section 2, we define and study
the notion of a nearly Hausdorff space (nh-space). We introduce a topological
property Π and note that a space with property Π is an nh-space if and only if
it is Urysohn. A flow diagram showing various implications about separation
axioms supported by necessary counter examples is included in this section.
A map f :X→Y is called a density preserving map (dp-map) if for A ⊆ X ,
Int(Clf(A)) 6= φ whenever IntA 6= φ [2]. We provide here an example showing
that the nh-property is not preserved even under continuous dp-maps. Note
that if X is an nh-space then R(X) forms a base for closed sets in X .

In Section 3, we obtain a ’βX like’ compactification of an nh-space X with
property Π. Since R(X) need not be closed under finite intersections, we form a
new collection Rf(X), of all possible finite intersections of members of R(X).
We observe that for an nh-space X with the property Π, the set rX = {α
⊆ Rf(X) | α is an r-ultrafilter} with the natural topology, is a nearly Haus-
dorff compact space which contains X as a dense C*-embedded subspace. The
natural question when rX = βX is discussed in Section 4. We observe that
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an nh-space X for which Rf(X) is a Wallman base, is a completely regular
Hausdorff space and hence for such a space X , rX = βX , the Stone-Čech com-
pactification of X . In particular, if X is normal or zero−dimensional then rX

= βX . The problem whether rX = βX for any Tychonoff space X is still open.

2. Nearly Hausdorff spaces

Definition 2.1. Distinct points x and y in a topological space X are said to
be separated by subsets A and B of X if x ∈ A−B and y ∈ B−A.

Definition 2.2. A topological space X is called nearly Hausdorff (nh-) if
for every pair of distinct points of X there exists a pair of regular closed sets
separating them.

Definition 2.3. A space X is said to have property Π if for every F ∈ R(X)
and x 6∈ F there exists an H ∈ R(X) such that x ∈ IntH and H ∩F = φ. The
symbol X(Π) denotes a space X having property Π.

Remark 2.4. Henceforth all our regular spaces are Hausdorff. Recall that a
space X is Urysohn [5] if for each pair of distinct points of X , we can find dis-
joint regular closed sets of X containing the points in their respective interiors.
We have following implications:

Regular ⇒ Urysohn (Π) ⇔ Nearly Hausdorff (Π) ⇒ Urysohn
⇓

T1 ⇐ Nearly Hausdorff ⇐ Hausdorff

Examples given below (refer [4, 5]) justify that unidirectional implications
in the above flow diagram need not be revertible. In addition, Example 2.5(b)
shows that nearly Hausdorffness is not a closed hereditary property.

Example 2.5.

(a) An infinite cofinite space is a T 1 space but not an nh-space. The one-
point compactification of the space X in our Note 2 is a non-Hausdorff
compact nh-space.

(b) Consider N, the set of natural numbers with cofinite topology and I

= [0, 1] with the usual topology. Let X = N×I and define a topol-
ogy on X as follows: neighborhoods of (n, y), y 6= 0 will be usual
neighborhoods {(n, z) | y − ǫ < z < y + ǫ} in In = {n}×I for small
positive ǫ; neighborhoods of (n, 0) will have the form {(m, z) | m ∈ U ,
0 ≤ z < ǫm}, where U is a neighborhood of n in N and ǫm is a small
positive number for each m ∈ U . The resulting space X is a non
Hausdorff, nh-space without property Π. It is easy to observe that the
subspace N of X is closed but is a non-nh, T 1 space.

(c) Let A be the linearly ordered set {1, 2, 3, ...., ω, ...., -3, -2, -1} with
the interval topology and let N be the set of natural numbers with
the discrete topology. Define X to be A×N together with two distinct
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points say a and −a which are not in A×N. The topology ℑ on X

is determined by the product topology on A×N together with basic
neighborhoods Mn(a) = {a} ∪ {(i, j) | i < ω, j > n} and Mn(−a) =
{−a} ∪ {(i, j) | i > ω, j > n} about a and −a respectively. Resulting
space X is a non-Urysohn Hausdorff space without property Π. In fact,
there does not exist any regular closed set containing a and disjoint

from Mn(−a). This example also justifies that a Hausdorff space need
not have property Π.

(d) Let S be the set of rational lattice points in the interior of the unit
square except those whose x-coordinate is 1

2
. Define X to be S ∪

{(0, 0)} ∪ {(1, 0)} ∪ {(1
2
, r

√
2) | r ∈ Q, 0 < r

√
2 < 1}. Topologize X

as follows: local basis for points in X from the interior of unit square
are same as those inherited from the Euclidean topology and for other
points following local bases are taken:
Un(0, 0) = {(x, y) ∈ S | 0 < x < 1

4
, 0 < y < 1

n
} ∪ {(0, 0)}, Un(1, 0)

= {(x, y) ∈ S | 3
4

< x < 1, 0 < y < 1
n
} ∪ {(1, 0)}, Un(1

2
, r

√
2) =

{(x, y) ∈ S | 1
4
< x < 3

4
, |y−r

√
2| < 1

n
}.

The resulting space X is a Urysohn space without property Π.
(e) Let X be the set of real numbers with neighborhoods of non-zero points

as in the usual topology, while neighborhoods of 0 will have the form
U − A, where U is a neighborhood of 0 in the usual topology and A

= { 1
n

| n ∈ N}. Note that X is a non regular Urysohn space with
property Π.

Theorem 2.6. A nonempty product of an nh-space is an nh-space if and only
if each factor is an nh-space

Proof. Let {Xγ}γ∈λ be a family of nh-spaces, λ 6= φ and let x, y ∈ X =∏
γ∈λ Xγ , x 6= y. Then xγ 6= yγ for some γ ∈ λ. Since each Xγ is an nh-space,

there exist regular closed sets Fx and Fy separating xγ and yγ . Define U =∏
β∈λ Uβ and V =

∏
β∈λ Vβ , where Vβ = Uβ = Xβ, for β 6= γ and Uγ = IntFx,

Vγ = IntFy. The regular closed sets ClU and ClV in X separate x and y.
Proof of the converse is similar. �

Lemma 2.7. Let X be an nh-space and let f :X→Y be a dp-epimorphism.
Then for a regular closed subset H of Y we have Clf(Clf−1(IntH)) = H and
hence R(Y ) = {Clf(F ) | F ∈ R(X)}.
Proof. Clearly for H ∈ R(Y ), Clf(Clf−1(IntH)) ⊆ H . For the reverse con-
tainment, if y ∈ H−Clf(Clf−1(IntH)) then there exists an open set U con-
taining y satisfying f−1(U∩IntH) = φ which contradicts y∈H = ClIntH . �

Note 1. Lemma 2.7 is stated in note 2.2 of [2] for a regular space. Further,
observe that the first projection of the space N×I in example 2.5 (b) shows that
continuous image of an nh-space need not be an nh-space. On the other hand,
if we consider second projection of N×I on [0, 1] with cofinite topology then we
get that even a continuous density preserving image of an nh-space need not be
an nh-space.
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3. The space rX

For an nh-space X , a filter α ⊆ Rf(X)−{φ} is called an r-filter. A maximal
r-filter is called an r-ultrafilter. The family of all r-ultrafilters in X is denoted
by rX . Observe that for x ∈ X , there exists a unique r-ultrafilter αx in
rX such that ∩αx = {x}. Further, if X is compact then each r-ultrafilter
in X is fixed. The converse is also true: If C is an open cover of X then
B = {F ∈ R(X)|X −U ⊂ F , for some U ∈ C} does not have finite intersection
property for otherwise B will generate a fixed r-ultrafilter which will contradict
that C is a cover of X . Hence C has a finite subcover. Topologize the set rX

by taking B = {F | F ∈ R(X)} as a base for closed sets in rX , where F =
{α ∈ rX | F ∈ α} and F ∈ R(X). The map r:X→rX defined by r(x) = αx,
where αx = {F ∈ Rf(X) | x ∈ F} is an embedding.

Lemma 3.1. Let X be an nh-space with property Π. Then the space rX of all
r-ultrafilters in X is a compact nh-space which contains X as a dense subspace.

Proof. Clearly αx = {F ∈ Rf(X)|x ∈ F} is an r-filter. For maximality of αx,
suppose A = ∩n

i=1Ai in Rf(X) be such that A ∩ F 6= φ, for each F in αx.
If possible suppose for some i, Ai 6∈ αx. Then x 6∈ Ai. By the property Π,
there exists an H in R(X) such that x ∈ IntH and H ∩ Ai = φ. Therefore
H ∈ αx and hence H ∩ A 6= φ. But this implies φ 6= H ∩ A ⊂ H ∩ Ai = φ,
a contradiction. Further ClrXr(F ) = F for all F ∈ R(X) implies r is a dense
embedding. �

Note 2. A compactification of a non-Urysohn space without property Π may
also be an nh-space. For example, consider the subspace

Y = {( 1

n
,

1

m
) | n ∈ N, |m| ∈ N} ∪ {( 1

n
, 0) | n ∈ N}

of the usual space R2. Take X = Y ∪ {p+, p−}; p+, p− 6∈ Y and topologize it by
taking sets open in Y as open in X and a set U containing p+ (respectively p−)
to be open in X if for some r ∈ N, {( 1

n
, 1

m
) | n ≥r, m ∈ N} ⊆ U (respectively

{( 1
n
, 1

m
) | n ≥ r,−m ∈ N} ⊆ U). The resulting space X is a non-Urysohn

Hausdorff space without property Π and its one point compactification is an
nh-space.

Proposition 3.2. Let the space X and rX be as in Lemma 3.1. Then X is
C*-embedded in rX.

Proof. Let f ∈ C*(X). Suppose range of f ⊆ [0, 1] = I. For α in rX , define
f ♯(α) = {H1 ∪ H2 ∈ R(I) | ClXf−1(IntH1 ∪ IntH2) ∈ α}. Note that if H1

∪ H2 ∈ f ♯(α) then either H1 ∈ f ♯(α) or H2 ∈ f ♯(α). Also f ♯(α) satisfies finite
intersection property. Thus ∩f ♯(α) 6= φ. We assert that ∩f ♯(α) = {t}, for
some t ∈ I.

Assuming the assertion in hand, we define rf : rX→I by rf(α) = ∩f ♯(α).
Clearly rf restricted to X is f . We now establish continuity of rf . Let
α ∈ rX . Then choose an open set G of I such that t ∈ G, where rf(α)=t. Using
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regularity of I successively we obtain open sets G1, G2 such that
t ∈ G1 ⊆ ClG1 ⊆ G2 ⊆ ClG2 ⊆ G. Set Ft = ClG2 and Ht = Cl(I − ClG1).
Since IntFt ∪ IntHt = I. We have Ft ∪ Ht ∈ f ♯(α) and as t 6∈ Ht, Ft ∈
f ♯(α) and Ht 6∈ f ♯ (α). If Lt = ClXf−1(IntHt), then α 6∈ Lt and the open set
rX−Lt contains α. Finally the containment rf(rX− Lt) ⊆ G establishes the
continuity. For the assertion, one may use the above technique to note that
{F ∈ R(I) | t ∈ IntF} ⊆ f ♯ (α), for each t ∈ f ♯(α). �

Theorem 3.3. Let X be an nh-space with property Π. Then there exists a
compact nh-space rX in which X is densely C*-embedded.

Proof. Follows from Lemma 3.1 and Proposition 3.2. �

Corollary 3.4. If X is a regular space, then it is densely C∗-embedded in rX.

4. When rX = βX?

Let X be an nh-space such that Rf(X) is a Wallman base. Then by 19L(7)
in [5], X is a completely regular space. Therefore by Corollary 3.4, X is C*-
embedded in rX . Further if X is an nh-space such that Rf(X) forms a Wallman
base then by 19L(5) in [5], rX is Hausdorff. Hence we have the following result:

Theorem 4.1. Let X be an nh-space such that Rf(X) is a Wallman base.
Then rX = βX.

Corollary 4.2. If X is normal or zero-dimensional then rX = βX.

Question: Is rX = βX when X is a Tychonoff space?
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