

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 7, No. 1, 2006 pp. 125-130

On nearly Hausdorff compactifications

Sejal Shah and T. K. Das

ABSTRACT. We introduce and study here the notion of nearly Hausdorffness, a separation axiom, stronger than T_1 but weaker than T_2 . For a space X, from a subfamily of the family of nearly Hausdorff spaces, we construct a compact nearly Hausdorff space rX containing X as a densely C*-embedded subspace. Finally, we discuss when rX is βX .

2000 AMS Classification: Primary 54C45, Secondary 54D35.

Keywords: Regular closed set, filter, compactification, Wallman base.

1. INTRODUCTION

A closed subset F in a topological space X is called a *regular closed set* if F = Cl(IntF). We denote the family of all regular closed subsets of X by R(X). Observe that R(X) is closed under finite union. Also, if $F \in R(X)$, then $Cl(X - F) = X - IntF \in R(X)$. In Section 2, we define and study the notion of a nearly Hausdorff space (nh-space). We introduce a topological property Π and note that a space with property Π is an nh-space if and only if it is Urysohn. A flow diagram showing various implications about separation axioms supported by necessary counter examples is included in this section. A map $f:X \to Y$ is called a *density preserving map* (dp-map) if for $A \subseteq X$, $Int(Clf(A)) \neq \phi$ whenever $IntA \neq \phi$ [2]. We provide here an example showing that the nh-property is not preserved even under continuous dp-maps. Note that if X is an nh-space then R(X) forms a base for closed sets in X.

In Section 3, we obtain a βX like' compactification of an nh-space X with property II. Since R(X) need not be closed under finite intersections, we form a new collection Rf(X), of all possible finite intersections of members of R(X). We observe that for an nh-space X with the property II, the set $rX = \{\alpha \subseteq Rf(X) \mid \alpha \text{ is an } r\text{-ultrafilter}\}$ with the natural topology, is a nearly Hausdorff compact space which contains X as a dense C*-embedded subspace. The natural question when $rX = \beta X$ is discussed in Section 4. We observe that an nh-space X for which Rf(X) is a Wallman base, is a completely regular Hausdorff space and hence for such a space X, $rX = \beta X$, the Stone-Čech compactification of X. In particular, if X is normal or zero-dimensional then $rX = \beta X$. The problem whether $rX = \beta X$ for any Tychonoff space X is still open.

2. Nearly Hausdorff spaces

Definition 2.1. Distinct points x and y in a topological space X are said to be separated by subsets A and B of X if $x \in A-B$ and $y \in B-A$.

Definition 2.2. A topological space X is called **nearly Hausdorff** (nh-) if for every pair of distinct points of X there exists a pair of regular closed sets separating them.

Definition 2.3. A space X is said to have **property** Π if for every $F \in R(X)$ and $x \notin F$ there exists an $H \in R(X)$ such that $x \in IntH$ and $H \cap F = \phi$. The symbol $X(\Pi)$ denotes a space X having property Π .

Remark 2.4. Henceforth all our regular spaces are Hausdorff. Recall that a space X is *Urysohn* [5] if for each pair of distinct points of X, we can find disjoint regular closed sets of X containing the points in their respective interiors. We have following implications:

 $\begin{array}{rcl} \operatorname{Regular} & \Rightarrow & \operatorname{Urysohn} (\Pi) \Leftrightarrow & \operatorname{Nearly} \operatorname{Hausdorff} (\Pi) \Rightarrow & \operatorname{Urysohn} & & & & \\ & & & & \downarrow \\ & & & & T_1 \leftarrow & \operatorname{Nearly} \operatorname{Hausdorff} & \leftarrow & \operatorname{Hausdorff} \end{array}$

Examples given below (refer [4, 5]) justify that unidirectional implications in the above flow diagram need not be revertible. In addition, Example 2.5(b) shows that nearly Hausdorffness is not a closed hereditary property.

Example 2.5.

- (a) An infinite cofinite space is a T_1 space but not an nh-space. The onepoint compactification of the space X in our Note 2 is a non-Hausdorff compact nh-space.
- (b) Consider N, the set of natural numbers with cofinite topology and $\mathbf{I} = [0, 1]$ with the usual topology. Let $X = N \times \mathbf{I}$ and define a topology on X as follows: neighborhoods of (n, y), $y \neq 0$ will be usual neighborhoods $\{(n, z) \mid y \epsilon < z < y + \epsilon\}$ in $\mathbf{I}_n = \{n\} \times \mathbf{I}$ for small positive ϵ ; neighborhoods of (n, 0) will have the form $\{(m, z) \mid m \in U, 0 \leq z < \epsilon_m\}$, where U is a neighborhood of n in N and ϵ_m is a small positive number for each $m \in U$. The resulting space X is a non Hausdorff, nh-space without property Π . It is easy to observe that the subspace N of X is closed but is a non-nh, T_1 space.
- (c) Let A be the linearly ordered set $\{1, 2, 3, ..., \omega, ..., -3, -2, -1\}$ with the interval topology and let N be the set of natural numbers with the discrete topology. Define X to be $A \times N$ together with two distinct

points say a and -a which are not in $A \times \mathbf{N}$. The topology \Im on X is determined by the product topology on $A \times \mathbf{N}$ together with basic neighborhoods $M_n(a) = \{a\} \cup \{(i, j) \mid i < \omega, j > n\}$ and $M_n(-a) = \{-a\} \cup \{(i, j) \mid i > \omega, j > n\}$ about a and -a respectively. Resulting space X is a non-Urysohn Hausdorff space without property Π . In fact, there does not exist any regular closed set containing a and disjoint from $M_n(-a)$. This example also justifies that a Hausdorff space need not have property Π .

(d) Let S be the set of rational lattice points in the interior of the unit square except those whose x-coordinate is $\frac{1}{2}$. Define X to be $S \cup \{(0, 0)\} \cup \{(1, 0)\} \cup \{(\frac{1}{2}, r\sqrt{2}) \mid r \in Q, 0 < r\sqrt{2} < 1\}$. Topologize X as follows: local basis for points in X from the interior of unit square are same as those inherited from the Euclidean topology and for other points following local bases are taken:

 $\begin{aligned} U_n(0,0) &= \{ (x, y) \in S \mid 0 < x < \frac{1}{4}, 0 < y < \frac{1}{n} \} \cup \{ (0,0) \}, U_n(1,0) \\ &= \{ (x, y) \in S \mid \frac{3}{4} < x < 1, 0 < y < \frac{1}{n} \} \cup \{ (1,0) \}, U_n(\frac{1}{2}, r\sqrt{2}) = \\ \{ (x, y) \in S \mid \frac{1}{4} < x < \frac{3}{4}, |y - r\sqrt{2}| < \frac{1}{n} \}. \end{aligned}$

The resulting space X is a Urysohn space without property Π .

(e) Let X be the set of real numbers with neighborhoods of non-zero points as in the usual topology, while neighborhoods of 0 will have the form U - A, where U is a neighborhood of 0 in the usual topology and A $= \{\frac{1}{n} \mid n \in \mathbf{N}\}$. Note that X is a non regular Urysohn space with property Π .

Theorem 2.6. A nonempty product of an nh-space is an nh-space if and only if each factor is an nh-space

Proof. Let $\{X_{\gamma}\}_{\gamma \in \lambda}$ be a family of nh-spaces, $\lambda \neq \phi$ and let $x, y \in X = \prod_{\gamma \in \lambda} X_{\gamma}, x \neq y$. Then $x_{\gamma} \neq y_{\gamma}$ for some $\gamma \in \lambda$. Since each X_{γ} is an nh-space, there exist regular closed sets F_x and F_y separating x_{γ} and y_{γ} . Define $U = \prod_{\beta \in \lambda} U_{\beta}$ and $V = \prod_{\beta \in \lambda} V_{\beta}$, where $V_{\beta} = U_{\beta} = X_{\beta}$, for $\beta \neq \gamma$ and $U_{\gamma} = IntF_x$, $V_{\gamma} = IntF_y$. The regular closed sets ClU and ClV in X separate x and y. Proof of the converse is similar.

Lemma 2.7. Let X be an nh-space and let $f:X \to Y$ be a dp-epimorphism. Then for a regular closed subset H of Y we have $Clf(Clf^{-1}(IntH)) = H$ and hence $R(Y) = \{Clf(F) \mid F \in R(X)\}.$

Proof. Clearly for $H \in R(Y)$, $Clf(Clf^{-1}(IntH)) \subseteq H$. For the reverse containment, if $y \in H-Clf(Clf^{-1}(IntH))$ then there exists an open set U containing y satisfying $f^{-1}(U \cap IntH) = \phi$ which contradicts $y \in H = ClIntH$. \Box

Note 1. Lemma 2.7 is stated in note 2.2 of [2] for a regular space. Further, observe that the first projection of the space $N \times I$ in example 2.5 (b) shows that continuous image of an nh-space need not be an nh-space. On the other hand, if we consider second projection of $N \times I$ on [0,1] with cofinite topology then we get that even a continuous density preserving image of an nh-space need not be an nh-space.

3. The space rX

For an nh-space X, a filter $\alpha \subseteq Rf(X) - \{\phi\}$ is called an *r-filter*. A maximal *r*-filter is called an *r-ultrafilter*. The family of all *r*-ultrafilters in X is denoted by rX. Observe that for $x \in X$, there exists a unique *r*-ultrafilter α_x in rX such that $\cap \alpha_x = \{x\}$. Further, if X is compact then each *r*-ultrafilter in X is fixed. The converse is also true: If C is an open cover of X then $B = \{F \in R(X) | X - U \subset F, \text{ for some } U \in C\}$ does not have finite intersection property for otherwise B will generate a fixed *r*-ultrafilter which will contradict that C is a cover of X. Hence C has a finite subcover. Topologize the set rX by taking $B = \{\overline{F} \mid F \in R(X)\}$ as a base for closed sets in rX, where $\overline{F} = \{\alpha \in rX \mid F \in \alpha\}$ and $F \in R(X)$. The map $r:X \to rX$ defined by $r(x) = \alpha_x$, where $\alpha_x = \{F \in Rf(X) \mid x \in F\}$ is an embedding.

Lemma 3.1. Let X be an nh-space with property Π . Then the space rX of all r-ultrafilters in X is a compact nh-space which contains X as a dense subspace.

Proof. Clearly $\alpha_x = \{F \in Rf(X) | x \in F\}$ is an r-filter. For maximality of α_x , suppose $A = \bigcap_{i=1}^n A_i$ in Rf(X) be such that $A \cap F \neq \phi$, for each F in α_x . If possible suppose for some $i, A_i \notin \alpha_x$. Then $x \notin A_i$. By the property Π , there exists an H in R(X) such that $x \in IntH$ and $H \cap A_i = \phi$. Therefore $H \in \alpha_x$ and hence $H \cap A \neq \phi$. But this implies $\phi \neq H \cap A \subset H \cap A_i = \phi$, a contradiction. Further $Cl_{rX}r(F) = \overline{F}$ for all $F \in R(X)$ implies r is a dense embedding.

Note 2. A compactification of a non-Urysohn space without property Π may also be an nh-space. For example, consider the subspace

$$Y = \{(\frac{1}{n}, \frac{1}{m}) \mid n \in \mathbf{N}, |m| \in \mathbf{N}\} \cup \{(\frac{1}{n}, 0) \mid n \in \mathbf{N}\}$$

of the usual space \mathbb{R}^2 . Take $X = Y \cup \{p^+, p^-\}; p^+, p^- \notin Y$ and topologize it by taking sets open in Y as open in X and a set U containing p^+ (respectively p^-) to be open in X if for some $r \in \mathbb{N}$, $\{(\frac{1}{n}, \frac{1}{m}) \mid n \geq r, m \in \mathbb{N}\} \subseteq U$ (respectively $\{(\frac{1}{n}, \frac{1}{m}) \mid n \geq r, -m \in \mathbb{N}\} \subseteq U$). The resulting space X is a non-Urysohn Hausdorff space without property Π and its one point compactification is an *nh-space*.

Proposition 3.2. Let the space X and rX be as in Lemma 3.1. Then X is C^* -embedded in rX.

Proof. Let $f \in C^*(X)$. Suppose range of $f \subseteq [0, 1] = \mathbf{I}$. For α in rX, define $f^{\sharp}(\alpha) = \{H_1 \cup H_2 \in R(\mathbf{I}) \mid Cl_X f^{-1}(IntH_1 \cup IntH_2) \in \alpha\}$. Note that if $H_1 \cup H_2 \in f^{\sharp}(\alpha)$ then either $H_1 \in f^{\sharp}(\alpha)$ or $H_2 \in f^{\sharp}(\alpha)$. Also $f^{\sharp}(\alpha)$ satisfies finite intersection property. Thus $\cap f^{\sharp}(\alpha) \neq \phi$. We assert that $\cap f^{\sharp}(\alpha) = \{t\}$, for some $t \in \mathbf{I}$.

Assuming the assertion in hand, we define $rf: rX \to \mathbf{I}$ by $rf(\alpha) = \cap f^{\sharp}(\alpha)$. Clearly rf restricted to X is f. We now establish continuity of rf. Let $\alpha \in rX$. Then choose an open set G of \mathbf{I} such that $t \in G$, where $rf(\alpha)=t$. Using regularity of **I** successively we obtain open sets G_1 , G_2 such that $t \in G_1 \subseteq ClG_1 \subseteq G_2 \subseteq ClG_2 \subseteq G$. Set $F_t = ClG_2$ and $H_t = Cl(\mathbf{I} - ClG_1)$. Since $IntF_t \cup IntH_t = \mathbf{I}$. We have $F_t \cup H_t \in f^{\sharp}(\alpha)$ and as $t \notin H_t$, $F_t \in f^{\sharp}(\alpha)$ and $H_t \notin f^{\sharp}(\alpha)$. If $L_t = Cl_X f^{-1}(IntH_t)$, then $\alpha \notin \overline{L}_t$ and the open set $rX - \overline{L}_t$ contains α . Finally the containment $rf(rX - \overline{L}_t) \subseteq G$ establishes the continuity. For the assertion, one may use the above technique to note that $\{F \in R(\mathbf{I}) \mid t \in IntF\} \subseteq f^{\sharp}(\alpha)$, for each $t \in f^{\sharp}(\alpha)$.

Theorem 3.3. Let X be an nh-space with property Π . Then there exists a compact nh-space rX in which X is densely C*-embedded.

Proof. Follows from Lemma 3.1 and Proposition 3.2. \Box

Corollary 3.4. If X is a regular space, then it is densely C^* -embedded in rX.

4. WHEN
$$rX = \beta X$$
?

Let X be an nh-space such that Rf(X) is a Wallman base. Then by 19L(7) in [5], X is a completely regular space. Therefore by Corollary 3.4, X is C^{*}-embedded in rX. Further if X is an nh-space such that Rf(X) forms a Wallman base then by 19L(5) in [5], rX is Hausdorff. Hence we have the following result:

Theorem 4.1. Let X be an nh-space such that Rf(X) is a Wallman base. Then $rX = \beta X$.

Corollary 4.2. If X is normal or zero-dimensional then $rX = \beta X$.

Question: Is $rX = \beta X$ when X is a Tychonoff space?

Acknowledgements. We thank the referee for his/her valuable suggestions.

References

- [1] E. Čech, *Topological Spaces*, (John Wiley and Sons Ltd., 1966).
- [2] T. K. Das, On Projective Lift and Orbit Space, Bull. Austral. Math. Soc. 50 (1994), 445-449.
- [3] J. R. Porter and R. G. Woods, *Extensions and Absolutes of Hausdorff Spaces*, (Springer-Verlag, 1988).
- [4] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, (Springer-Verlag, 1978).
- [5] S. Willard, General Topology, (Addition-Wesley Pub. Comp., 1970).

Received November 2004

Accepted July 2005

Sejal Shah

Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara, India.

T. K. DAS (tarunkd@yahoo.com)

Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara, India.