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ABSTRACT. It is proved that every compact operator from a DF-
space, closed subspace of another DF-space, into the space C(K) of
continuous functions on a compact Hausdorff space K can be extended
to a compact operator of the total DF-space.
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1. INTRODUCTION

Let F and X be topological vector spaces with £ a closed subspace of X.
We are interested in finding out when a continuous operator T : E — C(K)
has an extension 7 : X — C(K), where C(K) is the space of continuous real
functions on a compact Hausdorff space K and C(K) has the norm of the
supremum. When this is the case we will say that (F, X) has the extension
property. Several advances have been made in this direction, a basic resume
and bibliography for this problem can be found in [5]. In this work we will
focus in the case when the operator T is a compact operator. In [4], p.23 , it
is proved that (E, X) has the extension property when F and X are Banach
spaces and T : E — C(K) is a compact operator. In this paper we extend this
result to the case when E and X are DF-spaces (to be defined below), for this,
we use basic tools from topological vector spaces.

2. NOTATION AND BAsic RESULTS IN DF-SPACES.

We will use basic duality theory of topological vector spaces. For concepts
in topological vector spaces see [3] or [2]. All the topological vector spaces in
this work are Hausdorff and locally convex.

Let (X,t) be a topological vector space and F < X be a closed vector
subspace. Let X' = (X,t)’, E' = (E,t)’ be the topological duals of X and E
respectively.
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A topological vector space (X, t) possesses a a fundamental sequence of
bounded sets if there exists a sequence By C By C --- of bounded sets in
(X, t), such that every bounded set B is contained in some By.

We take the following definition from [3], p. 396.

Definition 2.1. A locally convex topological vector space (X,t) is said to be a
DF-space if
(1) it has a fundamental sequence of bounded sets, and
(2) every strongly bounded subset M of X' which is the union of countably
many equicontinuous sets is also equicontinuous

A quasi-barrelled locally convex topological vector space with a fundamental
sequence of bounded set is always a DF-space. Thus every normed space is a
DF-space. Later we will mention topological vector spaces which are DF-spaces
but they are not normed spaces.

First, we state some theorems to be used in the proof of the main result.

If K is a compact Hausdorff topological space, we define, for each k € K
the injective evaluation map k : C(K) — R, k(f) = f(k) which is linear and
continuous, that is k € C(K)'. Let K = {k|k € K} C C(K) and cch(K) the
balanced, closed and convex hull of K (which is bounded).

Theorem 2.2. With the notation above we have
(1) K is o(C(K),C(K))-compact and K is homeomorphic to
(K,o(C(K),C(K)). Here o(C(K)',C(K)) denotes the weak-* topol-
ogy on C(K) .
— B
(2) If T: E — C(K) is a compact operator then A = T'(cch(K)) s
B(E',E)-compact. Here B(E',E) is the strong topology on E', this
topology is generated by the polars sets of all bounded sets of (F, t).
Proof. See [1], p. 490. O

Theorem 2.3. If (X,t) is a DF-space then (X', (X', X)) is a Frechet
space.

Proof. See [3], p. 397 O

Theorem 2.4. Let M be paracompact, Z a Banach space, N C Z convex
and closed, and ¢ : M — F(N) lower semicontinuous (l.s.c.) Then ¢ has a
selection.

Proof. See [6] O

In the above theorem, F(N) = {S C N : S # &, S closed in N and convex};
¢: M —F(N)isls.c. if {me M : p(m)NV # &} is open in M for every open
Vin N,and f: M — N is a selection for ¢ if f is continuous and f(m) € ¢(m)
for every m € M.

Theorem above remains true if Z is only a complete, metrizable, locally
convex topological vector space (see [7]).



Extension of Compact Operators 167

3. MAIN RESULTS

Lemma 3.1. Let A C E'. If there is a continuous map
fi(Ao(ELE) = (X', 7),  oX X)<7 <B(X',X)
such that
(1) f(a)lg =a and
(2) f(A) is an equicontinuous subset of X'.
Then every linear and continuous map T : E — C(K) has a linear and con-
tinuous extension T : X — C(K).

Proof. Let us define T : X — C(K) in the following way: for each =z € X,
T(z) : K — R is given by T(z)(k) = f(T"(k))(z). Here, k is the injective
evaluation map defined before Theorem 2.2. It is easy to check that T is
linear and extends 7.

First, let us show that T'(z) € C(K) for each z € X. For this let O C
R be an open set. We have that T'(z)~'(0) = T'~'(f~'(z=*(0)) ). Since
z: X'[o(X',X)] - R, f and T’ are all continuous maps with the weak*
topology, T'(x)~'(0) is open in K. This proves that T(z) € C(K).

Let us check that T is continuous. Let {zx}a L0inX , we need to show

that {T(z\)} 0.

For this, let € > 0. By hypothesis f(A) is a equicontinuous subset of X', so
that, ef(A)° C X is a t-neighborhood of 0. Here f(A)° denotes de polar set
of f(A). Hence, there is A\g € A such that z) € ef(A)° for all A > A\g. From

part 2 of Theorem 2.2 we have T'(K) C A, hence
[T (2x) (k)] = | (T (k))(2)] < € for all A= Ao
This implies that
1T (2x)llow) = sup{ |/(T7(k)(z)] / k€ K} < e for all A > Ag

-lle )
—

-lle)
—

This proves that {T(xy)} 0. O

Let 7 : E — X be the inclusion map and ¢’ : X’ — E’ the dual map of 1,
that is, if y € X', ¢(y) = y|B.

Let P(X")={Y|Y # @, Y C X'} and define ¢ : E' — P(X’) by ¢(¢') =
{ extensions of ¢’ to X}. Notice that y € ¥(i'(y)) for all y € X’ and ¥ (e’) €
F(X7).

With this notation, we have
Proposition 3.2. Let (E, t) and (X, t) be DF-spaces, with E < X a closed
subspace. If O C X' is a B(X', X)-open set then the set Up = {z € E'|{(z)N
O # @} is an open set in (', B(E', E)).
Proof. Notice that Up = {z € E' | (2) N O # @} = i'(O). By Theorem 2.3
(X', 8(X’, X)) and (E', B(E', E) ) are Frechet spaces. By the Banach-Schauder
theorem (see [3], p. 166), the map i’ : (X', 8(X’, X)) — (E', B(E’, E)) is an
open map. Since '(O) is open in E’, Up is also open. O
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Corollary 3.3. Let (E,t) and (X, t) be DF-spaces, with E < X a closed

— 8
subspace. Let A = T'(cch(K))  be as in part 2 of Theorem (2.2) Then ¢ :
(A,B(E',E)) — P(X') given by o = 9|4 is a lower semicontinuous function,
X' provided with the strong topology B(X’, X).

Proof. Tt follows from
{ze€Alpz)NO#£2}={z€ F'|¢Y(z)NnO0O+2}NA
and Proposition 3.2. (Il

With the notation in Corollary 3.3, we have

Proposition 3.4. If (X,t) is a DF-space then ¢ : (A,B(E',E)) — P(X')
admits a selection, that is, there is a continuous function f: (A,B(F',E)) —

(X', 8(X', X)) such that f(a) € p(a).

Proof. From Theorem 2.3, (X,t) DF-space implies (X', 3(X’, X)) Frechet.
From Theorem 2.2, part 2, A is B(E’, E)-compact, hence A is a paracompact
set. By Corollary 3.3, ¢ is a lower semi continuous function, therefore, by
Theorem 2.4, ¢ admits a selection. (]

Theorem 3.5. If (X,t) and the closed subspace E are DF-spaces then every
compact operator T : E — C(K) has a compact extension T : X — C(K).

Proof. Let A be as in Proposition 3.4 and f: (4,8(F', F)) — (X', 8(X’, X))
a selection function. Since A is B(E’, F)-compact and f is continuous, f(A) is
compact, hence f(A) is an equicontinuous set. Let T be the linear extension
of T' given in Lemma 3.1.

Let us prove that T is a compact operator. For this, we need to show that
there is a t-neighborhood V' such that T(V) is a relatively compact set.

Since f(A) C X’ is an equicontinuous set and X is a DF space, [2] (p.
260 and p. 214) tells us that there is V C X a balanced, closed and convex
t-zero-neighborhood such that f(A) C V° and the topologies 5(X’, X) and
pve coincide on f(A). Here pyo is the Minkowski functional of V°. In this
case pyo is a norm and (X, pve) is a Banach space.

By using the Arzela-Ascoli Theorem, we will show that T(V) C C(K) is
relatively compact.

First, T(V) is pointwise bounded because, for each # € V and k € K,
T(x)(k)| = [f(T'(k))(z)| <1 since f(A) CV*.

Now let us prove that T(V) is equicontinuous in C(K).

Choose and fix kg € K and e > 0. Since the chain of functions

KK 5 (4, B(X, X)) -5 (£(4), (X7, X))

is continuous, given a 3-neighborhood W of f(T"(ko)) on f(A), there exists
O C K neighborhood of ky such that k& € O = f(T'(k)) € W. Since
pvelray = B(X', X)|fca), we can say that

k€0 = pyo (FT'(R) = F(T'(Ko))) < e
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For each x € X, z : (X{., pve) — R is linear and continuous, moreover,
|z"(z)] < [|2]]py o pvo(a') for all 2’ € X', where

I2[lpy0 = sup{|’(z)] | 2" € V°}
If x €V, ||z||p,. <1. Therefore, for every k € O and every z € V

(FCT' () = ST G0))@)| < llalloye pve (7)) = £(T'(R))) < (1)(e)

This proves that T(V) is equicontinuous in C(K) and, by the Arzela-Ascoli
Theorem, T'(V) is relatively compact which means that T is a compact oper-
ator. (|

In [3] (p. 402) it is shown that the topological inductive limit of a sequence
of DF-spaces is a DF-space. In particular, if (E,) is a sequence of Banach
spaces such that FE, is a proper subspace of F, 1, its inductive limit is DF-
space. This inductive limit is not metrizable (see [8] p. 291). For this kind of
spaces, Theorem 3.5 can be applied, i.e., given a fixed n, a compact operator
T : E, — C(K) can be extended to a compact operator of the inductive limit.
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