

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 7, No. 2, 2006 pp. 265-268

Every infinite group can be generated by P-small subset

DIKRAN DIKRANJAN AND IGOR PROTASOV

ABSTRACT. For every infinite group G and every set of generators S of G, we construct a system of generators in S which is small in the sense of Prodanov.

2000 AMS Classification: 20D30, 20F05.

Keywords: Group, large set, small set, P-small set.

A subset B of a group G is called *large* if $G = F \cdot B = B \cdot F$ for some finite subset F of G. A subset S of a group G is called *small* if the subset $G \setminus F \cdot S \cdot F$ is large for every finite subset F of G.

V. Malykhin and R. Moresco [4] posed the following question: can ever infinite group by generated by small subset? This question was answered positively in [6] (see also [7, Theorem 13.1], some partial results were obtain also in [2]).

Following [2, §2.1] we call a subset S of a group G left small in the sense of Prodanov (briefly left P-small) if there exist an injective sequence $(a_n)_{n<\omega}$ such that the family $\{a_n \cdot S : n < \omega\}$ consists of pairwise disjoint subsets. Analogously, right small in the sense of Prodanov (briefly right P-small) is introduced. The set S is called P-small when it is both left P-small and right P-small. Clearly, all these notions coincide in the abelian case. That was the case considered by Prodanov [5], who introduced the notion by noticing that if for a subset A of an abelian group G the difference set A - A is not not large, then A is P-small.

By [3, Theorem 4.2], every P-small subset of Abelian group is small, but there are small subsets of Abelian groups which are not P-small. On the other hand, the free group of rank 2 contains P-small subsets which are not small. It was proved in [2, Theorem 3.6] that every abelian group has a P-small set of generators. Furthermore, every free group (more generally, every group admitting an infinite abelian quotient) and every infinite symmetric group admit a P-small set of generators [2, Proposition 3.7, Theorem 3.11]. In this paper we offer a common generalization of all preceding results in our theorem below by proving that every set of generators of an infinite group contains a P-small subset of generators.

For a subset A of a group G we denote by $\langle A \rangle$ the subgroup generated by A.

Theorem 1. Let G be an infinite group, $A \subseteq G$, $G = \langle A \rangle$. Then there exists a small and P-small subset X of G such that $\langle X \rangle = G$ and $X \subseteq A$.

Proof. If G is finitely generated, the statement is trivial since every set of generators of G contains a finite set of generators. We can take an arbitrary finite system $X, X \subseteq A$ of generators of G and choose inductively the sequences $(y_n)_{n < \omega}, (z_n)_{n < \omega}$ such that

$$y_n \cdot X \cap y_m \cdot X = \emptyset, \ X \cdot z_n \cap X \cdot z_m = \emptyset$$

for all n, m such that $n < m < \omega$.

Assume that G is not finitely generated and fix some minimal well-ordering $\{g_{\alpha} : \alpha < \kappa\}$ of $A \cup \{e\}$, $g_0 = e$, e is the identity of G. Put $G_0 = \{e\}$ and $x_0 = g_1$. Suppose that, for some ordinal $\lambda < \kappa$, the elements $\{x_{\alpha} : \alpha < \lambda\}$ and the subgroup $\{G_{\alpha} : \alpha < \lambda\}$ have been chosen. If λ is a limit ordinal, we put $G_{\lambda} = \bigcup_{\alpha < \lambda} G_{\alpha}$, take the first element g_{β} such that $g_{\beta} \notin G_{\lambda}$ and put $x_{\lambda} = g_{\beta}$. If λ is a non-limit ordinal, we denote by G_{λ} the subgroup generated by $G_{\lambda-1} \cup \{x_{\lambda-1}\}$, take the first element g_{β} such that $g_{\beta} \notin G_{\lambda}$ and put $x_{\lambda} = g_{\beta}$. After κ steps we get the subset $X = \{x_{\alpha} : \alpha < \kappa\}$ and the properly increasing chain $\{G_{\alpha} : \alpha < \kappa\}$ of subgroups of G such that $X \subseteq A$, $G = \langle X \rangle$ and $x_{\alpha} \in D_{\alpha} := G_{\alpha+1} \setminus G_{\alpha}$ for every $\alpha < \kappa$. By [5, Theorem 13.1], X is small.

To show that X is P-small, we build a sequence sequences $(y_n)_{n < \omega}$ of elements of G such that

$$y_n \cdot X \cap y_i \cdot X = \emptyset \tag{1}$$

for every i < n. To this end we use the following easy to see properties of the sets D_{α} :

- (a) $G = \bigcup_{\alpha < \kappa} D_{\alpha}$ is a partition with $D_{\alpha} \cap G_{\lambda} = \emptyset$ whenever $\lambda \le \alpha < \kappa$;
- (b) $G_{\alpha} \cdot D_{\alpha} = D_{\alpha} \cdot G_{\alpha} = D_{\alpha}$ for every $\alpha < \kappa$;
- (c) $|D_m| \ge |G_m| \ge 2^m$, for all $m < \omega$.

For every $m < \omega$ let $X_m = \{x_0, x_1, ..., x_m\}.$

Put $y_0 = e$. Suppose that, for some natural number n, the elements $y_0, y_1, ..., y_{n-1}$ have been chosen so that $\{y_0, y_1, ..., y_{n-1}\} \subset G_{\omega}$ and

$$y_i \cdot X \cap y_j \cdot X = \emptyset$$

for all i, j such that $i < j \le n - 1$.

To determine y_n , we take a natural number m such that $\{y_0, y_1, ..., y_{n-1}\} \subset G_m$ and

$$2^m > n(m+1)^2$$
.

266

By (c) and by the inequality $|\{y_0, y_1, ..., y_{n-1}\} \cdot X_m \cdot X_m^{-1}| \le n(m+1)^2$ we can take the element $y_n \in D_m$ such that

$$\{y_0, y_1, \dots, y_{n-1}\} \cdot X_m \cap y_n \cdot X_m = \emptyset.$$

By the choice of y_n , we have

$$y_n X_m \cap y_i \cdot X_m = \emptyset$$

for every i < n. If $k, l < \omega, k > m$, then $y_j x_k \in D_k$ for every $j \le n$. Hence $y_n x_k = y_j x_l$ with k, l > m yields k = l and n = j. Now assume that $y_i x_k = y_j x_l$ holds with k > m, $i, j \le n$ and $l \le m$. Then according to (a) and (b) this is not possible as $y_n \cdot x_k \in D_k$, while $y_j \cdot x_l \in G_{m+1}$. Analogously, $y_n \cdot x_k = y_j \cdot x_l$ is not possible with $k \le m$ and l > m. This proves that

$$y_n \cdot X \cap y_i \cdot X = \emptyset$$

for every i < n. After ω steps we get the sequence $(y_n)_{n < \omega}$ such that the family $\{y_n \cdot X : n < \omega\}$ consists of pairwise disjoint subsets. Applying these arguments to the set X^{-1} , we get the sequence $(z_n)_{n \in \omega}$ such that the family $\{X \cdot z_n : n \in \omega\}$ consists of pairwise disjoint subsets. Hence, X is P-small. \Box

Question 2. Let G be an infinite group of cardinality κ . Does there exist a subset X of G and a κ -sequence $(y_{\alpha})_{\alpha < \kappa}$ such that the family $\{y_{\alpha} \cdot X : \alpha \in \kappa\}$ consists of pairwise disjoint subsets and $G = \langle X \rangle$?

If G is Abelian the answer is positive (see the proof of Theorem 3.6 from [2]).

Finally, we offer also the following

Question 3.

- (a) Let X be a subset of G such that, for every natural number n there exits a subset Y_n of G such that $|Y_n| = n$ and the family $\{y \cdot X : y \in Y_n\}$ is disjoint. Is X left P-small ?
- (b) By [7, Theorem 12.10], every infinite group can be partitioned into countably many small subsets. Can every infinite group be partitioned into countably many P-small subsets?
- (c) Let G be an infinite group. Does there exist a system S of generators of G such that $G \neq (S \cdot S^{-1})^n$ for every natural number n?

NOTE ADDED IN NOVEMBER 2006. Recently T. Banakh and N. Lyaskovska answered negatively item (a) of Question 3.

D. Dikranjan and I. Protasov

References

- A. Bella and V. Malykhin, Small, large and other subsets of a group, Questions and Answers in General Topology 17 (1967), 183–197.
- [2] D. Dikranjan, U. Marconi and R. Moresco, Groups with small set of generators, Applied General Topology 4 (2) (2003), 327–350.
- [3] R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology 3 (2) (2002), 133–143.
- [4] V. Malykhin and R. Moresco, Small generated groups, Questions and Answers in General Topology 19 (1) (2001), 47–53.
- [5] Iv. Prodanov, Some minimal group topologies are precompact, Math.Ann. 227 (1977), 117–125.
- [6] I. Protasov, Every infinite group can be generated by small subset, in: Third Intern. Algebraic Conf. in Ukraine, Sumy, (2001), 92–94.
- [7] I. Protasov and T. Banakh, Ball Structures and Colorings of Graphs and Groups, Matem. Stud. Monogr. Series, Vol 11, Lviv, 2003.

Received August 2005

Accepted January 2006

DIKRAN DIKRANJAN (dikranja@dimi.uniud.it)

Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienza 206, 33100 Udine, Italy

IGOR PROTASOV (kseniya@profit.net.ua)

Department of Cybernetics, Kyiv National University, Volodimirska 64, Kiev 01033, Ukraine