Every infinite group can be generated by P-small subset

Dikran Dikranjan and Igor Protasov

Abstract

For every infinite group G and every set of generators S of G, we construct a system of generators in S which is small in the sense of Prodanov.

2000 AMS Classification: 20D30, 20F05.
Keywords: Group, large set, small set, P-small set.

A subset B of a group G is called large if $G=F \cdot B=B \cdot F$ for some finite subset F of G. A subset S of a group G is called small if the subset $G \backslash F \cdot S \cdot F$ is large for every finite subset F of G.
V. Malykhin and R. Moresco [4] posed the following question: can ever infinite group by generated by small subset? This question was answered positively in [6] (see also [7, Theorem 13.1], some partial results were obtain also in [2]).

Following [2, §2.1] we call a subset S of a group G left small in the sense of Prodanov (briefly left P-small) if there exist an injective sequence $\left(a_{n}\right)_{n<\omega}$ such that the family $\left\{a_{n} \cdot S: n<\omega\right\}$ consists of pairwise disjoint subsets. Analogously, right small in the sense of Prodanov (briefly right P-small) is introduced. The set S is called P-small when it is both left P -small and right P-small. Clearly, all these notions coincide in the abelian case. That was the case considered by Prodanov [5], who introduced the notion by noticing that if for a subset A of an abelian group G the difference set $A-A$ is not not large, then A is P -small.

By [3, Theorem 4.2], every P-small subset of Abelian group is small, but there are small subsets of Abelian groups which are not P-small. On the other hand, the free group of rank 2 contains P -small subsets which are not small. It was proved in [2, Theorem 3.6] that every abelian group has a P-small set of generators. Furthermore, every free group (more generally, every group admitting an infinite abelian quotient) and every infinite symmetric group admit
a P-small set of generators [2, Proposition 3.7, Theorem 3.11]. In this paper we offer a common generalization of all preceding results in our theorem below by proving that every set of generators of an infinite group contains a P-small subset of generators.

For a subset A of a group G we denote by $\langle A\rangle$ the subgroup generated by A.

Theorem 1. Let G be an infinite group, $A \subseteq G, G=\langle A\rangle$. Then there exists a small and P-small subset X of G such that $\langle X\rangle=G$ and $X \subseteq A$.

Proof. If G is finitely generated, the statement is trivial since every set of generators of G contains a finite set of generators. We can take an arbitrary finite system $X, X \subseteq A$ of generators of G and choose inductively the sequences $\left(y_{n}\right)_{n<\omega},\left(z_{n}\right)_{n<\omega}$ such that

$$
y_{n} \cdot X \cap y_{m} \cdot X=\varnothing, \quad X \cdot z_{n} \cap X \cdot z_{m}=\varnothing
$$

for all n, m such that $n<m<\omega$.
Assume that G is not finitely generated and fix some minimal well-ordering $\left\{g_{\alpha}: \alpha<\kappa\right\}$ of $A \cup\{e\}, g_{0}=e, e$ is the identity of G. Put $G_{0}=\{e\}$ and $x_{0}=g_{1}$. Suppose that, for some ordinal $\lambda<\kappa$, the elements $\left\{x_{\alpha}: \alpha<\lambda\right\}$ and the subgroup $\left\{G_{\alpha}: \alpha<\lambda\right\}$ have been chosen. If λ is a limit ordinal, we put $G_{\lambda}=\bigcup_{\alpha<\lambda} G_{\alpha}$, take the first element g_{β} such that $g_{\beta} \notin G_{\lambda}$ and put $x_{\lambda}=g_{\beta}$. If λ is a non-limit ordinal, we denote by G_{λ} the subgroup generated by $G_{\lambda-1} \cup\left\{x_{\lambda-1}\right\}$, take the first element g_{β} such that $g_{\beta} \notin G_{\lambda}$ and put $x_{\lambda}=g_{\beta}$. After κ steps we get the subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ and the properly increasing chain $\left\{G_{\alpha}: \alpha<\kappa\right\}$ of subgroups of G such that $X \subseteq A, G=\langle X\rangle$ and $x_{\alpha} \in D_{\alpha}:=G_{\alpha+1} \backslash G_{\alpha}$ for every $\alpha<\kappa$. By [5, Theorem 13.1], X is small.

To show that X is P-small, we build a sequence sequences $\left(y_{n}\right)_{n<\omega}$ of elements of G such that

$$
\begin{equation*}
y_{n} \cdot X \cap y_{i} \cdot X=\varnothing \tag{1}
\end{equation*}
$$

for every $i<n$. To this end we use the following easy to see properties of the sets D_{α} :
(a) $G=\bigcup_{\alpha<\kappa} D_{\alpha}$ is a partition with $D_{\alpha} \cap G_{\lambda}=\varnothing$ whenever $\lambda \leq \alpha<\kappa$;
(b) $G_{\alpha} \cdot D_{\alpha}=D_{\alpha} \cdot G_{\alpha}=D_{\alpha}$ for every $\alpha<\kappa$;
(c) $\left|D_{m}\right| \geq\left|G_{m}\right| \geq 2^{m}$, for all $m<\omega$.

For every $m<\omega$ let $X_{m}=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$.
Put $y_{0}=e$. Suppose that, for some natural number n, the elements $y_{0}, y_{1}, \ldots, y_{n-1}$ have been chosen so that $\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\} \subset G_{\omega}$ and

$$
y_{i} \cdot X \cap y_{j} \cdot X=\varnothing
$$

for all i, j such that $i<j \leq n-1$.
To determine y_{n}, we take a natural number m such that $\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\} \subset$ G_{m} and

$$
2^{m}>n(m+1)^{2}
$$

By (c) and by the inequality $\left|\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\} \cdot X_{m} \cdot X_{m}^{-1}\right| \leq n(m+1)^{2}$ we can take the element $y_{n} \in D_{m}$ such that

$$
\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\} \cdot X_{m} \cap y_{n} \cdot X_{m}=\varnothing
$$

By the choice of y_{n}, we have

$$
y_{n} X_{m} \cap y_{i} \cdot X_{m}=\varnothing
$$

for every $i<n$. If $k, l<\omega, k>m$, then $y_{j} x_{k} \in D_{k}$ for every $j \leq n$. Hence $y_{n} x_{k}=y_{j} x_{l}$ with $k, l>m$ yields $k=l$ and $n=j$. Now assume that $y_{i} x_{k}=y_{j} x_{l}$ holds with $k>m, i, j \leq n$ and $l \leq m$. Then according to (a) and (b) this is not possible as $y_{n} \cdot x_{k} \in D_{k}$, while $y_{j} \cdot x_{l} \in G_{m+1}$. Analogously, $y_{n} \cdot x_{k}=y_{j} \cdot x_{l}$ is not possible with $k \leq m$ and $l>m$. This proves that

$$
y_{n} \cdot X \cap y_{i} \cdot X=\varnothing
$$

for every $i<n$. After ω steps we get the sequence $\left(y_{n}\right)_{n<\omega}$ such that the family $\left\{y_{n} \cdot X: n<\omega\right\}$ consists of pairwise disjoint subsets. Applying these arguments to the set X^{-1}, we get the sequence $\left(z_{n}\right)_{n \in \omega}$ such that the family $\left\{X \cdot z_{n}: n \in \omega\right\}$ consists of pairwise disjoint subsets. Hence, X is P-small.

Question 2. Let G be an infinite group of cardinality κ. Does there exist a subset X of G and a κ-sequence $\left(y_{\alpha}\right)_{\alpha<\kappa}$ such that the family $\left\{y_{\alpha} \cdot X: \alpha \in \kappa\right\}$ consists of pairwise disjoint subsets and $G=\langle X\rangle$?

If G is Abelian the answer is positive (see the proof of Theorem 3.6 from [2]).

Finally, we offer also the following

Question 3.

(a) Let X be a subset of G such that, for every natural number n there exits a subset Y_{n} of G such that $\left|Y_{n}\right|=n$ and the family $\left\{y \cdot X: y \in Y_{n}\right\}$ is disjoint. Is X left P-small?
(b) By [7, Theorem 12.10], every infinite group can be partitioned into countably many small subsets. Can every infinite group be partitioned into countably many P-small subsets?
(c) Let G be an infinite group. Does there exist a system S of generators of G such that $G \neq\left(S \cdot S^{-1}\right)^{n}$ for every natural number n ?

Note added in November 2006. Recently T. Banakh and N. Lyaskovska answered negatively item (a) of Question 3.

References

[1] A. Bella and V. Malykhin, Small, large and other subsets of a group, Questions and Answers in General Topology 17 (1967), 183-197.
[2] D. Dikranjan, U. Marconi and R. Moresco, Groups with small set of generators, Applied General Topology 4 (2) (2003), 327-350.
[3] R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology 3 (2) (2002), 133-143.
[4] V. Malykhin and R. Moresco, S mall generated groups, Questions and Answers in General Topology 19 (1) (2001), 47-53.
[5] Iv. Prodanov, Some minimal group topologies are precompact, Math.Ann. 227 (1977), 117-125.
[6] I. Protasov, Every infinite group can be generated by small subset, in: Third Intern. Algebraic Conf. in Ukraine, Sumy, (2001), 92-94.
[7] I. Protasov and T. Banakh, Ball Structures and Colorings of Graphs and Groups, Matem. Stud. Monogr. Series, Vol 11, Lviv, 2003.

Received August 2005
Accepted January 2006

Dikran Dikranjan (dikranja@dimi.uniud.it)
Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienza 206, 33100 Udine, Italy

Igor Protasov (kseniya@profit.net.ua)
Department of Cybernetics, Kyiv National University, Volodimirska 64, Kiev 01033, Ukraine

