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the context of both differential topology and computer science. New
results on the triangulation of objects in the computational differential
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taining computer generated representations of geometric objects based
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mulated. New methods for characterizing complicated intersection sets
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areas as virtual sculpting, virtual surgery, modeling of heterogeneous
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1. Introduction

The field of computational topology (CT) is a relatively new one - roughly
a decade old - that invites and actually relies upon contributions from several
more well established disciplines such as algebraic topology, computer science,
differential topology, and computational geometry (see in particular [19] and
[150], and also [27], [32], [34], [43], [44], [49], [70], [87], [126], [129], [147], and
[154], which are representative of the roots of this new field). CT is about
ten years old in terms of being a reasonably well defined discipline that has
generated its own specialized research, but the name was apparently first coined
by Mäntylä [103] a little over twenty years ago. Although still in its very early
stages, CT has experienced a significant spurt of growth and maturity in the
last seven years.

This rapid development and expansion can be traced in large measure to the
important role it plays in many applications in such areas as computer aided
design and manufacturing, (CAD/CAM), the life sciences, and virtual reality.
However, another major component of the current attraction and vitality of
CT lies in the wealth, depth and diversity of its approaches, which are based
upon or incorporate modern techniques in algorithm and representation the-
ory, and image processing from computer science, as well as mathematical fields
such as algebraic geometry, algebraic topology, differential geometry, differen-
tial topology, dynamical systems theory, general topology, and singularity and
stratification theory such as in [2] - [6], [25], [26], [31] and [139]. With regard
to the singularity/stratification theory aspects of CT, one should also add the
interesting and useful related work of Damon and his collaborators, examples
of which are to be found in [37], [38], and [41] (see also [36] and [46]).

Owing in part to its tender age, CT is an attractive area of research for
mathematicians, computer scientists, and computer aided geometric designers:
There is much work to be done in laying the foundations for the discipline,
there are a wide variety of challenging open problems - many of fundamen-
tal importance - and there are a host of anticipated applications waiting to
be discovered and exploited. The field is by its very nature interdisciplinary,
and has in recent years begun to attract the attention of a growing number of
computer aided geometric designers, computational biologists, computer scien-
tists, mathematicians, and also engineers interested in CAD/CAM and virtual
reality applications. In contrast, the far more well developed discipline of com-
putational geometry (CG) has been around much longer, and has established
itself in the course of the last forty years as a virtually indispensable tool for
solving difficult problems arising in CAD/CAM and other contexts that rely
on computationally powerful methods for analysis and accurate representation
of geometric objects (cf. [50], [56], [58], [79], [80], [104], and [130]).

CG will no doubt continue to be an active and important field, and is likely
to play a significant complementary role in the development of CT. The sig-
nificance and essential nature of CG in the modeling and computer generated
representation of geometric objects is now well established, but the role of CT
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in such applications has only recently risen to a comparable level of prominence
(cf. [59]). One can view the difference between these two disciplines as being
roughly analogous to the difference between geometry and topology, and can
be rather effectively summarized in the following terms: The field of CG is
primarily concerned with algorithmic (computer implementable) methods for
analyzing and producing representations of geometric objects that are close -
usually in some Whitney-like (piecewise) C2 sense - to the actual object, while
the fundamental goal of CT is to algorithmically guarantee that a computer
generated representation of an object is equivalent to the actual object in an
appropriate topological sense. Simply stated, CG is concerned with insuring
the (differential geometric) closeness of the representation of an object to the
original, while CT takes care of the topological consistency of the rendering.

Remarkable advances in computer technology - coupled with impressive
progress in CG and computer aided geometric design - have made it possi-
ble to algorithmically analyze and render geometric configurations of dazzling
complexity. But with this complexity, it has become increasingly more diffi-
cult to avoid very small scale errors that can have a dramatic impact on the
topological type of the representations. It is therefore not surprising that those
questions that lie at the very heart of the nascent discipline of computational
topology have attained a far greater level of importance in applications over
the last few years.

For example, suppose one wants to produce a computer generated represen-
tation of a water-tight container to be used in an automated manufacturing
process. We can view this container in idealized form as a (deformed) sphere
in three-dimensional space, thus rendering it as an object in a standard differ-
ential geometry or topology category. An algorithm can readily be found that
produces a representation that is as close as desired (in some suitable Whitney-
type topology) to the designed container, but still has one or more very small
holes. Insofar as the specified tolerances are met in terms of the position and
derivatives associated to the generated representation of the desired geomet-
ric object, this may be considered satisfactory from the perspective of CG.
However, it is certainly not acceptable from the CT viewpoint, and the result
obviously would produce serious shortcomings in the manufactured article (cf.
[45]).

We shall, in this paper, attempt to delineate a suitable context in which to
formulate many of the fundamental concepts, questions, and techniques of CT,
which may help to develop the rigorous foundations that are necessary for this
relatively new discipline to take its place among related, but more mature fields
such as CG. Our perspective will be a decidedly differentiable one; focusing on
approaches that borrow liberally from the basic elements of differential and
manifold topology (see e.g. [15], [66], [78], [82], [96], [99], [106], [109], [110],
[112], [115], [133], [146], [151], and [156]), algebraic topology and geometry (see
e.g. [73], [86], [105], [116], [140], and [160]), differential and computational
geometry (see e.g. [50] and [91]), and dynamical systems theory (see e.g. [69],
[72], [88], and [142]).
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As CT is still an emerging discipline and is largely unknown to many in the
computer aided geometric design, computer sciences, and mathematics com-
munities, before embarking on a more thorough description of the frontiers of
this nascent field, we shall present a brief outline of the elements of computa-
tional differential topology (in the form of a primer), including a description
of the relevant categories, identification of some of the fundamental questions
and problems, and a few new results, in Section 2. This, we hope, will serve
to introduce the reader to most of the basic tools that are to be used in the
sequel, and provide a reasonably clear description of the entelechy of compu-
tational differential topology. Next, in Section 3, we present a rather detailed,
wide ranging description of the state-of-the-art of the classification problem for
geometric objects - both manifolds and non-manifolds - of various dimensions.
What sets our treatment apart from the usual ones in differential topology is
the focus on the algorithmic nature (effective computability) of the methods
for determining the isomorphism type of the objects.

The treatment in Section 3 is followed in Section 4 with a brief descrip-
tion of an effectively computable singularity/stratification theory for a class of
varieties that we refer to as sweep-like. Then we sketch the elements of an effec-
tively computable obstruction theory for this same class of sweep-like varieties
in Section 5. We then follow this in Section 6 with several new analytical and
homology based results on the identification and topological characterization
of certain types of intersections of geometric objects. In Section 7, we present
a brief discussion of some of the applications of the methods and approaches
described in this paper. The applications range from virtual design, manufac-
turing and surgery, to modeling of heterogeneous biomaterials such as bones,
to new approaches for the kinds of complex high speed visualizations that one
is apt to employ or encounter in dynamic genetic modeling. Finally, in Section
8, we make some remarks concerning the results presented in the paper, and
identify several related research directions that ought to be pursued.

2. Computational Differential Topology Primer

A sure sign of a well developed mathematical or scientific subdiscipline is the
establishment and general acceptance of well defined mathematical categories
that characterize and circumscribe the field (cf. [129] and [140]). As far as
we can gather, the field of computational (differential) topology has not yet
matured to the point where its fundamentals are widely accepted, so we first
describe the categories in which we shall work in order to frame the rest of this
paper.

2.1. Categories. The sets of interest in computational differential topology
(CDT) are geometric objects in Euclidean space, usually having certain dif-
ferentiability properties, but they need not and should not be restricted to
manifolds. Examples such as the locus of x2 + y2 − z2 = 0 in R

3, which defines
a cone, and geometric objects with self-intersections show that we need to in-
clude varieties. A possible approach to describing the objects in an appropriate
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category is to introduce special varieties (s-varieties) having the property that
there are at most finitely many local regular (topological manifold) branches
at each of the singular points (cf. [26]). However, a perfectly plausible and po-
tentially more efficient - although more restrictive - way to describe the objects
in the computational topology (CT) categories is to employ Whitney regular
stratifications (see e.g. [15], [26], [66], [99], [106], [146], and [156]). To begin,
we fix Euclidean space R

N as the ambient space for the geometric objects and
an order of differentiability k (0 ≤ k ≤ ω), where k = ∞ represents continuous
derivatives of all orders, and k = ω stands for (real) analyticity. Then we have
the following definition of the objects in the CDT category:

Definition 2.1. A subset V of R
N is a cdtkN object if it can be represented in

the form

(2.1) V = M1 ∪M2 ∪ · · · ∪Ms,

where the collection S := {Mi : 1 ≤ i ≤ s} is a Whitney regular stratification
of V . This stratification is comprised of a finite disjoint set of strata Mi, which
are open or closed Ck submanifolds of R

N , called the strata of the stratification,
and the strata have dimensions that can range from 0 (points) to N (open solid
regions). The dimension of V in cdtkN is defined as dimV := max{dimMi :
Mi ∈ S}.

Remark 2.2. The cdtk
N objects in the above definition are clearly subvarieties

of R
N , and in the sequel we shall use the terminology objects, subvarieties, and

varieties more or less interchangeably when we refer to these entities.

Remark 2.3. Note that the cone described above is in cdtω
3 , as is a closed

cube. As we shall be concentrating in this paper mainly on geometric objects
that have some differential structure, most of our attention shall be directed to
cases where k ≥ 1.

Remark 2.4. We note for future use that the regular stratification gives rise
to a natural ordering of the strata defined as follows:

(2.2) Vi ≺ Vj ⇐⇒ Vi ⊂ cl (Vj) ,

where cl (Vj) denotes the (topological) closure of Vj . With this, it follows from

Thom-Mather theory (cf. [66], [99], [106], and [146]) that if F : S → S̃ is an
order preserving bijection between regular stratifications of subvarieties V and
Ṽ , respectively, such that the corresponding strata are homeomorphic, then V
and Ṽ are homeomorphic. Accordingly the question of homeomorphism type
of objects in any CDT category can be simplified by reduction to the individual
strata.

Remark 2.5. Now that we have suitable objects for our categories, it remains
to define appropriate morphisms. The more usual choice leading to homeomor-
phic or diffeomorphic equivalence obviously will not do as is illustrated in the
following example.
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Example 2.6. A circle S1 embedded in a hyperplane of R
3 provides a con-

venient representation of the unknot K0, which we wish to compare with the
figure-eight knot K embedded in R

3, both of which are shown (in standard
over and under form) in Fig. 1. The embedded sets K0 and K are obvi-
ously Cω-diffeomorphic, 1-dimensional submanifolds, but can certainly not be
viewed as the same in any reasonable CT sense since they are not equiva-
lent as embeddings in the ambient space R

3. In particular, the knot group
for the circle is π1

(
R

3
rK0

)
= Z, while the knot group for the figure-eight

knot π1

(
R

3
rK

)
is the group with two generators α and β and one relation,

βα−1βαβ−1 = α−1βαβ−1α, where π1(X) denotes the fundamental group of a
topological space X (cf. [105] and [140]).

As is clear from the preceding example, morphisms must be equivalent in
some sense as embeddings in the ambient space, as well has having certain
differentiability properties. However, if the knots are embedded in R

4, they are
embedding equivalent if and only if they are Cω-diffeomorphic (see [133]).

(b)K

(a) K0 (b) K

Figure 1. (a) Unknot (b)Figure-eight knot

Definition 2.7. A morphism between two objects V and W in cdtkN is a con-
tinuous mapping Φ : R

N → R
N satisfying the following properties:

(i) Φ maps the strata of V into the strata of W .
(ii) The restriction Φ|V of Φ to V is of class Ck.

Recall that, as usual, to say that ϕ := Φ|V is of class Ck means that ϕ can be

extended to a Ck function in an open neighborhood of V in R
N . With this we

have the last piece necessary for the definition of our CT categories for objects
embedded in Euclidean space R

N .
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Definition 2.8. For the Euclidean space R
N and order of differentiability

0 ≤ k ≤ ω, the CDT category, denoted as CDTk
N , is comprised of all the

objects in cdtkN as in Definition 2.1, and the morphisms as in Definition 2.2,
with the usual composition of morphisms. We denote the objects in CDTk

N as
Obj(CDTk

N) and the morphisms by Morph(CDTk
N ), and the set of all morphism

from V to W as hom(V,W ).

The above definition leads directly to the notion of an isomorphism in the
CDT categories.

Definition 2.9. Two objects V and W in Obj(CDTk
N ) are isomorphic, denoted

as

(2.3) V
k
≈
N
W,

iff there is a homeomorphism Φ : R
N → R

N such that Φ (V ) = W , and the
restrictions of Φ to V and its inverse Φ−1 to W are both of class Ck.

Remark 2.10. In most cases when the ambient space and differentiability class
are fixed, we simplify the above notation by omitting the subscript and super-
script in the isomorphism notation, and simply write V ≈W . In the sequel we
shall, for convenience, indulge in the harmless abuse of notation of referring to
both objects and morphisms as being members of the category CDTk

N rather
than distinguishing between the set of objects and set of morphisms comprising
this category.

Equivalence (isomorphism) in the categories CDTk
N (which is sometimes re-

ferred to as embedding equivalence - cf. [133]) is obviously more restrictive
than homeomorphic equivalence in the standard topological category TOP, or
in the standard differential category DIFFk when applied to manifolds. To be
more specific, in addition to the usual homeomorphism type invariants such as
homotopy, cohomotopy, homology, and cohomology that one needs to consider
for equivalence in TOP, one must also verify the invariance of quantities such
as linking numbers to check equivalence in the CDT categories. For future
reference, we denote isomorphism (homeomorphism) in the TOP category as

(2.4) V ≃W,

and isomorphism (diffeomorphism) in the category DIFFk as

(2.5) V
k
≃W.

Remark 2.11. In the CT literature, when an algorithmically generated repre-
sentation V of a prototype object V0 satisfies V ≃ V0, V or the algorithm itself
is often said to be topologically consistent.

There is another useful equivalence that is even stronger than (2.2), and has
been effectively employed by T. J. Peters and his collaborators in an interesting
and useful series of papers in computational topology (see e.g. [7]-[8], [12], [13],
[14], [20], [114], [124], [125], [127], [135], and [136] ).
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Definition 2.12. Two objects V and W in CDTk
N are ambient isotopic if there

exists a continuous map (called an ambient isotopy)

Θ : R
N × [0, 1] → R

N

such that

(a) Θ0 = id ,
(b) Θt : R

N → R
N is a homeomorphism for all 0 ≤ t ≤ 1,

(c) Θ1 (V ) = W,

where Θt := Θ (·, t) for all t ∈ [0, 1].

Remark 2.13. We note here that for the case of smooth knotted and unknot-
ted circles in R

3, standard knot equivalence, ambient isotopy, and isomorphism
in CDT0

3 are all equivalent to one another (cf. [75], [105] ).

A fundamental goal in CT is to create computer generated procedures for
obtaining representations of objects having the same shape as a given geometric
object - at least in some acceptable approximate sense. Accordingly one must
understand precisely what is meant by shape, a question that we address in
the next subsection.

2.2. Shape of geometric objects. What does it mean to say that two ob-
jects, V and W in Obj(CDTk

N ) have the same shape? The shape of a geometric
object and its preservation for various types of algorithmic representations has
been the subject of several investigations, such as [26], [32], [34], [41], [87], [95],
[118], and [119], yet there still seems to be no consensus on the definition of
shape of geometric objects in the CT community. Naturally, to have the same
shape, V and W ought to at least be isomorphic in the CT category, but intu-
ition suggests that quite a bit more is required. The following appears to be a
viable definition of shape.

Definition 2.14. The objects V and W in CDTk
N have the same shape if the

following properties obtain:

(i) There exists an isomorphism ϕ : V →W
(ii) There exists a constant c > 0 such that c−1ϕ is an isometry. More

particularly, recall that for ϕ to be an isomorphism in CDT
k
N it must

be extendable to a homeomorphism Φ : R
N → R

N . Consequently, the
restriction of Φ to V (which is ϕ) must be a Ck map such there exist
a c > 0 and an isometric Ck-embedding ψ : V → R

N (in the metric
induced on V by the Euclidean metric on R

N ) with Φ(x) = cψ(x) for
all x ∈ V . We denote this property of having the same shape by

(2.6) V
k
≡
N
W,

and omit the subscript and superscript for simplicity whenever the con-
text is clear.
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Computational representation of geometric objects usually involves some
approximation error, which necessitates the use of the following definition, or
something of the same sort, for computational topology applications.

Definition 2.15. Given ǫ > 0, we say that V and W in CDT
k
N have the same

shape (mod ǫ) if they are isomorphic in this category via ϕ : V →W , and there
are a positive number c and an isometric Ck-embedding ψ : V → R

N such that
ϕ is ǫ-close to cψ in the Whitney Ck-topology, which means that derivatives
of all orders less than or equal to k of ϕ and cψ differ by less than ǫ (in the
appropriate operator norm) over all of V . Having the same shape (mod ǫ) is
denoted as

(2.7) V
k
≡
N
W (mod ǫ),

where as usual we shall suppress the subscript and superscript when the context
is clear.

We note that all the material that one needs to understand the Whitney
topology in the above definition may be found in [26], [66], [99], or [106]. At
this stage, we are now are in possession of all the notation that we require for
our formulation of CDT.

2.3. Effective computability of geometric objects. We have accumulated
all of the background material necessary to describe some of the primary chal-
lenges facing computational differential topologists. The challenges all revolve
around the process of being given a prototype object V0 in CDTk

N , which must
be represented by computer generated means based upon an algorithm A. The
word ‘given’ here is not as simple as one would wish, and can in some cases
assume a rather loose interpretation. This derives from the reality that the pro-
totype object may be an actual physical object, or it may be defined exactly
in terms of equations, or a precisely specified, completely developed model of
a geometric object, or represented by data sampled from an existing physical
object such as a statue or building, or - in the worst case - may be only par-
tially and imprecisely known simply in terms of representative data, such as
point-clouds, sampled according to some scheme (cf. [134]).

From the perspective of a computational topologist, an algorithm for repre-
senting and analyzing a geometric object must include a subroutine for verifying
that the computed object has the same isomorphism type as the given object
- assuming that this much is known about the object to be represented. For
cases in which one has only incomplete topological knowledge of the prototype
object, an algorithm designed to produce computer generated representations,
say at various levels of (metric) accuracy, should at least be capable of verifying
that the isomorphism type (or some of its key invariants) remains constant as
the accuracy is refined. When it is possible to devise a suitable algorithm of
this type, such a constant ‘limit’ may serve as a good educated guess of the
actual isomorphism type of the partially known prototype object.
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Before elaborating further on the quest for solutions of some fundamental
problems in CDT, we shall find it useful to introduce a few more concepts and
notation. The next definition concerns effectively computable recognition of
objects in CDTk

N and the related categories TOP and DIFFk.

Definition 2.16. Let V0 be a given object in CDTk
N , DIFFk, or TOP, and let V

be another such object. Then V is said to be CDTk
N (V0)-decidable, DIFFk (V0)-

decidable, or TOP(V0)-decidable, respectively, if there exists an algorithm A

to determine if V ≈ V0, V
k
≃ V0, or V ≃ V0. Such an algorithm is called,

respectively, a CDT
k
N (V, V0)-decider, DIFF

k (V, V0)-decider, or a TOP(V, V0)-
decider.

A closely related and useful notion is the following:

Definition 2.17. If there exists an algorithm that determines the isomorphism
type of an object V in CDTk

N , DIFFk, or TOP, we say this object is, respectively,
CDTk

N - decidable, DIFFk - decidable, or TOP- decidable. Such an algorithm is
called, respectively, a CDT

k
N - decider, DIFF

k - decider, or a TOP - decider.

It is convenient to also have an idea of what is meant by stability or robust-
ness of algorithms with respect to their ability to determine the isomorphism
classes of the geometric objects that they generate.

Definition 2.18. An algorithm A for generating representations V of an object
V0 in CDTk

N , DIFFk, or TOP, is CDTk
N (V0) -stable (robust), DIFFk (V0) -stable

(robust), or TOP(V0) -stable (robust), respectively, if for small changes in the
input data to A, there is no change in the isomorphism type of the output
representation V in the respective categories.

Remark 2.19. With regard to the above definitions, it is obvious that we have
the following sequences of implications:

CDTk
N (V0)−decidable =⇒ DIFFk (V0)−decidable =⇒ TOP (V0)−decidable,

CDTk
N−decidable =⇒ DIFFk−decidable =⇒ TOP−decidable,

CDTk
N (V0)−stable =⇒ DIFFk (V0)−stable =⇒ TOP (V0)−stable.

There is a lack of rigor in our definition of stability insofar as what is meant by
‘small changes’. We shall return to this briefly in the sequel, but it should be a
reasonably straightforward matter to fit a rigorous definition to any particular
environment or context arising in applications of CDT.

We are now in a position to adumbrate a grand challenge for CDT (including
the requirement of a good metric approximation consistent with the expecta-
tions of computational geometry), which amounts to what one may call the
holy grail for the discipline, or possibly an ultimate wish list for those working
in the field.
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Grand Challenge Problem of CDT (GCPCDT)

Determine a subset C⊛ of the objects in CDTk
N , ample enough to include most

geometric objects arising in applications, and such that V0 ∈ C⊛ and all suf-
ficiently small 0 < ǫ, there is an algorithm A (V0, ǫ) satisfying the following
properties:

(a) It generates a representation V (ǫ) such that V (ǫ) ≡ V0 (mod ǫ).
(b) It is CDTk

N (V0) -stable.
(c) It is optimally efficient in that its computational complexity, denoted

as CC (A (V0, ǫ)) , is minimal in some reasonable sense.

Remark 2.20. Observe that (a) above implies that the algorithm A (V0, ǫ) is
a CDTk

N (V, V0)-decider.

Remark 2.21. It should be noted that, although not specifically included in
the above definition of the GCPCDT, ease of implementation with regard to
producing user-friendly software based on the algorithm is also an important
consideration, especially when it comes to applications. For cases in which the
isomorphism type of V0 is not a priori completely known, (a) above would have
to be adjusted; perhaps along the following lines: (a′) V (ǫ1) ≡ V (ǫ2) (mod ǫ0)
for all 0 < ǫ1, ǫ2 < ǫ0. We shall have more to say about this in the sequel.

In general, a completely satisfactory solution of the GCPCDT as stated may
be extremely difficult - or even impossible - to achieve, so simplified versions of
this problem, such as those we describe in the next section, are highly desirable.
It should be noted that if the GCPCDT is viewed from a computational geom-
etry rather than a CT viewpoint, one should choose the differentiability class
k to be greater or equal to two, so that the representations produced are ac-
ceptable in terms of differential geometry; where second derivatives (wherever
they exist) manifested in curvature tensors (or differential forms) are essential
elements - at least in the classical sense - in determining good approximations.

3. Equivalence and Decidability

In this section we focus on effective procedures for the classification of com-
pact subvarieties V in CDTk

N , with k ≥ 1. We shall obtain a few new results
concerning the structure of the objects under investigation, and look at known
and developing results from differential topology with an eye toward algorith-
mic implementation. Throughout we assume reasonably good knowledge of the
material in our references on algebraic topology, piecewise linear topology, and
differential topology, such as [63], [78], [86], [99], [105], [108], [109], [110], [112],
[115], [116], [133], [140], [146], [151], [156], and [160]. We begin our treatment
with a closer look at the structure and associated structures of the subvarieties,
which we shall find useful in our investigation of the decidability of the varieties
to be studied.
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3.1. Structures associated to the subvarieties. Our first result here shows
that compact objects in the CDT category have smooth (and a fortiori, topo-
logical) triangulations in the sense of Munkres [115]. Triangulations, of course,
are very useful in solving problems in computational topology (see e,g. [28],
[35], [42], [50], [71], and [127]).

Theorem 3.1. If V is a compact, connected object in CDTk
N , with 1 ≤ k <∞,

then it has a finite Ck triangulation.

Proof. Let S := {Mi : 1 ≤ i ≤ s} be the regular stratification of the compact
subvariety V . If the stratum Mi is closed, it follows from [115] that it has a Ck

triangulation. This triangulation can be extended to all strata Mj satisfying
Mi ≺ Mj by making minor adjustments in the proof of Munkres’ theorem on
the extension of Ck triangulations of the boundary of a manifold to the whole
manifold. It then follows from compactness, connectedness and Munkres’ re-
finement theorems that the finite number of various triangulations of the strata
can be refined in a consistent manner that produces a finite Ck triangulation
of all of V .

�

The following property is an immediate consequence of this theorem.

Corollary 3.2. A compact, connected object V in CDTk
N , with 1 ≤ k < ∞,

has the structure of a finite CW-complex.

Another useful construct for the compact subvarieties is an analog of a tubu-
lar neighborhood for a manifold. We start with the usual distance function

(3.1) d (x, V ) := min {|x− y| : y ∈ V } ,

where |·| is the standard Euclidean norm induced by the standard inner product
〈·, ·〉.

Definition 3.3. Let λ : V → R be a positive (tolerance) function of class Cr,
with r > k. The λ-tubular neighborhood τλ = τλ (V ) of V is defined as

(3.2) τλ = τλ (V ) :=
{
x ∈ R

N : d (x, V ) ≤ λ (σ(x))
}
,

where the function σ : R
N → V is given as

σ(x) := y ∈ V

such that y = (y1, y2, ..., yN) is the unique point of V satisfying d (x, V ) =
|x− y| and y1, y1 + y2,..., and y1 + y2 + · · · + yN are all minimized.

If V is a submanifold (without boundary, i.e ∂M = ∅), then τλ has the usual
nice disk-bundle structure if the maximum of λ is chosen to be sufficiently small
(cf. [78] and [82]). When V is not a manifold, the bundle structure breaks
down on the boundary and singularities of the subvariety, yet the utility of
this tubular neighborhood is not unduly affected for many applications. In
fact, it appears that one could, with appropriate modifications, proper choice
of the tolerance function (along the lines of having the smallest values near
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the singularities and boundaries) and perhaps restrictions on the tolerance of
derivatives, recover analogs of most of the tubular neighborhood based, ambient
isotopy results such as that of Chazal and Cohen-Steiner [30], and of Peters et
al., such as those in [7] -[8], [12], [124], [125] and [135]. This leads us to make
the following conjecture.

Conjecture 3.4. Let V be a compact, connected subvariety in CDTk
N , with

1 ≤ k < ∞. Then there exists a choice of tolerance function λ and positive ǫ
such that if W is another compact, connected subvariety in CDTk

N satisfying
W ⊂ τλ(V ), and nearby tangent spaces (when defined) of V and W are ǫ-
close in an appropriate Grassmannian sense, then the two subvarieties are
isomorphic in the category CDT0

N .

3.2. Fundamental problems of CDT. We return here to the GCPCDT
with more rigor than in the preceding section, reformulate it as a ‘fundamen-
tal problem’, and then show how this problem can be greatly simplified. Of
course, it always seems a bit presumptuous to decide to refer to anything in
mathematics or computer science as fundamental, but we feel that the name is
apt.

3.2.1. Fundamental problem. The GCPCDT as presented in the preceding sec-
tions is somewhat lacking in rigor. Moreover, as H. Edelsbrunner pointed out
when a version of this problem was unveiled recently, it also is deficient in
scope - especially as regards the wide range of possibilities in knowledge of the
prototype object, means of obtaining data from the object for the algorithm,
and methods available for rendering the computational representations.

In order to pose this problem in more depth and with greater specificity, we
shall first present a more detailed version of the GCPCDT that will enable us
to better formulate just what aspects require further work. It is clear that we
need more precise notation concerning the computational procedures embodied
in the algorithm A devised to produce an approximate representation V (ǫ) of
the prototype geometric object V0 in CDTk

N for a given error bound ǫ. We
emphasize here that the error bound is on the geometry - not the topology, as
invariance of the isomorphism type is a sine qua non for the algorithm from
the perspective of CDT. The input data from V0, which we denote as D (V0),
may assume any one of several possible forms such as the vertex points and
connection relations for the elements of a triangulation of the prototype object,
a global functional representation or a set of local functional expressions arising
from exact mathematical models, an approximate nonuniform rational B-spline
(NURBS) decomposition of V0, or points forming a point-cloud sampled in a
manner designed to provide a good approximation of the given object, which
is often the case when V0 is not completely known.

One can already see here that there is a problem in formulating an adequate
characterization of the space D in which the data obtained from the prototype
object resides. A good definition of this data space is required so that we can
consider D as a function from (the object set of) CDTk

N to D, which can be
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expressed as

D : CDTk
N → D.

Naturally, the tolerance (geometric accuracy) ǫ must also be counted as an
argument of the algorithm. Now we may regard the algorithm as a recursive
map of the form

A : D
(
CDTk

N

)
× R+ −→ CDTk

N

(3.3)

(D(V0), ǫ) 7−→ V (ǫ)

where R+ is the set of positive real numbers, and V (ǫ) is a representation of
a computer generated (geometric) approximation of V0 - or more precisely, an
algorithm for producing an approximate representation of the prototype object.
With this more rigorous foundation established, we are now in a position to
give a reasonably precise account of one of the main problems in CDT:

Fundamental Problem of CDT

Given an object V0 from an ample subset of interest O of the class of objects
of CDTk

N , a data function D as in (3.10), and a small positive number ǫ∗,
devise an algorithm A = A (D(V0), ǫ) defined for all V0 ∈ O and 0 < ǫ < ǫ∗ ,
for which the following obtain:

(i) A generates an approximate representation V (ǫ) of V0.
(ii) V (ǫ) ≡ V0 (mod ǫ) for all ǫ ∈ (0, ǫ∗).
(iii) A is CDTk

N - stable for all V0 ∈ O.
(iv) The algorithm has minimal computational complexity CC (A) in some

sense.

Once again, for practical purposes it may be appropriate to include the re-
quirement that the algorithm be user-friendly in the conventional sense. Thus it
would be necessary to give a more detailed definition of just what user-friendly
means. Although more precise than the GCPCDT, which was presented in pre-
ceding section, the Fundamental Problem (FPCDT) described above is clearly
still beset with deficiencies in several respects, which we briefly address. The
above description of the FPCDT is lacking in detail with regard to the wide
range of methods that can be used in the development of the algorithm, and
the degree to which the prototype object is known. Moreover, it would proba-
bly benefit from a more thorough and detailed exposition of the representation
approach used to produce the output object V (ǫ).

Remark 3.5. In a case where the isomorphism class of the prototype ob-
ject V0 in CDTk

N is not completely known, it becomes necessary to revise the
requirement (ii). One possibility is a direct modification to something like

(ii)′ The outputs V (ǫ1) and V (ǫ2) with 0 < ǫ1, ǫ2 < ǫ0 satisfy V (ǫ1) ≡ V (ǫ2)
(mod ǫ0) for all sufficiently small ǫ0.
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This suggests a possible notion of persistence of isomorphism type analogous
to the basic ideas used to formulate persistent homology and other related
homology-based approaches (cf. [55], [86], [117], [160], and [161] ). There also
are several other ways in which ambiguity can be manifested, such as

• only certain isomorphism invariants of the prototype are known, in
which case we would like the approximations to have the same values
for these invariants,

• we could demand that the approximations agree in some global sta-
tistical sense - say in terms of statistical tests of randomly sampled
point-cloud data,

• we could require that our knowledge of the object is increased (manifold
learning) by analyzing a sequence of approximations.

Additional insights on the analysis for prototype objects whose isomorphism
type is not a priori specified, may be found in [10], [28], [50], [57], [67], [77],
[81], [92], [102], [134], and [154].

The exposition of the fundamental problem also is inadequate owing to the
imprecision of the minimality statement for computational efficiency. It appears
that no single definition of what constitutes an appropriate minimum is going
to be possible - the criteria will most likely depend on the context in which
the algorithms are used, and the applications for which it is implemented. At
any rate, the question of acceptable notions of minimality for computational
costs of algorithms that generate isomorphically consistent representations of
geometric objects, appears to be one that should lead to fertile grounds for
continued research.

Any resolution of the minimality of computational complexity, even if re-
stricted to specific applications oriented contexts, is bound to be quite cha-
llenging, partly owing to the extensive array of minimality criteria available for
applications, but more likely to stem from the difficulty of actually proving min-
imality for an algorithm in most reasonable, nontrivial senses. As algorithms
developed to render approximations of geometric objects possessing only a fair
degree of complexity are usually rather intricate, verifying minimality of com-
putational complexity tends to be difficult.

Researchers with some experience in solving problems in CT will have also
observed that part of the inherent ambiguity of the fundamental problem would
be ameliorated if some of the techniques for determining isomorphism type (at
least approximately) were included in the above description. Most of the meth-
ods currently employed to analyze isomorphism type involve the algorithmic
computation, where feasible, of isomorphism invariants such as characteris-
tic classes (e.g. the Euler class, Stiefel-Whitney classes, Pontryagin classes,
and Chern classes for complex manifolds) homology groups, and cohomology
rings, along with approaches based upon tubular neighborhoods, Morse theory,
Morse-Floer theory, singularity/stratification theory, and obstruction theory,
examples of which can be found in [2]-[6], [7]-[8], [9], [12], [16], [25], [26], [18],



50 Denis Blackmore and Yuriy Mileyko

[30], [31], [50], [52], [61], [86], [90], [111], [117], [125], [136], [139], [147], [157],
[160], and [161].

Among the more interesting recent approaches to employing Morse theory
in an effectively computable way are the cell complex method of Forman [61],
and the related discrete strategy of King & Knudson [90]. We should also
mention current efforts to employ Morse theory in an algorithmic way using
Morse-Smale complexes and Reeb graphs such as in Cole-McLaughlin et al.
[33], and Edelsbrunner et al. [51, 53, 54].

Remark 3.6. The notion of a Reeb graph, which connects critical points of
a Morse function associated to a handlebody decomposition of a differentiable
manifold, can be extended to varieties in the category CDTk

N by including
singularities as additional vertices of the graph. This extension, which we call
the Reeb* graph of the variety, will then play a role analogous to that of Reeb
graphs for manifolds. We shall show in a forthcoming paper that there are
effective procedures for using Reeb* graphs to determine the isomorphism type
of subvarieties in CDTk

N .

Another interesting direction that shows some promise for the algorithmic
classification of isomorphism type involves characterization of the medial axis
of a geometric object (see e.g. [11], [36], [38], and [46]). As for more surprising
approaches, there also is a fairly recent spate of publications employing innova-
tive methods from general (T0) topology, such as [65], [77], [92], [93] and [102],
that appear to be applicable to the (complete or partial) recursive computation
of isomorphism type.

3.2.2. Simplified fundamental problem. The last twenty years have produced
impressive advances in the realm of computational geometry leading to the
creation of several algorithms for generating very (metrically) accurate rep-
resentations of geometric objects. By marrying these developments with the
derivation of new tubular neighborhood based theorems, it now appears pos-
sible to recast the fundamental problem in the following far more tractable
form.

Simplified Fundamental Problem of CDT

Given a compact object V0 from an ample subset of interest O of the class of
objects of CDTk

N , a data function D as in (3.10), and a small positive number
ǫ∗, devise an algorithm A = A (D(V0), ǫ) for all V0 ∈ O and 0 < ǫ < ǫ∗ such
that the following obtain:

(i) A generates an approximation V (ǫ) of V0, which is ǫ-close in a suitable
Whitney-type topology.

(ii) V (ǫ) ≃ V0 for all ǫ ∈ (0, ǫ∗).
(iii) A is TOP - stable for all V0 ∈ O.
(iv) The algorithm has minimal computational complexity CC (A) in some

sense.
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The basis for the above simplification is what has been called the Self-
intersection Precedes Knotting Principle (SIPKP), which can be intuitively
argued to be plausible as follows: Using methods from computational geome-
try, it is possible to algorithmically generate an approximate representation V ,
which is an arbitrarily small perturbation in position and derivatives (where

they exist) of a given compact prototype object V0 ∈ Obj(CDTk
N ), with 1 ≤ k.

Thus, in particular, we can assume that V is contained in as thin a tubular
neighborhood of V0 (of the type described in Def. 3.3) as desired, and has tan-
gent hyperplanes on its strata that are arbitrarily close to the corresponding
ones on the strata of V in the appropriate Grassmannian spaces.

Under suitably restrictive hypotheses on the perturbation in terms of these
kinds of measures of closeness, it should follow that a homeomorphism from
V to V0 can be confined to the tubular neighborhood of V that contains it, so
as to enable its extension to all of τλ such that it coincides with the identity
map in a neighborhood of the boundary of τλ. Then, it only remains to ex-
tend the homeomorphism to all of R

N by defining it to be the identity in the
complement of τλ. Finally, the differentiability of the homeomorphism can be
bootstrapped up to class Ck using the inherent differentiable structures of V0

and V . The methods suggested here should be compared with those employed
in such papers as [7]-[8], [13], [64], and [136].

Of course, our argument here is only suggestive of a verification of the
SIPKP; not a real proof. We shall prove a version of this principle in a forth-
coming paper, but until then, we shall continue to treat the Simplified Funda-
mental Problem of CDT (SFPCDT) as a viable premise. However, we make
the following speculation.

Conjecture 3.7. The SIPKP is valid under suitable hypotheses on the prox-
imity of V to V0 in an appropriate Whitney-type topology.

It goes almost without saying that the simplified fundamental problem has
weaknesses that are analogous to those of the fundamental problem, and we
leave it to the reader to draw these analogies.

3.3. Decidability of Isomorphism Type. Our discussion of the fundamen-
tal problem and its simplified version in the previous section raises the question
of just what types of objects in CDTk

N , with k ≥ 1, are amenable to algorith-
mic determination of their isomorphism types. We shall concentrate on this
question in this section. It is assumed here that the reader has some familiarity
with the basics of differential topology, as well as a reasonably good grasp of
those aspects of computer science and logic related to recursive functions and
effective (algorithmic) procedures.

The focus of this section is upon the properties that render a geometric
object (embedded in Euclidean space) decidable in the relevant categories for
CDT, where we recall that decidability of an object in a particular category
is tantamount to the existence of an effective procedure for determining its
isomorphism type. In the process, we shall present a fairly wide ranging survey
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of classical and current results on the topological and differential classification
of manifolds. We begin with compact submanifolds and submanifolds-with-
boundary, as they are typically easier to classify in terms of the categories of
interest here, namely TOP, DIFFk and CDTk

N . It should be noted that we
follow the convention of sometimes grouping submanifolds (which are usually
defined to have empty boundaries) with submanifolds-with-boundary.

3.4. Decidability of compact submanifolds. Our discussion, which pro-
ceeds in the order of increasing dimension N of the ambient Euclidean space,
although not exhaustive, will touch upon many of the most important aspects
of the (algorithmic) classification of compact objects in CDTk

N , with k ≥ 1.
In the process, we shall occasionally make comparisons with results for non-
compact objects. We shall assume throughout that our objects are connected.
This will entail no loss of generality inasmuch as compact objects can have at
most finitely many components.

3.4.1. Compact submanifolds of R. We begin with connected, closed ( = com-
pact, boundaryless) submanifoldsM of R. These are particulary simple -M is a
point in the zero-dimensional case, and there are no closed one-dimensional sub-
manifolds of R. If we remove the compactness assumption, one has connected,
codimension-0, Ck submanifolds; namely open intervals. In any case, these are
all obviously trivially decidable by stable algorithms in minimal (linear) time.
In particular, the (ranks of the) integral homology provides a complete, effec-
tively computable set of isomorphism invariants in all of the categories TOP,
DIFFk, CDTk

1 . Recall that a complete set of isomorphism invariants is set of
quantities that are invariant under isomorphism in the particular category, and
have the property that two objects are isomorphic if and only if these invariants
assume the same values for both objects.

The connected, compact, C1 submanifolds-with-boundary of R are also easy
to classify algorithmically in CDTk

N , for they are comprised of closed intervals.
Moreover, the homology provides a complete set of recursively computable
invariants for an algorithm that is manifestly stable, and has minimal (linear)
computational complexity.

3.4.2. Compact submanifolds of R
2. The situation in R

2 is also essentially triv-
ial, with the decidability of the homeomorphism type or isomorphism type in
CDTk

3 being a simple matter indeed. All connected, closed, zero-dimensional
submanifolds of R

2 are just points, and the codimension-1, submanifolds are
simple as well. In particular, it follows from the Jordan curve theorem and
other basic principles, that every connected, closed, Ck submanifold M of
codimension-1 must be equivalent to the circle S1 in CDTk

2 and a fortiori in
DIFFk and TOP. Moreover this can be determined by a single effectively com-
putable invariant, which is the condition H1(M,Z) = Z for the first integral
homology group, or equivalently described in terms of the Euler-Poincaré cha-
racteristic as

(3.4) χ (M) = σ0 − σ1 = rankH0 (M,Z) − rankH1 (M,Z) = 0,
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where σj is the number of j-dimensional simplices in a triangulation, and the
rank is defined in the usual way (cf. [78], [105], [112], [116], [140], and [160]).
Note also that if we choose an algorithm A based on computation of χ, we read-
ily find that CC (A) = O (ns), where ns is the number of top (=1)-dimensional
simplices in a triangulation of M , and one cannot do much better than this
with respect to computational efficiency. As a matter of fact, it follows readily
that both the full and simplified fundamental problems are completely solved
for compact submanifolds of R

2 including the establishment of computational
minimality for the algorithm assuming that the prototype submanifold is com-
pletely simplicially defined in terms of triangulations.

As for the connected, compact, Ck submanifolds-with-boundary (∂M 6= ∅)
of R

2, they can be readily characterized as follows: There are no such zero-
dimensional submanifolds; the one-dimensional submanifolds are Ck diffeo-
morphs of closed, finite intervals in R; and the two-dimensional submanifolds
are closed disks with at most finitely many open disks removed from their in-
terior. In all of these cases, the homology yields a complete set of invariants
for deciding isomorphism type in CDTk

2 , and the algorithm can be chosen to
be stable and executable in linear time.

These simple results already provide an indication of the usefulness of alge-
braic topology in dealing with the decidability problem for submanifolds. In
this vein, we include the following result for future reference. It can be readily
proved using the C1 triangulation theorems of Munkres [115], and some basic
results on the effective (algorithmic) computability of homology and cohomol-
ogy for finite simplicial complexes (see [86], [116], and [160]).

Theorem 3.8. Let M be a compact submanifold in CDTk
N (k ≥ 1). Then

M has a finite C1 triangulation, and the homology H∗ (M,F ), cohomology
H∗ (M,F ), and all of the applicable characteristic classes such as the Euler,
Stiefel-Whitney, and Pontryagin classes for M are effectively computable in
polynomial time, where the coefficient ring F can be the integers Z, or the
integers mod 2 denoted as Z2.

3.4.3. Compact manifolds in Euclidean 3-space. We now show that it is in R
3

that both the isomorphism classification and the decidability problem first as-
sume nontrivial proportions. Let M be a compact, connected submanifold
(possibly with ∂M 6= ∅) in CDTk

3 with k ≥ 1. When dimM = 0, both the
classification and decidability problem are trivial in TOP, DIFFk and CDTk

3 .
For dimM = 1, things begin to get very complicated. If M is closed, it must
be diffeomorphic to a circle, but it can be embedded in R

3 as a very compli-
cated knot. Decidability in TOP is easy - in fact it is completely decidable
via homology as in R

2, so there exists a stable algorithm for deciding homeo-
morphism type in linear time. In CDTk

3 , the isomorphism classes correspond
to knot types. It follows from [74] and [75] that M is CDTk

3-decidable, but
the problem of determining the isomorphism class appears to be quite com-
putationally expensive, and is likely to be NP-complete (see also [9] and [83]).
This dramatic contrast is a very effective demonstration of how much more
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difficult it can be to solve the complete fundamental problem (FPCDT) than
the simplified fundamental problem (SFPCDT).

An embedded closed surface M , must be orientable, and an easy solution of
the decidability problem follows from the simple and elegant classical result (see
e.g. [105] and [140]) that the homeomorphism and diffeomorphism types of such
a submanifold are completely determined by the Euler-Poincaré characteristic

(3.5) χ = σ0 − σ1 + σ2 = rankH0 (M,Z) − rankH1 (M,Z) + rankH2 (M,Z) .

Accordingly the problem for DIFFk- and TOP-decidability is stably solvable in
linear time. Again, there is a striking difference in the degree of difficulty of the
TOP- and CDTk

3-decidability problems, as one can see by considering the thin
toral surface of a smoothly thickened knotted curve. Once again, it appears
that M is CDTk

3-decidable - although there seems to be no proof of this in
the literature - but the computational complexity of any associated algorithm
would appear to be quite high.

The homeomorphism or diffeomorphism types of compact submanifolds-
with-boundary M of codimension-1 in R

3 - which may be nonorientable as
in the case of a Möbius strip - is completely determined by χ (M), the ori-
entability, and the number of boundary components (cf. [105]). We note here
that the orientability of a submanifold can be completely determined via ho-
mology (cf. [140]). Therefore, M is TOP-decidable in linear time. On the other
hand, M is apparently CDTk

3-decidable, but the computational complexity of
the problem is very high and largely unknown. Some of these observations can
be conveniently summarized in the following problem.

Problem 3.9. Prove that every compact, connected, C1-submanifold (possibly
with a nonempty boundary) of R

3 of dimension less than or equal to 2 is sta-
bly CDTk

3-decidable, and obtain estimates for the computational complexity of
algorithms that can determine isomorphism type.

A compact, connected, 3-dimensional, C1-submanifold M of R
3 must have a

nonempty boundary ∂M . It is easy to see that if ∂M is connected, it completely
determines M ; hence, M is decidable in both TOP and CDTk

3 . An analog of
this ought to be true in the case when ∂M is not connected, but this still
appears to be an open problem.

Problem 3.10. Prove that every compact, connected, three-dimensional C1-
submanifold-with-boundary of R

3 is both TOP- and CDT
k
3-decidable, and obtain

estimates for the computation complexity of algorithms that can determine iso-
morphism type in these categories.

3.4.4. Compact manifolds in Euclidean 4-space. There is a far more diverse
and interesting range of compact Ck submanifolds of R

4 than R
3, but we shall

confine our attention to just some of those of dimension one or higher. Any con-
nected, closed, 1-dimensional, Ck submanifold M of R

4 must be a diffeomorph
of the circle S1. In R

4, as compared with R
3, the extra dimension renders clas-

sification in CDTk
4 equivalent to that in DIFFk, so it follows from our preceding
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analysis that M is CDTk
4-decidable by a stable algorithm executable in linear

time, where the homology provides a complete set of isomorphism invariants.
In this and the higher dimensional cases in the sequel, we concentrate mainly on
TOP-decidability, which is associated with the simplified fundamental problem.

It is well known that all closed surfaces and compact surfaces-with-boundary,
including the nonorientable ones such as the Klein bottle, projective plane, and
the Möbius strip, can be embedded in R

4 (cf. [105]). We showed above how the
decidability problem for oriented compact surfaces can be easily and efficiently
solved. This is also true for the nonorientable surfaces, all of which can be real-
ized as two-dimensional, closed submanifolds and compact submanifolds-with-
boundary of R

4. For these cases the TOP, DIFFk and CDTk
4 isomorphism types

also are completely determined by the orientability, or lack thereof, the Euler-
Poincaré characteristic, and the number of boundary components. Moreover,
the isomorphism type can be stably computed in linear time. To summarize de-
cidability for compact surfaces: they represent the lowest dimensional nontriv-
ial submanifolds for which the fundamental problem becomes interesting, yet
is easily solvable by simple classical means expressed, modulo orientability and
possible boundary components, in terms of a single invariant that is computable
in linear time. Consequently, surfaces - both orientable and nonorientable and
with or without boundary - represent excellent examples to illustrate how the
fundamental problem may be solved, and also the ideal in that the algorithm
is just about as simple, efficient and stable as could be hoped for.

The 3-sphere S3 is the simplest closed, connected, three-dimensional, Ck

submanifold of R
4. Unlike most of the examples considered so far, its homeo-

morphism type is not completely determined by homology. In fact, Poincaré,
while in the process of formulating his famous conjecture, produced his homol-
ogy 3-sphere example, defined as Mπ := SO(3)/I, where SO(3) is the Lie group
known as the special orthogonal group (rotations) of R

3, and I is the icosahe-
dral group of order 60. Mπ has the same homology as S3, but it is not simply-
connected (i.e. π1(M) 6= 0), so it cannot be homeomorphic with S3. The
Poincaré Conjecture has been dominating the mathematical news of late, ow-
ing to the excitement created by the work of Perelman [120, 121, 122, 123]. This
long-standing conjecture of Poincaré states that a connected, simply-connected,
three-dimensional manifold M having the homology of a 3-sphere must, in fact,
be homeomorphic with S3. Perelman’s results, which rely heavily upon Hamil-
ton’s Ricci flow methods, actually prove Thurston’s Elliptization Conjecture
[149], which implies the Poincaré Conjecture (cf. [29]). We should consider the
impact of his work in the context of decidability questions.

Although Ricci flow methods do not naturally lend themselves to algorith-
mic computation, Perelman’s approach, does suggest a very straightforward
effective procedure for determining if a closed, three-dimensional, C1-manifold
M is a 3-sphere: First, using the C1 triangulation guaranteed by Theorem
3.1, show that the fundamental group is trivial, which can be accomplished
algorithmically by computing the edge-path group of a triangulation of M (cf.
[140]). Employing the same triangulation, it follows from Theorem 3.8 that the



56 Denis Blackmore and Yuriy Mileyko

integral homology of M is effectively computable. Then if one computes that
H0 (M,Z) = H3 (M,Z) = Z, and H1 (M,Z) = H2 (M,Z) = 0, it follows that
M is diffeomorphic, and a fortiori homeomorphic with S3. But there already
is an effective procedure [147], namely the Rubinstein-Thompson algorithm,
for deciding if a manifold is homeomorphic with S3, which requires at most ex-
ponential time. These considerations lead naturally to the following problem,
which is comprised of several parts.

Problem 3.11. Develop an algorithm based on the computation of the edge-
path group and the integral homology as described above for deciding whether
a closed manifold is homeomorphic (or diffeomorphic) with S3. Compare the
computational complexity of this new algorithm with that of the Rubinstein-
Thompson algorithm. In addition, devise an alternative algorithm, if possible,
employing Ricci flow techniques, and compare it with the other algorithms.

Based upon our analysis up to this point, we make the following conjecture.

Conjecture 3.12. Every closed, connected, simply-connected, three-dimensional
Ck submanifold of R

4 is stably TOP-decidable in polynomial time.

Remark 3.13. If we drop the compactness assumption, R
4 naturally is a

connected, simply-connected, open, C∞ submanifold of itself, and fair game
for the FPCDT and SFPCDT. Although TOP-decidability is relatively easy,
recent results of Donaldson, Freedman, Gompf and others show that DIFFk-
decidability may be hopeless: It has been proved that there are uncountably
many fake R

4’s, which are 4-manifolds homeomorphic with R
4, but all of which

have different diffeomorphism types (see eg. [47], [62], and [63]). It is interesting
to compare this with the case of compact submanifolds of dimension less than
or equal to three, where classification up to isomorphism is equivalent in the
categories TOP and DIFF1.

3.4.5. Submanifolds of higher dimensional Euclidean spaces. The Whitney Em-
bedding Theorem (see e.g. [15], [66], and [99]) implies that every closed, four-
dimensional C1-manifold M can be embedded in R

N with N ≥ 9. Four-
manifolds provide some of the most interesting and complicated DIFFk- and
TOP-decidable examples available, and they also yield important insights into
the limitations of decidability. It follows from the work of Freedman, Don-
aldson, et al. (as in [47], [62], and [63]) that all closed, simply-connected,
orientable, four-dimensional, C1-manifolds M can be classified up to homeo-
morphism type. As a corollary, one obtains a proof of the Generalized Poincaré
Conjecture for 4-spheres; namely, every simply-connected, homology 4-sphere
is homeomorphic with the 4-sphere S4.

A remarkable aspect of this classification theory is the particularly simple cri-
teria for determining the homeomorphism type, which comes out of the follow-
ing observations. Elementary algebraic topology, Poincaré duality and the uni-
versal coefficient theorem for homology imply that H0 (M,Z) = H4 (M,Z) = Z,
H1 (M,Z) = H3 (M,Z) = 0, and H2 (M,Z) is a free abelian group. This leads
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one to at least predict the important role in classification of 4-manifolds played
by the bilinear, unimodular intersection form

(3.6) ω : H2 (M,Z) ×H2 (M,Z) → Z.

Freedman’s classification theorem states that the closed, simply-connected,
four-dimensional C1 manifolds are completely classified by their intersection
forms. Consequently, we infer from Theorem 3.8 that these manifolds are also
TOP-decidable. However, this result has, as far as we know, not appeared in
the literature, so we include it here as a conjecture.

Conjecture 3.14. All closed, connected, simply-connected, four-dimensional
C1 submanifolds of Euclidean space R

N are TOP-decidable by an algorithm
that requires no more than polynomial time.

Remark 3.15. If M is merely a connected, closed, topological 4-manifold,
another invariant besides ω is required for topological classification; namely the
Kirby-Siebenmann invariant κ, which is defined to be zero or one, according as
M × R has a differentiable structure or not.

We see then 4-manifolds can lead to what may be considered as ideal exam-
ples of geometric objects when it comes to topological decidability, but they
also can produce undecidable objects. In particular, it can be shown using
simple manifold surgery that every finitely presented group G can be realized
as the fundamental group of a closed, connected, four-dimensional C∞ man-
ifold. Using this fact, and certain undecidability results for the isomorphism
problem for groups, A. Markov proved that 4-manifolds are in general not TOP-
decidable (cf. [105] and [140]). There are limits to the topological decidability
of manifolds after all, and one need not look higher than four dimensions to
find them.

Higher dimensions provide more room for the techniques of differential topo-
logy to perform their mathematical legerdemain, so it is not surprising that
the Generalized Poincaré Conjecture and the classification of closed, simply-
connected, differentiable manifolds were actually disposed of by Smale [141],
Stallings [143], Wallace [152], Zeeman [159], and others for closed manifolds
of dimension greater than four more than a decade before Freedman’s four-
dimensional tour de force. The earlier breakthroughs of Smale, Stallings, Wa-
llace and Zeeman employed a variety of differential topological techniques such
as Morse Theory, cobordism theory, and obstruction theory, all of which appear
to be accessible to algorithmic formulations for manifolds in CDTk

N . Combining
these results with those of Freedman, Donaldson et al., we are emboldened
enough to make the following speculation, which promises to be difficult to
verify. Actually, we suggest that it might be prudent to first try to prove it for
the case of simply-connected, homology n-spheres.

Conjecture 3.16. Every closed, connected, simply-connected, n-dimensional
submanifold in CDTk

N , where k ≥ 1 and n ≥ 4, is stably TOP-decidable in
polynomial time.
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Observe that in these last results we have considered only decidability in
TOP, and we did so with good reason. Isomorphism type in TOP and DIFFk,
which are equivalent for dimensions less than four, are demonstrably different in
higher dimensions, thus establishing the intrinsic difference between topology
and differential topology. This was first demonstrated by Milnor [107], who
showed that there are several differentiable manifolds (exotic spheres) - realized
as S3-bundles over S4 - that are homeomorphic, but not diffeomorphic, with the
7-sphere. Additional work by Milnor, Kervaire, and Brieskorn led to methods
for calculating the number of exotic spheres in all dimensions greater than
four; for example, there are 28 exotic 7-spheres if orientation is considered
(see e.g. [89] and [108]). It took the work of Freedman to settle the case of
the 4-sphere; namely, there are no exotic 4-spheres. On the other hand, for
some closed, connected, 4-dimensional manifolds, it is quite possible - based
upon what is known about fake R

4’s - that there may exist uncountably many
diffeomorphism classes in a single homeomorphism class.

3.5. Decidability of compact nonmanifolds. Most of the decidability re-
sults delineated in the preceding sections for compact submanifolds in CDTk

N

have easily formulated analogs - which tend to be more challenging - for com-
pact varieties V that are not submanifolds. Owing to the relative ease with
which the decidability problems for manifolds embedded in Euclidean spaces
of dimensions less than or equal to three can be solved, and expecting Thom-
Mather theory (see e.g. [26], [66], [99], [106] and [146]) to reduce much of the
work to submanifold strata in (2.1), it is reasonable to assume that the anal-
ogous decidability problems can be resolved with roughly the same degree of
effort. To this end, we need to make use of the following analog of Theorem 3.8,
which can be proved in essentially the same way as that theorem, except we
shall have to use the extension of Munkres’ differentiable triangulation results
to the subvarieties in the CDT category embodied in Theorem 3.1.

Theorem 3.17. Let V be a compact subvariety in the object class of CDTk
N

(k ≥ 1). Then M has a finite C1 triangulation, and the homology H∗ (V, F ),
cohomology H∗ (V, F ), and all of the applicable characteristic classes such as the
Euler, Stiefel-Whitney, and Pontryagin classes for M are effectively computable
in polynomial time, where the coefficient ring F can be either the integers Z,
or the integers mod 2 denoted as Z2.

Armed with this result, which guarantees the effective computability of most
of the key isomorphism invariants, and given the insights provided by our pre-
vious observations, it is reasonable to make the following conjecture regarding
the solvability of the simplified fundamental problem.

Conjecture 3.18. Every connected, compact subvariety V in CDTk
N with

N ≤ 3 and k ≥ 1 is stably TOP-decidable via an algorithm executable in at
most polynomial time.

It may well be possible to also prove a version of this result in all higher
dimensions, but clearly not without some further restrictions on the homotopy
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type. Simple-connectedness might work, but this would severely restrict the
types of nonmanifolds available for applications, as many of the excluded ones
would be apt to arise in problems related to computer aided geometric design
and the modeling and visualization of complex configurations encountered in
life science related research. For example, consider a thickened self-intersecting
curve in the shape of a figure eight embedded in a Euclidean space of dimension
four or higher. We surmise that the following result can be proved.

Conjecture 3.19. Every connected, compact subvariety V in CDTk
N with

k ≥ 1 is stably TOP-decidable via an algorithm executable in at most polynomial
time, assuming that the fundamental group π1 (V ) is recursively computable in
polynomial time.

Another direction that one can pursue is to consider nonmanifolds obtained
in a simple fashion from a compact manifold that is TOP-decidable. It is
precisely this tack that we briefly follow in the remainder of this section.

3.5.1. Sweep-like projective varieties. Swept volumes represent an important
class of objects in computer aided geometric design, which play key roles in
any number of applications (see e.g. [3]-[6], [21]-[26], [97], [98], and [153]). One
of the most useful features of swept volumes is that if they are generated by a
manifold, they can be obtained as the projection of a manifold - embedded in
one higher dimension - called the extended swept volume of the object. There-
fore, we are motivated to make the following definition of a class of varieties
that may yield to algorithmic classification of isomorphism types.

Definition 3.20. A compact subvariety V of R
N is a sweep-like projec-

tive subvariety if there exists a compact submanifold M of R
N+1 = R

N × R

such that P (M) = V , where P is the standard projection of R
N × R onto

R
N = R

N × 0, in which case V is said to be the projection of M.

We shall routinely abbreviate sweep-like projective subvarieties by referring
to them as sweep-like projective varieties. A sweep-like projective variety - ac-
tually a triangulated piecewise linear approximation of such a geometric object
- is illustrated in Fig. 2 in the next section. By studying this figure, we see
the projected variety appears to be completely determined by the projection
map restricted to its ‘covering’ manifold (suggesting a singularity theory con-
nection), and that the self-intersection cell in the projection of the manifold has
the appearance of an obstruction to lifting the variety to its regular pre-image
manifold. These observations indicate that we can use the projection to char-
acterize the variety, and employ a triangulation of the variety to identify this
cell, in the manner of obstruction theory (cf. [140] and [151]), in an algorithmic
way. Accordingly if the projecting manifold itself is topologically decidable, it
appears that the same should be true of its image, which makes the following
assertion quite plausible.
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Conjecture 3.21. Every connected, compact, sweep-like projective subvariety
V that is an object of CDTk

N , and is the projection of a compact, TOP-decidable
or CDTk

N+1-decidable C
1-submanifold M of R

N+1 is also, respectively, TOP-

decidable or CDTk
N -decidable. Moreover, the computational complexity of de-

ciding the homeomorphism type or CDT
k
N -isomorphism type of V is no greater

than the square of that of M .

4. Framework for a Computable Singularity Theory

In this section we show how to create a framework for an effectively com-
putable singularity theory for differentiable maps of piecewise linear objects in
CDTk

N with k ≥ 1. Our attention here will be confined to some specific cases
to illustrate the nature of this piecewise linear theory and its use in develop-
ing an effective procedure for determining the isomorphism types of geometric
objects. Details of the theory shall be provided in a forthcoming paper.

One of the drawbacks of using singularity theory for general differentiable
objects, such as those arising in the analysis of swept volumes, is the fact
that the singularities are usually described in terms of zero sets of rather com-
plicated nonlinear functions, and are therefore not particularly well suited to
algorithmic characterization (cf. [2]-[6], and [25]). Of course there are numer-
ical procedures for approximating the solutions of these nonlinear functions,
but convergence issues - tending to militate against effective computation - can
arise in certain cases. One way of circumventing these computational difficul-
ties, is to obtain various approximate normal forms for singularities, such as
those described in [25], which simplify the computations. But this can also be
rather tricky and hard to implement algorithmically. These problems can be
avoided if the objects have piecewise linear structure, but adjustments have to
be made to include points where the derivatives fail to exist. Notwithstand-
ing the modifications required in a piecewise linear setting, it is not difficult
to show that there is an effective procedure (algorithm) for determining the
singularities. Moreover, if the isomorphism type of the domain of the mapping
is decidable, this procedure can be used to decide the isomorphism type of the
codomain. We shall indicate how this works for sweep-like projective varieties
and their generalizations.

Let us consider a connected, compact sweep-like projective variety V in
CDTk

N . By definition, there is a Ck submanifold M , possibly with
∂M 6= ∅, embedded in R

N+1 such that we may consider V to be embedded
in the hyperplane R

N × 0 of R
N+1 in a way that guarantees that P (M) = V ,

where P is the standard linear projection of R
N+1 onto R

N ×0. We know that
M can be arbitrarily closely approximated (algorithmically) in an appropriately
adjusted Whitney - like Ck topology by an isomorphic manifold represented by
a rectilinearly triangulated set M̂ , and that V̂ := P (M̂) can also be considered
to have a rectilinear simplicial structure. Therefore, for purposes of accurate
approximations (which is the best we can do algorithmically), we may assume

to begin with that M = M̂ and V = V̂ , as shown in Fig. 2. Observe that the
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rectilinear simplicial structure of M guarantees that both M and V in such a
projective setting are both objects with Whitney-regular stratifications; hence,
they are objects in CDT categories.

P

P

Figure 2. Sweep-like projective subvariety

Remark 4.1. Inasmuch as the identification of sweep-like projective varieties
was inspired by swept volume research, it is appropriate that we briefly describe
this connection before continuing with our discussion of effective procedures for
applying singularity theory. We confine ourselves to Ck rigid sweeps, noting
only that the description can be easily extended to piecewise smooth, deformed
sweeps (see e.g. [2], [21], [26], and [153]). By a Ck, rigid sweep we mean a Ck

mapping σ : R
N × [0, 1] → R

N of the form

σ (x, t) := σt(x) := ξ(t) +A(t)x,

where t is confined to the unit interval [0, 1] without loss of generality, ξ and
A are, respectively, Ck vector-valued and matrix-valued functions defined on
the t-interval [0, 1] such that ξ(0) = 0, A(0) = the identity matrix I, and
A(t) ∈ SO(N) - the Lie group of orthogonal N ×N matrices having determi-

nants = 1. Note that A(t)A
T

(t) = I and detA(t) = 1 for all 0 ≤ t ≤ 1, where
the superscript T denotes the transpose operation for matrices.

The swept volume of a Ck manifold M (possibly with nonempty boundary)
embedded in R

N generated by the sweep σ is defined as

Sσ (M) := {σt (x) : x ∈M, 0 ≤ t ≤ 1} .

Each manifold

M(t) := σt (M) := {σt(x) : x ∈M}
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is called the t-section of M under the sweep σ. It is easy to show that the
orbits (trajectories) Oσ(x) := {σt(x) : 0 ≤ t ≤ 1} correspond to the solutions
of the sweep differential equation

ẋ =Xσ (x, t) := ξ̇(t) + Ȧ(t)A
T

(t) (x − ξ(t)) ,

where the dot over a variable denotes d/dt, and Xσ is called the sweep vector
field associated to σ(cf. [26]).

There are natural analogs of the above concepts for spacetime. The sweep σ
in R

N has an associated extended sweep σ∗ : R
N × [0, 1] → R

N+1 in spacetime
defined as

σ∗ (x, t) := σ∗
t (x) := (σt(x), t) .

Standard maps relating space R
N and spacetime R

N+1 are the embedding
i : R

N → R
N+1 and the projection P : R

N+1 → R
N defined, respectively

as i(x) := (x, 0) and P (x, t) := x. Note that the composition P ◦ i = idRN ,
the identity map on R

N . We shall, as is usually the case, identify M with
i(M) = M × 0 = {(x, 0) : x ∈M} in spacetime R

N+1. The extended swept
volume of M generated by σ is defined as

S∗
σ (M) := {σ∗

t (x) : x ∈M, 0 ≤ t ≤ 1} = {(σt(x), t) : (x, t) ∈M × [0, 1]} .

It is easy to show that the orbits (trajectories) O∗
σ(x) := {σ∗

t (x) : 0 ≤ t ≤ 1}
correspond to the solutions of the extended sweep differential equation

u′ = (x′, t′) = X∗
σ (x, t) := (Xσ (x, t) , 1) ,

where the prime denotes d/ds.
A direct consequence of the definition, or elementary properties of differential

equations, is that the extended swept volume S∗
σ (M) is a submanifold-with-

boundary of R
N+1 (see [23]). On the other hand, the swept volume Sσ(M)

can have self-intersections, so it may not be a submanifold; the most one can
say is that the swept volume is a subvariety of R

N (cf. [26]). Nevertheless, it
is easy to see that the swept and extended swept volumes enjoy the following
simple relationship Sσ(M) = P (S∗

σ (M)), wherein we use our identification of
R

N with R
N × 0 =

{
(x, 0) : x ∈ R

N
}
.

Returning again to the above sweep-like projective variety context, it is clear
that the topological structure of V can be considered to be inherited from the
‘covering’ manifold M . For example, self-intersections of V (connected with
the trimming problem for swept volume representations [24]) can be identified
by counting the number of components in the fibers P−1(x) for x ∈ V , and the
boundary elements of V correspond to singularities of the map Φ : M → V ,
where Φ is the restriction of P to M . We emphasize again that the singularities
correspond to points z ∈M where either the derivative of Φ exists and is rank
deficient or the derivative fails to exist at ‘corners’ of the triangulation of M .

Finding rank deficient points is a simple matter, since it involves only solving
systems of linear equations under constraints imposed by the boundary of the
compact manifold M . The other singular points, where differentiability breaks
down, are likewise easy to identify by investigating the simplices that are faces
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of the triangulation TM of M . One can then project this triangulation onto V ,
and employ the usual strategies to obtain a triangulation of V containing the
projection Φ (TM ) of the triangulation of M .

Even though our description of the topological connections between V and
the projection Φ : M → V has been cursory, it is clear that given the home-
omorphism type of M , there should be an effective procedure for determining
the topology of V . In fact, we can boldly extrapolate this intuitive observation
by surmising the validity of the following assertion.

Conjecture 4.2. Let M be a connected, compact, m-dimensional covering
manifold of a sweep-like projective variety V be CDT0

N+1-decidable via a stable
algorithm AM with computational cost CC (AM ) = O (ns), where s is a posi-
tive integer such that 1/s is a lower bound for the diameters of the simplices in
a given triangulation of M . Then there exists a stable algorithm AV for deter-
mining the isomorphism type of V in CDT0

N , and the computational complexity
of the algorithm satisfies CC (AV ) = O (nms).

Remark 4.3. The usual over and under representation of knots in a plane
may be viewed as a sweep-like projection of a circle embedded in R

3. The
crossings of the knot in the plane represent self intersections of a 1-dimensional
subvariety, which can be characterized in terms of how the components of the
fibers of the projection vary as the knot is traversed in R

3. This resonates with
the knot type deciding algorithm in [74], and suggests the following query.

Problem 4.4. How does the suggested singularity based procedure for deciding
knot type compare with that in [74]?

If M is in the projective role above and embedded in R
N+1, one can embed

it in a higher dimensional Euclidean space in which it can be deformed into
the simplest representative in its isomorphism class. Thus, it may be possible
to develop a more a efficient way of determining the isomorphism type of the
projective variety V by increasing the dimension of the ambient space of its
covering manifold. Accordingly we offer the following extension of the notion
of a sweep-like projective variety.

Definition 4.5. Let V be an object in CDTk
N . Suppose there is a submanifold

M embedded in R
N+m, where m is a positive integer, such that the projection

Pm : R
N+m → R

N

ignoring the last m coordinates satisfies Pm (M) = V . Then we say that V is
a sweep-like projective variety of codimension-m, which makes objects
fitting our original definition, sweep-like projective varieties of codimension-1.

Let m∗ be the smallest positive integer such that TOP-decidability of M
is equivalent to CDT0

N+m-decidability, which exists in virtue of well-known
embedding theorems (cf. [133]), where M covers a sweep-like projective variety
V of codimension-m in R

N . The following result appears plausible.
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Conjecture 4.6. If A# is a stable algorithm for deciding the homeomorphism
type of M in R

N+m∗ such that CC (A#) = O (nr), then there is a stable
algorithm A♮ for determining the isomorphism type of the sweep-like projective
variety of codimension-m, V, in CDT0

N , satisfying CC (A♮) = O (nr+m∗).

Although our plan was only to sketch the elements of an effectively com-
putable singularity theory for piecewise linear object in the CDT category, we
cannot end our brief discussion without at least mentioning Thom-Boardman
stratifications (cf. [15], [66], [106], and [146]). If ϕ : M → V is a piecewise
linear map between piecewise linear objects in CDT categories, it is natural to
collect all points of M where ϕ is differentiable, but has deficient ϕ-rank, along
with points where the derivative does not exist. All together, these sets com-
prise a piecewise linear analog of a Thom-Boardman stratification of M . This
stratification should in some sense refine the natural Whitney-regular stratifi-
cation with which M is equipped. It should not be too difficult to compute
such singularity-based stratifications, in aid of solving the following problem.

Problem 4.7. Describe how this piecewise linear Thom-Boardman stratifica-
tion ‘refines’ the given stratification of M , and determine how this may help in
characterizing the topology of V .

5. Towards a Computable Obstruction Theory

Here we shall provide only a glimpse of what appears to be the kernel of
an effectively computable obstruction theory for piecewise linear objects in our
CDT categories. We hope to fashion this into a cohesive theory, complemented
with several meaningful applications, in a series of papers to be written in the
near future.

Our first inspiration comes from a long look at Fig. 2. Observe how the
‘covering’ manifold M resembles a regularized lifting of its projective variety
V over the ‘fibration’ P . If we consider a sequence of higher codimension
projections

· · · →M3
Φ3→M2

Φ2→M1
Φ1→ V

as defined in the preceding section, we are reminded of the kind of Moore-
Postnikov factorizations that can serve as the foundation for an obstruction
theory (cf. [140]).

Classical obstruction theory relies on the iterative calculation of successive
obstructions lying in cohomology groups with homotopy group coefficients.
Given the triangulated structure of the geometric objects involved, it is likely
that the usual obstructions can be computed recursively, but just how this is
to be accomplished in general is certainly not obvious.

Fortunately, there are some contexts in which classical obstruction theory
can be implemented in a relatively simple way, such as in [111], and we believe
that the rich structure available to us in our CDT setting will enable us to
simplify the whole obstruction theory process. Our basic idea - which may
in a certain sense be regarded as the dual of the singularity theory approach
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delineated in the preceding section - is to treat the requisite obstruction theory
from an essentially combinatorial viewpoint, which we illustrate for the objects
in Fig. 2.

We look closely at Fig. 2 to see how the covering manifold and its projection
are related, topologically speaking. Our basic question is, what operations must
be performed on V to lift it to M , or dually, how can one get from M to V via
a simple topological/geometric process? Looking at the triangles comprising
the central self-intersection set of the projected variety, we see that by excising
them, locally we obtain a set with four (rather than one or two) components.
Thus this central cell is an obstruction to lifting V to M over the projection
P . Dually, a thickened version of this cell needs to be attached as a bridge
between two different portions of M to obtain this self-intersection of V . But
there is also an overlapping cell where the projected portions of the ends of M
meet. Hence, this cell is another obstruction to lifting V to M , and a thickened
version of this cell must be attached as a bridge between the ends of M in order
to produce the correct topology in the corresponding portion of the projection.

The simple approach outlined above has, we believe, the potential for ex-
tension to much more general settings involving piecewise linear objects in the
CDT categories. Therefore, we pose the following problem for ourselves and
others who might enjoy the challenge.

Problem 5.1. Develop the basic ideas sketched in this section into a rigor-
ous obstruction theory for piecewise linear objects in the CDT categories, and
explore possible applications of this theory.

6. Topology of Intersections

From our discussions in the preceding sections, the importance of inter-
sections in determining the differential topological and topological nature of
geometric objects is manifest. It is our intention here to focus on a relatively
narrow, but increasingly important facet of intersection theory - the algorith-
mic aspects of intersection analysis pertaining to computer generated geometric
objects - that can justifiably be claimed to belong to computational geometry,
computer aided geometric design, or the relatively new field of CT. Even in
this rather narrow range of the intersection theory landscape, there has been
extensive research that has produced an extensive body of important and useful
results. And still the research continues apace, which underscores the fact that
in spite of all the progress that has been made, there remains a vast collection
of important open problems. We intend to make some progress in addressing
these open problems using approaches that are firmly rooted in the field of CT
in general, and CDT in particular.

Examples of the type of computational geometry or computationally orien-
ted intersection theory results we are addressing include the following, among
many others: Abdel-Malek & Yeh [1] use the intrinsic differential geometry of
parametric surfaces - especially critical point techniques - to detect points of
intersection. The use of novel strategies employing boundary representations,
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as in Bajaj et al. [17] have also figured in numerous investigations. Heo et al.
[76] use special properties of ringed surfaces to find local and global properties
of their intersections. Algorithms adapted to the special geometric features of
the surfaces considered have been developed by Johnstone [84] to describe the
differential geometric features of certain types of surface intersections. Seder-
berg and his collaborators ([137], [138]) use methods from algebraic geometry
and differential geometry to describe (or make conjectures about) important
aspects of the global structure of intersections of algebraic surfaces, as do Ma
& Lee [100]. The aforementioned and other researchers have developed useful
algorithmic techniques for describing intersections of smooth swept surfaces
with general smooth surfaces in ways that have features in common with the
intersection detection techniques that we shall introduce in this paper; and Ye
& Mackawa [158] bring classical elements of differential geometry to bear on the
intersection description problem. A sample of intersection research in a more
CT vein includes the work of Farouki et al. [60] on developing algorithms for
piecewise linearly, topologically consistent representations of self-intersections,
the use of index theories for vector fields to characterize intersections in Kreizis
et al [94], and the development by Peters et al. (see e.g. [114]) of error bounds
on differential geometric surface characteristics that insure the correct ambient
isotopy type of their intersection sets.

The overall intersection problem for geometric objects may be conveniently
described as comprised of two parts: intersection detection and intersection
analysis or interrogation. Intersection detection is concerned with the determi-
nation of the occurrence of intersections among groups of objects, or self inter-
sections of a single object. Intersection analysis or interrogation involves local
and global characterization of intersection sets, once it has been established
that an intersection actually occurs. Both of these aspects of the intersection
problem play important roles in a host of practical applications in such fields
as computer-aided design (CAD), computer-aided manufacturing (CAM), ro-
botics, and virtual reality; examples of which are provided in [1], [17], and
[76].

We first concentrate on a particular class of intersection detection problems
involving certain types of objects that we call swept manifolds. More precisely,
we devise a method for detecting intersections that is based on locating zeros
of a special type of signed distance function. Then we develop some extensions
and generalizations of results in [26] related to local intersection detection and
interrogation using homology theory. In particular, we extend the local homo-
logical approach introduced in [26] for transverse intersections of hypersurfaces
to general (nontransverse) intersections of submanifolds and varieties (with
and without boundaries) having a wide range of codimensions. Moreover, we
demonstrate that both our intersection detection and homological characteri-
zation methods are well suited to computer implementation.

Our organization of this section of the paper is as follows: In Subsection 6.1,
we briefly summarize the topological and geometric notions that are employed
to a significant extent in the sequel, define the notion of a swept manifold,
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and provide references that give more detailed accounts of the standard math-
ematical nomenclature that we use. Then, in Subsection 6.2, we develop a
new method for detecting intersections of swept manifolds, and illustrate its
implementation with an example. This is followed by a brief description of how
homological techniques can be used to detect and analyze intersections in Sub-
section 6.3. In Subsection 6.4, we show how homology can be used to detect and
interrogate intersections of submanifolds and subvarieties of Euclidean space,
and then illustrate the effectiveness of this approach in dealing with tangential
(nontransverse) intersections of geometric objects. Then we discuss the algo-
rithmic implementation of our homological methods and their integration into
widely used data structures in Subsection 6.5. Then to conclude this section,
in Subsection 6.6, we summarize the contributions our results, discuss their
significance, and indicate some possible future related research directions.

6.1. Geometric preliminaries. As discussed in the preceding sections, the
objects considered in CT are usually subsets - endowed with additional struc-
ture - of the ambient Euclidean n-space R

n. Typically, the additional structure
on the subsets is at least enough to render them submanifolds or subvarieties.
In most cases, the objects of interest actually have some smoothness, which
induces the submanifold or subvariety structure.

We complete our brief introduction to some of the basic topological and
geometric employed in the sequel with a rather general formulation of the
notion of a swept manifold and a swept variety (cf. [84]).

Definition 6.1. We say that a subset S of R
n is an (m+ 1)-dimensional,

Ckswept submanifold or subvariety, respectively, if it is a Ck, (m+ 1)-
dimensional submanifold (possibly with boundary) or subvariety (possibly with
boundary) such that there is a Ck, m-dimensional submanifold M (possibly with
boundary) or subvariety M (possibly with boundary), a Ck vector field X on
R

n, which is nonvanishing on a neighborhood of S and generates a flow ϕt,
and a real interval J such that S = ϕJ(M) := {ϕt(x) : (x, t) ∈M × J}. The
submanifold (subvariety) M is called an initial submanifold (initial subva-

riety) of S, and each of the m-dimensional sets ϕt(M) := {ϕt(x) : x ∈M} is
called a t-section or trace of S.

Note that the vector field in the above definition is much more general than
the Lie algebra vector field associated to Euclidean, affine, or any of the other
Lie groups of transformations used to define swept volumes (cf. [6], [21]-[26],
[153] ). The above definition of submanifolds in terms of flows generated by
vector fields enables us to bring the powerful tools of dynamical systems (see
e.g. [69], [72], [88], and [142]) to bear on problems concerning swept manifolds
and varieties. One should also observe that every Cr submanifold is locally a
Cr swept manifold.

Example 6.2. Consider the 2-sphere in R
3 defined in the usual way as

S2 :=
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1
}
.
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This is a Cω swept surface in R
3 (modulo the vanishing of the vector field at the

poles) that may be generated in several ways. For example, we can take the
initial submanifold to be the unit circle S1 :=

{
(x, 0, z) ∈ R

3 : x2 + z2 = 1
}
,

and the generating vector field as X = (y,−x, 0). The flow generated by X is
ϕt(x, y, z) = (x cos t−y sin t, x sin t+y cos t, z), and is is easy to see that in this
case that S2 = ϕ[0,π]

(
S1

)
.

On the other hand, we have the related case.

Example 6.3. Let h denote the restriction of the height (z) function to the
family of spheres in a thin shell containing S2, so that

gradh = ∇h =
(
x2 + y2 + z2

)−1 (
−xz,−yz, x2 + y2

)
.

Denoting the flow generated by ∇h as ψt, and taking the generating submani-
fold to be the equator E := {(x, y, 0) : x2 + y2 = 1}, we observe that if a is a
large positive number, then ψ[−a,a] (E) is all of S2 except for small polar caps
at the north (z = 1) and south (z = −1) poles. Moreover, these caps can be
made as small as one wants by taking a sufficiently large. Hence, E under the
action of the flow nearly sweeps out all of S2.

This is a rather interesting observation that we intend to investigate in much
more detail in a forthcoming paper.

6.2. Intersection detection. Here we develop a rather effective analytical
method for detecting intersections of swept submanifolds, either for a pair of
such manifolds, or self-intersections of a single swept submanifold with itself.
Our approach has some elements in common with the work of others, but it is
at its core quite different. We shall concentrate on the detection problem, and
not be concerned with the topology or geometry of the intersection set as in
such investigations as Bajaj et al.[17], Farouki et al. [60], [68] , Heo et al.[76],
Johnstone [84], Kreizis et al.[94], Ma & Le [100], Mow et al. [114], Peters et
al. [124], Sederberg et al. [137, 138], and Ye & Mackawa [158]. Hence in this
regard at least, the work in this section compares rather closely with that of
Abdel-Malek & Yeh [1] on finding useful starting points of intersection sets.

Now let M and N be Ck (k ≥ 2) submanifolds of R
n with dimM = p and

dimN = q. If dimM + dimN = p+ q < dim R
n = n. It follows from transver-

sality theory (see e.g. [66], [78], and [142]) that any points of intersection can be
eliminated by an arbitrarily small Ck perturbation of either or both of M and
N . Consequently, as computer generated representations of geometric objects
always entail small some small errors, one must assume that

(AI) dimM + dimN = p+ q ≥ n = dim R
n.

in order to have any real hope of finding an effective algorithmic method for
detecting intersections, which is suitable for computer implementation. We
note here that for self-intersections, we can take M and N to be different
portions of the whole object S, which is typically a subvariety of R

n.
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If U is an open subset of R
n in which M and N have implicit representations

of the form

M ∩ U = F−1 (0) , N ∩ U = G−1 (0) ,

where F : U → R
n−p and G : U → R

n−q are Ck functions, then finding points
of (M ∩N) ∩ U boils down to solving the system of equations

(6.1) F (x) = 0, G (x) = 0,

simultaneously in U . This can be a daunting task, even when only approximate
zeros are being computed. Now if one can find one solution, say x∗, of (6.15),
then there are results such as the implicit function theorem, various elements
of singularity theory, and certain index theorems for vector fields that enable
one to obtain a reasonably good characterization of M ∩N locally, and even
globally to a lesser extent, but first one must find a point in the intersection.

Taking d to be the usual Euclidean metric, namely d(x, y) := |x− y|, inter-
section points also can be associated with the following variational problem:
Minimize

d2 (x, y) := (d(x, y))
2
,

subject to the constraint

(x, y) ∈M ×N,

and establish that this minimum is zero. Unfortunately, this formulation of
the intersection problem is not particularly useful in a computational setting,
since exact zeros are rarely computable. However, it is helpful in simplifying the
problem, inasmuch as we can immediately eliminate from further consideration
those portions of the two submanifolds for which d2(x, y) is greater than any
convenient preassigned positive constant. In particular, suppose we identify
all points (x, y) ∈ M × N such that d2(x, y) > ǫ2 > 0, where ǫ is say an
order of magnitude larger than the accuracy of the numerical scheme being
employed. Then we can safely eliminate all such points from the list of possible
intersections, and concentrate on the remaining points. So, for example, if
d2(x, y) > ǫ2 for all (x, y) ∈ M × N , we know that there are no points of
intersection at all.

In light of the above analysis, we may at this juncture assume that there
exist points satisfying d2(x, y) ≤ ǫ2, where ǫ is an appropriately chosen small
positive number, which means that there may exist some points of intersection.
We shall further assume that M and N are compact, Ck submanifolds of R

n.
In addition, we suppose that M is a swept submanifold obtained by sweeping
a (p − 1)-dimensional, Ck submanifold M0 with the flow ϕt generated by a
nonvanishing, Ck vector field X : U → R

n, where U is an open subset of R
n

that is large enough to contain both M and N . We assume without loss of
generality that p = dimM ≤ q = dimN . Moreover, we assume to begin with
that N is a embedded submanifold of codimension-1, i.e. q = n − 1. We also
assume that it is oriented, so that one can designate a positive and negative
side of N (see [78], [105], [112], [115] and [140]). The references just cited, also
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serve as excellent sources for some of the basic mathematical concepts that we
use in what follows.

By choosing ǫ sufficiently small, we guarantee that the set

τǫ (N) := {x ∈ R
n : d (x,N) ≤ ǫ}

is a Ck tubular neighborhood of N having the structure of a 1-disk bundle over
N , where d(x,N) is the distance between the point x and the submanifold N .
For each y ∈ N , the fiber of τǫ (N) over y may be viewed as the interval Fy of
length 2ǫ, bisected by y, along the normal to N at y. Each such interval (fiber)
may be viewed as comprised of a positive normal vector of length ǫ pointing
up from the positive side of N , and a negative normal vector of length ǫ at y
pointing in the opposite (negative) direction. Whence we obtain a partition of
τǫ (N) into positive and negative normal vectors of length ǫ, which we denote
by τǫ (N)+ and τǫ (N)−, respectively. Consequently, τǫ (N) can be written as
the disjoint union τǫ (N)+∪N ∪τǫ (N)−, and there is an associated vector field
of unit normals on each side of N , where n+(x) is the unit normal pointing
away from N on the fiber through x ∈ τǫ (N)+, and n−(x) is the unit normal
pointing away from N on the fiber through x ∈ τǫ (N)−. We are now in a
position to prove the following result.

Theorem 6.4. Let M and N be Ck (k ≥ 2) submanifolds of R
n satisfying

assumption AI , where N is of codimension-1. Moreover, suppose that the vec-
tor field X, flow ϕt, normal bundle τǫ (N), etc., are as described above, and
let M0 be the initial submanifold of the swept submanifold M . If there exist
a point x ∈ M0 and 0 < t1 < t2 such that both ϕt1(x) and ϕt2(x) belong
to τǫ (N), 〈X (ϕt1(x)) ,n(x)〉 and 〈X (ϕt2(x)) ,n(x)〉 have opposite signs, but
〈X (ϕt(x)) ,n(x)〉 does not vanish on the interval [t1, t2], then ϕt∗(x) ∈M ∩N
for some t∗ ∈ (t1, t2).

Proof. The desired result follows directly from the definitions and the connect-
edness of the orbits of a Ck vector field. The hypotheses imply that ϕt1(x)
and ϕt2(x) are in opposite halves of the normal bundle τǫ (N). Accordingly as
the path segment {ϕt(x) : t1 ≤ t ≤ t2} is connected, and we have the partition
τǫ (N) = τǫ (N)+ ∪ N ∪ τǫ (N)−, it follows that this path segment, which is
contained in M , must intersect N . Thus we have a point of intersection of the
two submanifolds, and the proof is complete. �

It is easy to construct a rather effective computational scheme for imple-
menting the above theorem having the following steps:

Step 1. Choose a small positive ǫ, and construct the normal bundle together
with the normal vector field n on each side of τǫ (N).

Step 2. Triangulate M0 with a mesh diameter of size δ, and collect all the
vertices in a set V = {x(1), ..., x(m)}..

Step 3. Use a Runge-Kutta scheme with step size h ≤ δ to find the approximate
positive semi-orbits starting at all points of V , and compute the dis-
tance from each of the points on the discrete approximate trajectories
to N .
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Step 4. Discard all approximate orbit points outside of the normal bundle
τǫ (N), and group the remaining points in order of increasing t. Then

a typical ordered collection of remaining points takes the form Õ(j) =

{x
(1)
(j) , x

(2)
(j) , ..., x

(mj)

(j) }.

Step 5. Test the points on the approximate orbits in Step 6 to see if
〈
X

(
x

(l)
(j)

)
,n(x

(l)
(j))

〉

changes sign at successive points.
Step 6. If a sign change described in Step 6 occurs, use the bisection method

on the corresponding time interval to test the conditions of Theorem
6.4, thereby obtaining an intersection point whose accuracy can be
improved by reducing the sizes of δ, and increasing the number of
bisection iterations.

Note that the above can readily be generalized to piecewise linear manifolds.

Example 6.5. Our computational scheme can be effectively illustrated with
the following example in R

4. Let M be the 2-torus in R
4 defined parametrically

as

M := {(x1, x2, x3, 0) : x1 = (2 + cos v) cosu,

x2 = (2 + cos v) sinu, x3 = sin v, 0 ≤ u, v < 2π},

and let N be the hyperplane characterized by the Cartesian equation x2−x1 =
2. It is easy to solve exactly for the intersection set of these two submanifolds,
but we want to show how our method can be applied. Observe thatM is a swept
submanifold generated by the circleM0 defined by the equations (x1−2)2+x2

3 =
1, x2 = x4 = 0 and the vector field X := (−x2, x1, 0, 0), which induces the flow

ϕt(x) = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t, x3, x4) .

We choose the positive normal direction for N to coincide with the vector
(−1, 1, 0, 0), and the negative direction to be parallel to (1,−1, 0, 0). A uni-
form partition of M0 defined by points separated by the distance δn := 1/n can
be chosen to obtain the desired accuracy. Theorem 6.4 is checked by comput-
ing 〈X (ϕt(x)) ,n (ϕt(x))〉 = ± [−x1 (cos t+ sin t) + x2 (sin t− cos t)], depend-
ing on which side of N the trajectory lies.

6.3. Homological intersection criteria. We now show how homology can
be used to distinguish points in the intersection of two objects. We assume that
the reader is familiar with the basics of algebraic topology - more specifically,
homology theory - such as can be found in texts such as [105], [116], [140], and
[160]. As usual, we shall assume integral homology unless otherwise indicated.
Before plunging into details of the general case, let us take a look at an example.
Consider two surfaces in space that intersect transversally as in Fig. 3. Let
us denote them by M and N . It is easy to see that if x ∈ M ∩ N , then a
neighborhood of x is homeomorphic to a union of two intersecting planes. If
x /∈ M ∩ N , a neighborhood of x is homeomorphic to just one such plane
(Fig.3).
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Figure 3. Transverse intersection of two surfaces

Unfortunately, checking if two spaces are homeomorphic is not an easy prob-
lem. In many cases, it can be reduced to comparing Betti numbers or homology
groups of the spaces (cf. [42], [105], [140], [157], [160], and [161]) . But it turns
out that to discern intersection points in the above example it is enough to
compute the local homology groups of M ∪N at a point of interest. We can do
it fairly easily, obtaining the following: If x ∈M ∩N , then the only non-trivial
homology group is H2(M ∪ N,M ∪ N \ {x}) = Z

3. If x /∈ M ∩ N , then the
non-trivial homology group is H2(M ∪N,M ∪N \{x}) = Z. Similar homologi-
cal characterization holds for transverse intersections of smooth, codimension-1
submanifolds of R

n for any n (cf. [140]). Things become more complicated for
nontransverse intersections, especially in higher-dimensional spaces. Still, as
we shall see, a description in terms of homology remains quite elegant and
straightforward.

We now proceed to our analysis of the general case. Usually, objects under
consideration are assumed to be smooth, compact submanifolds of R

n without a
boundary. But since homology is homotopy invariant, we start by considering
topological submanifolds of R

n. To simplify our analysis, we impose some
restrictions on the intersection set – we assume that it is an s-subvariety of
R

n (cf. Blackmore et al. [26]), which, for example, is always the case if the
intersecting manifolds are analytic, piecewise linear, or elements of the CDT
categories defined in the preceding sections.

Theorem 6.6. Let M and N be two topological submanifolds of R
n without

boundaries, and let I = M ∩ N be an s-subvariety. Denote by p, q and r di-
mensions of M,N and I, respectively, and let n > p ≥ q > 0.

(1) If x ∈ (M ∪N) \ I then

Hk(M ∪N,M ∪N \ {x}) =

{
Z, if k = p, x ∈M, or k = q, x ∈ N
0, otherwise
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(2) If x ∈ I the following hold:
(i) if p > q > r + 1, then

Hk(M ∪N,M ∪N \ {x}) =






Z, if k = p, q
Hk−1(I, I \ {x}), if k = r + 1
0, otherwise

(ii) if p > q = r + 1, then

Hk(M ∪N,M ∪N \ {x}) =





Z, if k = p
Z ⊕Hk−1(I, I \ {x}), if k = q = r + 1
0, otherwise

(iii) if p = q > r + 1, then

Hk(M ∪N,M ∪N \ {x}) =





Z
2, if k = p = q

Hk−1(I, I \ {x}), if k = r + 1
0, otherwise

(iv) if p = q = r + 1, then

Hk(M∪N,M∪N\{x}) =

{
Z

2 ⊕Hk−1(I, I \ {x}), if k = p = q = r + 1
0, otherwise

Proof. Let x ∈ M \ I, and consider Hk(M ∪ N,M ∪ N \ {x}). By excision,
Hk(M ∪N,M ∪N \ {x}) = Hk(U,U \ {x}), where U ⊂M is a neighborhood of
x in M , and from the long exact sequence for the pair (U,U \{x}) we infer that

Hk(U,U \{x}) = H̃k−1(U \{x}). Since M is a manifold of dimension p, the set

U \ {x} is homotopic to a (p− 1)-sphere, Sp−1. Therefore, H̃p−1(U \ {x}) = Z

and Hk−1(U \ {x}) = 0, k 6= p. The case x ∈ N \ I is proved in the same way.
Now let x ∈ I. Again, by excision we get Hk(M ∪ N,M ∪ N \ {x}) =

Hk(U,U \{x}), where U ⊂M∪N is a neighborhood of x in M∪N , and the long

sequence for the pair (U,U \{x}) implies that Hk(U,U \{x}) = H̃k−1(U \{x}).
Denoting X = U \ {x}, We can write X = A ∪ B, where A = U ∩M \ {x}
and B = U ∩ N \ {x}. Notice that from excision and the corresponding long

exact sequence, we get Hk(I, I \ {x}) = H̃k−1(A ∩ B). Consider the reduced
Mayer-Vietoris sequence for A,B and X :

· · · → H̃k(A ∩B)
Φ
→ H̃k(A) ⊕ H̃k(B)

Ψ
→ H̃k(X)

∂
→

→ H̃k−1(A ∩B) → · · · → H̃0(X) → 0,

Since M and N are manifolds of dimensions p and q, A and B are, respectively,
homotopic to Sp−1 and Sq−1. So, the only non-trivial reduced homology groups

of A and B are H̃p−1 and H̃q−1, respectively. Both of them are Z. By assump-
tion, M∩N is an s-subvariety of R

n of dimension r, which implies that U can be
chosen such that M ∩N ∩U is homeomorphic to a finite union of r-dimensional
balls Br

j each of which contains x. Therefore, M ∩ N ∩ U \ {x} = A ∩ B is
homotopic to a connected union of (r − 1)-dimensional spheres, so the only

non-trivial reduced homology group of A ∩B is H̃r−1.
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Returning to the Mayer-Vietoris sequence, we see that it gives rise to one,
two or three short exact sequences, as follows.

Case 1: p > q > r + 1. We get three short exact sequences:

0 −→ Z −→H̃p−1(X) −→ 0,

0 −→ Z −→H̃q−1(X) −→ 0,

0 −→ H̃r(X)−→H̃r−1(A ∩B) −→ 0,

from which the result follows.
Case 2: p > q = r + 1. We obtain two short exact sequences:

0 −→ Z −→H̃p−1(X) −→ 0,

0 −→ Z −→H̃r(X)−→H̃r−1(A ∩B) −→ 0.

The first sequence implies that Hp−1(X) ≈ Z. In the second case, using
the fact that all the groups involved are free and finitely generated, we
infer that the sequence is a split exact sequence. Hence, Hr(X) ≈
Z ⊕Hr−1(A ∩B).

Case 3: p = q > r + 1. We have two short exact sequences:

0 −→ Z
2−→H̃p−1(X) −→ 0,

0 −→ H̃r(X)−→H̃r−1(A ∩B) −→ 0,

which yield the desired result.
Case 4: p = q = r + 1. We get one short exact sequence:

0 −→ Z
2−→H̃r(X)−→H̃r−1(A ∩B) −→ 0.

Again, using the fact that all the groups involved are free and finitely
generated, we conclude that Hr(X) ≈ Z

2 ⊕Hr−1(A ∩B)

Notice that all nontrivial homology groups for A, B, or A ∩ B are considered

in these four cases. Therefore, the short exact sequences for H̃k(X) that are
not considered above are of the form

0 −→ H̃k(X) −→ 0,

which implies that all such H̃k(X) are trivial. This completes the proof. �

Remark 6.7. It can be seen from the proof that the hypothesis that the
intersection set is an s-subvariety of R

n can probably be weakened, since we
only need the sequence

0 −→ Z −→H̃r(X)−→H̃r−1(A ∩B) −→ 0

to be a split exact sequence.

The above theorem has several important corollaries, the first of which gen-
eralizes Theorem 7.2 of [26].
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Corollary 6.8. Let M and N be Cr, r ≥ 1, compact submanifolds of R
n

without boundaries of dimensions p < n and q < n, respectively, and suppose
M ⋔ N . Then if x ∈M ∩N , the local (relative) homology satisfies

Hk(M ∪N, (M ∪N) \ {x}) =






Z
3, if k = p, p = q = n− 1

Z
2, if k = p, p = q < n− 1

Z, if k = p, q, p+ q − n; p 6= q
0, otherwise

,

and if x ∈ (M ∪N) \ (M ∩N) ,

Hk(M ∪N, (M ∪N) \ {x}) =

{
Z, if k = p and x ∈M or k = q and x ∈ N
0, otherwise

Proof. It follows from Theorem 6.6 and the fact that the transverse intersection
of two Cr submanifolds of R

n of dimensions p and q is a Cr submanifold of
dimension p+ q − n. �

Corollary 6.9. If a C1 compact, connected, codimension-1 submanifold M of
R

n has points of transverse self-intersection, then there exists an x ∈ M such
that Hn−1(M,M \ {x}) = Z

3.

If Cr submanifolds M and N intersect tangentially, then M ∩ N can have
a quite complicated structure, e.g. it may not even be a submanifold. The
following easily proved lemma describes, to some extent, the local structure of
a tangential intersection of two Cr submanifolds of R

n.

Lemma 6.10. Let M and N be two Cr submanifolds of R
n without boundaries

of dimensions p and q, respectively, and let x ∈ M ∩ N be a point where M
and N intersect non-transversally. Then there is a neighborhood U ⊂ R

n of x
and a Cr function f : U ∩M → R

n−q such that U ∩M ∩N = f−1(0) and x is
a critical point of f .

A reader familiar with differential topology will notice that the statement of
the lemma is equivalent to saying that M ∩ N is a Cr subvariety of R

n. It
may not be an s-subvariety though. Therefore, we still need the corresponding
assumption for the statement of Theorem 6.6 to be true.

In many cases, the local homology groups of M ∩N can be computed fairly
easily, thereby yielding explicit formulas for the local homology at the intersec-
tion point. We demonstrate this in the following example.

Example 6.11. Consider the paraboloid M , given by z = x2 + y2, and the
surface N , given in cylindrical coordinates by the following equations:

x = r cos θ, y = r sin θ, z = r2 sin (8θ),

where θ ∈ [0, 2π], r ≥ 0. The neighborhood of the origin is shown in Fig.
4. These two surfaces intersect tangentially, and the intersection set, I, is an
s-subvariety (and also a cdtω

3 object) shown in Fig. 5. By excision, the local
homology groupsHk(I, I\{0}) are isomorphic to the corresponding reduced ho-

mology groups H̃k−1(I \{0}). Since the set I \{0} consists of eight contractible
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components, we obtain Hk(I, I \ {0}) = Z
7 for k = 1 and Hk(I, I \ {0}) = 0

for k 6= 1. Thus, Theorem 6.6 implies that Hk(M ∪N,M ∪N \ {0}) = Z
9 for

k = 2 and Hk(M ∪N,M ∪N \ {0}) = 0 for k 6= 2.

Figure 4. Tangentially intersecting surfaces

Figure 5. Intersection set of the surfaces

A direct application of Theorem 6.6 allows us to distinguish between in-
tersection and non-intersection points, as well as between points of tangential
and transverse intersection, but it does not provide an explicit way for deter-
mining the local structure of the intersection set, which is the primary goal in



Computational Differential Topology 77

many applications. To achieve such a goal, at least partially, one would need
to ‘reverse’ the theorem, expressing the local homology of the intersection set,
I = M ∩ N , in terms of the local homology of the union, M ∪ N . Notice
that our assumptions on the intersection set imply that the only non-trivial
local homology group of I at x ∈ I is Hr(I, I \ {x}), where r is the dimension
of the corresponding s-subvariety. Moreover, this homology group will always
be of the form Z

k, where k ≥ 0 corresponds to the number of homeomorphs
of the r-dimensional ball meeting at x. Therefore, the local homology of the
intersection set of two submanifolds of R

n is completely described by one in-
teger. Looking back at the statement of Theorem 6.6, it becomes clear that
such an integer can be retrieved from the homology of the union, M ∪ N .
Indeed, suppose that all the homology groups, Hj(M ∪ N, (M ∪ N) \ {x}),
0 ≤ j ≤ n, are known. Theorem 6.6 implies that this collection contains
no more than three nonzero groups. Having exactly three nontrivial homol-
ogy groups, Hlj (M ∪ N, (M ∪ N) \ {x}), j = 1, 2, 3, l1 < l2 < l3, corre-
sponds to the case 2(i) of the theorem, from which it follows that Hl1−1(I, I \
{x}) = Z

r1 , where r1 = rankHl1(M ∪ N, (M ∪ N) \ {x}). Similarly, if there
are only two nonzero homology groups, Hl1(M ∪ N, (M ∪ N) \ {x}) and
Hl2(M∪N, (M∪N)\{x}), l1 < l2, and r2 = rankHl2(M∪N, (M∪N)\{x}) = 2,
then the case 2(iii) of the theorem implies that again Hl1−1(I, I \ {x}) = Z

r1 .
If, on the other hand, r2 = 1, then Hl1−1(I, I \ {x}) = Z

r1−1, provided that
I 6= {x}. Applying similar reasoning to the rest of the cases, we obtain the
following.

Corollary 6.12. Let M and N be two submanifolds of R
n without boundaries,

and let I = M ∩N be an s-subvariety. Suppose also that n > dimM ≥ dimN >
dimI > 0. If x ∈ M ∪ N and Hj = Hj(M ∪ N, (M ∪ N) \ {x}), 0 < j < n,
then one of the following holds.

(1) Hli 6= 0, i = 1, 2, 3, l1 < l2 < l3, and Hj = 0, j 6= l1, l2, l3. In this case
x ∈ I, dimI = l1 − 1, dimN = l2, dimM = l3, and Hl1−1(I, I \ {x}) =
Z

r1 , where r1 = rankHl1 .
(2) Hli 6= 0, i = 1, 2, l1 < l2, and Hj = 0, j 6= l1, l2. Then there are three

possibilities.
(i) Hl1 = Z and Hl2 = Z. In this case x /∈ I, dimN = l1, dimM = l2.
(ii) Hl2 = Z

2. In this case x ∈ I, dimI = l1 − 1, dimN = dimM = l2,
and Hl1−1(I, I \ {x}) = Z

r1 , where r1 = rankHl1 .
(iii) Hl1 6= Z and Hl2 = Z. In this case x ∈ I, dimI = l1 − 1,

dimN = l1, dimM = l2, and Hl1−1(I, I \ {x}) = Z
r1−1, where

r1 = rankHl1 .
(3) Hl 6= 0 for some 0 < l < n, and Hj = 0, j 6= l. In this case x ∈ I,

dimI = l − 1, dimN = dimM = l, and Hl−1(I, I \ {x}) = Z
r, where

r = rankHl.

6.4. Manifolds with boundary. Theorem 6.6 can be easily generalized to the
case of topological submanifolds with boundaries. The proof remains virtually
unchanged: we just have to consider cases when a point of interest belongs to
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the boundary of each of the submanifolds. If x ∈ ∂M ∩N or x ∈M ∩∂N , then
the set A or, respectively, B used in the proof is contractible. Therefore, the
corresponding elements in the Mayer-Vietoris sequence are zeros. Following
the proof, we can conclude that if x ∈ ∂M ∩ (N \ ∂N) or x ∈ (M \ ∂M)∩ ∂N ,
then the local homology will be as in the items (i) − (iv) of Theorem 6.6 with
Z factored out at the corresponding places. If x ∈ ∂M ∩ ∂N , then we should
factor out Z

2. Thus, we obtain the following theorem.

Theorem 6.13. Let M and N be two topological submanifolds of R
n with

boundaries, and let I = M ∩N be an s-subvariety (with a boundary). Denote
by p, q and r dimensions of M,N and I, respectively, and let n > p ≥ q > 0.
If x ∈ I ∩ (∂M ∪ ∂N) the following hold:

(i) if p > q > r + 1, then

Hk(M ∪N,M ∪N \ {x}) =






Z, if k = p, x /∈ ∂M or
k = q, x /∈ ∂N

Hk−1(I, I \ {x}), if k = r + 1
0, otherwise

(ii) if p > q = r + 1, then

Hk(M ∪N,M ∪N \ {x}) =






Z, if k = p, x /∈ ∂M
Z ⊕Hk−1(I, I \ {x}), if k = q = r + 1,

x /∈ ∂N
Hk−1(I, I \ {x}), if k = q = r + 1,

x ∈ ∂N
0, otherwise

(iii) if p = q > r + 1, then

Hk(M∪N,M∪N\{x}) =





Z, if k = p = q, x /∈ ∂M ∩ ∂N
Hk−1(I, I \ {x}), if k = r + 1
0, otherwise

(iv) if p = q = r + 1, then

Hk(M∪N,M∪N\{x}) =





Z ⊕Hk−1(I, I \ {x}), if k = p = q = r + 1,
x /∈ ∂M ∩ ∂N

Hk−1(I, I \ {x}), if k = p = q = r + 1,
x ∈ ∂M ∩ ∂N

0, otherwise

The corresponding generalization of Corollary 6.8 is:

Corollary 6.14. Let M and N be Cr, r ≥ 1, compact submanifolds of R
n with

boundaries of dimensions p < n and q < n, respectively, and suppose M ⋔ N .
Then if x ∈ ∂M∩(N \∂N) or x ∈ (M \∂M)∩∂N , the local (relative) homology
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satisfies

Hk(M ∪N, (M ∪N) \ {x}) =





Z
2, if k = p, p = q = n− 1

Z, if k = p, p = q < n− 1
Z, if k = p+ q − n; p 6= q
Z, if k = p, x ∈ (M \ ∂M) ∩ ∂N ; p 6= q
Z, if k = q, x ∈ ∂M ∩ (N \ ∂N); p 6= q
0, otherwise

,

and if x ∈ ∂M ∩ ∂N , then

Hk(M ∪N, (M ∪N) \ {x}) =





Z, if k = p, p = q = n− 1
Z, if k = p+ q − n; p 6= q
0, otherwise

These results show that the local homology allows us to distinguish not only
intersection points from non-intersection points, but also boundary points from
non-boundary points in the intersection set of two transverse, codimension-1
submanifolds of R

n.

6.5. Applications of intersection techniques. Throughout the years, mo-
dels in CAGD have evolved from simple surfaces to complicated, nonmanifold,
higher-dimensional spaces. The way these models are represented can be quite
different, but here we will focus on models that are simplicial complexes (cf.
[115], [116], and [133]). Such complexes can be very general and may easily
model rather intricate topological spaces, which makes them highly attractive
to those who deal with nonmanifolds. Nonmanifoldness itself can assume vari-
ous guises, but the type that most frequently occurs in geometric models results
from the intersection of several (usually two) manifolds. The intersections can
be both transverse and tangential, and their number can be quite large. When
one performs some operations on such nonmanifold models (e.g. smoothing),
topological artifacts may appear in a neighborhood of a nonmanifold point.
Also, some topological defects at (or around) intersections in a model are often
produced during its construction. Detecting such flaws is problematical, since
some of them may not be visible to a human eye. There are several procedures
for reducing such deficiencies in a geometric model, but most of them are res-
tricted to two- or three-dimensional cases. Results obtained in the previous
subsection allow us to design a general framework for analyzing and improving
geometric nonmanifold models in any finite-dimensional space. The basic idea
is rather naive – simply compute the local homology groups at a point of in-
terest. Such a point is usually a nonmanifold point, and the local homology is
usually known to a user, since a designer knows the number of manifolds and
in what way they should intersect at each point of the model. Therefore, as
follows from Theorem 6.6 and its corollaries, comparing the computed local ho-
mology with the desired one should determine whether or not there is a defect
in the model at this point.

Besides detecting flaws, the foregoing results can often be used to determine
whether a given model is a manifold. Indeed, the local homology at a manifold
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point has only one nontrivial homology group, which is homeomorphic to Z. In
most models, the nontrivial homology groups at a nonmanifold point are differ-
ent from Z. In fact, many models turn out to be codimension-1, s-subvarieties.
To detect nonmanifoldness in such a model, we can browse through all ver-
tices of the model and check if the local homology group of the corresponding
dimension is Z. This may not be very efficient, and we explain later.

We now provide more details regarding actual implementation of the above
ideas. Obviously, any algorithm that does such computations depends in a fun-
damental way on the data structure used to describe the model. There are sev-
eral nonmanifold structures, e.g. Radial Edge Data Structure (cf. [155]), Tri-
Cyclic Data Structure (cf. [71]), NeMeSi Data Structure (cf. [131]). Though
there are some significant differences among them, they all have an important
common feature - they provide means for local analysis of the topology of the
model. For example, it is always possible to compute the link of a point quite
efficiently. This allows us to describe the basic steps of the intersection de-
tection algorithm without getting involved in tedious details. Suppose that a
model is represented by a simplicial complex S (described by one of the data
structures). Then the primary steps are the following:

Step 1. Choose (using some method) a vertex v ∈ S and compute its link L(v).
Step 2. Compute the homology groups of L(v). By excision, these are the local

homology groups of S at v.
Step 3. Using Theorem 6.6, try to determine what kind of intersection, if any,

occurs at the point v. If needed, go to Step 1.

These steps are very general, and many intermediate steps that were skipped
require much work. For example, computation of homology groups is a impor-
tant question that has been addressed in quite a few papers and books related
to CT (cf [18], [40], [42], [55], [85], [86], [117], [157], [160], and [161]). Fortu-
nately, the link of a vertex in a simplicial complex does not usually contain a
large number of simplices. Therefore, even the most basic algorithms, say the
reduction algorithm, can be used without any negative repercussions. Also, it
is worth noting that Theorem 6.6 may not provide an answer in some exotic
cases. But, as we have already mentioned, this does not usually happen in prac-
tice. Another important question is how to choose a point in Step 1. Though
existing data structures provide excellent means for analyzing local topological
structure of a simplicial complex, they do not incorporate any information that
would facilitate global analysis. As a result, it is impossible, for example, to
figure out a priori in what direction it is best to move if we want to determine
whether there is a nonmanifold point in the model. Therefore, an exhaustive
search has to be performed in such cases, and this is highly inefficient.

We also should point out that computing local homology groups (as indi-
cated in Step 2) may be an overkill in some cases. In fact, if one looks for a
transverse intersection in a simplicial complex that represents a codimension-1,
s-subvariety, the following lemma [26] is much easier to apply than the homo-
logical criteria developed above.



Computational Differential Topology 81

Lemma 6.15. Let M and N be two codimension-1 submanifolds of R
n without

boundaries, and suppose T is a triangulation of M ∪ N . Then each (n − 2)-
simplex of T that represents a part of the transverse intersection of M and N
is a face of exactly four (n− 1)-simplices.

Thus, identifying transverse intersections is much less computationally ex-
pensive than locating nontransverse intersections, since adjacency information
is readily available in any nonmanifold data structure. It is also possible to
obtain similar results for tangential intersections; but only on a case-by-case
basis that would not provide the kind of uniform classification that is available
through the homology approach.

7. Some Applications

The application areas that we shall briefly describe in this section are: (1)
virtual sculpting and surgery; (2) modeling of heterogeneous biomaterials such
as bones; and (3) high-speed, topologically consistent, scientific visualization
for high performance computer architectures. The descriptions that follow shall
be from the perspective of CDT.

7.1. Virtual sculpting and surgery. The main idea for both virtual sculpt-
ing and surgery is to perform the process, in as realistic an environment as
possible, without actually crafting anything or performing any invasive proce-
dures. Both of these virtual activities have a great deal in common; a fairly
simple geometric object (either a sculpting tool of some sort or possibly a hu-
man hand, or a particular surgical instrument in the case of surgery) is moved
(in a virtual reality environment) by the user so that it interacts with an-
other geometric object, which is usually a block of modeling clay in the case of
sculpting, or some part of the human anatomy in the case of surgery. Thus the
basic elements in both processes involve the swept volume of a geometric object
and the Boolean subtraction of this swept volume from another object in or-
der to obtain the end result. As virtual reality applications require essentially
real-time responses for the system, algorithms for performing the geometric
operations in these process must be extremely fast (see e.g. [26], [48], and
[148]).

One nice feature of the swept volumes generated for these applications is that
they are automatically sweep-like projective varieties. Working with M.C. Leu
and others, we are now in the process of using the singularity based methods
described in Section 5 to create topologically consistent algorithms for creating
representations of the objects and modeling the operations involved in virtual
sculpting and surgery in ways that are an order of magnitude more efficient
than our previous algorithms, such as those in [26], [98], and [101]. In fact,
we are now a testing such an algorithm As for objects in R

3, which is stable,
TOP-decidable, and has a computational cost of CC (As) = O

(
n2

)
, where n

represents both the number of triangles in a triangulation of the initial object
and 1/(time step) in the sweeping process. Moreover, it appears that by more
effective use of available data structures, we may be able to reduce this to
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CC (As) = O (n logn). Either of these (low) costs is more than sufficient
for rendering complicated objects and intricate sweeping motions in real-time
within the virtual reality environment that we have created to test various
computing strategies.

7.2. Modeling heterogeneous materials. There are many important a-
pplications that require the modeling, analysis and graphical representation
of heterogeneous materials; especially those in biomedical engineering that call
for computer assisted methods for tissue engineering (see e.g. [26], [144], and
[145]). In joint research with W. Regli and W. Sun, reported on briefly in [26],
we have been studying the viability of employing methods of computational
differential topology - primarily in the guise of swept volume based techniques.
To further explain the applicability of the some of the results from this paper to
tissue analysis and modeling, we shall merely describe a few new developments
in this direction.

If one considers the complex canal-like structure of a bone, it appears that
the geometry can be very effectively modeled using sweeps of the openings in
the structure of a typical cross-section at a particular z value along the main
axis (z-axis) of the bone (cf. [26]). Thus, the requisite structure can be obtained
from flows of a system of differential equations of the form dx/dz = X(x, z).
One new wrinkle that we have introduced in our recent modeling attempts, is
the use of systems that generate chaotic flow regimes. Such systems have the
nice feature of creating bone models that have a random generic structure that
may be especially well suited to the fabrication of bone tissue replacements
that are acceptable regardless of the specific characteristics of an individual
bone.

When it comes to using our new dynamical system models for generating
bone structure, one has to be able to deal with the branching of canals that is
a standard fixture in bone tissue configurations. One can view the correspond-
ing topological bifurcations as being analogs of handlebody decompositions of
manifolds, and the flows along the canal boundaries as simulations of gradient
flows associated to Morse functions that determine handlebody decompositions
and their associated Reeb graphs. As mentioned in Section 3, we have been
working on effectively computable, sweep based methods for describing han-
dlebody and Reeb graph structure for manifolds - and generalizations of these
approaches for varieties. It is our intention to employ these methods in an
effort to create efficient methods for accurately modeling bone tissue structure
in a way that satisfies certain prescribed topological constraints. As one can
see, such problems and applications lie squarely in the realm of CDT.

7.3. Topologically consistent scientific visualizations. We have recently
embarked on an interdisciplinary research project with R. Kopperman and T.J.
Peters aimed at creating and analyzing high-speed scientific visualizations via
algorithmic means that guarantee that the evolving scenes have the correct iso-
morphism type in at least one of the categories discussed above. An important
goal of this interdisciplinary research effort is to devise methods and create
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software for use in the visualization of complex, evolving configurations of the
type encountered in life science applications such as those connected with the
high performance computer architectures currently being used by IBM Deep
Computing scientists. As indicated in such investigations as [128] and [132],
visualization is an area in which although much progress has been made, there
are many nagging intrinsic problems that require novel approaches for their
resolution.

Our research in this area has already produced some minor revelations. One
of which is the potential use of results in T0-topology (such as in [92] and
[93]) in characterizing preservation of isomorphism type, and another is how
well suited visualization is to modeling using sweep techniques, which give rise
to geometric constructs that suggest the application of cobordism theory as
presented in [109] and [151]. To illustrate how this works, we have developed
the following framework for modeling the type of dynamic processes that we
want to visualize. We take our ambient space to be R

n, observing that n = 2 or
3 in most applications, and let Ω be an open n-cube in which all the action in
the process unfolds. Although we take the time period to be the unit interval,
this incurs no loss in generality, through appropriate scaling.

Definition 7.1. Let M1, ...,MN be smooth submanifolds, and let Φk : Ω ×
[0, 1] → Ω, 1 ≤ k ≤ N , be diffeotopies. We call the pair {Φ,M} comprised of
the map

Φ := Φ1 × Φ2 × · · · × ΦN : ΩN × [0, 1] → ΩN ,

and the collection of submanifolds M := {M1, ...,MN}(= M1 × · · · ×MN) in
Ω, a dynamic sweep process, or more precisely, the dynamic Φ-sweep of the
(initial) ensemble M , and say that

Ft = Ft (Φ,M) := φt (M) := (ϕ1,t (M1) , ..., ϕN,t (MN))

is the t-frame of the sweep process, where φt := Φ(·, t) and ϕk,t := Φk(·, t),
1 ≤ k ≤ N . The submanifolds ϕ1,t(M1), ..., ϕN,t(MN ) are the sweeping ele-
ments in the dynamic sweep process, Φ is the sweep, and its coordinate func-
tions Φk are the element sweeps.

A visualization of a Φ-sweep is a computer generated graphical representation
of the image (changing with time) of ϕ1,t (M1)∪ · · · ∪ϕN,t (MN ) on a specified
disjoint hypersurface (possibly changing with time) generated by the projection
from a vantage point v(t) ∈ R

n \ (ϕ1,t (M1) ∪ · · · ∪ ϕN,t (MN)).

The appellation sweep in the above is indeed apt: for example, in swept
volume theory, ∪{φt (M) : 0 ≤ t ≤ 1} is just the (deformed) swept volume
of M generated by the sweep map Φ. Accordingly we can build upon the
rich algebraic structure, the extensive body of theory (including techniques for
analyzing topological consistency), and the extremely efficient algorithms for
analysis and representation to devise innovative solutions to the fundamental
problems envisaged in this project. Observe also that the overall sweep be-
tween the initial and terminal scene is essentially a corbordism between these
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two configurations. This framework is well worth studying as a means of de-
scribing the dynamic processes to be visualized, and its very nature suggests
that additional concepts from differential topology might prove to be quite
useful in this regard.

8. Concluding Remarks

We have made a concerted effort in this paper to help lay the foundations for
the differentiable aspects of CT. In the process, we have established a plausible
category to work in comprised of subvarieties embedded in Euclidean spaces
having a Whitney regular stratification, and morphism of these subvarieties
that respect the embedding in the given ambient space and the stratified struc-
ture.

Our main focus was on effective procedures for rendering approximate rep-
resentations of the objects that incorporate subalgorithms for determining the
isomorphism type of the approximations of a given geometric object. This
naturally led to the identification of fundamental problems related to these
algorithms. A new result on the existence of tubular-like neighborhoods for
subvarieties of interest enabled us to reduce the classification in the funda-
mental problems to the topological category, along the lines of what we have
dubbed the self-intersection precedes knotting principle. In aid of obtaining al-
gorithmic methods for determining the isomorphism types of the objects in the
CDT category, we extended Munkres’ results on differentiable triangulations
to these objects. In the course of our exposition, we provided an overview of
the state-of-the-art of the classification of geometric objects - including recent
developments concerning the Poincaré Conjecture - from the perspective of
effective computability. We also highlighted some of the possibilities and lim-
itations of the algorithmic approach to the classification of isomorphism type,
made several significant conjectures in this regards, and identified a number
of important open problems. Along the way we identified a class of subvari-
eties - called sweep-like projective varieties - that are particularly well suited
to recursive characterization of isomorphism type in virtue of the fact that this
question is, in effect, lifted to a simpler object; namely a submanifold. These
special subvarieties were also shown to play a featured role in the topological
analysis of subvarieties using singularity/classification theory and obstruction
theory.

Among the contributions of this paper are a brief development of an effec-
tively computable singularity theory based method for analyzing and repre-
senting certain subvarieties; for example, sweep-like projective varieties. We
observed that piecewise linear approximation makes it possible to implement
singularity theory in an algorithmic fashion, and we briefly described how such
algorithms can be devised. Another relatively new idea - at least in terms
of possibly serving as a general approach to the representation and isomor-
phism identification problem - was very succinctly outlined in our section on
the elements of an effectively computable obstruction theory. Triangulation of
the objects under consideration and associated piecewise linear approximations
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were also key factors in the development of a simplified, algorithmic obstruction
theory.

Even in our brief sketches of effective procedures for applying singularity
theory and obstruction theory, the importance of intersections - especially self-
intersections in the subvarieties - is manifest. The problems of intersection
detection and intersection analysis were studied using a new a analytic method
and some innovative homology based techniques. We demonstrated the effec-
tiveness of our analytic method for intersection detection, and showed how
our homological approach to characterizing the topology of intersections ex-
tended some earlier results that we obtained [26]. In particular, we were able
to extend our earlier homology based results to nontransverse intersections
and objects that are not manifolds. Moreover, we described some of the ways
in which these intersection results can be implemented, in combination with
several well-known data structures, for applications in CAGD.

The main content of the paper concluded with an indication of some of the
many applications of the results that were obtained. We chose to illustrate
the utility of the ideas and techniques developed with some applications in the
areas of virtual sculpting/surgery, the modeling of heterogeneous biomaterials
such as bones, and the verification and maintenance of topological consistency
during scientific visualization, with particular emphasis upon scalability for
high performance computer architectures.

Many interesting problems have been discussed, and several potentially fruit-
ful research directions in CT have been outlined in this paper. We are planning
to try to solve some of the open problems, resolve a few of the conjectures, and
follow up on one or more of the research leads presented here in the near future.
Our hope is that we have persuaded a few readers to do the same.
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jectures - an application of the Hamilton-Perelman Theory of the Ricci flow, Asian J.
Math. 10 (2006), 165–492.

[30] E. Chazal and D. Cohen-Steiner, A condition for isotopic approximation, Proc. ACM.
Symp. Solid Modeling and Applications, 2004.

[31] B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly exponential strat-
ification scheme for real semi-algebraic varieties and its application, Proc. 16th Int.
Colloq. Automata, Languages and Programming, Lect. Notes in Comp. Sci., No. 372,
Springer-Verlag, Berlin, 1989, pp. 179–192.

[32] H. L. Cheng, H. Edelsbrunner and P. Fu, Shape space from deformation, Proc. 6th
Pacific Conf. Comput. Graphics Appl., Singapore, 1998, pp. 104–113.

[33] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci, Loops
in Reeb graphs of 2-manifolds, Discrete Comput. Geom. 32 (2004), 231–244.

[34] N. Cornish and J. Weeks, Measuring the shape of the universe, Not. AMS 45 (1998),
1463–1471.

[35] F. Crimins and D. Souvaine, Constructing differentiable homeomorphisms between iso-
morphic triangulations, The 14th Canadian Conference of Computational Geometry,
Lethbridge, Alberta, Canada, 2002, pp.170 – 173.

[36] T. Culver, J. Keyser and D. Manocha, Exact computation of a medial axis of a poly-
hedron, CAGD 21 (1) (2004), 65–98.

[37] J. Damon, On the smoothness and geometry of boundaries associated to skeletal struc-
tures, I: sufficient conditions for smoothness, Ann. Inst. Fourier 53 (2003), 1941–1985.

[38] J. Damon, Determining the geometry of boundaries of objects from medial data, Int.
J. Comp. Vision 63 (2005), 45–64.

[39] F. Dachille IX, H. Qin and A. Kaufman, A novel haptics-based interface and sculpting
system for physics based geometric design, CAD 33 (2001), 403–420.

[40] C. Delfinado and H. Edelsbrunner, An incremental algorithm for Betti numbers of
simplicial complexes on the 3-sphere, CAGD 12 (1995), 771–784.

[41] P. Dmitrov, J. Damon and K. Siddiqi, Flow invariants for shape, CVPR (2003).
[42] T. Dey and S. Guha, Computing homology groups of simplicial complexes in R

3, J.
ACM 45 (1998), 266–287.

[43] T. Dey, H. Edelsbrunner and S. Guha, Computational topology, in Advances in Discrete
and Computational Geometry, Contemporary Mathematics 223, American Mathemat-
ical Society (1999), 109–143.

[44] T. Dey, H. Edelsbrunner, S. Guha and D. Nekhayev, Topology preserving edge contrac-
tion, Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), 23–45.



88 Denis Blackmore and Yuriy Mileyko

[45] T. Dey and S. Goswami, Tight Cocone: a water-tight surface reconstructor, Proc.
Eighth ACM Sympos. on Solid Modeling and Applications (2003), 127–134.

[46] T. Dey, H. Woo and W. Zhao, Approximate medial axis for CAD models, Proc. Eighth
ACM Symposium on Solid Modeling and Applications (2003), 280–285.

[47] S. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press,
Oxford, England, 1990.

[48] J. Dorman and A. Rockwood, Surface design using hand motion with smoothing, CAD
33 (2001), 389–402.

[49] A. Edalat and A. Lieutier, Foundations of a computable solid modeling, Proc. Fifth
ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI (1999), 278–284.

[50] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University
Press, Cambridge, England, 2001.

[51] H. Edelsbrunner, J. Harer, A. Mascarenhas and V. Pascucci, Time-varying Reeb graphs
for continuous space-time data, Proc. 20th Ann. Sympos. Comput. Geom. (2004), 366–
372.

[52] H. Edelsbrunner and J. Harer, Jacobi sets of multiple Morse functions, in Foundations
of Computational Mathematics, F. Cucker, R. DeVore, P. Olver and E. Sueli (eds.),
Cambridge University Press, Cambridge, England, (2002), 37–57.

[53] H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci, Morse-Smale complexes

for piecewise linear 3-manifolds, Proc. 19th Ann. Sympos. Comput. Geom. (2003),
361–370.

[54] H. Edelsbrunner, J. Harer and A. Zomorodian, Hierarchical Morse-Smale complexes
for piecewise linear 2-manifolds, Discrete Comput. Geom. 30 (2003), 87–107.

[55] H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simpli-
fication, Discrete Comput. Geom. 28 (2002), 511–533.

[56] H. Edelsbrunner and N. Shah, N.R., Triangulating topological spaces, Intl. J. of Com-
putational Geometry and Applications 7 (4) (1997), 365–378.

[57] H. Edelsbrunner and A. Zomorodian, Computing linking numbers of a filtration, in
Proc. 1st Intl. Workshop Alg. BioInformatics (2001), 112–127.

[58] G. Farin, Curves and Surfaces for Computer Aided Design: A Practical Guide, Aca-
demic, Boston, 1988.

[59] R. Farouki, Closing the gap between CAD model and downstream application, SIAM
News 32 (5), June 1999.

[60] R. Farouki, C-Y. Han, J. Hass and T. Sederberg, Topologically consistent trimmed
surface approximations based on triangular patches, CAGD 21 (2004), 459–478.

[61] R. Forman, Morse theory for cell complexes, Adv. Math. (1998), 90–145.
[62] M. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982),

357–453.
[63] M. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton University Press,

Princeton, NJ, 1990.
[64] A. Gain and A. Dodgson, Preventing self-intersection under free-form deformation,

IEEE Trans. on Visualization and Computer Graphics 7 (4) (2001), 289 – 298.
[65] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, Continu-

ous Lattices and Domains, Encyclopedia of Mathematics, Vol.9, Cambridge University
Press, Cambridge, 2003.

[66] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-
Verlag, New York, 1973.

[67] M. Gopi, On sampling and reconstructing surfaces with boundaries, Proc. Canadian
Conf. on Computational Geometry, Lethbridge, Canada (2002), 49–53.

[68] T. Grandine, T. A. and F. W. Klein, IV, A new approach to the surface intersection
problem, CAGD 14 (1997), 111–134.

[69] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields, Springer-Verlag, New York, 1983.



Computational Differential Topology 89

[70] L. Guibas, Computational geometry and visualization: problems at the interface, in
Scientific Visualization of Physical Phenomena, N. Patrakalikas (ed.), Springer-Verlag,
New York (1991), 45–59.

[71] E. Gursoz, Y. Choi and F. Prinz, Vertex-based representation of non-manifold
boudaries, in Geometric Modeling for Product Engineering, J. Turner, M. Wozny, and
K. Preiss (eds.), Elsevier Science, North-Holland (1990), 107–130.

[72] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
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