
@ Applied General Topology

c© Universidad Politécnica de Valencia

Volume 8, No. 1, 2007

pp. 93-149

Boundaries in Digital Spaces

Gabor T. Herman
∗

Abstract. Intuitively, a boundary in an N-dimensional digital
space is a connected component of the (N − 1)-dimensional surface of
a connected object. In this paper we make these concepts precise,
and show that the boundaries so specified have properties that are
intuitively desirable. We provide some efficient algorithms for tracking
such boundaries. We illustrate that the algorithms can be used, in
particular, for computer graphic display of internal structures (such as
the skull and the spine) in the human body based on the output of
medical imaging devices (such as CT scanners). In the process some
interesting mathematical results are proven regarding “digital Jordan
boundaries,” such as a specification of a local condition that guarantees
the global condition of “Jordanness.”

2000 AMS Classification: 54A99, 52C99, 68R99, 68W05

Keywords: Boundaries, surfaces, tracking, algorithms, digital topology, ge-
ometry, digital space.

1. The boundary tracking problem

1.1. A sample application of boundary tracking.

Many imaging devices will produce estimated values of a physical quantity at
certain points (referred to as grid points) in three-dimensional space. For exam-
ple, a CT (computerized tomography) scanner estimates the X-ray attenuation
coefficient inside a human body at points of a three-dimensional rectangular
grid. When displaying the results of such an estimation, we usually use a se-
quence of two-dimensional images, such as that shown in Figure 1, in which
bone appears light, softer tissues appear grey, and air appears dark.

∗The research of the author is currently supported by NIH grant HL070472 and NSF
grant DMS0306215.

94 Gabor T. Herman

Figure 1. A slice of a CT scan of the head of a trauma victim.

In Figure 1 a cursor is placed at the right edge of a large piece of bone
in the upper part of the image. Since this CT scan was taken of a trauma
victim, an important question to ask is: are all other bones which are normally
“connected” to this main piece of bone still connected for this patient? For
example, the biggish piece of bone just to the right and below the cursor (it is
the mandible) is not connected to any other bone in this slice, but it should
be connected to the rest of the skull (at our resolution) somewhere in the
whole three-dimensional array. By this we mean that somewhere in the three-
dimensional space the mandible should be so close to the rest of the skull
that, at the resolution of our imaging process, the two would be judged to
be “connected.” Making precise the sense in which the word “connected” is
used here and the analysis of the resulting connectivity properties in three-
dimensional images is the main topic of the material that follows.

We turn aside for a moment to introduce some notation. We use R to denote
the set of real numbers and RN to denote the set of N -dimensional (row)
vectors, all of whose components are real numbers. If v ∈ RN , vn denotes the
nth component of v, for 1 ≤ n ≤ N . The norm of a vector v is denoted by ‖v‖.
We use the algebraic notion of a vector in RN and the geometric notion of a
point in an N -dimensional Euclidean space quite interchangeably, and actually
refer to RN as the N -dimensional (Euclidean) space. We use Z to denote the
set of all integers. For any positive real number δ and for any positive integer

Boundaries in Digital Spaces 95

N , we define

(1.1) δZN = {(δc1, . . . , δcN) | cn ∈ Z, for 1 ≤ n ≤ N} .

Specifically, we use ZN to abbreviate 1ZN .
Let G be any set of points (a grid) in RN . The Voronoi neighborhood in G

of any element g of G is defined as

(1.2) NG (g) =
{

v ∈ RN | for all h ∈ G, ‖v − g‖ ≤ ‖v − h‖
}

.

In other words, the Voronoi neighborhood of g consists of all those vectors
which are not nearer to any other point of G than they are to g. For example,
the Voronoi neighborhood of (c1, c2) in Z2 is

(1.3)

{

(v1, v2) ∈ R2 | max (|v1 − c1| , |v2 − c2|) ≤
1

2

}

.

This is a closed square with side-length 1 centered at the point (c1, c2).
When perceived as a set of points in R2, δZ2 is referred to as a square grid.
The Voronoi neighborhoods in a grid in R2 are referred to as pixels.

We now return to the way in which the two-dimensional image of Figure
1 was produced. Let us assume that the X-ray attenuation coefficients have
been estimated at grid points with integer coordinates (c1, c2, c3), 1 ≤ c1 ≤ I,
1 ≤ c2 ≤ J, 1 ≤ c3 ≤ K and that Figure 1 is the kth of these K slices. The
region over which the images are defined is the union of the pixels associated
with those (c1, c2) ∈ Z2 for which 1 ≤ c1 ≤ I and 1 ≤ c2 ≤ J . The grey value
assigned to the pixel associated with one of these (c1, c2)s is proportional to
the estimated X-ray attenuation coefficient at (c1, c2, k).

The overall aim of the type of work on which we are reporting is the display
and analysis of selected objects based on the estimated values of a physical
quantity at grid points in three- (and sometimes higher) dimensional space.
Examples for bones in the head are shown in Figure 2. On the top we show a
computer graphic display of the boundary of the connected piece of bone which
is indicated by the cursor in Figure 1. (The cursor location in the top image in
Figure 2 corresponds to the cursor location in Figure 1.) We now see that the
mandible is disconnected from this bone in the whole three-dimensional data
set. The boundary of the mandible can be extracted separately, and then the
two boundaries can be displayed together in their correct relative locations, as
is shown in the bottom image of Figure 2.

1.2. A methodology for extracting object boundaries.

We now discuss a particular methodology for extracting boundaries of objects
based on values assigned to points of the grid Z3 in R3. For δ > 0, δZ3 is re-
ferred to as a cubic grid. The Voronoi neighborhoods associated with a grid in
R3 are referred to as voxels. The voxel associated with the element (c1, c2, c3)
of Z3 is the closed unit cube

{

v ∈ R3 | max (|v1 − c1| , |v2 − c2| , |v3 − c3|) ≤
1
2

}

.

The tessellation of R3 into voxels of a cubic grid is sometimes referred to as a
cuberille. In Figure 3, we illustrate a grid point g of Z3 together with all other

96 Gabor T. Herman

Figure 2. Computer graphic displays of detected boundaries
of bones in the head, based on the data set which contains the
slice shown in Figure 1.

grid points which lie in the 2 × 2 × 2 cube whose center is g, as well as the
Voronoi neighborhood of g.

Now suppose that we have some methodology to determine which grid points
belong to what kind of material. For example, in CT bone attenuates X-rays
more than any other type of tissue in the human body and so we may say that if
the value assigned to a grid point is above a certain value, then that grid point
is in bone. So, as an approximation, the part of space that is occupied by bone
may be considered to be the union of the voxels associated with those pixels
for which the estimated X-ray attenuation coefficient is above the threshold for
bone. This collection of voxels may not necessarily form a connected subset
of three-dimensional space: some pieces of bone may be disconnected from the
rest and some voxels may be included because noise in the estimation process

Boundaries in Digital Spaces 97

Figure 3. On the left we show a point g of the cubic grid Z3

together with the other 26 grid points which lie in the 2×2×2
cube whose center is g. On the right we show (using heavy
lines) the Voronoi neighborhood of g (a voxel).

caused us to identify a grid point as being in bone, when in fact it is not. Let
us say that the “object” whose boundary we wish to display is a component of
the set of points occupied by the “bone” voxels.

Even this specification is not precise enough to describe the intuitive notion
of “a boundary” of an object. This is because an object of the kind we described
in the previous paragraph may have cavities inside it (just look at Figure 1; the
inside of bones contains lots of less X-ray attenuating tissue and may well be
identified as a result of thresholding as “not bone”) and so it may have multiple
boundaries (one exterior one and possibly many interior ones). Let us say that
our task is to identify exactly one of these boundaries.

How do we specify which one? One way is to point at a boundary face, that
is at a face which separates a bone voxel from a not-bone voxel, and say that
we wish to display that boundary of the object which contains that boundary
face. (At this point, it is not even clear that this specification is legitimate. Is
the “boundary containing a boundary face” a well defined concept? We will
show that it is; we will set up an environment in which for any boundary face
there will be one and only one boundary containing it.)

An intuitively useful picture is the following. We consider the cuberille, the
tessellation of three-dimensional space into cubic voxels. A finite number of
these voxels are occupied by sugar cubes of just the right size. We point at an
uncovered face of one of these sugar cubes (i.e., a face such that the voxel on the
other side of it is not occupied by a sugar cube) and ask that there be delivered
to us the boundary surface which contains that face. The problem is to design
an algorithm which is guaranteed to do this for all possible arrangements of
the sugar cubes.

98 Gabor T. Herman

At this point a topologist may reasonably ask: Are we not reinventing the
wheel here? After all, the boundary of a set is a classical topological concept.
The problem is that there is no topology (in the classical sense) for the cuberille
(and, indeed, for the other digital spaces to be discussed below) that would
result in the same sets being “connected” according to the topological definition
as those that would be considered connected in the digital environment. This
somewhat surprising (and disturbing) fact is stated precisely and proved in
Section 4.3 of [13]. It is fascinating that, in spite of this, we are able to do
many things similar to topics that are normally considered in classical topology:
the Jordan curve theorem, simple connectedness, etc. However, we are going
to do these things not as a consequence of classical topology, but rather as a
self-standing theory for digital spaces.

The approach presented here is one of a number of different alternatives that
can be taken to insert topological ideas into the digital environment. Examples
of alternatives can be found in [4], [16], [17], [19], [20] and in their references.

From an even more general point of view, this paper concentrates on one
family of methods for producing computer graphic displays of three-dimensional
objects, as illustrated in Figure 2. Indeed there are many alternatives, for three
surveys see [9], [10] and Chapter 1 of [25]. Broadly speaking, the approaches
taken fall into two categories: the so-called “volumetric” and “boundary-based”
approaches. What is presented here is an example of the latter, but it is by
no means the only one. As discussed above, our approach produces a single
boundary of a single component, specified by a user-supplied initial face in
the boundary. As opposed to this, the so-called “marching cubes algorithm”
[22] automatically detects all surfaces of all components. It is not clear that
this really is on advantage: after all, in practical visualization only a few of
these surfaces should be displayed (as in Figure 2). Besides, the mathematical
theorems proven below regarding the boundaries produced by our algorithms
having well-defined interiors and exteriors allow us to detect automatically
all boundaries by repeated applications of the algorithm for the tracking of a
single boundary. In fact, as discussed in [21], the set of all surfaces produced
by the marching cubes algorithm can also be produced by creating “continuous
analogs” of the boundaries produced by the algorithms discussed below, and
the total process of tracking all the boundaries (in our sense) and creating
their continuous analogs requires less computer time than what is needed by
the marching cubes algorithm, provided only that the number of grid points
needed for the objects of interest (i.e., I × J × K) is large; and this is even
more so if the values originally estimated for these grid points are noisy (i.e.,
inaccurate).

1.3. Flies in Flatland.

Before attacking the three-dimensional problem, we consider its simpler two-
dimensional analog. Following Abbott [1], we refer to the two-dimensional
plane as Flatland and to the computing device which we hope will deliver
us the required boundary surfaces as a Flat Fly. As an example, consider a

Boundaries in Digital Spaces 99

configuration of two-dimensional sugar cubes in Flatland shown in Figure 4
with a Flat Fly on one of the flat faces (i.e., on an edge) of one of these flat
sugar cubes.

Algorithm 1.1. Algorithm for Flat Flies

(1) Dirty the face on which you are standing.
(2) Crawl onto the face which meets the one on which you are standing at

the vertex in front of you.
(3) See if it is dirty.

(a) If it is, fly away.
(b) If it is not, start again at Instruction (1).

This algorithm actually does something that can be made precise. To achieve
that precision, we need to introduce some mathematical terminology.

1.4. Components determined by binary relations.

Let F be any set and ρ be a binary relation on F . If (c, d) ∈ ρ, then we say
that c is ρ-adjacent to d and that d is ρ-adjacent from c and, in case ρ is a
symmetric relation (meaning that (c, d) ∈ ρ if, and only if, (d, c) ∈ ρ), that c
and d are ρ-adjacent. In case F is finite, we define for any d in F its indegree
(denoted by inp (d)) as the number of elements a of F such that (a, d) ∈ ρ.

In the case when F = ZN , we will be repeatedly dealing with two symmetric
binary relations, αN and ωN , defined as follows.

(1.4) (c, d) ∈ αN ⇔ (c 6= d and, for 1 ≤ n ≤ N, |cn − dn| ≤ 1) .

(1.5) (c, d) ∈ ωN ⇔

N
∑

n=1

|cn − dn| = 1.

For N = 2, (c, d) ∈ α2 means that the associated pixels have a nonempty
intersection, but are not identical, and (c, d) ∈ ω2 means that the associated
pixels have exactly one edge in common. These are often used notions and
go under a number of commonly used names: ω2 is referred to both as the
edge-adjacency and as the 4-adjacency, while α2 is referred to both as the
edge-or-vertex-adjacency and as the 8-adjacency.

For any c and d in a subset A of F , we call a sequence
〈

c(0), . . . , c(K)
〉

of

elements of A a ρ-path in A connecting c to d, if c(0) = c, c(K) = d and, for
1 ≤ k ≤ K, c(k−1) is ρ-adjacent to c(k). If such a path exist, we say that c is
ρ-connected to d in A. A nonempty subset A of F is said to be a ρ-connected
if, for any c and d in A, c is ρ-connected in A to d.

If ρ-connectedness in A is symmetric, then it is an equivalence relation.
(Note that if ρ itself happens to be symmetric, then ρ-connectedness in A is
automatically symmetric.) Hence, it partitions A into ρ-components (i.e., into
nonempty ρ-connected subsets which are not proper subsets of any other ρ-
connected subset of A). Referring to Figure 4, we see that there are three
ω2-components of the set of grid points whose pixels are painted gray: one has

100 Gabor T. Herman

Figure 4. Illustration of boundary tracking in two dimen-
sions by the Algorithm for Flat Flies when a flat fly is initially
placed on a flat face (i.e., on an uncovered edge of an occupied
pixel): the first row is the beginning, the second row is the
middle, and the third row is the end of the execution of the
algorithm.

seven element and the other two have one element each. On the other hand,
there are only two α2-components.

We denote the complement F −A of A in F by A. In Figure 4, A (the set of
grid points whose pixels are not painted grey) is an α2-connected subset (and
hence it has only one α2-component). However, it is not ω2-connected. In the

Boundaries in Digital Spaces 101

special case when A = F , we use the phrases ρ-path and ρ-connected instead
of ρ-path in A and ρ-connected in A.

For any binary relation ρ on a set F , we define its transitive closure as the
binary relation ρ∗ on F by: (c, d) ∈ ρ∗ if, and only if, c is ρ-connected to d. If
ρ∗ is symmetric, then we refer to ρ as an adjacency (on F). In this case F is
partitioned into ρ-components. Note, in particular, that (for all N ≥ 1) both
αN and ωN are adjacencies on ZN (and, for these adjacencies, there is only
one component in the partition of ZN).

1.5. What does a Flat Fly do?

We first specify the outcome of the Algorithm for Flat Flies in the specific case
identified in Figure 4. The Flat Fly is initially put on the face which separates
the grid point g (painted grey) from the grid point h (not painted grey). After a
while it flies away (see Figure 4), leaving behind a bunch of faces that have been
dirtied. This set of faces can be described as consisting of exactly those faces
which are between a grid point painted grey that is α2-connected in the set of
grey grid points to g and a grid point not painted grey that is ω2-connected in
the set of not grey grid points to h.

This is, in fact, representative of the general behavior of the Flat Fly. We
can say the following. Suppose that in the square grid Z2 the pixels of a finite
number of grid points are filled with flat sugar cubes and that a Flat Fly is put
on top of one of these sugar cubes into a pixel which is not occupied by a sugar
cube (see Figure 4). Let g be the name of the grid point of the sugar cube on
top of which the Flat Fly is placed into the pixel of a grid point named h (see
Figure 4).

Claim 1.2. After a finite number of loops through Instructions (1), (2), and
(3) of the Algorithm for Flat Flies, the Flat Fly will fly away. At that time,
the set of dirty faces is exactly the set of those faces which are between a pixel
associated with an element of the α2-component of the set of grid points with
sugar cubes that contains g and a pixel associated with an element of the ω2-
component of the set of grid points without sugar cubes that contains h.

We do not give a proof of this claim in this section; such a proof will be a
consequence of the general results that we will be deriving in the sections that
follow. We will return to proving the claim at the appropriate point later in the
paper. However, before going on to other things we state another claim that
shows that the set of faces dirtied by the Flat Fly has some desirable properties.
First we need to introduce some additional notation and terminology.

We first observe that the face onto which the fly is initially placed can be
identified by the pair (g, h) of grid points on either side of it. Note that this
is an ordered pair, interpreted as “the fly is put into h, with its feet touching
g.” If we were to draw the Flat Fly on (h, g), then its feet would be touching
the same edge, but it would be hanging upside down. Similarly, every ordered
pair of ω2-adjacent grid points can be thought of as such an edge with an
orientation across it from the first grid point in the pair toward the second

102 Gabor T. Herman

and, conversely, all such oriented edges can be described by a unique element
of ω2. Thus we make the fundamental observation that ω2 has a dual purpose:
it is an adjacency on Z2 and its elements can be used as unique identifiers of
elements of the set of all oriented faces between pixels of this square grid. We
note immediately that, for arbitrary positive integer N , ωN is an adjacency
on the grid ZN and its elements can be used as unique identifiers of elements
of the set of all oriented (hyper-)faces between points of the grid. We now
introduce two important concepts for the grid ZN .

For any two subsets O and Q of ZN we define the boundary between them
by:

(1.6) ϑ (O, Q) = {(c, d) | c ∈ O, d ∈ Q, (c, d) ∈ ωN} .

Let A consist of the nonempty finite set of grid points which are filled with
sugar cubes and let the Flat Fly be placed on (g, h), where g ∈ A and h ∈ A.
Let O be the α2-component of A containing g and Q be the ω2-component of
A containing h. Then Claim 1.2 says that the set of faces dirtied by the Flat
Fly is exactly ϑ (O, Q).

Let
〈

c(0), . . . , c(K)
〉

be an ωN -path and S be any subset of ωN . We say

that
〈

c(0), . . . , c(K)
〉

crosses S, if there is a k, 1 ≤ k ≤ K, such that either
(

c(k−1), c(k)
)

∈ S or
(

c(k), c(k−1)
)

∈ S .

Claim 1.3. Let A be any nonempty finite subset of Z2. Let O be an α2-
component of A and Q be an ω2-component of A, such that ϑ (O, Q) is not
empty. Then there exist two uniquely defined subsets I and E of Z2, which
have the following properties.

(i) O ⊆ I and Q ⊆ E.
(ii) ϑ (O, Q) = ϑ (I, E).
(iii) I ∪ E = Z2 and I ∩ E = ∅. (∅ denotes the empty set.)
(iv) I is α2-connected and E is ω2-connected.
(v) Every ω2-path connecting an element of I to an element of E crosses

ϑ (O, Q).

The proof of this claim is also delayed till later; in fact it will be proven
in a much more general context. Here we discuss its relevance with respect
to the Algorithm for Flat Flies. Since, according to Claim 1.2, the output of
this algorithm is a boundary ϑ (O, Q) satisfying the premises of Claim 1.3, the
latter claim says that there are two sets of grid points I and E, of which we will
think intuitively as the interior and the exterior, which have certain properties
reminiscent of the famous Jordan Curve Theorem [23]. According to that
theorem, the set of all points in the plane which are not on a simple closed curve
can be partitioned into two subsets, one may be called the interior and the other
the exterior. Both of these are connected sets in the sense that we can get from
any point of the interior to any other point by drawing continuously a curve
between them which never leaves the interior (and similarly for the exterior),
but one cannot draw continuously a curve from a point in the interior to a point

Boundaries in Digital Spaces 103

in the exterior which does not contain at least one point of the simple closed
curve, which is in fact the boundary between the interior and the exterior.

The boundary that is the output of the Algorithm for Flat Flies shares
important properties with simple closed curves in R2: its interior and exterior
partition the whole space (iii), both are connected in some sense (iv), but one
cannot get from the interior to the exterior without crossing the boundary
(v) which, in fact, is the boundary between the interior and the exterior (ii).
(Mathematically speaking there is also a difference: a simple closed curve is a
subset of the plane, and the Jordan Curve Theorem says that the complement
of the curve, rather than the whole plane, has precisely two components. Since
our boundary is a subset of ω2, rather than of Z2, it is possible to demand
that the interior and exterior partition the whole of Z2, if anything, a more
attractive-sounding aim than that of the classical theorem.)

It is important to recognize that, in spite of this formal similarity to the
Jordan Curve Theorem, Claim 1.3 is not a result about the continuous plane
R2 but a thoroughly digital theorem. Notions of “connectedness,” “path,” and
“crosses” have all been defined for the square grid Z2 and although they are
analogous to corresponding notions in R2, the analogy breaks down sometimes.
It is the difficulty of applying the continuous notions directly to the digital
environment to prove claims regarding algorithms operating in discrete domains
which motivates us to develop a geometry directly for digital spaces.

For example, it is tempting to reinterpret the boundary output by the Algo-
rithm for Flat Flies as the point set in R2 which is the union of all the points in
all the dirtied faces. However, in spite of the discrete Jordan curve properties
of this boundary (Claim 1.3), the Jordan Curve Theorem is not applicable to
the corresponding point set in R2, since it does not form a simple closed curve.
(It “touches itself” at one vertex and so it is not a simple curve.)

Having said this, we must admit that the argument is only half convincing.
It is all very well that we can give a self-contained theory in digital spaces with
nice theorems that resemble those of famous results of continuous mathematics;
nevertheless, an interpretation in the underlying continuous space is unavoid-
ably needed for some applications. For example, no physician would think
of the boundaries shown in Figure 2 as collections of ordered pairs of voxels;
rather they would be perceived as continuous biological surfaces. Hence, it is
not really desirable to have boundaries which touch themselves in the fashion
of the boundary consisting of the dirtied faces at the end of Figure 4.

While we are pondering this, we may as well ask the following question: Is it
reasonable that two pixels which only share a vertex are considered connected
to each other? This came about quite naturally in the way the Flat Fly crawled
about on the sugar cubes in Figure 4, but - looking at the result - the connection
is rather suspect. Would it not be better to use only ω2 to define connectivity
and avoid such flimsy looking connections?

Once we raise this objection on physical grounds, we also see that the use of
α2 is not particularly elegant even from a mathematical point of view. Why do
we use different types of components for grid points with sugar cubes and for

104 Gabor T. Herman

those without in Claim 1.2? Why do we use different types of components for
A and for A in Claim 1.3? Since in (v) of Claim 1.3 only ω2 is used, would it
not be much nicer to replace α2 by ω2 everywhere in Claim 1.3? Unfortunately,
the resulting claim would not be true; one can easily produce counterexamples
[11]. Thus, we need ω2 (it is used to describe the edges which make up the
boundary), and we need a broader adjacency for the validity of the rather
desirable Claim 1.3.

1.6. On the cuberille.

In three-dimensional space we would like to have an Algorithm for Fat Flies
(in Figure 5 we show one placed on a sugar cube), which would have behavior
resembling that of Flat Flies as expressed in Claims 1.2 and 1.3.

We first need to decide on the appropriate analog of α2 for the case of a
cuberille. One candidate is α3. The geometrical interpretation of α3 is: two
points of the cubic grid Z3 are α3-adjacent if, and only if, the corresponding
voxels have either exactly one face, or one edge, or one vertex in common (see
Figure 3). The question is: for the purpose of the three-dimensional analog of
Claim 1.2, do we want to consider two sugar cubes connected if they share only
a vertex? Even in two dimensions such a connectivity was undesirable, but was
forced upon us in order to have Claim 1.3. In three dimensions we need ω3 to
define the boundary surface, but also something wider to obtain an analog of
Claim 1.3. The difference is that now we have an alternative, another analog
of α2 in which two grid points are adjacent if the corresponding voxels have
either exactly one face in common or exactly one edge in common.

Formally, for any positive integer N , we define the adjacency δN on ZN as
follows. For any c and d in ZN ,

(1.7) (c, d) ∈ δN ⇔

[

(c, d) ∈ αN and

N
∑

n=1

|cn − dn| ≤ 2

]

.

Clearly, δ2 = α2, and so δ3 and α3 are equally legitimate three-dimensional
analogs of α2. However, δ3 is intuitively preferable over α3, inasmuch as it
does not allow adjacency by vertices only; see Figure 6. (For obvious reasons,
ω3 has been referred to both as face-adjacency and as 6-adjacency, δ3 has been
referred to both as face-or-edge-adjacency and as 18-adjacency, and α3 has been
referred to both as face-or-edge-or-vertex-adjacency and as 26-adjacency.) In
view of this, our aim is as follows.

Problem 1.4. Design an Algorithm for Fat Flies that will have the following
property. Suppose that in the cubic grid Z3 (see Figure 3) the voxels of a finite
number of grid points are filled with sugar cubes and that a Fat Fly is put on
top of one of these sugar cubes into a voxel which is not occupied by a sugar
cube (see Figure 5). Let g be the name of the grid point of the sugar cube on
top of which the Fat Fly is placed into the voxel of a grid point named h. Let O
be the δ3-component of the set of grid points with sugar cubes which contains g
and Q be the ω3-component of the set of grid points without sugar cubes which

Boundaries in Digital Spaces 105

Figure 5. The route of a Model 1 Fat Fly on one of a pair of
sugar cubes.

Figure 6. The grid points c and d on the left are α3-, δ3-,
and ω3-adjacent; those in the middle are α3- and δ3-adjacent
but not ω3-adjacent; those on the right are α3-adjacent but
are not δ3-adjacent or ω3-adjacent.

contains h. After a finite number of steps of the Algorithm for Fat Flies, the
Fat Fly should fly away and, at that time, the set of faces that have been dirtied
should be exactly ϑ (O, Q).

The output ϑ (O, Q) of such an algorithm is an intuitively desirable bound-
ary, due to the truth of the following claim (whose proof is also postponed

106 Gabor T. Herman

until we have reached the appropriate point in the development of our general
theory).

Claim 1.5. Let A be any nonempty finite subset of Z3. Let O be a δ3-
component of A and Q be an ω3-component of A such that ϑ (O, Q) is not
empty. Then there exist two uniquely defined subsets I and E of Z3 with the
following properties.

(i) O ⊆ I and Q ⊆ E.
(ii) ϑ (O, Q) = ϑ (I, E).
(iii) I ∪ E = Z3 and I ∩ E = ∅.
(iv) I is δ3-connected and E is ω3-connected.
(v) Every ω3-path connecting an element of I to an element of E crosses

ϑ (O, Q).

We see that this claim is a digital three-dimensional version of the Jordan
Curve Theorem. Apart from it being a mathematically pleasing fact, this obser-
vation is of the utmost practical importance. In applications we are interested
in finding boundaries of objects for two reasons. One is to create computer
graphic displays of them, such as the ones shown in Figure 2, and the other is
to analyze certain properties of the objects, such as their volumes. From the
graphical display point of view, property (v) can be used to prove that when
we display the boundary ϑ (O, Q) as it appears from any exterior point, then
the surface displayed will hide all the points interior to the object.

For the purpose of analysis, Claim 1.5 works as follows. Suppose that a
device has given us estimates of some physical quantity at points of the cubic
grid Z3. Suppose further that we can identify from such data that set, A, of
grid points which are in cardiac muscle. Assuming that A itself is δ3-connected
and that the set of grid points in any one of the chambers of the heart is an
ω3-component of A, we can estimate the volume of the left ventricle, say, by
selecting ω3-adjacent voxels g and h, so that g is in the cardiac muscle and h
is in the left ventricle, defining O and Q as in Problem 1.4, and estimating the
volume of the left ventricle of the heart as the combined volume of the voxels
associated with the grid points of the uniquely defined exterior E, whose exis-
tence is guaranteed by Claim 1.5. Alternatively, if we wish to find the volume
of the whole heart, then assuming that the set of grid points outside the heart
form an ω3-component of A, we can select ω3-adjacent voxels g and h, so that
g is in the cardiac muscle and h is outside the heart, defining O and Q as in
Problem 1.4, and estimating the volume of the whole heart as the combined
volume of the voxels associated with the grid points of the uniquely defined
interior I, whose existence is guaranteed by Claim 1.5. This also indicates how
the achievement of Problem 1.4 would allow us to detect individual boundaries
of the cardiac muscle.

Boundaries in Digital Spaces 107

1.7. Algorithms for Fat Flies.

First we observe that just by simply changing the word “vertex” in the Al-
gorithm for Flat Flies into the word “edge” we get a set of instructions that
are meaningful in the three-dimensional case. However, the resulting algorithm
will not be a solution to Problem 1.4. Even if there is only one grid point with a
sugar cube, this simply modified version will fail. The Fat Fly will keep moving
forward and, having dirtied only four faces of the cube, it will get back to the
original face and will fly away. Clearly, ϑ (O, Q) in this case should consist of
all six faces of the sugar cube, and the proposed algorithm resulted in only four
of them being dirtied. So consider instead the following.

Algorithm 1.6. Algorithm for Fat Flies Model 1

(1) Dirty the face on which you are standing.
(2) Crawl onto the face which meets the one on which you are standing at

the edge in front of you.
(3) Turn to the right, and dirty the face on which you are standing.
(4) Crawl onto the face which meets the one on which you are standing at

the edge in front of you.
(5) See if it is dirty.

(a) If it is, fly away.
(b) If it is not, turn left and start again at Instruction (1).

It turns out that this algorithm will behave as required for the case of a
single sugar cube. It can be seen in Figure 5 that the Fat Fly under the control
of the Model 1 algorithm will visit (and hence dirty) every face of a single sugar
cube.

However, the route of the Fat Fly as indicated in Figure 5 tells us that the
Model 1 algorithm does not behave as is needed for Problem 1.4. Since there
are edges not traversed by its route, if we attach a second sugar cube to one
of these edges, the grid points of the two sugar cubes are δ3-adjacent, and so
ϑ (O, Q) consists of the twelve faces of the pair of sugar cubes. However, the
route of the Fat Fly does not change; it still dirties only six faces; see Figure 5.

In fact, we see that this indicates a general principle. If the proposed al-
gorithm is such that the edge toward which the Fat Fly starts crawling is not
influenced by the absence or presence of nearby sugar cubes, then for the al-
gorithm to work, it must traverse each edge when started on a face of a single
sugar cube. (Otherwise, we can attach a second sugar cube to the untraversed
edge, just as indicated in Figure 5.) However, if each edge is traversed once
during a route on a single sugar cube, then each face must be visited twice. So
the simple mechanism of dirtying the faces the first time they are visited and
flying away the second time one is visited will not do. This by itself is not a
problem; we can have the fly “mark” a face the first time it visits it, “dirty” it
when it finds that it has already been marked, and fly away when it finds that
the face has already been dirtied. The interesting question is: what should be
the rule for deciding the edge towards which the Fat Fly starts crawling when
it is on a particular face?

108 Gabor T. Herman

Figure 7. Pairs of faces with two types of arrow orientation;
only the one on the left is acceptable.

We now establish a further principle. Having accepted that the route of
the Fat Fly must traverse each edge, let us aim for the shortest route on a
single sugar cube which satisfies this condition. If we draw the route of such
a fly on the sugar cube as was done for Figure 5, then we see that on each
face there have to be four arrows (one for each edge of the face), two of which
point from the center of the face towards an edge and two which point from the
other two edges towards the center of the face. Further, there has to be some
consistency between these arrows: if an edge has an arrow pointing to it on
one face, on the face which meets this edge the arrow has to be pointing away
from the edge. Finally, we consider the desirable simplicity of the Algorithm
for Fat Flies. We impose the condition that the way in which the arrows
point on a face depends only on the orientation of that face. (There are six
possible orientations, corresponding to the six faces of a single sugar cube.)
Now consider the arrangements shown in Figure 7. We see that the only type
of arrangement that satisfies all the conditions just discussed is the one in which
the two inward arrows are next two each other (making an angle of 90◦) as is
illustrated on the left in the figure.

This implies that the route of the Fat Fly for a single sugar cube must have
the general form indicated by Figure 8. We say general form, since the consid-
erations above still leave us with some freedom. For example, the horizontal
cycle of arrows around the vertical faces could be reversed without violating
the conditions described above. The same is true for the two vertical cycles of
arrows, leaving us with eight possible legitimate arrangements. However, these
are symmetrical versions of each other and, for what we are going to do, there
is no harm in restricting our attention to the arrangement shown in Figure 8.
A legitimate route for the Fat Fly is defined as one which follows the arrows
and traverses each edge once.

The following is a fascinating fact. If we restrict (in a reasonable way) the
form that an Algorithm for Fat Flies may take, then it can be shown [14] that
there is no such algorithm which causes the Fat Fly to cover a legitimate route
if placed on a single sugar cube and which, at the same time, satisfies Problem
1.4. In other words, there is no straightforward three-dimensional generaliza-
tion of the Algorithm for Flat Flies. One way of overcoming this difficulty is
to allow Fat Flies with outlandish capabilities, such as being able to create a
clone of themselves [14]. We discuss boundary tracking algorithms based on

Boundaries in Digital Spaces 109

Figure 8. Legitimate routes of the Fat Fly on a single sugar
cube follow the arrows and cross every edge once. The numbers
refer to the orientations of the faces and not to the order in
which they are visited.

such ideas in the following sections.

1.8. A formulation of the boundary tracking problem.

We now say good-bye to our flies and prepare ourselves for the more mathe-
matical treatment of the following sections. Let G be an arbitrary grid in R3

and let π be the adjacency defined on this grid by (c, d) ∈ π if, and only if,
the intersection of the voxels associated with c and d is not a subset of a line
in R3. (In case G = Z3, this definition implies that π = ω3.) We redefine the
concept of a boundary for this more general situation. For any two subsets O
and Q of G the boundary between them is

(1.8) ϑ (O, Q) = {(c, d) | c ∈ O, d ∈ Q, (c, d) ∈ π} .

A (finite binary) picture over a grid G is an assignment of 1 to finitely many
points of G and 0 to the rest of the points. (This is a mathematical way of
identifying whether or not the voxel associated with the grid point is occupied
by a sugar cube.) We refer to the grid points that have 1 assigned to them as 1-
spels and to the others as 0-spels. (The word spel is an abbreviation of “spatial
element.”) We say that (c, d) ∈ π is a bel (short for “boundary element”) if c
is a 1-spel and d is a 0-spel. The following is a generalization of Problem 1.4
in which the adjacencies δ3 and ω3 on Z3 are replaced by arbitrary adjacencies

110 Gabor T. Herman

κ and λ on the grid G. (The general notion of an adjacency between spels will
be rigorously defined in Section 3. In Section 2 the discussion will be restricted
to specific cases for κ and λ.)

Problem 1.7. Design an algorithm for the grid G and adjacencies κ and λ,
with the following property. For any picture over G and for any bel (g, h), let
O be the κ-component of the set of 1-spels which contains g and Q be the λ-
component of the set of 0-spels which contains h. After a finite number of steps
the algorithm should terminate and, at that time, its output should be exactly
ϑ (O, Q).

These notions are easily generalized to N -dimensional space. We define the
adjacency π on a given grid G by (c, d) ∈ π if, and only if, the intersection of
the Voronoi neighborhoods of c and d is not a subset of any set formed by all
linear combinations of N − 2 vectors in RN . (In case G = ZN , this definition
implies that π = ωN .) Defining boundaries, pictures, 1-spels, 0-spels, and
bels exactly as above Problem 1.7, the aim itself can be restated without any
changes for the N -dimensional case.

In what follows we will not fully achieve this very general aim: the algorithms
that we will provide in the next section will perform as desired only for a
restricted class of the adjacencies κ and λ. However, this class is sufficiently
large to justify us claiming to have achieved the N -dimensional generalization
of Problem 1.4 and some instances of Problem 1.7 that are not included in the
N -dimensional generalization of Problem 1.4.

2. Some boundary tracking algorithms

2.1. Boundary tracking on the cuberille.

In this and the next subsection we concentrate our attention to solving Prob-
lem 1.4 or, more mathematically, Problem 1.7 with G = Z3, κ = δ3 and λ = ω3.
We first discuss a way of defining the “adjacency of one bel to another” and
then use this concept to describe the algorithms.

Looking at Figure 8 we see that the arrangement of arrows on the sugar cube
can be interpreted as a digraph with nodes {1, 2, 3, 4, 5, 6}. We now redefine
this digraph in a way that will be easy to generalize later on.

Let, for 1 ≤ n ≤ N , un denote the unit vector in direction n, which is defined
as the element of Zn for which un

n = 1 and all other components are 0. For the
case N = 3, consider the digraph with nodes M =

{

u1, u2, u3,−u1,−u2,−u3
}

and with arcs

(2.1)
ρ =

{(

u1, u2
)

,
(

u2,−u1
)

,
(

−u1,−u2
)

,
(

−u2, u1
)

,
(

u1, u3
)

,
(

u3,−u1
)

,
(

−u1,−u3
)

,
(

−u3, u1
)

,
(

u2, u3
)

,
(

u3,−u2
)

,
(

−u2,−u3
)

,
(

−u3, u2
)}

(see Figure 9). This (M, ρ) is an example of the general concept of a basic
digraph, which will be defined in Subsection 2.4. Note that if (c, d) ∈ ω3, then
d − c ∈ M and is ρ-adjacent to exactly two other unit vectors.

Boundaries in Digital Spaces 111

Figure 9. Illustration of a basic digraph (on the right) and
its interpretation as a set of directions taken while tracking
the boundary between a single voxel and the set of all other
voxels in Z3 (in the middle, where each face is labelled by the
unit vector normal to the face and exterior to the cube).

The basic digraph gives rise to a bel-adjacency β, defined as follows. If
a = (c, d) is a bel (which means that c is a 1-spel, d is a 0-spel, and (c, d) ∈ ω3),
then there are exactly two unit vectors u ∈ M which are ρ-adjacent from d− c
and each of these gives rise to exactly one bel bu, which is β-adjacent from
(c, d), according to the following definition (see Figure 10). If d + u is a 1-spel
(case (iii) in Figure 10), then bu = (d + u, d). If d + u is a 0-spel and c + u
is a 1-spel (case (ii) in Figure 10), then bu = (c + u, d + u). If both d + u
and c + u are 0-spels (case (i) in Figure 10), then bu = (c, c + u). Based on
these definitions, the following algorithm fulfills the requirements of Problem
1.7 with G = Z3, κ = δ3 and λ = ω3. In the algorithm L is a queue [24] of
bels and S is a set of bels (which is considered the output of the algorithm
when it terminates). The algorithm can be considered to be an instance of the
well-known breadth-first search algorithm for traversing a strongly-connected
component of a digraph from an initial node.

Algorithm 2.1. Inefficient Bel-Tracking Algorithm

(1) Put (g, h) into L and S.
(2) Remove a bel a from L. For both bels b which are β-adjacent from a

and which are not in S, put b into L and S.
(3) Check if L is empty.

(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

We will not bother proving the correctness (in the sense of fulfilling the re-
quirements of Problem 1.7 with G = Z3, κ = δ3 and λ = ω3) of this algorithm.
This is because we will be able to give a more efficient alternative. The inef-
ficiency of the algorithm above is hidden in the ostensibly innocuous phrase
“which are not in S?” How do we check that a bel is not in S? In the early

112 Gabor T. Herman

Figure 10. Illustration of the definition of bel-adjacency us-
ing the basic digraph of Figure 9. In each case, the darkly-
shaded bel is β-adjacent to the lightly-shaded one. Note that
in addition to the bel that is indicated in this figure, there is
a second bel that is β-adjacent to the lightly-shaded one.

stages of the algorithm S has only a few elements and so it is easy to carry
out such a check. As the algorithm proceeds, S gets larger and larger (quite
typically containing well over a million elements in a medical application) and
checking for a particular bel belonging to it gets demanding on computer re-
sources (time and/or storage). We next discuss an alternative to the Inefficient
Bel-Tracking Algorithm which goes a long way towards reducing this compu-
tational expense.

Prior to doing that we point out a common property of these algorithms. At
the end of Subsection 1.7 we discussed the need for “Fat Flies with outlandish
capabilities, such as being able to create a clone of themselves.” The mathe-
matical equivalent of this is in the phrase “For both bels b which are β-adjacent
from a.” We can represent this as a Fat Fly on bel a cloning itself into two,
one clone crawling onto one and the other clone crawling onto the other bel
β-adjacent from a.

2.2. Artzy’s Algorithm.

A way of decreasing the computational burden of the Inefficient Bel-Tracking
Algorithm was proposed by Artzy et al. [2]. Their trick is to make use of an
auxiliary data structure T of once-visited bels and to check for membership
in T instead of for membership in S. The important underlying fact is that
each bel is β-adjacent from exactly two bels, and so it will be reached exactly
twice. Hence if a bel is found in T , it has already been reached once before
and so it will not be reached again, and can be removed from T . Consequently,

Boundaries in Digital Spaces 113

the size of T is likely to be a tiny fraction of the size of S and one can ex-
pect orders of magnitude of reduction in computational requirements over the
Inefficient Bel-Tracking Algorithm when dealing with typical problems arising
in many application areas, such as medicine. For a detailed discussion of the
computational considerations associated with the algorithm of this section, see
[6].

Algorithm 2.2. Artzy’s Algorithm

(1) Put (g, h) into L and S and put two copies of (g, h) into T .
(2) Remove a bel a from L. For both bels b which are β-adjacent from a,

try to find a copy of b in T .
(a) If successful, remove this copy of b from T .
(b) If not, then put b into L, S and T .

(3) Check if L is empty.
(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

We illustrate the output of Artzy’s Algorithm in Figure 11. CT scans with
0.8mm× 0.8mm pixels were taken at 7 mm interval covering the spine and the
ribs of a patient. From these we estimated (by interpolation) values for a cubic
grid assuming a unit distance of 0.65 mm and then we assigned 1s and 0s to the
grid points using a threshold appropriate for distinguishing bone (1) from not
bone (0). We applied Artzy’s Algorithm to the resulting picture. It produced,
upon its termination, an output S containing 1,661,728 bels. This is displayed
in Figure 11 using a methodology described in [3].

We will not prove the correctness (in the sense of fulfilling the requirements
of Problem 1.7 with G = Z3, κ = δ3 and λ = ω3) of Artzy’s Algorithm, since
in Subsection 2.4 we will state an N -dimensional version of it and the proof of
correctness of that version will imply the correctness of the three-dimensonal
version of this subsection. However, before getting into that generalization we
discuss a remarkable adaptation of Artzy’s Algorithm to an alternative grid in
the three-dimensional Euclidean space.

2.3. A variant of Artzy’s Algorithm for the fcc grid.

Near the end of Subsection 1.5 we raised some objections to the use of α2

as one of the adjacencies in Claim 1.2, but then discarded them on the basis
that using only ω2 would make the claim false. The same consideration lead
us to using δ3, in addition to ω3, in Problem 1.4 (and consequently to allowing
such a flimsy-looking connectivity as is illustrated in Figure 5). It turns out,
however, that this difficulty is not inherent in the nature of our general problem;
rather, it arises due to choosing a cubic (or a square) grid. We now discuss an
alternative family of grids in three-dimensional space, one for which objections
such as those stated at the end of Subsection 1.5 disappear. (There are also
other advantages of these grids over the cubic grids, but we will not get into a

114 Gabor T. Herman

Figure 11. Three-dimensional display of the spine and the
ribs of a patient (seen from behind and downward from the
cervical vertebrae) approximated as a collection of 1,661,728
faces of cubic voxels. The area of the individual faces is the
same as in Figure 13.

discussion of these and instead refer the interested reader to Subsection 2.1 of
[13].)

For any positive real number φ, we define a face-centered cubic grid (or fcc
grid, for short) as the set of points

(2.2) Fφ = {(φc1, φc2, φc3) | c1, c2, c3 ∈ Z and c1 + c2 + c3 ≡ 0 (mod 2)} .

Each of the associated voxels is a rhombic dodecahedron (i.e., a twelve-faced
solid, for which every face is an identical rhombus), as can be seen from Figure
12. We will sometimes abbreviate F1 as F .

Clearly, F is a subset of Z3. A remarkable property of F is that for the
adjacency π for the grid F , as defined in Subsection 1.8, we have that, for any
g and h in F , (g, h) ∈ π if, and only if, (g, h) ∈ δ3 (see Figure 12). On the
other hand, it follows from the definition of F that, for any g and h in F , it
cannot possibly be that (g, h) ∈ ω3.

Since F is a subset of Z3, every picture over F gives rise to a derived picture
over Z3, simply by assigning 0 to those elements of Z3 which are not in F . This

Boundaries in Digital Spaces 115

Figure 12. On the left we show a point g of the fcc grid
F = F1 together with the other 12 grid points which lie in the
2× 2× 2 cube whose center is g. On the right we show (using
heavy lines) one of the faces of the Voronoi neighborhood of
g (whose shape is a rhombic dodecahedron) and also (using
lighter lines) the cubic voxel associated with g when considered
a point in Z3. Note that the edge of the cubic voxel which is
specified by (g, h) is a diagonal of that face of the rhombic
dodecahedral voxel which is specified by (g, h).

is the observation which allows us to adapt Artzy’s Algorithm to boundary
tracking in the fcc grid. The idea [7] is to consider the nature of the bel-
adjacency β in the derived picture.

Observe Figure 10. In case (i), (c, d + u) is a bel of the picture over F . Case
(ii) cannot possibly arise in a derived picture. In case (iii), (c, d + u) is not a
bel of the picture over F , since both c and d + u are 1-spels. Note that case (i)
can be distinguished from the other cases by the fact that it is the only one in
which the bel (e, f) which is β-adjacent from (c, d) has the property that e = c
(and we also happen to have that f = c + u). We make use of this observation
by running Artzy’s Algorithm on the derived picture and producing an output
S which contains bels of the picture over F .

In order to do this, we need to find a suitable starting point to Artzy’s
Algorithm, since in this case the (g, h) of Problem 1.7 is not a bel of the
derived picture. However, if we define, for 1 ≤ n ≤ 3,

(2.3) h′
n =

{

hn, if
∑n

i=1 |gi − hi| ≤ 1,

gn, otherwise,

then (g, h′) will be a bel of the derived picture in Z3.

116 Gabor T. Herman

Algorithm 2.3. Tracking Algorithm for the FCC Grid

(1) Put (g, h′) into L and put two copies of (g, h′) into T .
(2) Remove a bel (c, d) of the derived picture from L. For both bels (e, f)

of the derived picture that are β-adjacent from (c, d), do the following.
If e = c, then put (c, d + f − c) into S. Try to find one copy of (e, f)
in T .
(a) If successful, remove this copy of (e, f) from T .
(b) If not, then put (e, f) into L and T .

(3) Check if L is empty.
(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

We illustrate the output of the Tracking Algorithm for the FCC Grid in
Figure 13. The same CT scans were used as those employed to produce Figure
11. From these we estimated (by interpolation) values for an fcc grid assuming
a unit distance of 20.25 × 0.65mm and then we assigned 1s and 0s to the grid
points using the same threshold that was employed to produce Figure 11 for
distinguishing bone (1) from not bone (0). We changed the unit of distance
so that the faces of the voxels in the two grids will have the same size; we
considered this to be reasonable when comparing the boundaries output by two
tracking algorithms. Consequently, the volumes of the rhombic dodecahedra
are more than 3.36 times larger than the volumes of the cubes and the number
of fcc grid points needed to cover a particular volume of space is less than a
third of the number of cubic grid points needed for the same purpose. (This is
one of the advantages of using an fcc grid over using a cubic grid.) We applied
the Tracking Algorithm for the FCC Grid to the resulting picture. It produced,
upon its termination, an output S containing 1,258,482 bels. This is displayed
in Figure 13 using the same methodology as was employed to produce Figure
11.

The appearance of the two computer graphic displays is very similar, but
there are some less obvious, but nevertheless significant, differences. First (even
though the same set of CT slices, the same threshold, and the same area for
the faces were used to produce the boundaries) the number of bels in the ap-
proximation to the spine and the ribs based on the cubic grid is approximately
a third more than the number of bels in the approximation based on the fcc
grid. This is because the larger number of orientations (twelve, as opposed to
six) of the rhombic dodecahedral faces allows us to fit the underlying biological
surface more tightly. This also has a consequence on computational costs: the
time required to track the boundary displayed in Figure 13 is less than the time
required to track (by essentially the same algorithm) the boundary displayed
in Figure 11. The time required to produce the computer graphic displays of
the already tracked boundary was approximately one and one-half times longer
when using the cubic grid than when using the fcc grid.

Boundaries in Digital Spaces 117

Figure 13. Three-dimensional display of the spine and ribs
of a patient (seen from behind and downward from the cervical
vertebrae) approximated as a collection of 1,258,482 faces of
rhombic dodecahedral voxels. The area of the individual faces
is the same as in Figure 11.

2.4. Artzy’s Algorithm in N-dimensional space.

We now generalize Artzy’s Algorithm to the N -dimensional Euclidean space,
with N > 1. The intent is to fulfill the generalization of Problem 1.7 which
is stated in the last paragraph of Subsection 1.8 with G = ZN , κ = δN and
λ = ωN . To do this we need to generalize the concept of “adjacency of one
bel to another,” which is achieved by introducing an appropriate basic digraph
using a generalization of (2.1).

Consider the basic digraph (M, ρ) with the following properties:

(i) M = {un | 1 ≤ n ≤ N} ∪ {−un | 1 ≤ n ≤ N};
(ii) ρ =

⋃

1≤i<j≤N ρi, j , where

ρi, j =
{(

ui, uj
)

,
(

uj,−ui
)

,
(

−ui,−uj
)

,
(

−uj, ui
)}

.(2.4)

(Note that the three rows of (2.1) correspond to ρ1, 2, ρ1, 3 and ρ2, 3, respec-
tively.) It is an obvious consequence of this definition that every element of M
ρ-adjacent from exactly N − 1 elements of M .

118 Gabor T. Herman

We now use this basic digraph to define, for a picture over ZN , a bel-
adjacency β. If b = (c, d) is a bel, then we have that c is a 1-spel, d is a 0-spel,
and (c, d) ∈ ωN . From the definition of ωN it follows that d−c is a node of the
basic digraph (M, ρ). Every node ρ-adjacent from d−c gives rise to a single bel
β-adjacent from b. (Consequently, every bel is β-adjacent from exactly N − 1
bels.) Because of the utility of this in the proofs of the next section, we define
β as

⋃

1≤i<j≤N βi, j , where every node ρi, j-adjacent from d − c gives rise to a
single bel βi, j-adjacent from b. The last sentence of the previous paragraph
can now be restated by saying that, for any bel b, inβ (b) = N − 1.

In following the details of the specification of how a node u which is ρi, j-
adjacent from d−c gives rise to a unique bel which is βi, j-adjacent from (c, d),
consult again Figure 10. (In that figure we are illustrating the situation when
u has been selected using ρ1, 3. Three separate cases are considered: in (i)
d − c = −u3 and, hence, u = u1, in (ii) d − c = u1 and, hence, u = u3, and in
(iii) d − c = u3 and, hence, u = −u1.) We distinguish between three mutually
exclusive possibilities. The first is that d + u is a 1-spel (this corresponds to
(iii) in Figure 10). In this case the bel βi, j-adjacent from (c, d) is specified to
be (d + u, d). The second is that d + u is a 0-spel and c + u is a 1-spel (this
corresponds to (ii) in Figure 10). In this case the bel βi, j-adjacent from (c, d)
is specified to be (c + u, d + u). The third is that both d + u and c + u are
0-spels (this corresponds to (i) in Figure 10). In this case the bel βi, j-adjacent
from (c, d) is specified to be (c, c + u).

Algorithm 2.4. Artzy’s Algorithm in N -Dimensional Space (N ≥ 2)

(1) Put (g, h) into L and S and put inβ ((g, h)) = N − 1 copies of (g, h)
into T .

(2) Remove a bel a from L. For all bels b which are β-adjacent from a, try
to find a copy of b in T .
(a) If successful, remove this copy of b from T .
(b) If not, then put b into L and S and put inβ (b)−1 copies of b into

T .
(3) Check if L is empty.

(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

Claim 2.5. For N ≥ 2, for any picture over the grid ZN and for any bel
(g, h), let O be the δN -component of the set of 1-spels which contains g and
Q be the ωN -component of the set of 0-spels which contains h. After a finite
number of steps Artzy’s Algorithm in N -Dimensional Space terminates and, at
that time, S = ϑ (O, Q).

This claim will be proved in Section 4. It is clear that what we called Artzy’s
Algorithm earlier is exactly the same as Artzy’s Algorithm in 3-Dimensional
Space. In particular, Claim 2.5 implies that Artzy’s Algorithm provides a
solution to Problem 1.4. A little reflection will also reveal that the Algorithm

Boundaries in Digital Spaces 119

for Flat Flies of the last section is essentially similar to Artzy’s Algorithm in
2-Dimensional Space and, consequently, Claim 1.2 is a corollary of Claim 2.5
and will not have to be proved separately.

2.5. The Gordon-Udupa Algorithm.

Motivated by the desire of speeding up the operation of Artzy’s Algorithm,
Gordon and Udupa [8] introduced an alternative basic digraph (M, ρ), in which
M =

{

u1, u2, u3,−u1,−u2,−u3
}

and

(2.5)
ρ =

{(

u1, u2
)

,
(

u2,−u1
)

,
(

−u1,−u2
)

,
(

−u2, u1
)

,
(

u1, u3
)

,
(

u3,−u1
)

,
(

−u1,−u3
)

,
(

−u3, u1
)}

(see Figure 14). For this digraph, if (c, d) ∈ ω3, then d − c ∈ M and is
ρ-adjacent to either one or two other unit vectors.

This basic digraph gives rise to a bel-adjacency β. If a = (c, d) is a bel, then
there may be either one or two unit vectors u ∈ M which are ρ-adjacent from
d− c and each of these gives rise to exactly one bel bu which is β-adjacent from
(c, d). This is specified in exactly the same manner as was done in Subsection
2.1 using Figure 10. Note that for the resulting β, inβ (b) will be either 1 or 2,
depending on the “direction” of the bel b (see Figure 14).

Based on this definition, the following is the algorithm of Gordon and Udupa
[8]. In the algorithm L is a queue [24] of bels and S is a set of bels (which is
considered the output of the algorithm when it terminates).

Algorithm 2.6. Gordon-Udupa Algorithm

(1) Put (g, h) into L and S and put inβ ((g, h)) copies of (g, h) into T .
(2) Remove a bel a from L. For the bels b which are β-adjacent from a, try

to find a copy of b in T .
(a) If successful, remove this copy of b from T .
(b) If not, then put b into L, S and put inβ (b)− 1 copies of b into T .

(3) Check if L is empty.
(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

The advantage of the Gordon-Udupa Algorithm over Artzy’s algorithm is
that on the whole the expectation is that for two thirds of the bels there will
be only one bel adjacent from them and so T is likely to remain smaller than
the T of Artzy’s Algorithm for the same picture and the same starting bel
(g, h). It is reported in [8] that the Gordon-Udupa Algorithm is indeed less
demanding on computer resources (storage and time) than Artzy’s Algorithm.
Indeed, this is not surprising; every bel is visited twice during the execution of
Artzy’s Algorithm, while there will always be some bels that are visited only
once during the execution of the Gordon-Udupa Algorithm.

It is easy to check that the Gordon-Udupa Algorithm detects all the bels
when started on a face of a single sugar cube (a picture with only one 1-spel)
or when started on a face of a pair of sugar cubes arranged as in Figure 5.
However, if the only common edge of a pair of sugar cubes were a vertical one

120 Gabor T. Herman

Figure 14. Illustration of a basic digraph of Gordon and
Udupa (on the right) and its interpretation as a set of di-
rections taken while tracking the boundary between a single
voxel and the set of all other voxels in Z3 (in the middle).

(i.e., parallel to u1), then the Gordon-Udupa Algorithm would detect the six
faces of the sugar cube on which it is started, but Artzy’s Algorithm would
detect all twelve faces of the two sugar cubes. So the outputs of the two
algorithms are sometimes not the same. To make this mathematically precise
we need define on ZN the adjacency γN by

(2.6) (c, d) ∈ γN ⇔

[

(c, d) ∈ αN and
N

∑

n=2

|cn − dn| ≤ 1

]

.

This is an adjacency between face-adjacency and face-or-edge-adjacency.
Roughly speaking we can say that while Artzy’s Algorithm (Algorithm 2.2)
tracks the boundaries of face-or-edge-adjacent components, the Gordon-Udupa
Algorithm detects boundaries of γN -components.

2.6. A plan of action.

In this section we have proposed various ways of defining boundaries and
made some claims that our definitions result in boundaries with some desirable
properties (Claims 1.3 and 1.5). We now generalize these claims. Here ϑ (O, Q)
is defined by (1.8) with π as defined in the paragraph following Problem 1.7.

Claim 2.7. (Desirability Claim.) For any picture over the grid G in RN , let
O be a κ-component of the set of 1-spels and Q be a λ-component of the set of
0-spels, such that ϑ (O, Q) is not empty. Then there exist two uniquely defined
subsets I and E of G with the following properties.

(i) O ⊆ I and Q ⊆ E.
(ii) ϑ (O, Q) = ϑ (I, E).
(iii) I ∪ E = G and I ∩ E = ∅.
(iv) I is κ-connected and E is λ-connected.
(v) Every π-path connecting an element of I to an element of E crosses

ϑ (O, Q).

Boundaries in Digital Spaces 121

We will prove this Desirability Claim for the following three cases.

Case (i). G = ZN , κ = γN and λ = ωN ;
Case (ii). G = ZN , κ = δN and λ = ωN ;
Case (iii). G = F and κ = λ = δ3.

Note that Case (ii) is a generalization of Claims 1.3 and 1.5, as can be seen by
setting in those claims A to be the finite set of 1-spels and N = 2 and N = 3,
respectively.

We have also proposed some algorithms for boundary tracking. The use-
fulness of such an algorithm is greatly enhanced if one can prove about it
something like the following.

Claim 2.8. (Correctness Claim.) For any picture over the grid G in RN and
for any bel (g, h), let O be the κ-component of the set of 1-spels which contains
g and Q be the λ-component of the set of 0-spels which contains h. After a
finite number of steps the algorithm terminates and, at that time, its output
(S) is ϑ (O, Q).

Note that the Correctness Claim is simply saying that the algorithm solves
Problem 1.7. We will provide a proof of the Correctness Claim for Artzy’s
Algorithm in N -dimensional space (with G = ZN , κ = δN and λ = ωN , cor-
responding to Case (ii) above), but as stated before that includes also Artzy’s
Algorithm and the Algorithm for Flat Flies. The first mathematical proof of
correctness of Artzy’s Algorithm (Algorithm 2.2) appeared in [15] and of the
Gordon-Udupa Algorithm (Algorithm 2.6) appeared in [18].

3. Desirability of boundaries

3.1. Surfaces in digital spaces.

We now generalize the ideas expressed in Subsection 1.8. A digital space [13]
is a pair (V, π), where V is an arbitrary nonempty set and π is a symmetric
binary relation on V such that V is π-connected. Sometimes we will refer to π
as the proto-adjacency of the digital space (V, π). Already discussed examples
of digital spaces are

(

ZN , ωN

)

and, for the fcc grid, (F, δ3). Elements of V
will be called spels (short for spatial elements) and elements of π will be called
surfels (short for surface elements).

A thorough presentation of this very general approach is given in [13]. Here
we compromise: we abandon the full generality of [13] and opt instead for a
level of generality which is sufficient to cover the three special cases of the last
section. In particular, the sets of objects determined by particular definitions
given below will be subsets of the sets of corresponding objects in [13]; to clarify
these relationships, when we give a definition below we usually also indicate the
qualifying adjectives that would be applied in [13] to define the same concept.
We already had an informal example of this when we introduced the notion of
a “(finite binary) picture.”

122 Gabor T. Herman

Any nonempty subset S of π will be called an (antisymmetric) surface in
(V, π) if whenever (c, d) ∈ S, then (d, c) /∈ S. We will be particularly con-
cerned with a special class of surfaces, which we refer to as boundaries. These
are defined as follows. Let (V, π) be a digital space and let O and Q be subsets
of V . Then the boundary in (V, π) between O and Q is ϑ (O, Q), defined ex-
actly as in (1.8). In what follows, we will normally be dealing with nonempty
boundaries between disjoint sets; clearly, such boundaries are surfaces. We say
that a π-path

〈

c(0), . . . , c(K)
〉

crosses the surface S if there is a k, 1 ≤ k ≤ K,

such that either
(

c(k−1), c(k)
)

∈ S or
(

c(k), c(k−1)
)

∈ S.
Before going any further into our theoretical development, we restate the

Desirability Claim of the last section in the more general terminology of this
section, so that we can better see where we are heading and why. For this we
need some further definitions.

A (finite binary) picture over the digital space (V, π) is a triple (V, π, f),
where f is a function whose domain is V and whose value is 0 except that,
for a finite number of spels c in V , the value of f (c) is 1. We refer to these
finitely-many spels as 1-spels and to all the other spels as 0-spels.

A (very tight) spel-adjacency in the digital space (V, π) is a binary relation
ρ on V , such that

(i) ρ is symmetric,
(ii) π ⊆ ρ, and
(iii) for any (c, d) ∈ ρ, there exists a π-path

〈

c(0), . . . , c(K)
〉

from c to d

such that
(

c(0), c(k)
)

∈ ρ, for 1 ≤ k ≤ K.

Note that π is always a spel-adjacency in (V, π) and that, in addition, γN

and δN are spel-adjacencies in
(

ZN , ωN

)

, for N > 1.

Another spel-adjacency in
(

Z3, ω3

)

is σ that is defined as follows. In addi-
tion to all elements of ω3, σ contains a pair of spels (c, d) if one of the following
three conditions is satisfied:

(i) c1 = d1 and (c2 − d2) × (c3 − d3) = −1,
(ii) c2 = d2 and (c3 − d3) × (c1 − d1) = −1,
(iii) c3 = d3 and (c1 − d1) × (c2 − d2) = −1.

The following is a generalization of Claim 2.7 to arbitrary digital spaces.

Claim 3.1 (Desirability Claim). Let κ and λ be spel-adjacencies in a digital
space (V, π). For any picture over (V, π), let O be a κ-component of the set
of 1-spels and Q be a λ-component of the set of 0-spels, such that ϑ (O, Q) is
not empty (and, hence, it is a surface). Then there exist two uniquely defined
subsets I and E of V with the following properties.

(i) O ⊆ I and Q ⊆ E.
(ii) ϑ (O, Q) = ϑ (I, E).
(iii) I ∪ E = V and I ∩ E = ∅.
(iv) I is κ-connected and E is λ-connected.
(v) Every π-path connecting an element of I to an element of E crosses

ϑ (O, Q).

Boundaries in Digital Spaces 123

We call an ordered pair (κ, λ) of spel-adjacencies in a digital space (V, π)
desirable for (V, π), if the Desirability Claim as stated above is valid for that
particular choice of κ and λ. We see that, in order to prove the Desirability
Claim of Subsection 2.6 for the three special cases listed there, what we need
to do is to show that:

Case (i). (γN , ωN) is desirable for
(

ZN , ωN

)

;

Case (ii). (δN , ωN) is desirable for
(

ZN , ωN

)

;
Case (iii). (δ3, δ3) is desirable for (F, δ3).

This section is aimed at achieving this, but in a context which provides a
general approach to proving the desirability of pairs of spel-adjacencies.

3.2. Interiors and exteriors.

Let (V, π) be a digital space and let S be a surface in it. We define the
immediate interior II (S), the immediate exterior IE (S), and the immediate
neighborhood IN (S) of S as follows:

(3.1)
II (S) = {c | (c, d) ∈ S for some d in V } ,
IE (S) = {d | (c, d) ∈ S for some c in V } ,
IN (S) = II (S) ∪ IE (S) .

The interior I (S) and the exterior E (S) of S are defined as follows:

(3.2)

I (S) = {c ∈ V | there exists a π-path connecting c to
an element of II (S) that does not cross S} ,

E (S) = {c ∈ V | there exists a π-path connecting c to
an element of IE (S) that does not cross S} .

Lemma 3.2. For any surface S in a digital space (V, π),

(3.3) I (S) ∪ E (S) = V.

Proof. Let c be an arbitrary element of V and d be an arbitrary element of
IN (S). (By definition, neither of the sets V and IN (S) is empty.) Since V
is π-connected, there exists a π-path

〈

c(0), . . . , c(K)
〉

from c to d. Let k be the

smallest nonnegative integer such that c(k) is in IN (S). Then
〈

c(0), . . . , c(k)
〉

is a π-path connecting c to an element of II (S)∪ IE (S) which does not cross
S. Hence c is in at least one of I (S) and E (S). �

A surface S in a digital space (V, π) is said to be near-Jordan if every π-path
from any element of II (S) to any element of IE (S) crosses S. We remark that
if S is not a near-Jordan surface, then the intersection of its interior and its
exterior is necessarily nonempty. (This is because there is a path, not crossing
S, from its immediate interior to its immediate exterior; all the spels in this
path are in both the interior and the exterior of S, as can be seen from (3.2),
the symmetry of proto-adjacency and the symmetrical definition of “crosses.”)

124 Gabor T. Herman

Lemma 3.3. Let S be a surface in a digital space (V, π). Then the following
three conditions are equivalent.

(i) S is near-Jordan.
(ii) Every π-path from any element of I (S) to any element of E (S) crosses

S.
(iii) I (S) ∩ E (S) = ∅.

Furthermore, if these conditions are satisfied, then it is also the case that

(3.4) S = ϑ (I (S) , E (S)) .

Proof. Let S be any surface in a digital space (V, π). Suppose there is a π-path
〈

c(0), . . . , c(K)
〉

not crossing S connecting a c in I (S) to a d in E (S). By (3.2),

there is also a π-path
〈

e(0), . . . , e(L)
〉

not crossing S connecting c to an element

of II (S) and a π-path
〈

d(0), . . . , d(M)
〉

not crossing S connecting d to an ele-

ment of IE (S). Then
〈

e(L), . . . , e(0) = c = c(0), . . . , c(K) = d = d(0), . . . , d(M)
〉

is a π-path not crossing S which connects an element of II (S) to an element of
IE (S). Therefore, by definition, S is not near-Jordan. This argument shows
that (i) implies (ii). If I (S) and E (S) have an element c in common, then
the π-path 〈c〉 is from an element of I (S) to an element of E (S) and does not
cross S. This shows that (ii) implies (iii). That (iii) implies (i) was proven in
the paragraph preceding the statement of the lemma. Finally, it is the case for
any surface S that it is a subset of ϑ (I (S) , E (S)). (This follows trivially from
the definitions of immediate interior and exterior and of interior and exterior.)
Suppose now that (i) - (iii) hold and that the surfel (c, d) is in ϑ (I (S) , E (S)).
Then d belongs to E (S), and so by (iii) d does not belong to I (S); hence (d, c)
is not in S. The π-path 〈c, d〉 is from an element of I (S) to an element of E (S)
and so, as condition (ii) is satisfied, it crosses S. Hence (c, d) is in S. This
proves that any of the conditions (i) - (iii) implies (3.4). �

The following theorem provides two further characterizations of a near-
Jordan surface. The first of these has a significant property that character-
izations (ii) and (iii) in Lemma 3.3 do not have: it gives an easy way to con-
struct near-Jordan surfaces. It should also help the reader to grasp the essential
nature of such surfaces.

Theorem 3.4. Let S be a surface in a digital space (V, π). Then the following
three conditions are equivalent.

(i) S is near-Jordan.
(ii) There exists a nonempty proper subset O of V such that

(3.5) S = ϑ
(

O, O
)

.

(iii) There exists a nonempty proper subset O of V such that I (S) = O and
E (S) = O .

Furthermore, if these conditions are satisfied, then the O of (ii) has to be I (S).

Boundaries in Digital Spaces 125

Proof. Let S be any surface in a digital space (V, π). Since, by definition, S is
nonempty, both I (S) and E (S) are nonempty. If S is also near-Jordan, then
it follows from Lemma 3.2 and Lemma 3.3(iii) that I (S) is a nonempty proper
subset of V and E (S) is the complement of I (S) in V . By setting O = I (S),
(i) implies (ii) from (3.4). Now assume that there is an O that satisfies (ii).
To show that for this O we have that I (S) = O and E (S) = O, it suffices (by
Lemma 3.2) to show that (3.5) implies

(3.6) E (S) ∩ O = ∅

and

(3.7) I (S) ∩ O = ∅.

First we note that (3.5) implies that II (S) is a subset of O and that IE (S)
is a subset of O and also that any π-path from an element of O to an element
(necessarily not the same) of O must cross S. Now suppose that c is in O.
Then any π-path from c to an element of IE (S) must cross S, showing that c
is not in E (S), which means that (3.6) is true. Now suppose that d is in O.
Then any π-path from d to an element of II (S) must cross S, showing that d
is not in I (S), which means that (3.7) is true. Thus, (ii) implies (iii) and the
O of (ii) has to be I (S). Finally, (iii) of this theorem implies (iii) of Lemma
3.3, which is shown there to be equivalent to (i). �

3.3. Connectedness in digital spaces.

The following is a useful tool for proving connectedness of the interiors and/or
the exteriors of surfaces.

Theorem 3.5. Let S be a surface, and let κ and λ be spel-adjacencies in a
digital space (V, π).

(i) If for some κ-connected subset O of V

(3.8) II (S) ⊆ O ⊆ I (S) ,

then I (S) is κ-connected.
(ii) If for some λ-connected subset Q of V

(3.9) IE (S) ⊆ Q ⊆ E (S) ,

then E (S) is λ-connected.

Proof. We prove only (i) since the proof of (ii) is entirely analogous. We assume
the truth of the premise of (i). Let c1 and c2 be two spels in I (S). We need to
prove that they are κ-connected in I (S). By (3.2), for 1 ≤ i ≤ 2, there exists
a di in II (S) such that there is a π-path (hence, by the definition of a spel-
adjacency, a κ-path) not crossing S (and hence entirely in I (S)) connecting ci

to di. By (3.8), d1 and d2 are in O and are therefore κ-connected in O and
hence (again by (3.8)) in I (S). By combining these three κ-paths in I (S) into a
single κ-path (recall that κ is symmetric by the definition of a spel-adjacency),
we get the desired result. �

126 Gabor T. Herman

3.4. Boundaries in pictures.

Let S be a surface and κ and λ be spel-adjacencies in a digital space (V, π). We
say that S is a κλ-boundary in the picture (V, π, f), if there is κ-component
O of the set of 1-spels and a λ-component Q of the set of 0-spels such that
S = ϑ (O, Q).

Theorem 3.6. Let (V, π, f) be a picture and κ and λ be spel-adjacencies in
(V, π). If O is a κ-component of the set of 1-spels, Q is a λ-component of
the set of 0-spels, and S is the κλ-boundary ϑ (O, Q), then O ⊆ I (S) and
Q ⊆ E (S).

Proof. We prove only that O ⊆ I (S), since the proof that Q ⊆ E (S) is strictly
analogous. Let d ∈ O, c ∈ II (S) (⊆ O), and

〈

c(0), . . . , c(K)
〉

be a κ-path in O

from c to d. We prove by induction that, for 0 ≤ k ≤ K, c(k) ∈ I (S). This
suffices to complete our proof.

Clearly, c(0) ∈ I (S). Now assume that the same is true for c(k−1), for some
k, 1 ≤ k ≤ K. Since

(

c(k−1), c(k)
)

∈ κ, there exists a π-path
〈

e(0), . . . , e(T)
〉

from c(k−1) to c(k), such that, for 1 ≤ t ≤ T ,
(

e(0), e(t)
)

∈ κ. Now we prove by
induction that, for 0 ≤ t ≤ T ,

(3.10) e(t) ∈ I (S) ∪ Q.

Since e(T) = c(k) is in O and so cannot be in Q, this shows that c(k) ∈ I (S)
and so completes our proof.

If t = 0, then (3.10) is satisfied since e(0) = c(k−1) is in I (S) by the hy-
pothesis for the induction on k. Now assume that (3.10) is satisfied for some
t < T . In case e(t) ∈ I (S), either e(t+1) ∈ I (S) (in which case we are done)
or

(

e(t), e(t+1)
)

∈ S (see (3.2)), and so e(t+1) ∈ Q (and again we are done).

In case e(t) ∈ Q, either e(t+1) is a 0-spel and therefore is in Q since π ⊆ λ (in
which case we are done) or e(t+1) ∈ O, since c(k−1) is in O. In this latter case,
(

e(t+1), e(t)
)

∈ S, and so e(t+1) ∈ I (S) (and again we are done). �

Theorem 3.7. Let κ and λ be spel-adjacencies in a digital space (V, π). If S
is a κλ-boundary in a picture (V, π, f), then I (S) is κ-connected and E (S) is
λ-connected.

Proof. Let S = ϑ (O, Q), for some κ-component O of the set of 1-spels and
some λ-component Q of the set of 0-spels. Then, by Theorem 3.6, O ⊆ I (S)
and Q ⊆ E (S) and so, by Theorem 3.5, I (S) is κ-connected and E (S) is
λ-connected. �

What we have proved so far allows us to establish the following powerful
result for proving the desirability of a pair of spel-adjacencies.

Theorem 3.8. If κ and λ are spel-adjacencies in a digital space (V, π) such
that every κλ-boundary in every picture is near-Jordan, then (κ, λ) is desirable
for (V, π).

Boundaries in Digital Spaces 127

Proof. Let (V, π, f) be a picture over (V, π) and let O be a κ-component
of the set of 1-spels and Q be a λ-component of the set of 0-spels, such that
S = ϑ (O, Q) is not empty (and hence it is a κλ-boundary). By the assumption
of the theorem, S is near-Jordan. Let I = I (S) and E = E (S).

In Claim 3.1, (i) is satisfied, by Theorem 3.6. Near-Jordanness of S implies
the validity of (3.4), which is the same as (ii) in Claim 3.1. On the other hand,
(iii) in Claim 3.1 follows from Lemma 3.2 and (iii) of Lemma 3.3. Theorem 3.7
gives us (iv) of Claim 3.1 and (v) follows from (ii) of Lemma 3.3. That I (S) is
the only choice for I (and hence that E (S) is the only choice for E), satisfying
(ii) of Claim 3.1 follows from Theorem 3.4. �

3.5. Isomorphic digital spaces.

An isomorphism i from a digital space (V, π) to a digital space (V ′, π′) is a
one-to-one function that maps V onto V ′ so that

(3.11) (c, d) ∈ π ⇔ (i (c) , i (d)) ∈ π′.

Theorem 3.9. The digital spaces
(

Z3, σ
)

and (F, δ3) are isomorphic.

Proof. Define, for c ∈ Z3, i (c) = (c2 + c3, c3 + c1, c1 + c2). Since the sum of
its components is even, i (c) ∈ F . To show that i is one-to-one, assume that
i (c′) = i (c′′), and let c = c′ − c′′. Then i (c) = i (c′)− i (c′′) = 0, which implies
that c2 = −c3, c1 = −c3, and −2c3 = c1 + c2 = 0. From this it follows that all
three components of c are 0, and hence c′ = c′′. Finally, to show that i maps Z3

onto F , let d ∈ F , and define c1 = (−d1 + d2 + d3) /2, c2 = (d1 − d2 + d3) /2,
and c3 = (d1 + d2 − d3) /2. Since the sum of the components of d is even,
c1, c2, and c3 are all integers, and, clearly, i (c) = d. This shows that i is a
one-to-one function mapping Z3 onto F .

To show that i is an isomorphism from
(

Z3, σ
)

to (F, δ3), first we observe
that (i (c) , i (d)) ∈ δ3 if, and only if, i (c) and i (d) differ by 1 in two coordinates
and are the same in the third. A consequence of this observation is that if we
let a = i (c) − i (d), then (i (c) , i (d)) ∈ δ3 if, and only if, two of |a1|, |a2|, and
|a3| have the value 1 and the third has the value 0. By the definition of i, for
a = i (c) − i (d),

(3.12)
a1 = (c2 − d2) + (c3 − d3) ,
a2 = (c3 − d3) + (c1 − d1) ,
a3 = (c1 − d1) + (c2 − d2) .

Now suppose that (c, d) ∈ σ. There are two different reasons why this might
be the case. The first is that (c, d) ∈ ω3. In this case, exactly one of |c1 − d1|,
|c2 − d2|, and |c3 − d3| has the value 1 and the other two have the value 0. The
other possibility is that there exist two integers k and j (1 ≤ k 6= j ≤ 3) such
that (ck − dk) × (cj − dj) = −1 and cn = dn if n is neither k nor j. Looking
at the components of a, as expressed in the equation above, we see that either
case implies that (i (c) , i (d)) ∈ δ3.

Conversely, suppose that (i (c) , i (d)) ∈ δ3 and so two of |a1|, |a2|, and
|a3| have the value 1 and the third has the value 0. One way that this may

128 Gabor T. Herman

come about is by both the terms in the zero-valued sum being themselves zero-
valued. In that case, the other (common) term in the other two sums must have
absolute value 1. This implies that (c, d) ∈ ω3. The alternative possibility is
that the terms in the zero-valued sum are not zero-valued but are the negatives
of each other. Then we have the situation that there exist two integers k and
j (1 ≤ k 6= j ≤ 3) such that (ck − dk) = − (cj − dj) 6= 0 and, if n is neither k
nor j, |(cn − dn) + (ck − dk)| = 1 and |(cn − dn) − (ck − dk)| = 1. It is easy to
see that this can happen only if (ck − dk) × (cj − dj) = −1 and cn = dn. In
either case, (c, d) ∈ σ. �

Theorem 3.10. Let i be an isomorphism from a digital space (V, π) to a digital
space (V ′, π′), and let S be a surface in (V, π). If we define

(3.13) S′ = {(i (c) , i (d)) | (c, d) ∈ S} ,

then S is a near-Jordan surface in (V, π) if, and only if, S′ is a near-Jordan
surface in (V ′, π′).

Proof. First we point out that S′ is indeed a surface in (V ′, π′), since the
fact that S is a nonempty subset of π implies, in view of (3.11), that S′ is a
nonempty subset of π′.

The rest of the theorem is proved by the following sequence of equiva-
lences, each one of which is an immediate consequence of the definitions. S
is not a near-Jordan surface in (V, π) if, and only if, there exists a π-path
〈

c(0), . . . , c(K)
〉

from an element of II (S) to an element of IE (S) which does

not cross S. This happens if, and only if, there exists a π′-path
〈

i
(

c(0)
)

, . . . ,

i
(

c(K)
)〉

from an element of II (S′) to an element of IE (S′) that does not
cross S′, which means that S′ is not a near-Jordan surface in (V ′, π′). �

If there is an isomorphism i from the digital space (V, π) to a digital space
(V ′, π′) and ρ is an adjacency in (V, π), then we define its isomorphic image
(due to i) ρ′ in (V ′, π′) by

(3.14) (i (c) , i (d)) ∈ ρ′ ⇔ (c, d) ∈ ρ.

It is trivial to check that the ρ′ defined in this fashion is an adjacency in
(V ′, π′).

Since here we will be discussing multiple definitions simultaneously, for any
spel-adjacency ρ in a digital space (V, π) and for any subsets O and Q of V ,
we introduce the notation

(3.15) ϑρ (O, Q) = {(c, d) | c ∈ O, d ∈ Q, (c, d) ∈ ρ} .

Note that ϑπ (O, Q) is just the boundary in (V, π) between O and Q.

Theorem 3.11. If i is an isomorphism from the digital space (V, π) to the
digital space (V ′, π′), (κ, λ) is a desirable pair of adjacencies for (V, π) and
κ′ and λ′ are the respective isomorphic images of κ and λ, then (κ′, λ′) is
desirable for (V ′, π′).

Boundaries in Digital Spaces 129

Proof. By Theorem 3.8 we need to prove that any κ′λ′-boundary S′ in any
picture (V ′, π′, f ′) over (V ′, π′) is near-Jordan.

Let S′ = ϑπ′ (O′, Q′), where O′ is a κ′-component of the set of 1-spels and
Q′ is a λ′-component of the set of 0-spels of (V ′, π′, f ′). Define the function
f on V by f (c) = f ′ (i (c)). Then (V, π, f) is a picture over (V, π), and
O = {c | i (c) ∈ O′} and Q = {d | i (d) ∈ Q′} are clearly a κ-component of the
set of 1-spels and a λ-component of the set of 0-spels, respectively, of (V, π, f).
Defining S = ϑπ (O, Q) we get

(3.16)
(c, d) ∈ S ⇔ c ∈ O and d ∈ Q and (c, d) ∈ π

⇔ i (c) ∈ O′ and i (d) ∈ Q′ and (i (c) , i (d)) ∈ π′

⇔ (i (c) , i (d)) ∈ S′.

This implies that S is a surface (since it is nonempty), it is near-Jordan (by
Lemma 3.3) and so S′ is also near-Jordan (by Theorem 3.10). �

3.6. Simple connectedness in digital spaces.

Let S be a surface in a digital space (V, π). For any practical application, it
would be impossible to determine whether S is near-Jordan by examining all
π-paths from II (S) to IE (S). We need instead a result which says that S is
near-Jordan if some local condition is satisfied at every surfel of S. This is the
subject matter of this and the next subsection.

In classical topology, a simply connected space is (intuitively speaking) a
connected space in which every loop can be continuously pulled to a point
without leaving the space. Here we present one of the corresponding notions
for digital spaces (for others, see Section 6.1 of [13] and Section 3 of [5]).

If

(3.17) P =
〈

c(1), . . . , c(m), d(0), . . . , d(n), e(1), . . . , e(l)
〉

and

(3.18) P ′ =
〈

c(1), . . . , c(m), f (0), . . . , f (k), e(1), . . . , e(l)
〉

are π-paths in V , such that

(3.19) f (0) = d(0), f (k) = d(n), and 1 ≤ k + n ≤ 4,

then P and P ′ are said to be elementarily equivalent in the digital space (V, π).
(Note that in this definition, m or l or both in (3.17) may be zero; in other
words, the difference between elementarily equivalent π-paths may be at their
“head” or at their “tail.”) Two π-paths, P and P ′ in V are said to be equivalent
in the digital space (V, π), if there is a sequence of π-paths P0, . . . , PL (L ≥ 0)
in V , such that P0 = P, PL = P ′ and, for 1 ≤ l ≤ L, Pl−1 and Pl are
elementarily equivalent in the digital space (V, π).

We demonstrate the notion of equivalent π-paths in
(

Z2, ω2

)

in Figure 15.
That 〈a, b, c, d, e, f, g, h, i, j, k, l, a〉 is elementarily equivalent to 〈a, b, c,
d, e, d, g, h, i, j, k, l, a〉 follows by substituting in (3.17) n = 2, d(0) = e,
d(1) = f , d(2) = g and in (3.18) k = 2, f (0) = e, f (1) = d, f (2) = g. That

130 Gabor T. Herman

Figure 15. Demonstration of equivalence of π-paths in
(

Z2, ω2

)

: 〈a, b, c, d, e, f, g, h, i, j, k, l, a〉 is equivalent to
〈a, b, c, d, g, h, i, j, k, l, a〉, since it is elementarily equiva-
lent to 〈a, b, c, d, e, d, g, h, i, j, k, l, a〉, which is elementar-
ily equivalent to 〈a, b, c, d, g, h, i, j, k, l, a〉.

〈a, b, c, d, e, d, g, h, i, j, k, l, a〉 is elementarily equivalent to 〈a, b, c, d, g,
h, i, j, k, l, a〉 follows by substituting in (3.17) n = 2, d(0) = d, d(1) = e,
d(2) = d and in (3.18) k = 0, f (0) = d.

A loop (of length K) in a digital space (V, π) is a π-path
〈

c(0), . . . , c(K)
〉

such that c(K) = c(0). In particular, for any spel c, 〈c〉 is a loop, and is called
a trivial loop. We note that any loop of length 1, 2, or 3 is automatically
equivalent to a trivial loop. A digital space is said to be simply connected if
every loop in the digital space is equivalent to a trivial loop.

Theorem 3.12. For any positive integer N ,
(

ZN , ωN

)

is simply connected.

Proof. We show that every loop in
(

ZN , ωN

)

is equivalent to a trivial loop.
We do this by induction on the length of the loop. We have already noted that,
in general, every loop of length 1 or 2 is equivalent to a trivial loop. Suppose
that every loop in

(

ZN , ωN

)

of length less than some K > 2 is equivalent to

a trivial loop. Consider a loop
〈

c(0), . . . , c(K)
〉

in
(

ZN , ωN

)

of length K. We
now show that it is equivalent to a loop of length K − 1 or K − 2 and thus, by
the induction hypothesis, is equivalent to a trivial loop.

Since c(1) is ωN -adjacent to c(0), we have c(1) 6= c(0). (To illustrate our argu-
ment, consider Figure 15. In that figure c(0) = a = (0, 0) and c(1) = b = (0, 1).)

Then there is a unique j such that c
(1)
j 6= c

(0)
j . Without loss of generality, as-

sume that c
(1)
j > c

(0)
j . (In Figure 15, j = 2.) Let z = max1≤k≤K

{

c
(k)
j

}

. (In

Figure 15, z = 3.) Let l be the largest integer in the range 0 < l < K such

that c
(l)
j = z. (In Figure 15, in the left column l = 5 with c(5) = f = (2, 3)

and in the middle column l = 4 with c(4) = e = (1, 3).) Clearly, c
(l+1)
j = z − 1.

(In Figure 15, in the left column c(l+1) = c(6) = g = (2, 2) and in the middle
column c(l+1) = c(5) = d = (1, 2).) Let k be the smallest integer such that, for

all i in the range 0 < k ≤ i ≤ l < K, we have c
(i)
j = z. (In Figure 15, k = 4 in

Boundaries in Digital Spaces 131

both the left and the middle column.) Clearly, c
(k−1)
j = z − 1. (In Figure 15,

c(k−1) = c(3) = d = (1, 2) in both the left and middle columns.) We will now
use induction on l − k.

If l−k = 0, then k = l and therefore c(k−1) = c(k+1). (This case is illustrated
in Figure 15 by the middle column, for which k = l = 4 and c(k−1) = c(k+1) =
d.) In this case the loop

(3.20)
〈

c(0), . . . , c(k−2), c(k−1), c(k), c(k+1), c(k+2), . . . , c(K)
〉

is elementarily equivalent to the loop

(3.21)
〈

c(0), . . . , c(k−2), c(k−1) = c(k+1), c(k+2), . . . , c(K)
〉

which has length K−2 and we are done. (The loop in (3.20) is illustrated by the
loop of the middle column of Figure 15, while the loop in (3.21) is illustrated
by the loop of the right column of Figure 15.)

Suppose now (induction hypothesis) that whenever l−k = h, then
〈

c(0), . . . ,

c(K)
〉

is equivalent to a loop of length K − 1 or K − 2. We now show that the
same conclusion holds if l − k = h + 1. Let

(3.22)
〈

c(0), c(1), . . . , c(k), . . . , c(l−1), c(l), c(l+1), . . . , c(K)
〉

be a loop. Define j, z, l, and k for this loop as above and suppose l−k = h+1.
(This is the case in Figure 15 for the loop associated with the left column with
l = 5, k = 4 and, hence, h = 0. Note also that for this loop j = 2 and z = 3.)
Let c′(l) be a spel such that, for 1 ≤ n ≤ N ,

(3.23) c′(l)n =

{

z − 1, if n = j,

c
(l−1)
n , otherwise.

(In the left column of Figure 15, c′(l) = c′(5) = (1, 2) = d.) Clearly, c′(l)

is proto-adjacent to c(l−1). Also, c(l+1) differs from c(l) in exactly the jth
component (which is z−1 for the former) and c(l) differs from c(l−1) in exactly
one component which is other than the jth; thus c′(l) is proto-adjacent to c(l+1).
(In the left column of Figure 15, c(l−1) = c(4) = e and c(l+1) = c(6) = g, both
of which are proto-adjacent to c′(l) = c′(5) = d.) It follows that

(3.24)
〈

c(0), c(1), . . . , c(k), . . . , c(l−1), c′(l), c(l+1), . . . , c(K)
〉

is also a loop and is easily seen to be elementarily equivalent to the loop in
(3.22). (The loop in (3.22) is illustrated by the loop of the left column of Figure
15, while the loop in (3.24) is illustrated by the loop of the middle column of
Figure 15.) Furthermore, it follows from (3.23) that for the loop in (3.24) the
condition of the induction hypothesis holds. (Indeed, we have already seen
that for the middle column of Figure 15 we have l − k = 0 = h.) So, by the
induction hypothesis, the loop in (3.24) is equivalent to a loop of length K − 1
or K − 2. From this it follows that the loop in (3.22) is also equivalent to a
loop of length K − 1 or K − 2. �

132 Gabor T. Herman

3.7. Locally-Jordan surfaces.

Let S be a surface and P =
〈

c(0), . . . , c(K)
〉

be a π-path in a digital space
(V, π). We say that the crossing parity pSP of P through S is even (or zero;
i.e., pSP = 0) if the number of π-paths among

〈

c(0), c(1)
〉

, . . . ,
〈

c(K−1), c(K)
〉

that cross S is even and we say that it is odd (or one; i.e., pSP = 1) if this
number is odd. We use the notation ⊕ for modulo 2 addition of parities (i.e.;
0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1).

It is easy to see that, for any surface S in a digital space, the crossing parity
through S is even for any loop in the digital space whose length is not greater
than two. Also, cyclic permutation of a loop does not influence its crossing
parity through a surface S, since, for 1 ≤ k ≤ K,

(3.25)
pS

〈

c(0), . . . , c(k−1), c(k), . . . , c(K)
〉

=

pS

〈

c(k), . . . , c(K) = c(0), . . . , c(k−1), c(k)
〉

.

In addition, reversing a π-path does not change its crossing parity. It is also
easy to see that if

〈

c(0), . . . , c(K)
〉

and
〈

d(0), . . . , d(L)
〉

are π-paths such that

c(K) = d(0), then

(3.26)
pS

〈

c(0), . . . , c(K), d(1), . . . , d(L)
〉

=
pS

〈

c(0), . . . , c(K)
〉

⊕ pS

〈

d(0), . . . , d(L)
〉

.

Theorem 3.13. If S is a near-Jordan surface in a digital space, then the
crossing parity through S is odd for any π-path P =

〈

c(0), . . . , c(K)
〉

such that
(

c(0), c(K)
)

∈ S.

Proof. First note that (according to Lemma 3.3), since S is near-Jordan, I (S)∩
E (S) = ∅ and S = ϑ (I (S) , E (S)). We prove by induction that, for any
0 ≤ k ≤ K,

(3.27) pS

〈

c(0), . . . , c(k)
〉

=

{

0, if c(k) ∈ I (S) ,

1, otherwise.

Since c(K) ∈ E (S), this is sufficient to prove the theorem.
Clearly, (3.27) is true for k = 0. Suppose that (3.27) is true for some k − 1,

where 1 ≤ k ≤ K. We prove that it is also true for k. We use the following
special case of (3.26):

(3.28) pS

〈

c(0), . . . , c(k−1), c(k)
〉

= pS

〈

c(0), . . . , c(k−1)
〉

⊕ pS

〈

c(k−1), c(k)
〉

.

In case c(k−1) ∈ I (S), the first term on the right-hand side of (3.28) is 0, and
the second term is 0 if c(k) ∈ I (S) and 1 otherwise. In case c(k−1) /∈ I (S),
the first term on the right-hand side of (3.28) is 1, and the second term is 1 if
c(k) ∈ I (S) and 0 otherwise. In either case, (3.27) is true for k. �

A surface S in a digital space (V, π) is said to be locally-Jordan if pS

〈

c(0), . . . ,

c(K)
〉

is odd for any π-path such that
(

c(0), c(K)
)

∈ S and 2 ≤ K ≤ 3. (This
restriction on V enforces “locality.” It says that any path from the immediate
interior of S to its immediate exterior must cross S exactly once if K = 2 and

Boundaries in Digital Spaces 133

must cross S either once or three times if K = 3.) By Theorem 3.13, if a
surface S in a digital space (V, π) is near-Jordan, then it is locally-Jordan.

Lemma 3.14. Any loop of length not more than 4 has even crossing parity
through any locally-Jordan surface in any digital space (V, π).

Proof. We have already pointed out that the crossing parity through any sur-
face is even for any loop of length not more than two.

Let S be a locally-Jordan surface. Consider a loop L =
〈

c(0), . . . , c(K)
〉

with 3 ≤ K ≤ 4. If there does not exist a k, 1 ≤ k ≤ K, such that
〈

c(k−1), c(k)
〉

crosses S, then we are done. Otherwise, for such a k, either
(

c(k−1), c(k)
)

∈ S or
(

c(k), c(k−1)
)

∈ S is true. If
(

c(k), c(k−1)
)

∈ S, P =
〈

c(k), . . . , c(K) = c(0), . . . , c(k−1)
〉

is a π-path of length K−1 with 2 ≤ K−1 ≤ 3
and so the fact that S is locally-Jordan implies pSP = 1. By application of
(3.25) and (3.26), we have

(3.29) pSL = pSP ⊕ pS

〈

c(k−1), c(k)
〉

= 1 ⊕ 1 = 0.

If
(

c(k−1), c(k)
)

∈ S, a similar argument, which also makes use of the fact that
reversing a π-path does not change its crossing parity, can be used to derive
the same conclusion. �

Lemma 3.15. Let S be a locally-Jordan surface in a digital space (V, π). If P
and P ′ are equivalent π-paths, then they have the same crossing parity through
S.

Proof. By the definition of equivalent, it is sufficient to prove that if P and
P ′ satisfy (3.17), (3.18) and (3.19), then they have the same crossing parity
through S.

By applying (3.26), we get

(3.30)
pSP = pS

〈

c(1), . . . , c(m), d(0)
〉

⊕

pS

〈

d(0), . . . , d(n)
〉

⊕ pS

〈

d(n), e(1), . . . , e(l)
〉

and

(3.31)
pSP ′ = pS

〈

c(1), . . . , c(m), f (0)
〉

⊕

pS

〈

f (0), . . . , f (k)
〉

⊕ pS

〈

f (k), e(1), . . . , e(l)
〉

.

Therefore, using (3.19), the invariance of crossing parity under reversal, and
(3.26), we get

(3.32)
pSP ⊕ pSP ′ = pS

〈

d(0), . . . , d(n)
〉

⊕ pS

〈

f (0), . . . , f (k)
〉

= pS

〈

d(0), . . . , d(n) = f (k), . . . , f (0) = d(0)
〉

= 0.

The last equality follows from the previous lemma combined with (3.19). �

The results up to now apply to digital spaces which do not have to be simply
connected. The next lemma makes essential use of simple connectedness.

134 Gabor T. Herman

Lemma 3.16. If S is a locally-Jordan surface in a simply connected digital
space (V, π), then S is near-Jordan if either (and hence both) of the following
two equivalent conditions holds.

(i) For any c ∈ II (S) and d ∈ II (S), there exists a π-path P from c to d
such that pSP = 0.

(ii) For any c ∈ IE (S) and d ∈ IE (S), there exists a π-path P from c to
d such that pSP = 0.

Proof. Evidently the two conditions are equivalent. Indeed, if c ∈ II (S) and
d ∈ II (S), then there exist c′ ∈ IE (S) and d′ ∈ IE (S) such that (c, c′) ∈ S
and (d, d′) ∈ S; hence if there exists a π-path of even crossing parity from c′

to d′, then there also exists one from c to d, so that (ii) implies (i). Similarly,
(i) implies (ii).

In what follows, we prove that S is near-Jordan if (ii) holds. We do this by
supposing that S is not near-Jordan and showing that this, together with (ii),
leads to a contradiction.

First, we show that there exists a π-path P1 =
〈

c(1), . . . , c(K)
〉

such that

c(1) ∈ II (S), c(K) ∈ IE (S) and pSP1 = 0. Indeed, since S is supposed to be
not near-Jordan, there is a π-path from II (S) to IE (S) that does not cross
S. Clearly, any such π-path has the required properties.

Next, we show that there exists a π-path P3 =
〈

e(1), . . . , e(L)
〉

such that
(

e(1), e(L)
)

∈ S and pSP3 = 0. Let P1 be the π-path of the last para-

graph. Let c(0) be such that
(

c(1), c(0)
)

∈ S. By (ii), there exists a π-path

P2 =
〈

c(K) = d(0), . . . , d(L) = c(0)
〉

from c(K) to c(0) such that pSP2 = 0.

Then P3 =
〈

c(1), . . . , c(K), d(1), . . . , d(L)
〉

is a π-path from c(1) to d(L) such

that
(

c(1), d(L)
)

∈ S and, by (3.26), pSP3 = pSP1 ⊕ pSP2 = 0.
For a π-path P3 satisfying the properties listed at the beginning of the pre-

vious paragraph, let e(0) = e(L). By (3.26), P4 =
〈

e(0), e(1), . . . , e(L)
〉

is a loop

such that pSP4 = pS

〈

e(0), e(1)
〉

⊕ pSP3 = 1. Since (V, π) is simply connected,
P4 is equivalent to a trivial loop, whose crossing parity through S is zero. Since
S is locally-Jordan, according to Lemma 3.15, we must also have pSP4 = 0,
contradicting the fact that pSP4 = 1. �

Lemma 3.17. Let (V, π, f) be a picture over the digital space (V, π).

(i) Let λ be a spel-adjacency in (V, π). Let O be a union of π-components
of 1-spels and Q be a λ-component of 0-spels in (V, π, f) such that
S = ϑ (O, Q) is nonempty. For any c and d in Q, there exists a π-path
P from c to d such that pSP = 0.

(ii) Let κ be a spel-adjacency in (V, π). Let O be a κ-component of 1-spels
and Q be a union of π-components of 0-spels in (V, π, f) such that
S = ϑ (O, Q) is nonempty. For any c and d in O, there exists a π-path
P from c to d such that pSP = 0.

Boundaries in Digital Spaces 135

Proof. We prove only (i), since the proof of (ii) is obviously similar.
First, we show that the result is true if (c, d) ∈ λ. In this case, there exists

a π-path
〈

c(0), . . . , c(K)
〉

from c to d such that, 0 ≤ k ≤ K,
(

c, ck
)

∈ λ. Now
we prove by induction that, for 0 ≤ k ≤ K,

(3.33) pS

〈

c(0), . . . , c(k)
〉

=

{

0, if c(k) /∈ O,

1, if c(k) ∈ O.

Since c(K) is a 0-spel, and so cannot be in O, this inductive proof meets the aim
of this paragraph. Clearly, (3.33) is true for k = 0, since c(0) is a 0-spel. Now
suppose that it is true for some k − 1 (1 ≤ k ≤ K). In the proof we repeatedly
use (3.28). First we consider the case c(k−1) ∈ O. In this case the first term on
the right-hand side of (3.28) has value 1, by the induction hypothesis. If c(k) is
a 1-spel, then it must also be in O and so the second term on the right-hand side
of (3.28) has value 0. If c(k) is a 0-spel, then it must be in Q (since

(

c, ck
)

∈ λ
and Q is a λ-component of 0-spels that contains c) and so the second term on
the right-hand side of (3.28) has the value 1. Either way, (3.33) is true for k.
On the other hand, if c(k−1) /∈ O, the first term on the right-hand side of (3.28)
has value 0 by the induction hypothesis. If c(k−1) is a 1-spel, then it cannot be
in Q and so the second term on the right-hand side of (3.28) has value 0. At
the same time c(k) cannot be in O, so (3.33) is true for k. If c(k−1) is a 0-spel,
then (as before) it must be in Q and so the second term on the right-hand side
of (3.28) has value 0 if c(k) /∈ O and value 1 if c(k) ∈ O. Thus, again (3.33) is
true in either case for k. This completes the induction proof.

Now consider arbitrary c and d in Q. There exists a λ-path
〈

c(0), . . . , c(K)
〉

of 0-spels in Q from c to d. By the result in the last paragraph, for 1 ≤

k ≤ K, there exists a π-path Pk =
〈

c(k−1) = c
(0)
k , . . . , c

(mk)
k = c(k)

〉

such that

pSPk = 0. Therefore, P =
〈

c
(0)
1 , . . . , c

(m1)
1 , c

(1)
2 , . . . , c

(m2)
2 , . . . , c

(1)
K , . . . , c

(mK)
K

〉

is a π-path from c to d such that

(3.34) pSP =

K
∑

k=1

pS

〈

c
(0)
k , . . . , c

(mk)
k

〉

=

K
∑

k=1

pSPk = 0,

as can be shown by repeated application of (3.26). (Here
∑

refers to modulo
2 additions.) �

Theorem 3.18. If κ and λ are spel-adjacencies in a simply connected digital
space (V, π), then every locally-Jordan κλ-boundary in a picture over (V, π) is
near-Jordan.

Proof. Let O be a κ-component of 1-spels and Q be a λ-component of 0-spels in
a picture over (V, π) such that S = ϑ (O, Q) is a locally-Jordan κλ-boundary.
Noting that Q has to be a union of π-components of 0-spels, we see from Lemma
3.17(ii) that for any c and d in O, there exists a π-path P from c to d such that
pSP = 0. Noting that II (S) ⊆ O, we see that this implies that condition (i)
in Lemma 3.16 holds and so S is near-Jordan. �

136 Gabor T. Herman

3.8. Desirable pairs of spel-adjacencies.

Lemma 3.19. If S is a κλ-boundary in a picture over a digital space (V, π)
and P = 〈a, b, c〉 is a π-path such that (a, c) ∈ S, then pSP = 1.

Proof. Suppose that S = ϑ (O, Q), where O is a κ-component of 1-spels and
Q is a λ-component of 0-spels. If b is a 1-spel, then it is in O and (b, c) ∈ S.
If b is a 0-spel, then it is in Q and (a, b) ∈ S. In either case, pSP = 1. �

Lemma 3.20. A κλ-boundary S in a picture over a digital space (V, π) is
locally-Jordan if pSP = 1 for every π-path P =

〈

c(0), c(1), c(2), c(3)
〉

of length

3 such that
(

c(0), c(3)
)

∈ S, c(0) 6= c(2), c(1) 6= c(3), c(1) is a 0-spel and c(2) is a
1-spel.

Proof. Let O be the κ-component of 1-spels and Q be the λ-component of 0-
spels such that S = ϑ (O, Q). We need to show that pSP = 1 for any π-path
P =

〈

c(0), . . . , c(K)
〉

such that
(

c(0), c(K)
)

∈ S and K = 2 or 3.

By Lemma 3.19, we need only show the result for K = 3. If c(0) = c(2) or
c(1) = c(3), then it is easy to see that pSP = pS

〈

c(0), c(3)
〉

= 1. In the following,

we assume that both c(0) 6= c(2) and c(1) 6= c(3). There are four possibilities:
(i) both c(1) and c(2) are 1-spels, (ii) both c(1) and c(2) are 0-spels, (iii) c(1) is a
1-spel and c(2) is a 0-spel, and (iv) c(1) is a 0-spel and c(2) is a 1-spel. In cases
(i), (ii) and (iii), it is easily seen that pSP = 1. That this is also true in case
(iv) is exactly the condition in our lemma. �

Theorem 3.21. For N ≥ 1, every γNωN -boundary in every picture over the
digital space

(

ZN , ωN

)

is near-Jordan.

Proof. Let S be an arbitrary γNωN -boundary in a picture over
(

ZN , ωN

)

.
Let O be the γN -component of 1-spels and Q be the ωN -component of 0-spels
such that S = ϑ (O, Q). Since γN and ωN are both spel-adjacencies in the
simply connected digital space

(

ZN , ωN

)

(see Theorem 3.12), all we have to
do, according to Theorem 3.18, is to show that S is locally-Jordan. We use
Lemma 3.20. Let P =

〈

c(0), c(1), c(2), c(3)
〉

be an ωN -path of length 3 such

that
(

c(0), c(3)
)

∈ S, c(0) 6= c(2), c(1) 6= c(3), c(1) is a 0-spel and c(2) is a 1-spel.
Now all we need to show is that pSP = 1.

The properties that
〈

c(0), c(1), c(2), c(3)
〉

is an ωN -path,
(

c(0), c(3)
)

∈ S (and

hence
(

c(3), c(0)
)

∈ π), c(0) 6= c(2) and c(1) 6= c(3) imply that there exist integers
i, j (1 ≤ i 6= j ≤ N) and u, v (|u| = |v| = 1) such that

(3.35) c
(1)
i = c

(0)
i + u, c

(2)
j = c

(1)
j + v, c

(3)
i = c

(2)
i − u, c

(0)
j = c

(3)
j − v.

If i or j is 1, then c(2) is γN -adjacent to c(0) and, consequently is in O.
Under these circumstances, it is easy to see that, whether or not c(1) is in Q,
we have pSP = 1. On the other hand, if i and j are not 1, then we also have
that either c(2) ∈ O or c(1) ∈ Q (and, consequently, pSP = 1), as we prove now
by showing that the alternative leads to a contradiction.

Boundaries in Digital Spaces 137

Assuming the alternative, we have a loop
〈

c(0), c(1), c(2), c(3), c(0)
〉

in
(

ZN ,

ωN), such that c
(k)
1 is the same for 0 ≤ k ≤ 3, and all of the following conditions

hold: (i)
(

c(0), c(3)
)

∈ S, (ii) there exist integers i, j (1 ≤ i 6= j ≤ N) and

u, v (|u| = |v| = 1) such that (3.35) is satisfied, and (iii) c(1) is a 0-spel not
in Q and c(2) is a 1-spel not in O. Since S is assumed to be finite, we may
assume without loss of generality that

〈

c(0), c(1), c(2), c(3), c(0)
〉

is such a loop

for which the common value z of c
(0)
1 = c

(1)
1 = c

(2)
1 = c

(3)
1 is as great as possible.

Now consider the four spels c′(0), . . . , c′(3) such that c′(k) is proto-adjacent to

c(k) and c
′(k)
1 = c

(k)
1 + 1 for 0 ≤ k ≤ 3. Clearly,

〈

c′(0), c′(1), c′(2), c′(3), c′(0)
〉

is

a loop in
(

ZN , ωN

)

such that c
′(k)
1 is the same (namely, z + 1) for 0 ≤ k ≤ 3.

Condition (ii) also holds for this new loop. Looking at condition (iii), we
see that c′(1) must be a 0-spel (otherwise c(2) would be in O) and not in Q
(otherwise c(1) would be in Q). Similarly, c′(3) must be a 0-spel and hence
must be in Q. In view of this, c′(2) must be a 1-spel (otherwise c′(1) would be
in Q after all) and not in O (otherwise c(2) would be in O). Similarly, c′(0)

must be a 1-spel and hence must be in O. Putting all this together, we see
that the loop

〈

c′(0), c′(1), c′(2), c′(3), c′(0)
〉

also satisfies conditions (i) and (iii).
This contradicts the maximality of z and thus completes the proof. �

Combining Theorem 3.21 with Theorem 3.8 yields the following.

Corollary 3.22. For N ≥ 1, (γN , ωN) is desirable for
(

ZN , ωN

)

.

Theorem 3.23. If (κ, λ) is a desirable pair of adjacencies for a digital space
(V, π), then so is (κ′, λ) for any adjacency such that κ ⊆ κ′.

Proof. By Theorem 3.8 all we need to prove that any κ′λ-boundary S in any
binary picture (V, π, f) is near-Jordan. Let c ∈ II (S) and d ∈ IE (S). We
need to show that every π-path from c to d crosses S.

Let O be the κ-component and O′ be the κ′-component of the set of 1-spels
in (V, π, f) which contain c and let Q be the λ-component of the set of 0-spels
in (V, π, f) which contains d. Then S = ϑ (O′, Q). Since κ ⊆ κ′, we have
O ⊆ O′, and ϑ (O, Q) ⊆ S. Furthermore, ϑ (O, Q) is not empty, since the fact
that c (which is in O) is in II (S) implies that there must be an e in IE (S)
(and hence in Q) such that (c, e) ∈ ϑ (O, Q). The fact that (κ, λ) is a desirable
pair for the digital space (V, π) implies that the κλ-boundary ϑ (O, Q) is near-
Jordan. By Theorem 3.6, we also know that c, which is in O, is in the interior
of ϑ (O, Q) and d, which is in Q, is in the exterior of ϑ (O, Q). By Lemma
3.3, every π-path from c to d crosses ϑ (O, Q) and hence crosses S since S is a
superset of ϑ (O, Q). �

The followings are immediate consequences of the last two theorems and
Theorem 3.8.

Corollary 3.24. For N ≥ 1, every δNωN -boundary in every picture over the
digital space

(

ZN , ωN

)

is near-Jordan.

138 Gabor T. Herman

Corollary 3.25. For N ≥ 1, (δN , ωN) is a desirable pair for
(

ZN , ωN

)

.

Theorem 3.26. In the digital space
(

Z3, ω3

)

, every σσ-boundary in every
picture is near-Jordan.

Proof. Let S be an arbitrary σσ-boundary in a picture over
(

Z3, ω3

)

. Let
O be a σ-component of 1-spels and Q be a σ-component of 0-spels such that
S = ϑ (O, Q). According to Theorem 3.18, all we have to do is to show that S
is locally-Jordan. We use Lemma 3.20. Let

〈

c(0), c(1), c(2), c(3)
〉

be an ω3-path

of length 3 such that
(

c(0), c(3)
)

∈ S, c(0) 6= c(2), c(1) 6= c(3), c(1) is a 0-spel and

c(2) is a 1-spel. Now all we need to show is that pSP = 1.
Just as in the proof of Theorem 3.21, we get that there exists a pair of

integers i, j (1 ≤ i 6= j ≤ 3) and u, v (|u| = |v| = 1) such that (3.35) is
satisfied. It follows that

(3.36)
(

c
(2)
i − c

(0)
i

)

×
(

c
(2)
j − c

(0)
j

)

= u × v = −
(

c
(3)
i − c

(1)
i

)

×
(

c
(3)
j − c

(1)
j

)

and c2
k = c0

k and c3
k = c1

k, if k is neither i nor j.
Now observing the definition of σ in Subsection 3.1 we see that exactly one

of the diagonals
(

c(0), c(2)
)

and
(

c(1), c(3)
)

is in σ. If
(

c(0), c(2)
)

∈ σ, then

c(2) ∈ O and we see that pSP = 1, whether or not c(1) ∈ Q. If
(

c(1), c(3)
)

∈ σ,

then c(1) ∈ Q, and again pSP = 1. �

Corollary 3.27. In the digital space
(

Z3, ω3

)

, (σ, σ) is a desirable pair.

Theorem 3.28. Let ρ be a spel-adjacency in a digital space (V, π) such that
(ρ, ρ) is desirable for (V, π). Then (ρ, ρ) is desirable for (V, ρ).

Proof. By Theorem 3.8, all we need to show is that every ρρ-boundary S in
every binary picture (V, ρ, f) is near-Jordan. Let O be the ρ-component of
1-spels and Q be the ρ-component of 0-spels such that S = ϑρ (O, Q).

Consider, T = ϑπ (O, Q) = ϑρ (O, Q) ∩ π. We want to show first that T is
a near-Jordan surface in (V, π). For this it is sufficient to show that T is not
empty, since in that case the desirability of (ρ, ρ) for (V, π) provides us what
we seek.

We know that S is not empty (by the definition of a boundary). Let (c, d) ∈
S, and hence (c, d) ∈ ρ. By the definition of a spel-adjacency, there exists a
π-path

〈

c(0), . . . , c(K)
〉

from c to d such that
(

c(0), c(k)
)

∈ ρ, for 1 ≤ k ≤ K.

Let c(k−1) be the last 1-spel on this path; it exists since c is a 1-spel and d is a
0-spel. Then c(k−1) must be in O because c(0) ∈ O is ρ-adjacent to it, and c(k)

must be in Q because
〈

c(k), . . . , c(K)
〉

is a ρ-path of 0s and c(K) is in Q. This

shows that
(

c(k−1), c(k)
)

∈ T .

Let
〈

c(0), . . . , c(K)
〉

be an arbitrary ρ-path from the immediate interior of S
to the immediate exterior of S. All we need to do now is to show that it crosses
S.

We adopt the convention that when we talk about the interior of S, we mean
its interior in (V, ρ), and when we talk about the interior of T , we mean its

Boundaries in Digital Spaces 139

interior in (V, π). Similar conventions apply to exteriors, immediate interiors
and immediate exteriors.

By Theorem 3.6, O ⊆ I (T) and Q ⊆ E (T). By definition, II (S) ⊆ O and
IE (S) ⊆ Q. Therefore, c(0) ∈ I (T) and c(K) ∈ E (T). In view of Lemma 3.2,
there must exist a k, 1 ≤ k ≤ K, such that c(k−1) ∈ I (T) and c(k) ∈ E (T).
Our proof is complete if we can show that in fact c(k−1) ∈ O and c(k) ∈ Q,
since this implies that

(

c(k−1), c(k)
)

∈ S.

We now show that c(k−1) ∈ O. By the definition of a spel-adjacency, there
exists a π-path

〈

e(0), . . . , e(L)
〉

from c(k−1) to c(k) such that
(

c(k−1), e(l)
)

∈ ρ
for 0 ≤ l ≤ L. Since this a π-path from the interior to the exterior of the
surface T , which is near-Jordan in (V, π), there must be an l, 1 ≤ l ≤ L, such
that

(

e(l−1), e(l)
)

∈ T . If l = 1, then c(k−1) = e(l−1) is in O and we are done.

Otherwise, if c(k−1) were a 0-spel, then it would be in Q (since it is ρ-adjacent
to the spel e(l) in Q) and hence in E (T). This would contradict Lemma 3.3(iii).
Therefore, c(k−1) must be a 1-spel. Since it is ρ-adjacent to the spel e(l−1) in
O, it itself must be in O.

To show that c(k) ∈ Q, essentially we can repeat the same argument using a
π-path from c(k) to c(k−1) such that c(k) is ρ-adjacent to every other point on
the path. �

From this theorem and the corollary that precedes it we get the following.

Corollary 3.29. For the digital space
(

Z3, σ
)

, (σ, σ) is a desirable pair.

Theorem 3.30. For the digital space (F, δ3), (δ3, δ3) is a desirable pair.

Proof. By Theorem 3.9
(

Z3, σ
)

is isomorphic to (F, δ3), under an isomorphism
i defined in the proof of that theorem. Since i (σ) = δ3, the previous corollary
and Theorem 3.11 provide the result we seek. �

Corollary 3.22 restates the Desirability Claim 3.1 for Case (i) in Subsection
3.1, Case (ii) is provided by Corollary 3.25, while Case (iii) is provided by
Theorem 3.30.

4. Correctness of tracking algorithms

4.1. General boundary tracking.

Let O be the set of all 1-spels and Q be the set of all 0-spels in a picture
(V, π, f). Recall that we refer to elements of B = ϑ (O, Q) as bels (short for
boundary elements). Since, by the definition of a picture, O is finite, so is B.
We now generalize the idea of a bel-adjacency (first introduced in Subsection
2.1).

We say that the binary relation β on B is a bel-adjacency if β is an adjacency
(i.e., β∗ is symmetric).

We propose an algorithm for the following task: Given a binary picture
(V, π, f), a bel-adjacency β, and a bel o, find the β-component S of B that
contains o.

140 Gabor T. Herman

Algorithm 4.1. General Bel-Tracking Algorithm

(1) Put o into L and S and put inβ (o) copies of o into T .
(2) Remove a bel a from L. For all bels b which are β-adjacent from a, try

to find a copy of b in T .
(a) If successful, remove this copy of b from T .
(b) If not, then put b into L and S and put inβ (b)−1 copies of b into

T .
(3) Check if L is empty.

(a) If it is, STOP.
(b) If it is not, start again at Instruction (2).

Prior to proving the correctness of this algorithm, two remarks are in order.
First, in Instruction (2)b, inβ (b) − 1 is guaranteed to be nonnegative. This is
because we only get to this point in the algorithm for a b which is β-adjacent
from a bel a and, so, inβ (b) ≥ 1. Second, the potential efficiency of this
algorithm comes from the fact that we check for membership in T (rather than
in S). While S keeps getting bigger and bigger as the algorithm is executed,
due to Instruction (2)b, the same is not true for T : elements from T will be
repeatedly removed due to Instruction (2)a. Hence the size of T is likely to be
a small fraction of the size of S after the algorithm has been performing for a
while on a large data set.

The essence of the proof of correctness is given in the next lemma. To state
it easily we use a couple of abbreviations. We let nT (b) abbreviate “the number
of copies of the bel b in the list T .” The other definition is more complicated.
The value of na (b) is 0 if b /∈ S and is “inβ (b) less the number of bels in S −L
which are β-adjacent to the bel b” otherwise.

Lemma 4.2. Both just prior and just after the execution of Instruction (2) in
the General Bel-Tracking Algorithm it is the case that, for every bel b,

(i) nT (b) = na (b),
(ii) the bel b has so far been put into L and S - either due to Instruction

(1) or due to Instruction (2)b - at most once, and
(iii) if the bel b is in S, then o is β-connected in B to b.

Proof. Consider the situation just after the execution of Instruction (1). We
have that nT (o) = inβ (o) = na (o) and the bel o has so far been put into L
and S exactly once. For any bel b other than o, nT (b) = 0 = na (b) and b has
not so far been put into L and S even once. Since only o has been put into S,
(iii) is clearly satisfied at this time.

Now we show that if (i), (ii) and (iii) hold just prior the execution of Instruc-
tion (2), then they also hold just after its execution. This is sufficient, since the
situation cannot change as a result of Instruction (3). Assume therefore that
we are just at the beginning of executing Instruction (2). This means that at
this time L is not empty and so we remove a bel a from it. This a must have
been put into L and S earlier on and, since nothing is ever removed from S,
we must have that a ∈ S. We leave it to the reader to supply the easy proof

Boundaries in Digital Spaces 141

of the fact that for those bels which are not β-adjacent from a, the inductive
step is valid. For the bels b which are β-adjacent from a, we study separately
two possibilities.

Case a: we find a copy of b in T . In this case, by Instruction (2)a, we remove
this b from T . This reduces nT (b) by 1. Since b was in T , it also had to be
in S (nothing is ever put into T without being put into S at the same time).
Therefore the applicable part of the definition of na (b) is that it is inβ (b) less
the number of bels in S −L which are β-adjacent to the bel b. The only thing
that changes in this definition is that a, which is β-adjacent to b, got removed
from L. Hence na (b) is also decreased by 1, proving (i) of the lemma for the
bel b. Since nothing is put into L and S, (ii) and (iii) are also valid at the end
of executing Instruction (2).

Case b: there is no copy of b in T ; i.e., nT (b) = 0. First we show that under
these circumstances, it cannot be the case that b has been previously put into L
and S. This is so, since otherwise prior to the beginning of Instruction (2), the
applicable part of the definition of na (b) would be “inβ (b) less the number of
bels in S−L which are β-adjacent to the bel b.” Since at that time the bel a is
still in L, the value of na (b) has to be positive, contradicting the truth of (i) in
the induction hypothesis. Upon executing Instruction (2)b, b has been put into
L and S (for the first time) and nT (b) = inβ (b)− 1. There is at least one bel,
namely a, which is in S − L and is β-adjacent to b. There cannot be another
one, since whenever a bel is put into S, it is also put into L at the same time,
and so if at a later time it is no longer in L, then it must have been removed
from it. At that time, b would have been put into L and S and we would not
be in Case b. This shows that in this case too, nT (b) = na (b) just after the
execution of Instruction (2). Finally, since a ∈ S just prior to the execution of
Instruction (2), o is β-connected in B to a, by (iii) of the induction hypothesis.
The same must be true for the new bel b in S, since a is β-adjacent to it. �

Theorem 4.3. If (V, π, f) is a binary picture, β is a bel-adjacency and o is
a bel, then the General Bel-Tracking Algorithm terminates in a finite number
of steps and, at that time, S is the β-component of B that contains o.

Proof. From (iii) of the previous lemma it follows that anything that gets put
into S is in the β-component of B which contains o. Termination in a finite
number of steps now easily follows from (ii) of the previous lemma: since each
of the finitely many bels in the β-component of B which contains o is put into
L at most once (and nothing else ever gets put into L) and in each execution
of Instruction (2) of the algorithm a bel is removed from L, sooner or later L
has to become empty and the algorithm will stop due to Instruction (3). At
that time, as all through the execution of the algorithm, o is β-connected in
B to every element of S. That the converse is also true (and hence S is the
β-component of B which contains o) can be shown as follows. For any bel b of
the β-component of B which contains o, there is a β-path

〈

b(0), . . . , b(K)
〉

from

o to b. It is a trivial matter to show by induction that, for 1 ≤ k ≤ K, b(k−1)

will get put into L and S and, since L gets eventually emptied, b(k−1) must

142 Gabor T. Herman

get removed from L, resulting in b(k) being put into L and S (provided that
it is not in T , which would imply that it has been put into L and S in some
previous step). �

This theorem shows that the General Bel-Tracking Algorithm is powerful
stuff. Its practical usefulness depends on two properties of the bel-adjacency
β. The first is, how easy is it to compute the bels β-adjacent from a given
bel? Clearly, the efficiency of executing Instruction (2) depends on this (as
well as on how easy it is to determine for a bel whether or not it is in T). The
other property has to do with the usefulness of the resulting boundaries: are
they in fact of the form ϑ (O, Q) for some appropriately specified O and Q?
In the following subsection we will discuss these questions for cases specified in
Subsection 2.6.

4.2. Boundary tracking on hyper-cubes.

We now apply the General Bel-Tracking Algorithm to the tracking of bound-
aries in the spaces

(

ZN , ωN

)

with N ≥ 2. A basic digraph for ZN is a pair
(M, ρ) for which:

(i) M = {un | 1 ≤ n ≤ N} ∪ {−un | 1 ≤ n ≤ N};
(ii) ρ =

⋃

1≤i<j≤N ρi, j , where ρi, j is exactly one of

(a)
{(

ui, uj
)

,
(

uj,−ui
)

,
(

−ui,−uj
)

,
(

−uj, ui
)}

,
(b) ∅;

Note that it is permitted in the definition of ρ that different options ((a)
or (b)) be selected for specifying ρi, j for different pairs of i and j. Because
of this, the definition given here is a shared generalization of two definitions
given earlier: in Subsection 2.4 the specification uses Option (a) in all cases,
and in Subsection 2.5 (in which only N = 3 is considered), the specification
uses Option (a) for the pairs (i, j) ∈ {(1, 2) , (1, 3)} but uses Option (b) for
the pair (2, 3).

From now the phrase “basic digraph” will be used for the concept as defined
in the previous paragraph, with the further assumption that Option (a) is to
be used for at least one pair (i, j).

The method of defining β from the basic digraph is described in the two
paragraphs above Algorithm 2.4. (That definition is for Option (a), in case of
Option (b) the corresponding βi, j = ∅). This definition provides a satisfactory
reply to one of the questions raised in the last paragraph of the previous sub-
section: how easy is it to compute the bels β-adjacent from a given bel? For
the definition given in this subsection the answer is “it is very easy.” A basic
digraph is an easily represented object: for each of the 2N nodes, there are at
most N − 1 nodes adjacent from it or to it. For any bel b = (c, d), we have for
some i (1 ≤ i ≤ N) that d− c ∈

{

ui,−ui
}

. For each (of the N −1) j 6= i, there
may (or may not) be a u which is ρi, j-adjacent from d − c. If there is such a
u, it gives rise to a single bel βi, j-adjacent from (c, d) and the specification of

Boundaries in Digital Spaces 143

this bel (as illustrated in Figure 10) requires the checking of the value of the
binary function f at at most two spels.

A most important observation for our choice of β is the following. If Option
(b) is not chosen for any (i, j), then the General Bel-Tracking Algorithm (Al-
gorithm 4.1) is exactly Artzy’s Algorithm in N -dimensional space (Algorithm
2.4). If N = 3 and Option (b) is chosen only for (2, 3), then the General
Bel-Tracking Algorithm is exactly the Gordon-Udupa Algorithm (Algorithm
2.6).

The behavior of the General Bel-Tracking Algorithm (as expressed by The-
orem 4.3) is guaranteed only if the adjacency β is a bel-adjacency; i.e., if
β∗ is symmetric. Prior to discussing whether or not this is the case for the
β =

⋃

1≤i<j≤N βi, j , we prove a technical lemma of a more general applicabil-
ity.

Lemma 4.4. Let ρ be a binary relation on a set M and L be a finite subset of
M .

(i) The transitive closure ρ∗ of ρ is symmetric, provided that, for all (c, d) ∈
ρ, (d, c) is in ρ∗.

(ii) If every element of L has exactly one element of L ρ-adjacent from it
and at least one element of L ρ-adjacent to it, then every element of L
has exactly one element of L ρ-adjacent to it.

(iii) If every element of L has exactly one element of L ρ-adjacent from it
and exactly one element of L ρ-adjacent to it, then for any c and d in
L such that c is ρ-adjacent to d we have that d is ρ-connected in L to
c.

Proof. Assume that, for all (c, d) ∈ ρ, (d, c) is in ρ∗. We prove by induc-
tion on K that if

〈

c(0), . . . , c(K)
〉

is a ρ-path, then
(

c(K), c(0)
)

∈ ρ∗. This is
clearly the case, by the definition of transitive closure, if K = 0. If K > 0, then
(

c(K), c(K−1)
)

∈ ρ∗ (by the assumption) and
(

c(K−1), c(0)
)

∈ ρ∗ (by the induc-

tion hypothesis). Since ρ∗ is clearly transitive, we have that
(

c(K), c(0)
)

∈ ρ∗.
This proves (i).

We now define the binary relation τ on L by (c, d) ∈ τ if, and only if, c ∈ L,
d ∈ L, and (c, d) ∈ ρ. Since it is assumed in (ii) that every element of L
has exactly one element of L ρ-adjacent from it, the number of elements in τ
must be exactly the number of elements in L. This shows that there cannot be
an element of L which has more than one element of L ρ-adjacent to it, since
otherwise we would have more elements in τ than in L (since it is also assumed
that every element of L has at least one element of L ρ-adjacent to it).

To complete the proof, let us assume that the premise of (iii) is satisfied and
c and d in L are such that c is ρ-adjacent to d. We define an infinite sequence
of elements of L as follows: c(0) = d and, for k ≥ 1, c(k) is the unique element
of L that is ρ-adjacent from c(k−1). Since L is finite, there must be a smallest
positive integer l such that c(l) = c(m), for some m < l. If m were positive,
then the uniqueness of the element of L that is ρ-adjacent to c(l) = c(m) would
imply that c(l−1) = c(m−1), which would contradict the minimality of l. Hence,

144 Gabor T. Herman

c(l) = c(0) = d. Again by the uniqueness of the element of L which is ρ-adjacent
to c(l) = d, we must have that c(l−1) = c, and so

〈

c(0), . . . , c(l−1)
〉

is a ρ-path
in L from d to c. �

Theorem 4.5. For N ≥ 2, let
(

M,
⋃

1≤i<j≤N ρi, j

)

be a basic digraph for ZN .

Assume that the set of all bels B in the picture
(

ZN , ωN , f
)

is not empty and,
for 1 ≤ i < j ≤ N , define the binary relation βi, j on B as above. Let Bi, j be
the subset of those bels b = (c, d) for which d − c ∈

{

ui,−ui, uj,−uj
}

. Then,
for 1 ≤ i < j ≤ N such that ρi, j 6= ∅ and for every bel b in Bi, j, the following
hold.

(i) There is one, and only one, bel b′ that is βi, j-adjacent from b. Fur-
thermore, b′ ∈ Bi, j.

(ii) There is one, and only one, bel b′ in Bi, j that is βi, j-adjacent to b.
Furthermore, b is βi, j-connected in Bi, j to b′.

Moreover, β =
⋃

1≤i<j≤N βi, j is a bel-adjacency for
(

ZN , ωN , f
)

.

Proof. By the definition of ρi, j , there is one and only one u which is ρi, j-
adjacent from d − c and this u is in

{

ui,−ui, uj ,−uj
}

. According to the
definition of βi, j , u gives rise to a unique bel b′ = (c′, d′) that is βi, j-adjacent
from (c, d). Looking at the three possibilities in the definition of βi, j (c.f.,
Figure 10), we see that d′ − c′ is (respectively) d − (d + u) = −u, (d + u) −
(c + u) = d − c, or (c + u) − c = u. In any case, b′ ∈ Bi, j . This proves (i).

In order to prove (ii) we first distinguish between three mutually exclusive
possibilities (corresponding to the three cases represented in Figure 10) and
show that in each one of them there is at least one bel b′ = (c′, d′) in Bi, j that
is βi, j-adjacent to b. We again denote by u the element of

{

ui,−ui, uj ,−uj
}

which is ρi, j-adjacent from d − c.
The first possibility is that d−u is a 1-spel. In this case we define c′ = d−u

and d′ = d. Then b′ = (c′, d′) is a bel, d′ − c′ = u, and so b′ ∈ Bi, j . From the
definition of ρi, j it follows (since u is ρi, j-adjacent from d− c) that u′ = c− d
is ρi, j-adjacent from d′ − c′ = u. Since d′ + u′ = d + (c − d) = c is a 1-spel, the
definition of βi, j implies b′ = (c′, d′) is βi, j-adjacent to (d′ + u′, d′) = (c, d) =
b.

The second possibility is that d − u is a 0-spel and c − u is a 1-spel. In
this case we define c′ = c − u and d′ = d − u. Then b′ = (c′, d′) is a bel,
d′ − c′ = d − c, and so b′ ∈ Bi, j . Since u is ρi, j-adjacent from d − c = d′ − c′

and d′+u = d is a 0-spel and c′+u = c is a 1-spel, the definition of βi, j implies
b′ = (c′, d′) is βi, j-adjacent to (c′ + u, d′ + u) = (c, d) = b.

The third possibility is that both d − u and c − u are 0-spels. In this
case we define c′ = c and d′ = c − u. Then b′ = (c′, d′) is a bel, d′ − c′ =
−u, and so b′ ∈ Bi, j . From the definition of ρi, j it follows (since u is ρi, j-
adjacent from d − c) that u′ = d − c is ρi, j-adjacent from d′ − c′ = −u.
Since d′ + u′ = (c − u) + (d − c) = d − u and c′ + u′ = c + (d − c) = d
are both 0-spels, the definition of βi, j implies b′ = (c′, d′) is βi, j-adjacent to
(c′, c′ + u′) = (c, d) = b.

Boundaries in Digital Spaces 145

This shows that, for any bel b, there is at least one bel b′ in Bi, j that is
βi, j-adjacent to b. According to (i), it is also the case that there is exactly one
bel b′ in Bi, j that is βi, j-adjacent from b. Applying (ii) of the previous lemma
we get that there is one, and only one, bel b′ in Bi, j that is βi, j-adjacent to
b. Hence we can also apply (iii) of the previous lemma and obtain that b is
βi, j-connected in Bi, j to b′. This completes the proof of (ii).

To complete the proof, we make use of (i) of the previous lemma. If (a, b) ∈
β, then (a, b) ∈ βi, j , for some 1 ≤ i < j ≤ N such that ρi, j 6= ∅. By (ii),
this implies that b is βi, j-connected in Bi, j to a and, consequently, (b, a) ∈ β∗.
Hence, β∗ is symmetric. �

Corollary 4.6. For N ≥ 2, let (M, ρ) be a basic digraph for ZN . Define the
binary relation β on B as above. It is then the case that, for any bel o, the
General Bel-Tracking Algorithm terminates in a finite number of steps and, at
that time, S is that β-component of the set of bels that contains o.

The following theorem takes care of the Correctness Claim 2.8 for G = ZN ,
κ = αN and λ = ωN .

Theorem 4.7. For N ≥ 2, let
(

M,
⋃

1≤i<j≤N ρi, j

)

be a basic digraph for ZN

such that ρi, j 6= ∅ for any 1 ≤ i < j ≤ N . Define the binary relation β on
B as above. It is then the case that, for any bel o = (c, d), the General Bel-
Tracking Algorithm terminates in a finite number of steps and, at that time,
S = ϑ (O, Q), where O is the δN -component of the set of 1-spels that contains
c and Q is the ωN -component of the set of 0-spels that contains d.

Proof. By the previous corollary we know that the algorithm terminates in a
finite number of steps and that at that time S is that β-component of B that
contains o.

First we show inductively that both just prior and just after the execution
of Instruction (2) in the General Bel-Tracking Algorithm L ⊆ ϑ (O, Q) and
S ⊆ ϑ (O, Q) . This is true just prior to the first execution of Instruction
(2), since only o gets put into L and S due to Instruction (1) and, clearly,
o = (c, d) ∈ ϑ (O, Q). Assume now the validity of the induction hypothesis
just prior to some execution of Instruction (2). If a bel b gets put into L and
S during the execution of Instruction (2), then there must have been an a
removed from L ⊆ ϑ (O, Q) such that b is βi, j-adjacent from a. By considering
the three possible ways that a can be βi, j-adjacent to b (look at Figure 10) we
see that a ∈ ϑ (O, Q) implies that b ∈ ϑ (O, Q). (Essential use is made here of
the fact that O is a δN -component of the set of 1-spels.) Since nothing is put
into L or S during the execution Instruction (3), this completes the induction.

Next we show that at the termination of the General Bel-Tracking Algorithm
S is locally-Jordan. By definition, we need to show that pS

〈

c(0), c(1), c(2), c(3)
〉

is odd for any ωN -path such that
(

c(0), c(3)
)

∈ S. (We have made use here of the
fact that there is no ωN -path of length 2 from a spel to a spel ωN -adjacent from
it.) The sought-after result is trivially true if c(0) = c(2) or c(1) = c(3). When
neither of these is the case, then the loop

〈

c(0), c(1), c(2), c(3), c(0)
〉

satisfies (3.35)

146 Gabor T. Herman

Figure 16. Illustration of the three cases in the proof which
shows that the output of the General Bel-Tracking Algorithm

based on the basic digraph
(

M,
⋃

1≤i<j≤N ρi, j

)

is locally-

Jordan. The spels shaded dark grey are 1-spels, the spel
shaded light grey may be either a 1-spel or a 0-spel, all other
spels are 0-spels.

for some u and v such that |u| = |v| = 1. This implies that, for some 1 ≤ i <
j ≤ N , c(3)−c(0) = c(2)−c(1) ∈

{

ui,−ui, uj,−uj
}

and c(3)−c(2) = c(0)−c(1) ∈
{

ui,−ui, uj ,−uj
}

; see Figure 16. In that figure we distinguish between three
cases, corresponding to the three cases of Figure 10. In each case, the bel
(

c(0), c(3)
)

in Figure 16 corresponds to the bel painted light grey in Figure 10.

In Case (i), f
(

c(1)
)

= f
(

c(2)
)

= 0. Both the bels
(

c(0), c(3)
)

and
(

c(0), c(1)
)

are
in Bi, j (as defined in the statement of the previous theorem) and, since ρi, j 6=
∅, one of them has to be βi, j-adjacent to the other. The previous theorem

implies that they are in the same β-component of B. Since
(

c(0), c(3)
)

∈ S,

this implies that
(

c(0), c(1)
)

∈ S. On the other hand,
(

c(1), c(2)
)

and
(

c(2), c(3)
)

are not bels and so cannot be in S. This proves that pS

〈

c(0), c(1), c(2), c(3)
〉

= 1
in Case (i). The proof in Case (ii) is very similar and is therefore not given. In
Case (iii) there is an additional complication. One can argue, as in Case (i), to
show that in Case (iii)

(

c(2), c(3)
)

∈ S, but the possibilities of
(

c(0), c(1)
)

∈ S

or
(

c(1), c(2)
)

∈ S need also be investigated. Neither of these is true if c(1)

is a 1-spel. On the other hand, if c(1) is a 0-spel, then both
(

c(0), c(1)
)

and
(

c(1), c(2)
)

are in Bi, j and, consequently, either both are in S or neither is in

S. In any case, we again have that pS

〈

c(0), c(1), c(2), c(3)
〉

is odd.
Next we show that at the termination of the General Bel-Tracking Algorithm

S is near-Jordan. We use Lemma 3.16. We have just shown that S is a locally-
Jordan surface in the digital space

(

ZN , ωN

)

, which is simply connected, by
Theorem 3.12. Since S is a set of bels, it has to be antisymmetric. To show that
it is near-Jordan, according to Lemma 3.16 it is sufficient to show that, for any
two elements in the immediate exterior of S, there is an ωN -path between them
which does not cross S. Suppose that g and h are in IE (S). That implies that
there exist spels g′ and h′, such that both (g′, g) and (h′, h) are in S. Since S

Boundaries in Digital Spaces 147

is a β-component of B, there is β-path in S from (g′, g) to (h′, h). Since a β-
path is a sequence of consecutively β-adjacent bels, the task of this paragraph
is done if we can show that whenever a bel (g′, g) is β-adjacent to a bel (h′, h),
then there is an ωN -path from g to h that does not cross B. This follows, since
(g′, g) must be βi, j-adjacent to (h′, h), for some 1 ≤ i < j ≤ N , and in each
of the three cases in the definition of βi, j the required result follows trivially.
(For example, the three relevant ω3-paths in Figure 10 are: (i) 〈d, d + u, c + u〉,
(ii) 〈d, d + u〉 and (iii) 〈d〉.)

Now we complete the proof by showing that at the termination of the General
Bel-Tracking Algorithm S = ϑ (O, Q). We already know that S ⊆ ϑ (O, Q).
To prove the converse, consider any (g, h) ∈ ϑ (O, Q); i.e., g ∈ O, h ∈ Q,
(g, h) ∈ ωN . Since g ∈ O, there is a δN -path in O from c to g from which we can
create an ωN -path

〈

c(0), . . . , c(K)
〉

from c to g with the following property: for

0 ≤ k ≤ K, either f
(

c(k)
)

= 1 or f
(

c(k)
)

= 0 and f
(

c(k−1)
)

= f
(

c(k+1)
)

= 1.

In the latter case,
(

c(k−1), c(k)
)

and
(

c(k+1), c(k)
)

are bels such that one of them
is β-adjacent to the other and so either both are in S or neither is in S. It
follows therefore that pS

〈

c(0), . . . , c(K)
〉

= 0. Since h ∈ Q, there is an ωN -path
〈

d(0), . . . , d(L)
〉

in Q from h to d; clearly pS

〈

d(0), . . . , d(L)
〉

= 0. It follows that
(g, h) ∈ S, for otherwise the crossing parity through the near-Jordan surface S
would be even for the ωN -path

〈

c = c(0), . . . , c(K) = g, h = d(0), . . . , d(L) = d
〉

,
contradicting Theorem 3.13. �

This proves the correctness (Claim 2.8) of Artzy’s Algorithm for N -dimensio-
nal spaces (Algorithm 2.4). For a discussion of the outputs of the Tracking
Algorithm for the FCC Grid (Algorithm 2.3) and the Gordon-Udupa Algorithm
(Algorithm 2.6) see pp. 194-199 of [13].

5. Summary.

In this article we have motivated the general mathematical concept of a “dig-
ital space” by giving particular useful examples of it. We have demonstrated
that the concept of a boundary can be defined in this general environment and
that the resulting boundaries for specific spaces are “desirable” in the sense that
they have properties similar to those specified by the Jordan curve theorem for
simple closed curves. We have also proposed some algorithms for tracking such
boundaries and proved some results about the behavior of such algorithms; in
particular, we have proved the “correctness” of a boundary tracking algorithm
for the N -dimensional cubic grid.

Acknowledgements. The author received a great deal of help in preparing
this manuscript from T. Yung Kong and Laslo Cernetic. Numerous suggestions
by three referres and the special issue editor T. Peters were also helpful in
improving the clarity and comprehensiveness of the coverage.

148 Gabor T. Herman

References

[1] E. A. Abbott, Flatland, A Romance of Many Dimensions, Little, Brown and Co.,
Boston, 1899.

[2] E. Artzy, G. Frieder and G. T. Herman, The theory, design, implementation and evalu-

ation of a three-dimensional surface detection algorithm, Comput. Graph. Image Proc.
15 (1981), 1–24.

[3] L.-S. Chen, G. T. Herman, R. A. Reynolds and J. K. Udupa, Surface shading in the

cuberille environment, IEEE Comput. Graph. Appl. 5(12)(1985), 33–43. (Erratum a-
ppeared in 6(2) (1986), 6749).

[4] A. V. Evako, Topological properties of closed digital spaces: One method of constructing

digital models of closed continuous surfaces by using covers, Comput. Vision Image
Underst. 102 (2006), 134–144.

[5] S. Fourey, T. Y. Kong and G. T. Herman, Generic axiomatized digital surface-structures,
Disc. Appl. Math. 139 (2004), 65–93.

[6] G. Frieder, G. T. Herman, C. Meyer and J. K. Udupa, Large software problems for small

computers: An example from medical imaging, IEEE Software 2(5) (1985), 37–47.
[7] E. Garduño, G. T. Hermana and H. Katz, Boundary tracking in 3-D binary images to

produce rhombic faces for a dodecahedral model, IEEE Trans. Med. Imag. 17 (1998),
1097–1100.

[8] D. Gordon and J. K. Udupa, Fast surface tracking in three-dimensional binary images,
Comput. Vision Graph. Image Proc. 45 (1989), 196–241.

[9] G. T. Herman, A survey of 3D medical imaging technologies, IEEE Eng. Med. Biol.
Mag. 9(4)(1990), 15–17.

[10] G. T. Herman, 3D display: A survey from theory to applications, Comput. Med. Imag.
Graph. 17 (1993), 231–242.

[11] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Models Image Proc.
55 (1993), 381–396.

[12] G. T. Herman, Finitary 1-simply connected digital spaces, Graph. Models Image Proc.
60 (1998), 46–56.

[13] G. T. Herman, Geometry of Digital Spaces. Birkhäuser, Boston, MA, 1998.
[14] G. T. Herman and D. F. Robinson, Digital boundary tracking, Pattern Anal. Appl. 1

(1998), 2–17.
[15] G. T. Herman and D. Webster, A topological proof of a surface tracking algorithm,

Comput. Vision Graph. Image Proc. 23 (1983), 162–177.
[16] T. Y. Kong, Topological adjacency relations on Z

N , Theor. Comput. Sci. 283 (2002),
3–28.

[17] T. Y. Kong, The Khalimsky topologies are precisely those simply connected topologies on

Z
N whose connected sets include all 2n-connected sets but no (3 (n) − 1)-disconnected

sets, Theor. Comput. Sci. 305 (2003), 221–235.
[18] T. Y. Kong and J. K. Udupa, A justification of a fast surface tracking algorithm, CVGIP:

Graph. Models Image Proc. 54 (1992), 507–515.
[19] R. Kopperman, On storage of topological information, Disc. Appl. Math. 147 (2005),

287–300.
[20] R. Kopperman, P. R. Meyer and R. G. Wilson, A Jordan surface theorem for three-

dimensional digital spaces, Disc. Comput. Geom. 6 (1991), 155–161.
[21] J.-O. Lachaud and A. Montevert, Continuous analogs of digital boundaries: A topolog-

ical approach to iso-surfaces, Graph. Models 62 (2000), 129–164.
[22] W. Lorensen and H. Cline, Marching cubes: A high-resolution 3D surface construction

algorithm, Comput. Graph. 21(4) (1987), 163–169.
[23] J. R. Munkres, Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[24] A. Ralston, E. D. Reilly and D. Hemmendinger, Encyclopedia of Computer Science,

Nature Publishing Group, London, 4th edition, 2000.

Boundaries in Digital Spaces 149

[25] J. K. Udupa and G. T. Herman, 3D Imaging in Medicine, CRC Press, Boca Raton, FL,
2nd edition, 2000.

Gabor T. Herman (GaborTHerman@yahoo.com)
PhD Program in Computer Science, The Graduate Center, City University of
New York, 365 5th Avenue, New York, NY, 10016, USA.

