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cl-Supercontinuous Functions

D. Singh

Abstract. Basic properties of cl-supercontinuity, a strong variant
of continuity, due to Reilly and Vamanamurthy [Indian J. Pure Appl.
Math., 14 (1983), 767–772], who call such maps clopen continuous, are
studied. Sufficient conditions on domain or range for a continuous func-
tion to be cl-supercontinuous are observed. Direct and inverse trans-
fer of certain topological properties under cl-supercontinuous functions
are studied and existence or nonexistence of certain cl-supercontinuous
function with specified domain or range is outlined.
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1. Introduction

Strong variants of continuity are of considerable significance and arise in many
branches of mathematics including topology, complex analysis and functional
analysis. Reilly and Vamanamurthy [12] call a function f : X → Y clopen
continuous if for each open set V containing f(x) there exists a clopen ( closed
and open) set U containing x such that f(U) ⊂ V . In this paper we elaborate
on the properties of these mappings introduced by Reilly and Vamanamurthy.
However, in the topological folklore the phrase “clopen map” is used for the
functions which map clopen sets to open sets. So in this paper we rename
“clopen continuous maps” as cl-supercontinuous functions which appears to be
a better nomenclature, since it is a strong form of supercontinuity introduced
by Munshi and Basan [9].
The class of cl-supercontinuous functions strictly contains the class of perfectly
continuous functions of Noiri [11] which in turn properly include all strongly
continuous functions of Levine [8]. Furthermore, the class of cl-supercontinuous
functions is properly contained in the class of z-supercontinuous functions [3]
which in its turn is contained in the class of supercontinuous functions [9].
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In Section 2, several characterizations of cl-supercontinuity are obtained and it
is shown that cl-supercontinuity is preserved under restrictions, compositions,
products, and passage to the graph function. The notions of cl-quotient topol-
ogy and cl-quotient space are introduced in Section 3. Section 4 is devoted
to the study of the behavior of separation axioms under cl-supercontinuous
functions. In Section 5 we conclude with alternative proofs of certain re-
sults of preceding sections. Lastly, we mention some possible application of
cl-supercontinuity to topology and analysis.

2. Basic Properties of cl-Supercontinuous Functions

Definition 2.1. A set G in a topological space X is said to be cl-open if for
each x ∈ G, there exist a clopen set H such that x ∈ H ⊆ G, equivalently G is
the union of clopen sets. The complement of a cl-open set will be referred to as
cl-closed set.

Theorem 2.2. For a function f : X → Y , the following statements are equiv-
alent.

(a) f is cl-supercontinuous.
(b) Inverse image of every open subset of Y is a cl-open in X.
(c) Inverse image of every closed subset of Y is a cl-closed in X.

Proof of Theorem 2.2 is routine and hence omitted.

Remark 2.3. If either of the spaces X and Y is zero-dimensional, then any
continuous function from X to Y is cl-supercontinuous.

Definition 2.4. Let X be a topological space and let A ⊂ X. A point x ∈ X is
said to be a cl-adherent of A if every clopen set containing x intersects A. Let
[A]cl denote the set of all cl-adherent points of A. Then the set A is cl-closed
if and only if [A]cl = A.

Theorem 2.5. For a function f : X → Y the following statements are equiv-
alent.

(a) f is cl-supercontinuous.

(b) f([A]cl) ⊂ f(A) for every set A ⊂ X.
(c) [f−1(B)]cl ⊂ f−1(B̄) for every B ⊂ Y .

Proof. (a) ⇒ (b). Since f(A) is closed in Y , by Theorem 2.2 f−1(f(A)) is a cl-

closed in X . Again, since A ⊂ f−1(f(A)), [A]cl ⊂ [f−1(f(A))]cl = f−1(f(A))

and so f([A]cl) ⊂ f(f−1(f(A)) ⊂ f(A).

(b) ⇒ (c). Let B ⊂ Y . Then by (b), f([f−1(B)]cl) ⊂ f(f−1(B)) ⊂ B̄ and so it
follows that [f−1(B)]cl ⊂ f−1(B̄).
(c) ⇒ (a). Let F be any closed set in Y . Then [f−1(F )]cl ⊂ f−1(F̄ ) = f−1(F ).

Again, since f−1(F ) ⊂ (f−1(F )) ⊂ [f−1(F )]cl, f−1(F ) = [f−1(F )]cl which
in turn implies that f−1(F ) is cl-closed and so in view of Theorem 2.2 f is
cl-supercontinuous. �
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Definition 2.6. A filter base T− is said to cl-converge to a point x written as

T−
cl
−→ x if every clopen set containing x contains a member of T−.

Theorem 2.7. A function f : X → Y is cl-supercontinuous if and only if for
each x ∈ X and each filter base T− that cl-converges to x, f(T−) → f(x).

Proof. Assume that f is cl-supercontinuous and let T−
cl

−→ x. Let W be an
open set containing f(x). Then x ∈ f−1(W ) and f−1(W ) is cl-open. Let H

be a clopen set such that x ∈ H ⊂ f−1(W ) and so f(H) ⊂ W . Since T−
cl
−→ x,

there exists a U ∈ T− such that U ⊂ H and hence f(U) ⊂ f(H) ⊂ W . Thus
f(T−) → f(x). �

Conversely, let W be an open subset of Y containing f(x). Now the filter
base Nx consisting of all clopen sets containing x cl-converges to x and so by
hypothesis f(Nx) → f(x). Hence there exists a member f(N) of f(Nx) such
that f(N) ⊂ W . Since N ∈ Nx, N is an clopen set containing x. Thus f is
cl-supercontinuous.
It is routine to verify that cl-supercontinuity is invariant under restriction and
composition of functions and enlargement of range. Moreover, the composition
is cl-supercontinuous whenever f : X → Y is cl-supercontinuous and g : Y → Z

is continuous.

Remark 2.8. In general cl-supercontinuity of g ◦ f need not imply even conti-
nuity of f . For example, let X be the real line with cofinite topology, Y = {0, 1}
be the two point Sierpinski space [16] and let f : X → Y be defined by

f(x) =

{

0, if x is irrational

1, if x is rational

Let Z = {0, 1} be endowed with the indiscrete topology and let g : Y → Z be
the identity map. Then g ◦ f and g are cl-supercontinuous, however, f is not
continuous.

Definition 2.9. A function f : X → Y is said to be cl-open (cl-closed) if
f(A) is open (closed) in Y for every clopen set A in X.

Theorem 2.10. Let f : X → Y be a cl-open, cl-supercontinuous surjection
and g : Y → Z be any function. Then g ◦ f is cl-supercontinuous if and only if
g is continuous.

Theorem 2.11. Let f : X → Y be any function. If {Uα : α ∈ ∆} is a cl-open
cover of X and for each α, fα = f |Uα : Uα → Y is cl-supercontinuous, then f

is cl-supercontinuous.

Proof. Let V be a clopen subset of Y . Then f−1(V ) = ∪{f−1
α (V ) : α ∈ ∆} and

since each fα is cl-supercontinuous, each f−1
α (V ) is cl-open in Uα and hence in

X . Thus f−1(V ) being the union of cl-open sets is cl-open. �
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Theorem 2.12. Let {fα : X → Xα |α ∈ Λ} be a family of functions and let
f : X →

∏

α∈Λ Xα be defined by f(x) = (fα(x)). Then f is cl-supercontinuous
if and only if each fα : X → Xα is cl-supercontinuous.

Proof. Let f : X →
∏

α∈Λ Xα be cl-supercontinuous. Then the composition
fα = pα ◦ f , where pα denotes the projection of

∏

α∈Λ Xα onto αth-coordinate
space Xα, is cl-supercontinuous for each α. �

Conversely, suppose that each fα : X → Xα is cl-supercontinuous. To show
that the function f is cl-supercontinuous, in view of Theorem 2.2 it is suffi-
cient to show that f−1(U) is cl-open for each open set U in the product space
∏

α∈Λ Xα. Since the finite intersections and arbitrary unions of cl-open sets is

cl-open, it suffices to prove that f−1 (S) is cl-open for every subbasic open set
S in the product space

∏

α∈Λ Xα. Let Uβ ×
∏

α6=β Xα be a subbasic open set

in
∏

α∈Λ Xα. Then f−1(Uβ ×
∏

α6=β Xα) = f−1(p−1
β (Uβ)) = f−1

β (Uβ) is cl-open
in X . Hence f is cl-supercontinuous.

Theorem 2.13. For each α ∈ ∆, let fα : Xα → Yα be a mapping and let
f :

∏

Xα →
∏

Yα be a mapping defined by f((xα)) = (fα(xα)) for each (xα)
in

∏

Xα. Then f is cl-supercontinuous if and only if fα is cl-supercontinuous
for each α ∈ ∆.

Proof. Let f :
∏

Xα →
∏

Yα be cl-supercontinuous. Let Vβ be an open sub-
set of Yβ . Then Vβ × (

∏

α6=β Yα) is a subbasic open subset of the product

space
∏

Yα. Since f is cl-supercontinuous, f−1(Vβ × (
∏

α6=β Yα)) = f−1
β (Vβ)×

(
∏

α6=β Xα) is cl-open in
∏

Xα. Consequently, f−1
β (Vβ) is a cl-open set in Xβ

and hence fβ is cl-supercontinuous. �

Conversely, suppose that each fα : Xα → Yα is cl-supercontinuous. Let
V = Vβ × (

∏

α6=β Yα) be a subbasic open set in
∏

Yα. Since each fα is

cl-supercontinuous and since f−1(V ) = f−1(Vβ × (
∏

α6=β Yα)) = f−1
β (Vβ) ×

(
∏

α6=β Xα), f−1(V ) is cl-open, and so f is cl-supercontinuous.

Theorem 2.14. Let f : X → Y be a function and g : X → X × Y , de-
fined by g(x) = (x, f(x)) for each x ∈ X, be the graph function. Then g

is cl-supercontinuous if and only if f is cl-supercontinuous and X is zero-
dimensional.

Proof. To prove necessity, suppose that g is cl-supercontinuous. Then the
composition f = py ◦ g is cl-supercontinuous, where py is the projection from
X × Y onto Y . Let U be any open set in X and let x ∈ U . Then U × Y is an
open set containing g(x). Since g is cl-supercontinuous, there exists a clopen
set W containing x such that g(W ) ⊂ U × Y . Thus x ∈ W ⊂ U , which shows
that U is a cl-open and so X is zero-dimensional. �

To prove sufficiency, let x ∈ X and let W be an open set containing g(x).
There exist open sets U ⊂ X and V ⊂ Y such that (x, f(x)) ∈ U × V ⊂ W .
Since X is zero-dimensional, there exists a clopen set G1 in X containing x
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such that x ∈ G1 ⊂ U . Since f is cl-supercontinuous, there exists a clopen
set G2 in X containing x such that f(G2) ⊂ V . Let G = G1 ∩ G2. Then G

is a clopen set containing x and g(G) ⊂ U × V ⊂ W , which implies that g is
cl-supercontinuous.

Definition 2.15. A function f : X → Y is said to be slightly continuous

[1] if f−1(A) is open in X for every clopen set A in Y .

Lemma 2.16. For a function f : X → Y , the following statements are equiv-
alent.

(a) f is slightly continuous.
(b) f(Ā) ⊆ [f(A)]cl for all A ⊆ X.

(c) (f−1(B)) ⊆ f−1([B]cl) for all B ⊆ Y .
(d) Inverse image of every cl-closed set is closed.
(e) Inverse image of every cl-open set is open.

Proof. (a) ⇒ (b): Let y ∈ f(Ā). Choose x ∈ Ā such that f(x) = y. Let
V be a clopen set containing y. Since f is slightly continuous, f−1(V ) is an
open set containing x. This gives f−1(V ) ∩ A 6= φ which in turn implies that
V ∩ f(A) 6= φ and consequently y ∈ [f(A)]cl. Hence f(Ā) ⊂ [f(A)]cl.

(b) ⇒ (c): Let B be any subset of Y . Then f(f−1(B)) ⊆ [f(f−1(B))]cl and

consequently (f−1(B)) ⊆ f−1([B]cl).
(c) ⇒ (d): Since a set A is cl-closed if and only if A = [A]cl, therefore the
implication (c) ⇒ (d) is obvious.
(d) ⇒ (e): Obvious.
(e) ⇒ (a): This is immediate since every clopen set is cl-open and since a
function is slightly continuous if and only if the inverse image of every clopen
set is open. �

Theorem 2.17. Let X, Y and Z be topological spaces and let the function
f : X → Y be slightly continuous and g : Y → Z be cl-supercontinuous. Then
gof is continuous.

Proof. It is immediate in view of the above lemma and Theorem 2.2. However,
if f : X → Y is slightly continuous and gof : X → Z is continuous, the function
g : Y → Z may not be cl-supercontinuous. �

Example 2.18. Let X = {a, b} endowed with discrete topology.
Let Y = {c, d}, τ = {φ, Y, {c}}. Let f : X → Y be defined by f(a) = c,
f(b) = d. Let Z = {e, f}, ℑ = {φ, Z, {e}}. Let g : Y → Z be defined by
g(c) = e, g(d) = f . Then f : X → Y is slightly continuous and g ◦ f : X → Z

is continuous but g : Y → Z is not cl-supercontinuous.

3. cl-Quotient Topology and cl-Quotient Spaces

Let f : X → Y be a surjection from a topological space X onto a set Y . The
quotient topology on Y is the largest topology on Y , which makes f continuous.
Analogously, the largest topology on Y for which f satisfies a strong variant
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of continuity yields a variant of quotient topology which in general is coarser
than quotient topology. Such variants of quotient topology are dealt with in
([3] [4] [5] [9] and [13]) and interrelations among these are outlined in [7].
In the same spirit we define cl-quotient topology on Y as the finest topology
on Y for which f is cl-supercontinuous. In this case the map f is called a
cl-quotient map.

Theorem 3.1. Let f : X→Y be a cl-quotient map. Then a function g : Y →Z

is continuous if and only if g ◦ f is cl-supercontinuous.

4. Topological Properties and cl-Supercontinuity

Theorem 4.1. Let f : X → Y be a cl-supercontinuous open bijection. Then
X and Y are homeomorphic zero-dimensional spaces.

Proof. Let x ∈ X and let U be an open set containing f(x). Since f is an
open map, f(U) is an open set containing f(x). In view of cl-supercontinuity
of f , there exists a clopen set V containing x such that f(V ) ⊂ f(U). This
implies x ∈ f−1(f(V )) ⊂ f−1(f(U)). Since f is a bijection, f−1(f(V )) = V

and f−1(f(U)) = U , so x ∈ V ⊂ U . Thus the space X has a base of clopen
sets and so it is zero-dimensional. Since zero-dimensionality is a topological
property and f is a homeomorphism, Y is also zero-dimensional. �

Definition 4.2. A function f : X → Y is said to be a cl-homeomorphism

if f is a bijection such that both f and f−1 are cl-supercontinuous.

Theorem 4.3. Let f : X → Y be a cl-homeomorphism from a space X onto a
space Y . Then both X and Y are homeomorphic zero-dimensional spaces.

Definition 4.4. A topological space X is said to be ultra-Hausdorff [15] if
each pair of distinct points are contained in disjoint clopen sets.

Theorem 4.5. Let f : X → Y be a cl-supercontinuous injection.If Y is a
T0-space, then X is ultra-Hausdorff.

Proof. Let x1 and x2 be two distinct points in X . Then f(x1) 6= f(x2). Since
Y is T0-space, there exists an open set V containing one of the points f(x1)
or f(x2) but not the other. For definiteness assume that f(x1) ∈ V . Since f

cl-supercontinuous, in view of Theorem 2.2 f−1(V ) is cl-open containing x1 but
not x2. Hence, there exists a clopen set U ⊂ f−1(V ) containing x1 but not x2.
Then U and X \ U are disjoint clopen sets containing x1 and x2 respectively.
Hence X is ultra-Hausdorff. �

Definition 4.6. A space X is called mildly compact [15] if every clopen
cover of X has a finite subcover.

In [14] Sostak calls mildly compact spaces as clustered spaces.

Theorem 4.7. Let f : X → Y be a cl-supercontinuous function from a clus-
tered space X onto Y . Then Y is compact. Further, if Y is Hausdorff, then f

is a cl-closed function.
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Corollary 4.8. Let f : X → Y be a cl-supercontinuous surjection from a
connected space X onto Y . Then Y is a connected, compact space.

The following result shows that there exists no nonconstant cl-supercontinuous
function from a connected space into a T0-space.

Theorem 4.9. Let f : X → Y be a non constant cl-supercontinuous function.
If Y is a T0-space, then X is disconnected.

5. Change of Topology

If in the domain of a cl-supercontinuous functions f , it is defined another
topology in an appropriate way, then f is simply a continuous function. Let
(X, τ) be a topological space, and let β denote the collection of all clopen
subsets of (X, τ). Since the intersection of two clopen sets is a clopen set, the
collection β is a base for a topology τ∗ on X . Clearly τ∗ ⊂ τ . The space (X, τ)
is zero-dimensional if and only if τ∗ = τ .
Throughout the section, the symbol τ∗ will have the same meaning as in the
above paragraph.

Theorem 5.1. A function f : (X, τ) → (Y,ℑ) is cl-supercontinuous if and
only if f : (X, τ∗) → (Y,ℑ) is continuous.

Many of the results studied in preceding sections follow now from above theo-
rem and the corresponding standard properties of continuous functions.

Theorem 5.2. Let (X, τ) be a topological space. Then the following statements
are equivalent.

(a) (X, τ) is zero-dimensional.
(b) Every continuous function from (X, τ) into a space (Y,ℑ) is cl-supercontinuous.

Proof. (a) ⇒ (b) is obvious.
(b) ⇒ (a): Take (Y,ℑ) = (X, τ). Then the identity function 1x on X is con-
tinuous, and hence cl-supercontinuous. Hence by Theorem 5.1, 1x : (X, τ∗) →
(X, τ) is continuous. Since U ∈ τ implies 1−1

x (U) = U ∈ τ∗, τ ⊂ τ∗. Therefore
τ∗ = τ , and so (X, τ) is a zero-dimensional. �

Theorem 5.3. Let f : (X, τ) → (Y,ℑ) be a function. Then

(a) f is slightly continuous if and only if f : (X, τ) → (Y,ℑ∗) is continuous.
(b) f is cl-open if and only if f : (X, τ∗) → (Y,ℑ) is open.

In the light of Theorems 5.1 and 5.3 Theorem 2.10 can be restated as follows.
If f : (X, τ∗) → (Y,ℑ) is a continuous open surjection and g : (Y,ℑ) → (Z, ν)
is a function, then g is continuous if and only if g◦f is continuous and Theorem
2.17 is simply the result that the composition g ◦ f of the continuous functions
f : (X, τ) → (Y,ℑ∗) and g : (Y,ℑ∗) → (Z, ν) is continuous.
Moreover, cl-quotient topology on Y determined by f : (X, τ) → Y in Section 3
coincides with usual quotient topology on Y determined by f : (X, τ∗) → Y .
Finally we point out that in certain situations, in contrast to continuous func-
tions, the set L of all cl-supercontinuous functions is closed in the topology of
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pointwise convergence (see [6], [10]). For example, if X is sum connected [2]
(e.g. connected or locally connected) and Y is Hausdorff, then the set L(X, Y )
of all cl-supercontinuous functions is closed in Y X in the topology of point-
wise convergence. In particular, if X is connected (or locally connected) and
Y is Hausdorff, then the pointwise limit of a sequence of cl-supercontinuous
functions is cl-supercontinuous.
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