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Abstract

This PhD thesis is submitted as a compendium of the articles [45, 44, 22].

The following has been adapted from their abstracts.

Quantum mechanics has been argued to be a coarse–graining of some un-

derlying deterministic theory. Here we support this view by establishing

mappings between non-relativistic quantum mechanics and thermodynamic

theories, since the latter are the paradigm of an emergent theory.

First, we map certain solutions of the Schroedinger equation to solutions of

the irrotational Navier–Stokes equation for viscous fluid flow. Although this

is formally a generalization of Madelung’s hydrodynamical interpretation,

the presence of a viscous term leads to a novel interpretation. As a physi-

cal model for the fluid itself we propose the quantum probability fluid. It

turns out that the (state–dependent) viscosity of this fluid is proportional

to Planck’s constant, while the volume density of entropy is proportional to

Boltzmann’s constant. Stationary states have zero viscosity and a vanish-

ing time rate of entropy density. On the other hand, the nonzero viscosity

of nonstationary states provides an information–loss mechanism whereby a

deterministic theory (a classical fluid governed by the Navier–Stokes equa-

tion) gives rise to an emergent theory (a quantum particle governed by the

Schroedinger equation).

Then, we present a map of standard quantum mechanics onto classical ther-

modynamics of irreversible processes. In particular, the propagators of the

quantum harmonic oscillator are mapped to the conditional probabilities

that solve the Chapman-Kolmogorov equation for Markovian Gaussian pro-

cesses. While no gravity is present in our construction, our map exhibits

features that are reminiscent of the holographic principle of quantum gravity.

Finally, the classical thermostatics of equilibrium processes is shown to pos-

sess a quantum mechanical dual theory with a finite dimensional Hilbert

space of quantum states. Specifically, the kernel of a certain Hamiltonian

operator becomes the Hilbert space of quasistatic quantum mechanics. The

relation of thermostatics to topological field theory is also discussed in the

context of the approach of emergence of quantum theory, where the concept

of entropy plays a key role.
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Resumen

La presente tesis doctoral se presenta como compendio de las publicaciones

[45, 44, 22]. El siguiente resumen es una adaptación de sus resumenes.

Se ha argumentado que la mecánica cuántica podŕıa emerger como prome-

diado de una teoŕıa determinista subyacente. Se apoya dicha visión esta-

bleciendo mapeos entre la mecánica cuántica no relativista y teoŕıas termo-

dinámicas, ya que estas constituyen el paradigma de teoŕıa emergente.

Primero, se establece un mapeo entre soluciones de la ecuación de Schroe-

dinger y soluciones de la ecuación de Navier-Stokes irrotacional para fluidos

viscosos. Aunque formalmente se trate de una generalización de la interpre-

tación hidrodinámica de Madelung, la presencia del término viscoso sugiere

una nueva interpretación. Se propone la probabilidad cuántica como modelo

f́ısico del fluido. Se obtiene que la viscosidad (dependiente del estado) es

proporcional a la constante de Planck, mientras que la densidad de entroṕıa

es proporcional a la constante de Boltzmann. Los estados estacionarios tie-

nen viscosidad y tasa de producción de densidad de entroṕıa nulas. Por otro

lado, la viscosidad no nula de los estados no estacionarios proporciona un

mecanismo de pérdida de información por el cual una teoŕıa determinista (un

fluido clásico gobernado por la ec. de Navier-Stokes) da lugar a una teoŕıa

emergente (una part́ıcula cuántica gobernada por la ec. de Schroedinger).

Después, se presenta un mapeo entre la mecánica cuántica y la termodinámi-

ca clásica de procesos irreversibles. En particular, los propagadores del os-

cilador armónico cuántico se mapean a las probabilidades condicionales que

resuelven la ecuación de Chapman-Kolmogorov para procesos de Markov

Gaussianos. Aunque no hay gravedad, el mapeo exhibe propiedades que re-

cuerdan al principio holográfico de la gravedad cuántica.

Finalmente, se muestra cómo la termoestática clásica de procesos de equi-

librio posee una teoŕıa cuántica dual con un espacio de Hilbert finito - di-

mensional de estados cuánticos. Concretamente, el núcleo de cierto operador

Hamiltoniano se convierte en el espacio de Hilbert de una mecánica cuánti-

ca cuasiestática. La relación de la termoestática a la teoŕıa topológica de

campos se discute en el contexto de la mecánica cuántica emergente, donde

el concepto de entroṕıa juega un papel clave.
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Resum

Aquesta tesi doctoral es presenta com a compilació de les publicacions [45,

44, 22]. El següent resum es una adaptació dels seus resums.

S’ha argumentat que la mecànica quàntica podria emergir com a granulat

gros d’una teoria determinista subjacent. Es dóna suport a aquesta visió

mitjaçant uns mapes entre la mecànica quàntica no relativista i teories ter-

modinàmiques, ja que les darreres són el paradigma de teoria emergent.

Primer, s’estableix un mapa entre certes solucions de l’equació de Schro-

edinger i solucions de l’equació de Navier-Stokes irrotacional per a fluids

viscosos. Tot i que formalment es tracte d’una generalització de la interpre-

tació hidrodinàmica de Madelung, la presència del terme viscós ens porta

a una nova interpretación. Es proposa la probabilitat quàntica com a mo-

del f́ısic del fluid. S’obté que la viscositat del fluid (que depén de l’estat)

es proporcional a la constant de Planck, mentre que la densitat d’entroṕıa

es proporcional a la constant de Boltzmann. Els estats estacionaris tenen

viscositat nul·la i taxa de producció d’entropia nul·la. Per alta banda, la

viscositat no nul·la dels estats estacionaris proporciona un mecanisme de

pèrdua d’informació pel qual una teoria determinista (un fluid clàssic go-

vernat per l’equació de Navier-Stokes) dóna lloc a una teoria emergent (una

part́ıcula quàntica governada per l’equació de Schroedinger).

Després, es presenta un mapa entre la mecànica quàntica i la termodinàmica

clàssica de processos irreversibles. En particular, els propagadors de l’os-

cil·lador harmònic quàntic es mapejen a les probabilitats condicional que

resolen l’ecuació de Chapman-Kolmogorov per a processos de Markov Gaus-

sians. Tot i que no hi ha gravetat present a la nostra construcció, el ma-

pa exhibeix propietats que recorden al principi hologràfic de la gravetat

quàntica.

Finalment, es mostra cóm la termoestàtica clàssica de processos d’equilibri té

una teoria quàntica dual amb un espai de Hilbert de dimensió finita d’estats

quàntics. En concret, el nucli de cert operador Hamiltonià es converteix en

l’espai de Hilbert d’una mecànica quàntica quasiestàtica. La relació de la

termoestàtica a la teoria topològica de camps es dicuteix en el context de la

mecànica quàntica emergent, on el concepte d’entropia té un paper clau.
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Rı́o “Hermanos Sáız Montes de Oca” (Cuba) for my wonderful internships

there and to Becas de Movilidad de la Asociación Universitaria Iberoamer-

icana de Posgrado for partially sponsoring the latter.



Contents

1 Introduction 1

1.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Foundations of quantum mechanics . . . . . . . . . . . 3

1.1.2 Interpretations of quantum mechanics . . . . . . . . . 5

1.1.3 Emergent quantum mechanics . . . . . . . . . . . . . . 8

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 11

2 Schroedinger vs. Navier-Stokes 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The physics of Navier–Stokes from Schroedinger . . . . . . . 17

2.2.1 Computation of the viscosity . . . . . . . . . . . . . . 17

2.2.2 Viscous states vs. dissipation–free states . . . . . . . . 19

2.2.3 The ratio of viscosity to entropy density . . . . . . . . 22

2.2.4 Nonstationary states: emergent reversibility . . . . . . 24

2.2.5 Stationary states: emergent holography . . . . . . . . 25

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Holographic Quantum 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Basics in irreversible thermodynamics . . . . . . . . . . . . . 31

3.3 Quantum mechanics vs. irreversible thermodynamics . . . . . 35

3.4 Beyond the harmonic approximation . . . . . . . . . . . . . . 38

3.5 Quantum states as equivalence classes of classical trajectories 40

3.6 Quantum uncertainty vs. the second law . . . . . . . . . . . . 45

xi



xii CONTENTS

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Entropy, topological theories and emergent quantum me-

chanics 49

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 A quasistatic mechanics . . . . . . . . . . . . . . . . . . . . . 51

4.3 The thermostatics dual to quasistatic mechanics . . . . . . . 52

4.4 The quasistatic mechanics dual to thermostatics . . . . . . . 53

4.4.1 The ideal gas . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Motion along isoentropic surfaces . . . . . . . . . . . . 55

4.4.3 Motion across isoentropic surfaces . . . . . . . . . . . 56

4.4.4 A metric free entropy . . . . . . . . . . . . . . . . . . 59

4.4.5 The quantum mechanical partition function . . . . . . 59

4.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusion 63



Chapter 1

Introduction

The goal of physics is not only to predict the outcome of experiments but

to describe the world, to give us an ontology. If we keep building huge and

expensive experiments that test the unseen it is because we want to be able

to describe what there is and provide a coherent and complete account of

reality. At this respect, even an opposing “extreme shut-up-and-calculate

approach to physics” ends up making ontological claims, such that “our

universe is not just described by mathematics — it is mathematics” [114]1.

“1. What is matter? What is space and time? 2. What are the laws of

nature? 3. How does matter in space and time, being subject to certain laws,

explain the observable phenomena?” are some of the traditional questions

of natural philosophy and of central interest to physics [40]. What are the

most basic constituents of matter and how do they give rise to the reality

that we observe?

Current physics does not give a single definite answer to these questions.

To employ a topological language, it consists of an atlas of different phys-

ical theories whose interrelationship is not free from conceptual problems.

Simplifying in extreme, we have Classical Mechanics (CM), which applies

-at least- at human scales; Quantum Mechanics (QM), which -in general-

becomes relevant at microscopic scales; General Relativity (GR), which -

usually- becomes relevant at cosmological scales; and Thermodynamics or

1Boldface not present in the original

1
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Classical Field Theories, which give adequate descriptions of phenomena for

many-body problems at very different scales. Of course, the boundaries are

not definite at all and we observe, for example, macroscopic quantum phe-

nomena (see [121] for a recent review). The problem is that the ontologies

provided by these different theories, or charts of reality, are not always con-

sistent. This is precisely one of the motivations for the unification trend

that has dominated theoretical physics during the last century.

In any case, with or without unification, the intertheoretical relationships

and emergence are hot research topics in physics [74] and philosophy of sci-

ence [29, 10]. The most widely known intertheoretical problem, which is

considered by many to be the biggest open problem in current physics, is

how to make compatible GR with QM, or the quest for quantum gravity.

But this is not the only one. Another relevant intertheoretical problem will

be the relationship of many-body or continuum field theories to their under-

lying particle mechanics, which raises questions about novelty, autonomy,

emergence, phase transitions, etc.

Quantum mechanics has been seen as the ultimate microscopic theory, partly

because of its tremendous success in the predictive goal of physics. But its

inner problems (implications of the measurement problem, mysteries of non-

locality), its problems with respect to other theories (no quantum gravity),

and its plurality of interpretations gave rise to research lines embraced under

the umbrella of foundations of quantum mechanics since its very beginning.

“Quantum mechanics is unique in that its equations are known but not its

principles” [119].

Nowadays, an unorthodox part of the scientific community sees QM as an

effective theory, emerging from a more fundamental one, be it classical or

unknown. This gives rise to the research line known as emergent quantum

mechanics, whose ultimate goal would be to describe this emerging process

and to characterize the fundamental phase space or theory from which it

emerges. This field puts together lessons from all the work on the founda-

tions of QM, from thermodynamics and from the vast philosophical litera-

ture on emergence and intertheoretical relationships. And it connects with

statistical mechanics, one of whose goals is to describe how field theories

emerge from their underlying mechanics.
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1.1 Theoretical background

1.1.1 Foundations of quantum mechanics

The need to revisit the foundations of quantum mechanics comes -at least-

from two problems. One of them is internal to quantum mechanics and

its many aspects are summarized as the measurement problem. The other

one concerns the incompatibility between quantum mechanics and general

relativity and the impossibility of having a theory of quantum gravity.

In order to comment on the former, let us restate the postulates2 of quantum

mechanics:

Kinematics every isolated physical system S has an associated Hilbert

space HS that represents its phase space. The state of the system is

completely described by a unit vector ψ ∈ HS .

Dynamics I the evolution of a closed system obeys the Schroedinger equa-

tion
dψ

dt
= − i

~
Hψ; H is the hamiltonian of S.

Dynamics II a measurement is described3 by an hermitian operator M :

HS → HS . By the spectral theorem, M admits a decomposition M =∑
mmPm, where Pm are the projectors in the subspace of eigenvalue

m. The possible outcomes of the measurement are the eigenvalues

m. The probability of obtaining m is given by the Born rule p(m) =

ψ∗Pmψ. The state of the system after the measurement m is Pmψ√
p(m)

.

Composition the phase space of a composite system AB, composed of the

systems A and B, is obtained through the tensor product HA ⊗HB.

Since the measurement process suddenly transforms the state of the sys-

tem into an eigenstate of the measurement operator (thus removing any

2Similar versions can be found in any textbook. Here we follow [86], for no particular

reason beyond the fact that it is a great book.
3For simplicity, we give the finite-dimensional version of the postulate, in which self-

adjoint and hermitian are equivalent, and the decomposition takes the form of a sum.

Extensions of the spectral theorem for general self-adjoint operators, not even bounded,

can be found e.g in [57, 54], but do not change the overall picture.
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superposition in the measurement basis), it is pictured as a wavefunction

collapse. The measurement problem is the question of how this collapse oc-

curs, whether it occurs at all, or how to interpret it, and can be seen under

different angles:

Ontological what constitutes an observer? what constitutes an observa-

tion? what if we include the observer in the system? Accepting the

postulates plus a recursion argument leads to the viewpoint that “all

is Ψ” [115]. But then the universe as a whole evolves according to the

Schroedinger equation, with no collapse whatsoever.

Epistemological from the previous considerations, is the measurement re-

sult obtained during the collapse a mere illusion for the observer or is

it a physical, objective process taking place? Besides, since the col-

lapse, or observations, change the state of the observed system, what

is the role of the observer in the knowing process? What is knowledge,

then? In Schroedinger words, “we are told that no distinction is to be

made between the state of a natural object and what I know about it”

[99].

Aesthetic why do we need two dynamical postulates? Can they be unified

in a more general framework? Furthermore, the measurement axiom

seems too much ad hoc and can be unpleasing. In a way, it looks more

like an effective rule than a proper physical postulate.

Intertheoretical First of all, how is the postulate compatible with special

relativity? As Einstein himself noted, every measurement, not just

those of entangled states, is somehow non-local4:

4We tend to think of non-locality as a feature of nonseparable states, and therefore

a consequence of the tensor product as a composition postulate. But “Imagine a single

photon approaching a large piece of photographic film, say a square one meter on a side.

Quantum mechanics might describe the state of this particle by a wave spread out over the

whole square meter. But, as there is only one photon present, only one grain in the photo

emulsion can be exposed, by a silver atom absorbing a quantum of light energy. After this

event, the wave representing the photon’s state must have collapsed to atomic dimensions.

(To appreciate this change of scale, note that the area covered by one silver atom is to

one square meter roughly as the dot at the end of this sentence is to the North American

continent.) The photon has, so to speak, been sucked into the atom, traversing the 10

orders of magnitude separating macroscopic from microscopic in no time at all.”[119].

How did the macroscopic detector knew that the wave corresponded to just one particle?
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The interpretation, according to which |ψ|2 expresses the

probability that this particle is found at a given point, as-

sumes an entirely peculiar mechanism of action at a dis-

tance, which prevents the wave continuously distributed in

space from producing an action in two places on the screen.

[35].

Even in Quantum Field Theory, which is supposed to be a special

relativistic quantum mechanical theory, the wavefunction collapse is

left as a postulate, and only the unobserved evolution is truly special

relativistic. In Maudlin’s words:

“In any orthodox theory the wavefunction is complete

and hence must collapse, so we must consider whether col-

lapses could be generated in a relativistically invariant way.[...]

The reason that quantum field theory may seem to be ev-

idently compatible with relativity is that the non-local in-

fluences in orthodox quantum theory are carried by wave

collapse, and wave collapse is commonly ignored in physics

texts” [83].

Furthermore, if classical mechanics is to be a limiting case of quantum

mechanics, how does the dynamic duality disappear in the limit?

1.1.2 Interpretations of quantum mechanics

All these questions led to a plethora of interpretations or reformulations of

quantum mechanics. There is also a plethora of classifications, and in the

following we review three that are particularly enlightening.

J. S. Bell divides the main interpretations in romantic and unromantic [12].

The romantic ones would be:

• The many worlds interpretation, according to which there is a universe

for each possible outcome of a measurement [102].

How did the part of the wave over here know that the screen was detecting the particle

over there?
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• Bohr’s complementarity, which establishes a fundamental scale distinc-

tion and asks us to accept the coexistence of a quantum and a classical

domain, with different rules [61].

• The mind-matter dualism defended by Wigner and Wheeler, among

others, which states that the mind does not follow by the same rules

than the material world and this is where the wavefunction collapse

takes place [85].

While the unromantic interpretations would be:

• The introduction of nonlinear or stochastic terms into Schroedinger’s

equation. Some of these approaches are nowadays known as collapse

models, including GRW theory (see [9] for a review of these models).

• The pilot wave picture5 of Bohm and de Broglie, according to which

ordinary quantum mechanics can be extended and made complete and

deterministic. See [33, 34] for good modern accounts. So-called hidden

variable theories would fall in this category.

• The pragmatic attitude of the Copenhagen interpretation, which sees

quantum mechanics as a mere tool for the computation of probabilities.

This pragmatic philosophy is, I think, consciously or un-

consciously the working philosophy of all who work with quan-

tum theory in a practical way . .. when so working. We dif-

fer only in the degree of concern or complacency with which

we view ... out of working hours, so to speak ... the intrinsic

ambiguity in principle of the theory [12].

Tim Maudlin confronts the different interpretations to the measurement

problem and concludes that the only allowable interpretations must be either

hidden variable or collapse theories:

But at least we can be clear about the questions that must

5The Bohm-de Broglie theory gives a good account of non-relativistic quantum me-

chanics, reproducing all and only all of its results, with a realist ontology free from the

measurement problem. The price to pay is a certain duality in the description of the state

and, therefore, of the dynamical laws. In any case, it is clear that Bohm and his followers

have been mistreated, and the fierce rejection of their ideas should be shocking for the

critical physicist [50].
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be asked of an interpretation. Is it an additional variables in-

terpretation whose dynamics guarantee solutions to the problem

of statistics and the problem of effect? Is it a collapse theory

that leads to appropriate outcome states with the right probabil-

ities, and whose fundamental terms all have clear physical sig-

nificance? If the answer in each case is “no”, then commit it to

the flames, for it can contain nothing but sophistry and illusion

[82].

Finally, Jean Bricmont lists four possible reactions to the measurement prob-

lem:

A first reaction is to claim that one cannot understand the mi-

croscopic world and that one must content oneself with predicting

the results of measurements, which are necessarily macroscopic,

and are thus described in a “classical” (i.e., understandable) lan-

guage. [...]

A second reaction follows naturally from this idea, and con-

sists in the hope that, by analyzing the measurement process in

more detail, as a purely physical process (with no reference what-

soever to an outside “observer”), one may arrive at an under-

standing of what is going on.

A third reaction is to view the quantum state as representing,

not an individual system, but an ensemble of systems and having

thus a role similar to probabilities in classical physics [...].

A fourth reaction (sometimes motivated by the third) is to

propose a more complete theory than quantum mechanics. One

would not simply say, as in the third reaction, that particles do

have properties not described by the quantum state, but one would

try to say what these properties are and how they evolve in time

[21].

He goes on to show that a naive statistical interpretation, corresponding

to the third reaction, in which all the physical observables have predefined

classical values, is simply not possible. Such an interpretation is ruled out

by the no hidden variables theorems of Kochen and Specker [66] and Bell6

6Do not confuse this theorem with the well-known Bell inequalities.
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[11]. The second reaction has to be dismissed, too, since it ultimately leads

to macroscopic superposiotions (aka Schroedinger cats). The first reaction

is of course the Copenhaguen interpretation, that we reject. This leaves

only the fourth reaction, that Bricmont embraces in the form of Bohmian

mechanics. In the present thesis we pursue precisely this fourth path, but

we choose to explore connections between QM and thermodynamics instead,

in a general way that will support the effective character of the former.

1.1.3 Emergent quantum mechanics

The previous considerations have led to the interpretation of quantum me-

chanics as an effective theory, emerging from a more fundamental one. The

situation would be analogous to the relationship between classical thermody-

namics and statistical mechanics, in which the former provides an accurate

description of reality without referring to the fundamental particles.

In the context of the GR/QM antagony, similar claims have been made for

GR. Indeed, if GR and QM are incompatible, it seems reasonable to consider

that one of them, or both, is not fundamental.

With respect to GR, Thanu Padmanabhan has been long arguing that grav-

ity is thermodynamics [90, 88, 67, 89]. His approach starts from the boltz-

mannian consideration that if it can get hot, it must have microstructure

[90]. Now, thanks to the Unruh effect, spacetime events can be given a tem-

perature. Together with symmetry considerations, this leads him to “the

interpretation of gravity as the thermodynamic limit of the kinetic theory of

atoms of space” [90].

Similarly, Erik Verlinde has been arguing that gravity is just an entropic

force7 [116, 117]. The duality, for Newtonian gravity, reads as follows:

Let there be given a charge distribution ρ which is a density.

Then, static Newtonian gravity can be characterized as follows:

A: There is a scalar field φ which obeys the Poisson equation

∇2φ = 4πGρ. A test-mass m in the background field of a mass

M with field φM experiences a force ~F = m~∇φM .

7An idea that granted him the Spinoza prize, the highest Dutch scientific award.
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Here, G is some coupling constant. Verlinde’s proposal in-

stead can be cast as follows

B: There are two scalar quantities S and T and a continu-

ous set of non-intersecting surfaces S , the ‘holographic screens’,

whose union covers all of space R3 =
⋃
S. The theory is defined

by 2G
∫
(S) ρdV =

∫
S TdA ∀S, and the force acting on a particle

with test-mass m is given by Fδx =
∫
S TδdS, where the integral

is taken over a screen that does not include the test-mass.

Here, (S) denotes the volume with surface S. The volume

integral
∫
(S) dV ρ is of course just the total mass M inside that

volume, and the quantities S and T are interpreted as the entropy

respectively temperature on the holographic screens. The δx is a

virtual variation on the location on the particle which induces a

change in the entropy on the screen [59].

With respect to QM, perhaps the most famous emergent interpretation is

that due to Nobel prize Gerard ’t Hooft. He shows that the properties

of quantum systems in finite-dimensional Hilbert spaces can be reproduced

by classical systems: “For any quantum system there exists at least one

deterministic model that reproduces all its dynamics after prequantization”

[111]. According to him, quantum mechanics would just be a mathematical

tool that averages information about more fundamental ontic states, which

can be modeled by means of cellular automata with information loss (the

recent book [113] summarizes his numerous publications on the topic). Note

that all the classical mechanics no-go theorems (such as those compiled by

David Jennings and Matthew Leifer [60]) must be taken with care, since

they do not necessarily apply in an emergent context8.

Despite being the most widely known, and having inspired many9, ’t Hooft’s

is not the only approach. “There is a growing number of deterministic mod-

els of quantum mechanical objects which are based on conjectured fundamen-

tal information loss or dissipation mechanisms” [36]. To name but a few,

in the literature one finds quantum graphity ([68, 79], see also [80]); Adler’s

8In the same way that they do not apply for Bohmian mechanics. Careless critics keep

citing them as a counter-argument.
9Notably Giuseppe Vitiello, Massimo Blasone and collaborators [16, 15, 14, 17] and

Hans-Thomas Elze, who has dozens of papers on the subject (we only cite here the last

one, [39]).
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trace dynamics [5]; or quantumness emerging from classic systems with fluc-

tuations [56]. Roger Penrose argues that gravity should modify “‘the very

formalism of quantum mechanics” [93].

In a related vein, although not at all emergentist, John Baez10 studied an

analogy between quantum mechanics and statistical mechanics and proposed

a quantity called Quantropy as the analogue of entropy on the quantum

mechanical side [8]. In line with this, there exists some literature exploiting

”quantum techniques for stochastic mechanics” [7], since path integrals are

somehow ubiquitous (see [64]).

It is interesting to remark that just a few months after Schroedinger pub-

lished his equation, Erwin Madelung gave a hydrodynamical - effective,

emergent - interpretation of it [76]. He mapped the nowadays known as

Quantum Hamilton-Jacobi or Hamilton-Jacobi-Madelung equation with the

Euler equation. The former equation results from writing the wavefunction

explicitly as amplitude and phase, inserting it into the Schröedinger equa-

tion and separating into real and imaginary parts. The result is an equation

that looks much like Euler’s equation, except for the fact that it contains an

extra term which, in Madelung’s words, “represents the internal mechanism

of the continuum”. To recover the Schroedinger equation from the Euler

equation one needs to assume that
∮
L v ·dl = 2πn, where n is an integer and

L is any closed loop in space [118]. But this corresponds precisely to the

old Bohr-Sommerfeld quantization condition, which turns out to be equiv-

alent to the semiclassical approximation [71]. Recent references study the

Madelung equations from a geometric perspective [97, 51, 73], which reflects

a permanent interest on the topic.

1.2 Goals

The main goal of this thesis is to investigate, in the context of emergent

quantum mechanics, similarities between non-relativistic quantum mechan-

ics (QM) and some thermodynamical theories. In particular, we investigate:

• A duality between QM and viscous fluid mechanics.

10Who I keep calling my favorite mathematician alive.



1.3. PRIOR WORK 11

• A duality between QM and markovian irreversible thermodynamics in

the linear regime.

• How a quantum mechanical theory could be constructed from a dual

classical thermostatics.

1.3 Prior work

This thesis partially continues with the work of the PhD dissertations of

Dagoberto Acosta [2] and Milton H. Perea [94]. In [2] (and the associated

papers [3], [4]), the similarity of QM with Onsager’s irreversible thermody-

namics was first noticed. In [94] (and the associated papers [41], [42], [43])

that duality was developed. Both thesis were advised by P. Fernández de

Córdoba and J. M. Isidro, advisers of the present thesis.

1.4 Structure of the thesis

This thesis is submitted under the article compendium format11.

• Chapter 1 serves as an introduction, sets the goals and presents the

necessary theoretical background for a proper understanding of this

thesis. Familiarity with fluid mechanics, classical thermodynamics and

non-relativistic quantum mechanics is assumed.

• Chapter 2 is based on the publication [45].

• Chapter 3 is based on the publication [44].

• Chapter 4 is based on the publication [22].

• Chapter 5 serves as a discussion of the results and a conclusion.

Chapters 2, 3 and 4 are compiled from the versions available on the arXiv

with no relevant content modifications. These .tex files are the preprint

11For the regulations, see Normativa de los estudios de doctorado en la Uni-

versitat Politècnica de València, published in Butllet́ı Oficial de la Universitat

Politècnica de València 54, available at http://www.upv.es/entidades/EDOCTORADO/

info/798159normalc.html
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author version, and contain already all the modifications suggested by the

reviewers during the publishing process. Therefore, the chapters correspond

faithfully to the published articles. The only notable change is in the refer-

ences, which was necessary in order to provide a single unified bibliography

for this PhD thesis.



Chapter 2

Schroedinger vs.

Navier-Stokes

This chapter is based on the article Schroedinger vs. Navier–Stokes, by P.

Fernández de Córdoba, J.M. Isidro and J. Vazquez Molina, published in

Entropy 18 (2016) doi:10.3390/e18010034, available electronically as arXiv:

1409.7036 [math-ph], and quoted in the bibliography as ref [45].

2.1 Introduction

Interaction with an environment provides a mechanism whereby classical

behaviour can emerge from a quantum system [122]. At the same time,

however, dissipation into an environment can change this picture towards

the opposite conclusion. Indeed certain forms of quantum behaviour have

been experimentally shown to arise within classical systems subject to dis-

sipation [28, 96]. Now systems in thermal equilibrium are well described

by classical thermostatics, while small deviations from thermal equilibrium

can be described by the classical thermodynamics of irreversible processes

[87]. It is sometimes possible to model long–wavelength dissipative processes

through the dynamics of viscous fluids. Fluid viscosity provides a relatively

simple dissipative mechanism, a first deviation from ideal, frictionless be-

haviour. Two relevant physical quantities useful to characterise viscous flu-

13
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ids are shear viscosity η and the entropy per unit 3–volume, s [70]. In a turn

of events leading back to the Maldacena conjecture [77] it was found that,

for a wide class of thermal quantum field theories in 4 dimensions, the ratio

η/s for the quark–gluon plasma must satisfy the inequality [69]

η

s
≥ ~

4πkB
. (2.1)

The predicted value of the ratio η/s for the quark–gluon plasma has found

experimental confirmation [75]. The simultaneous presence of Planck’s con-

stant ~ and Boltzmann’s constant kB reminds us that we are dealing with

theories that are both quantum and thermal .

One might be inclined to believe that these two properties, quantum on the

one hand, and thermal on the other, are separate. One of the purposes of this

paper is to show that this predisposition must be modified, at least partially,

because the terms quantum and thermal are to a large extent linked (see

e.g. [42, 67] and refs. therein). In fact, that these two properties belong

together follows from the analysis of refs. [96, 122], even if the conclusions

of these two papers seem to point in opposite directions.

In this article we elaborate on a theoretical framework that can accomodate

the ideas of the previous paragraph. In plain words, this framework can be

summarised in the statement quantum = classical + dissipation, although

of course this somewhat imprecise sentence must be made precise. To begin

with, we will restrict our analysis to quantum systems with a finite number

of degrees of freedom. So we will be dealing not with theories of fields,

strings and branes, but with plain quantum mechanics instead.

In the early days of quantum mechanics, Madelung provided a very intuitive

physical interpretation of the Schroedinger wave equation in terms of a prob-

ability fluid [76]. Decomposing the complex wavefunction ψ into amplitude

and phase, Madelung transformed the Schroedinger wave equation into an

equivalent set of two: the quantum Hamilton–Jacobi equation, and the con-

tinuity equation. Further taking the gradient of the phase of ψ, Madelung

arrived at a velocity field satisfying the Euler equations for an ideal fluid. In

Madelung’s analysis, the quantum potential U is interpreted as being (pro-

portional to) the pressure field within the fluid. It is important to stress that

Madelung’s fluid was ideal, that is, frictionless. Independently of this anal-
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ogy, Bohm suggested regarding the quantum potential U as a force field that

the quantum particle was subject to, in addition to any external, classical

potential V that might also be present [18].

There exists yet a third, so far unexplored alternative to Madelung’s and

Bohm’s independent interpretations of the quantum potential. In this al-

ternative, explored here, the quantum potential is made to account for a

dissipative term in the equations of motion of the probability fluid . The ve-

locity field no longer satisfies Euler’s equation for an ideal fluid—instead it

satisfies the Navier–Stokes equation for a viscous fluid. It is with this vis-

cosity term in the Navier–Stokes equation, and its physical interpretation

as deriving from the Schroedinger equation, that we will be concerned with

in this paper.

It has long been argued that quantum mechanics must emerge from an un-

derlying classical, deterministic theory via some coarse–graining, or information–

loss mechanism [36, 37, 48, 53, 52, 111, 109, 113]; one refers to this fact as

the emergence property of quantum mechanics [25]. Many emergent physical

theories admit a thermodynamical reformulation, general relativity being

perhaps the best example [88, 116]. Quantum mechanics is no exception

[30, 81]; in fact our own approach [42, 43] to the emergence property of

quantum mechanics exploits a neat correspondence with the classical ther-

modynamics of irreversible processes [87].

In this article, the dissipation that is intrinsic to the quantum description of

the world will be shown to be ascribable to the viscosity η of the quantum

probability fluid whose density equals Born’s amplitude squared |ψ|2. More-

over, the viscosity η will turn out to be proportional to ~, thus vanishing

in the limit ~ → 0. Now mechanical action (resp. entropy) is quantised

in units of Planck’s constant ~ (resp. Boltzmann’s constant kB), and Eq.

(2.1) contains these two quanta. (Concerning Boltzmann’s constant kB as

a quantum of entropy, see refs. [72, 116]). Hence an important implication

of our statement quantum = classical + dissipation is that quantum and

thermal effects are inextricably linked.

Some remarks on conventions are in order; we follow ref. [70]. The viscosity
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properties of a fluid can be encapsulated in the viscous stress tensor σ′ik,

σ′ik := η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

, (2.2)

where η (shear viscosity) and ζ (bulk viscosity) are positive coefficients, and

the vi are the components of the velocity field v within the fluid. Then the

Navier–Stokes equation reads

∂v

∂t
+ (v · ∇) v +

1

ρ
∇p− η

ρ
∇2v − 1

ρ

(
ζ +

η

3

)
∇ (∇ · v) = 0. (2.3)

Here p is the pressure, and ρ the density of the fluid. In the particular case

of irrotational flow considered here, the Navier–Stokes equation simplifies

to
∂v

∂t
+ (v · ∇) v +

1

ρ
∇p− η′

ρ
∇2v = 0, η′ := ζ +

4η

3
. (2.4)

For notational simplicity, in what follows we will systematically write η for

the viscosity coefficient η′ just defined, bearing in mind, however, that we

will always be dealing with Eq. (2.4) instead of (2.3).

The above must be supplemented with the continuity equation and the equa-

tion for heat flow. If T denotes the temperature and κ the thermal conduc-

tivity of the fluid, then the equation governing heat transfer within the fluid

reads

ρT

(
∂s

∂t
+ (v · ∇)s

)
− σ′ik

∂vi
∂xk
−∇ · (κ∇T ) = 0. (2.5)

We will use the notations I and S for mechanical action and entropy, re-

spectively, while the dimesionless ratios I/~ and S/2kB will be denoted in

italic type:

I :=
I
~
, S :=

S
2kB

. (2.6)

The factor of 2 multiplying kB, although conventional, can be justified. By

Boltzmann’s principle, the entropy of a state is directly proportional to the

logarithm of the probability of that state. In turn, this is equivalent to

Born’s rule:

(Boltzmann) S = kB ln

(∣∣∣ ψ
ψ0

∣∣∣2)⇐⇒ |ψ|2 = |ψ0|2 exp

(
S
kB

)
(Born).

(2.7)
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Above, |ψ0| is the amplitude of a fiducial state ψ0 with vanishing entropy.

Such a fiducial state is indispensable because the argument of the logarithm

in Boltzmann’s formula must be dimensionless. It is convenient to think of

ψ0 as being related to a 3–dimensional length scale l defined through

l := |ψ0|−2/3. (2.8)

One can also think of ψ0 as a normalisation factor for the wavefunction.

2.2 The physics of Navier–Stokes from

Schroedinger

2.2.1 Computation of the viscosity

Our starting point is Madelung’s rewriting of the Schroedinger equation for

a mass m subject to a static potential V = V (x),

i~
∂ψ

∂t
+

~2

2m
∇2ψ − V ψ = 0, (2.9)

by means of the substitution

ψ = ψ0 exp

(
S +

i

~
I
)

= ψ0A exp

(
i

~
I
)
, A := eS . (2.10)

This produces, away from the zeroes of ψ, an equation whose imaginary part

is the continuity equation for the quantum probability fluid,

∂S

∂t
+

1

m
∇S · ∇I +

1

2m
∇2I = 0, (2.11)

and whose real part is the quantum Hamilton–Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V + U = 0. (2.12)

Here

U := − ~2

2m

∇2A

A
= − ~2

2m

[
(∇S)2 +∇2S

]
(2.13)

is the quantum potential [18]. Next one defines the velocity field of the

quantum probability fluid

v :=
1

m
∇I. (2.14)



18 CHAPTER 2. SCHROEDINGER VS. NAVIER-STOKES

Then the gradient of Eq. (2.12) equals

∂v

∂t
+ (v · ∇) v +

1

m
∇U +

1

m
∇V = 0. (2.15)

The flow (2.14) is irrotational. We will sometimes (though not always)

make the assumption of incompressibility, ∇ · v = 0. This reduces to the

requirement that the phase I satisfy the Laplace equation,

∇2I = 0. (2.16)

We will see in Eq. (2.23) that the above Laplace equation is an equivalent

restatement of the semiclassicality condition.

At this point we deviate from Madelung’s reasoning and compare Eq. (2.15)

not to Euler’s equation for an ideal fluid, but to the Navier–Stokes equation

instead, Eq. (2.4). For the correspondence to hold, we first identify (∇p)/ρ
with (∇V )/m. Second, it must hold that

1

m
∇U +

η

ρ
∇2v = 0. (2.17)

That is, the gradient of the quantum potential must exactly compensate

the viscosity term in the fluid’s equations of motion. Thus frictional forces

within the fluid are quantum in nature. Altogether, we have established the

following:

Theorem 1 Whenever condition (2.17) holds, the gradient of the quan-

tum Hamilton–Jacobi equation, as given by Eq. (2.15), is a Navier–Stokes

equation for irrotational, viscous flow:

∂v

∂t
+ (v · ∇) v − η

ρ
∇2v +

1

ρ
∇p = 0. (2.18)

Here the pressure p of the quantum probability fluid and the mechanical

potential V are related as per

1

ρ
∇p =

1

m
∇V, (2.19)

while the density ρ of the fluid is given by

ρ = m|ψ|2 =
m

l3
e2S =

m

l3
A2. (2.20)
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Given V , m and ρ, the equation (∇p)/ρ = (∇V )/m defines a vector field

p = ρ∇V/m, that however need not be a gradient field ∇p. We will see

later (theorem 4) that, at least in the classical limit, the above equation is

integrable, thus defining a scalar function p such that p = ∇p.

The order of magnitude of the viscosity coefficient η can be inferred from

Eqs. (2.13), (2.14) and (2.17): since U is O(~2) and I is O(~), we conclude:

Theorem 2 Whenever condition (2.17) holds, the viscosity coefficient η of

the quantum probability fluid is proportional to Planck’s constant:

η =
1

l3
O (~) . (2.21)

It is worthwhile stressing that Eq. (2.21) only provides an order of mag-

nitude for η as a function of ~—namely, η is a linear function of ~. The

denominator l3 has been included for dimensional reasons, while a dimen-

sionless factor multiplying the right–hand side of Eq. (2.21) is allowed.1

Moreover, this dimensionless factor will generally depend on the quantum

state under consideration, because both U and I are state–dependent. Al-

though the viscosity of the quantum probability fluid depends, through an

undetermined dimensionless factor, on the quantum state, the order of mag-

nitude provided by Eq. (2.21) is universal.

2.2.2 Viscous states vs. dissipation–free states

Condition (2.17) need not be satisfied by all wavefunctions, as the functions

S and I are already determined by the quantum Hamilton–Jacobi equation

and by the continuity equation. Thus our next task is to exhibit a class

of quantum–mechanical wavefunctions for which condition (2.17) is indeed

satisfied, either exactly or at least approximately.

1This dimensionless factor is undetermined, in the sense that our argument does not

provide its precise value—not in the sense that the viscosity η is undetermined.



20 CHAPTER 2. SCHROEDINGER VS. NAVIER-STOKES

Exact solutions

Eq. (2.17) integrates to

U +
η

ρ
∇2I = C0(t), C0(t) ∈ R, (2.22)

where the integration constant C0(t) may generally depend on the time

variable. Let us for simplicity set C0(t) = 0. Using (2.13) and (2.20) the

above becomes
2ηl3

~2
∇2I = e2S

[
(∇S)2 +∇2S

]
. (2.23)

One can regard (2.23) as a Poisson equation ∇2Φ = %, where the role of

the electric potential Φ is played by the phase I and that of the charge

density % is played by the right–hand side of Eq. (2.23). The bracketed

term, (∇S)2 + ∇2S, is actually proportional to the Ricci scalar curvature

of the conformally flat metric gij = e−S(x)δij , where δij is the Euclidean

metric on R3. Eq. (2.23) has been dealt with in ref. [1], in connection with

the Ricci–flow approach to emergent quantum mechanics. For the moment

we will relax the requirement that Eq. (2.17) hold exactly, and will satisfy

ourselves with approximate solutions instead.

Approximate solutions

Under the assumption that ρ is spatially constant, Eq. (2.17) integrates to

U(x, t) = C1(t), C1(t) ∈ R, (2.24)

where Eqs. (2.14) and (2.16) have been used; the integration constant C1(t)

may however be time–dependent. Equivalently, one may assume that S

in (2.23) is approximately constant as a function of the space variables,

hence I is an approximate solution of the Laplace equation (2.16). Still

another way of arriving at (2.24) is to assume the flow to be approximately

incompressible, ∇ · v ' 0. Of course, ρ = mA2/l3 is generally not spatially

constant. However, in the semiclassical limit, the amplitude A = eS is a

slowly–varying function of the space variables. Under these assumptions,

Eq. (2.24) holds approximately:
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Theorem 3 In the semiclassical limit, the sufficient condition (2.17) guaran-

teeing the validity of the Navier–Stokes equation is equivalent to Eq. (2.24).

We can now consider the effect of taking the semiclassical limit in the iden-

tification (∇p)/ρ = (∇V )/m made in Eq. (2.19). In this limit ρ is approxi-

mately constant, and the above identification defines an integrable equation

for the scalar field p. Therefore:

Theorem 4 In the semiclassical limit, the identification (∇p)/ρ = (∇V )/m

made in Eq. (2.19) correctly defines a scalar pressure field p within the

probability fluid.

In the stationary case, when ψ = φ(x) exp(−iEt/~), the quantum potential

becomes time–independent, and condition (2.24) reduces to the requirement

that U be a constant both in space and in time:

U(x) = C2, C2 ∈ R. (2.25)

Theorem 5 In the semiclassical limit of stationary eigenfunctions, the suf-

ficient condition (2.17) guaranteeing the validity of the Navier–Stokes equa-

tion is equivalent to Eq. (2.25).

One expects semiclassical stationary states to possess vanishing viscosity be-

cause, having a well–defined energy, they are dissipation–free. This expec-

tation is borne out by a simple argument: Eq. (2.17) and the (approximate)

spatial constancy of U imply η∇2v = 0. This reduces the Navier–Stokes

equation (2.4) to the Euler equation for a perfect fluid. Therefore:

Theorem 6 All semiclassical stationary states have vanishing viscosity:

η = 0.

Thus, as far as dissipation effects are concerned, the combined assumptions

of stationarity and semiclassicality lead to a dead end. Furthermore, we

cannot lift the requirement of semiclassicality because stationarity alone

does not guarantee that the sufficient condition (2.17) holds. Even if we per

decree assign a non–semiclassical but stationary state η = 0, that state need

not satisfy condition (2.17)—the very assignment of a viscosity η would be

flawed.
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A physically reasonable assumption to make is that viscosity must be pro-

portional to the density of the fluid:

η = C3ρ. (2.26)

Here C3 is some dimensional conversion factor that does not depend on the

space variables: C3 6= C3(x). Then Eq. (2.17) integrates to

U +mC3 (∇ · v) = C4, C4 ∈ R. (2.27)

When the flow is incompressible, ∇ · v = 0, and Eq. (2.27) reduces to the

case already considered in Eqs. (2.24) and (2.25). Thus the proportionality

assumption (2.26) provides an independent rationale for the semiclassical

approximation made earlier, and viceversa. In turn, this shows that the

semiclassicality condition can be recast as done in Eq. (2.16). We conclude:

Theorem 7 In the semiclassical limit, the viscosity η is proportional to the

density ρ of the quantum probability fluid. In particular, the viscosity η

is approximately spatially constant for semiclassical states. Moreover, the

proportionality factor C3 in Eq. (2.26) is linear in Planck’s constant ~:

C3 =
~
m
f. (2.28)

Here f ≥ 0 is an arbitrary dimensionless factor. By what was said previously,

f = 0 when the state considered is an energy eigenstate, while f > 0 on all

other states. Hence f is best thought of as a function f : H → R on the

Hilbert space H of quantum states.

Having exhibited the existence of approximate solutions to condition (2.17),

whenever dealing with dissipation effects we will restrict our discussion to

nonstationary states.

2.2.3 The ratio of viscosity to entropy density

We have interpreted dissipation as a quantum effect within the probability

fluid. Hence the increase ds/dt in the volume density of entropy of the

probability fluid also qualifies as a quantum effect. Here we will compute

ds/dt in the semiclassical regime, both for stationary and nonstationary

states.
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Considering a stationary state first, we expect ds/dt = 0 because η = 0.

This expectation is confirmed by the following alternative argument. We

see that Eq. (2.5) reduces to

ds

dt
=
∂s

∂t
+ (v · ∇)s =

κ

ρ

∇2T

T
, (2.29)

because the dissipation term σ′ik vanishes. On the other hand, by Boltz-

mann’s principle (2.7) we can write the entropy S in terms of the amplitude

A = eS as

S = 2kB ln

(∣∣∣ ψ
ψ0

∣∣∣) = 2kB lnA. (2.30)

This is reminiscent of the expression for the entropy of an ideal gas as a

function of its temperature, viz . S = gkB ln(T/T0), with g a dimensionless

number and T0 some fixed reference temperature. Which suggests iden-

tifying the quantum–mechanical amplitude A with the thermodynamical

temperature T , at least in the absence of friction—as is indeed the case for

stationary states and for the ideal gas. So we set

A =
T

T0
. (2.31)

Thus ∇2A = 0 implies ∇2T = 0. In the semiclassical approximation, A is a

slowly–varying function, and one can approximate ∇2A by zero. Thus sub-

stituting Eq. (2.31) into Eq. (2.29), we arrive at a counterpart to theorem

5:

Theorem 8 In the semiclassical approximation, the entropy density of any

stationary state is constant in time: ds/dt = 0.

Our next task is to obtain an estimate for the order of magnitude of the

entropy density s. This is readily provided by Eq. (2.30):

Theorem 9 In the semiclassical approximation, the volume density of en-

tropy s of the quantum probability fluid is proportional to Boltzmann’s

constant:

s =
1

l3
O (kB) . (2.32)

As already mentioned regarding Eq. (2.21), the denominator l3 has been

included for dimensional reasons, and an undetermined, dimensionless factor
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multiplying the right–hand side is allowed. Finally combining Eqs. (2.21)

and (2.32) together we can state:

Theorem 10 For the quantum probability fluid in the semiclassical approx-

imation, the order of magnitude of the ratio of viscosity to entropy density

is
η

s
= O

(
~
kB

)
. (2.33)

Again an undetermined, dimensionless factor multiplying the right–hand

side is allowed, but the dependence on the length scale l has dropped out.

2.2.4 Nonstationary states: emergent reversibility

Nonstationary states can be readily constructed as linear combinations of

stationary eigenstates with different energy eigenvalues. The ratio η/s of the

viscosity to the entropy density of a nonstationary state is important for the

following reason. Any nonstationary state thermalises to a final equilibrium

state. The time required for this transition is of the order of the Boltzmann

time τB,

τB :=
~

kBT
, (2.34)

where T is the temperature of the final equilibrium state [55]. In Eq. (2.31)

we have related the temperature T to the amplitude A = |ψeq| of the equi-

librium state wavefunction ψeq. Therefore:

Theorem 11 For semiclassical, nonstationary states of the quantum prob-

ability fluid, the Boltzmann time is directly proportional to the ratio η/s

of the viscosity to the entropy density of the initial state, and inversely

proportional to the amplitude of the final equilibrium state.

Out of this analysis there arises a nice picture of the thermalisation process,

whereby a nonstationary state decays into a final stationary state. In this

picture we have a slow dynamics superimposed on a fast dynamics. The

latter corresponds to nonstationary states; the former, to stationary states.

Viscous states correspond to the fast dynamics, while dissipation–free states

pertain to the slow dynamics. Time reversibility emerges as a conservation

law that applies only to the emergent, slow dynamics.
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2.2.5 Stationary states: emergent holography

Turning now our attention to stationary states, let us see how an emergent

notion of holography arises naturally in our context. For stationary states

we first set ∂S/∂t = 0 in the continuity equation (2.11), then apply the

semiclassicality condition (2.16), next divide through by ~ and finally switch

from I to I as per Eq. (2.6). This establishes:

Theorem 12 For semiclassical stationary states we have

∇I · ∇S = O
(
l−2
)
. (2.35)

For such states, Eqs. (2.25) and (2.35) are equivalent.

In the limit l→∞ we have ∇I · ∇S = 0, and the foliation I = const2 inter-

sects orthogonally the foliation S = const. That the length scale l, in our

case of semiclassical stationary states, can be regarded as being sufficiently

large, follows from Eq. (2.8). Indeed a classical, perfectly localised state

around x = x0 carries a wavefunction δ(x − x0), the amplitude of which is

almost everywhere zero. As this localised state spreads out, ceasing to be

perfectly classical, its width can be taken as an inverse measure of its local-

isation. In other words, the limit ~ → 0 is equivalent to the limit l → ∞.

Thus neglecting the right–hand side of Eq. (2.35) we arrive at:

Theorem 13 Semiclassical stationary states provide two independent fo-

liations of 3–dimensional space by two mutually orthogonal families of 2–

dimensional surfaces, respectively defined by I = const and by S = const.

The foliation I = const is well known since the early days of quantum the-

ory. On the other hand the foliation S = const was little used in mechanical

contexts until the groundbreaking contributions of refs. [49, 88, 116] to

the notion of emergent spacetime. Specifically, in ref. [116], isoentropic

surfaces S = const are taken to be holographic screens, while also qualify-

ing as equipotential surfaces V = const of the gravitational field. We see

immediately that:

2This is abuse of language. Strictly speaking, the equation I = const defines only one

leaf of the foliation. The foliation itself is the union of all the leaves obtained by letting

the constant run over the corresponding range.
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Theorem 14 Under the above assumptions of stationarity and semiclassi-

cality,

i) the vector field ∇I is parallel to the foliation S = const;

ii) the vector field ∇S is parallel to the foliation I = const;

iii) whenever ∇I 6= 0 6= ∇S, the vector fields ∇I and ∇S define an inte-

grable 2–dimensional distribution on R3.

The integrability of the distribution defined by the vector fields ∇I and

∇S follows from the semiclassicality property ∇I · ∇S = 0. Then Frobe-

nius’ theorem guarantees the existence of a family of 2–dimensional integral

manifolds for the distribution.3 Each leaf of this integral foliation, that we

denote by F = const, is such that its two tangent vectors ∇S and ∇I point

in the direction of maximal increase of the corresponding quantities, S and

I. Therefore:

Theorem 15 Under the above assumptions of stationarity and semiclassi-

cality, the foliation F = const is orthogonal to the two foliations S = const

and I = const simultaneously.

According to ref. [116], the leaves S = const are holographic screens, en-

closing that part of space that can be regarded as having emerged. We

see that the leaves I = const play an analogous role with respect to the

time variable. Now the wavefunction contains both amplitude and phase.

Hence the two foliations S = const and I = const must appear on the same

footing—as is actually the case. Taken together, these facts can be renamed

as the holographic property of emergent quantum mechanics. To be precise,

this holographic property has been analysed here in the semiclassical regime

only.

2.3 Discussion

To first order of approximation, any viscous fluid can be characterised by

its viscosity coefficients and by its volume density of entropy. In this paper

3A purely differential–geometric proof of this statement can be found in ref. [65]; a

related theorem by Liouville, in the context of classical integrability theory, can be found

in ref. [6].
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we have obtained an estimate for the order of magnitude of these quan-

tities, in the case of irrotational flow, for the quantum probability fluid.

Our analysis makes decisive use of Madelung’s factorisation of the quantum

wavefunction into amplitude and phase. However, we deviate substantially

from Madelung on the following key issue: Madelung’s probability fluid is

ideal, while our is viscous. Correspondingly, Madelung’s fluid satifies Euler’s

equation for a perfect fluid, while ours satisfies the Navier–Stokes equation.

Consequently, the pressure within the fluid is also different: in Madelung’s

analysis, pressure is (proportional to) the quantum potential U , while our

pressure is (proportional to) the external potential V in the Schroedinger

equation. In our alternative approach, the quantum potential is responsible

for the appearance of viscosity . Thus classical friction in the fluid can be

regarded as the origin of quantum effects. Moreover, the dissipation that is

inherent to quantum phenomena, under the guise of viscosity in our case, is

a nonstationary phenomenon.

By letting the quantum potential account for the viscosity of the probability

fluid, our analysis lends support to the emergent paradigm of quantum me-

chanics: the resulting theory, once dissipation has been taken into account,

is no longer classical but quantum. We regard viscosity as the dissipation,

or information–loss mechanism, whereby the fluid described by the Navier–

Stokes equation (a classical process) becomes the quantum wavefunction

satisfying the Schroedinger equation (a quantum process). This mechanism

illustrates the statement quantum = classical + dissipation made in the

introductory section.
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Chapter 3

The Holographic Quantum

This chapter is based on the article The Holographic Quantum, by P. Fernández

de Córdoba, J.M. Isidro and J. Vazquez Molina, published in Foundations of

Physics 46 (2016), pp 787–803, DOI 10.1007/s10701-015-9986-2, available

electronically as arXiv:1503.07662v2 [quant-ph], and quoted in the bibliog-

raphy as ref [44].

3.1 Introduction

The holographic principle [19, 106, 107] has permeated wide areas of theoret-

ical physics over the last twenty years. Stepping outside its initial quantum–

gravity framework, it reached string theory [77, 120] as well as more estab-

lished domains such as QCD [63] and condensed matter theory [58], to name

but a few.

Another theoretical development of recent years is the recognition that grav-

ity arises as an emergent phenomenon [89, 88, 116], a fact that has far–

reaching consequences for our understanding of spacetime. Added to the

dissipative properties already known to be exhibited by gravity [110, 91,

103, 104], this opens the gate to the application of thermodynamics to (sup-

posedly) nonthermal physics. Indeed, thermodynamics is the paradigm of

emergent theories. It renounces the knowledge of a vast amount of detailed

microscopic information, keeping just a handful of macroscopic variables

29
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such as volume, pressure and temperature—sufficient to state robust phys-

ical laws of almost universal applicability. These macroscopic variables are

coarse–grained averages over the more detailed description provided by some

underlying, microscopic degrees of freedom. Which brings us to yet another

theoretical breakthrough of recent times that is worthy of mention: the

notion of emergence [25].

The property of emergence has been postulated not only of gravity, but also

of Newtonian mechanics [116] and of quantum mechanics [36, 111]; a key

concept here is that of an entropic force. Equipped with thermodynamical

tools as befits any emergent theory, we have in refs. [42, 43, 45] developed

a framework that maps semiclassical quantum mechanics onto the classical

thermodynamics of irreversible processes in the linear regime, the latter as

developed by Onsager, Prigogine and collaborators [87, 95]. Within this

framework, the statement often found in the literature, quantisation is dis-

sipation [17], can be given a new interpretation.

In this paper we elaborate further on the above–mentioned map of semi-

classical quantum mechanics onto the classical theory of linear, irreversible

processes (sections 3.2 and 3.3); we call these two theories dual to each other.

From there we move on to the nonlinear regime of the thermodynamics or,

equivalently, to the quantum regime beyond the Gaussian approximation

(section 3.4). Next we formulate a holographic–like principle for quantum

mechanics (section 3.5) and place it in correspondence with the second law

of thermodynamics (section 3.6)). The term holographic–like is meant to

stress that, while it is true that no gravity is present in our framework, an

undeniable conceptual similarity with the holographic principle of quantum

gravity underlies the principle postulated here. We summarise our conclu-

sions in section 3.7.

A word on notation is in order. Rather than using natural units, we will

explicitly retain Planck’s constant ~ and Boltzmann’s constant kB in our

expressions, in order to better highlight the properties of the map pre-

sented here between quantum mechanics and irreversible thermodynamics.

In particular, the role that ~ plays on the mechanical side of our correspon-

dence will be played by kB on the thermodynamical side. If we were to set

~ = 1 = kB, the fact that they are counterparts under our correspondence

[27, 67] would be somewhat obscured.
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3.2 Basics in irreversible thermodynamics

The following is a very brief summary of some notions of irreversible ther-

modynamics [87, 95] that we will make use of.

Let an irreversible thermodynamical system be characterised by its entropy

function S. Assume that the thermodynamical state of the system is deter-

mined by just one extensive variable x = x(τ), where τ is time variable. We

can thus write S = S(x(τ)). At any instant of time, the probability P of a

state is given by Boltzmann’s principle,

kB lnP = S + const. (3.1)

Let S0 denote the maximum (equilibrium) value of S, and let us redefine the

coordinate x so it will vanish when evaluated at equilibrium: S0 = S(x =

0). Irreversible thermodynamics [87] analyses the response of the system

when driven away from equilibrium. For this purpose one introduces the

thermodynamical force X,

X =
dS

dx
, (3.2)

which measures the tendency of the system to restore equilibrium. Nonequi-

librium causes fluxes to appear in the system, that is, nonvanishing time

derivatives dx/dτ and dS/dτ . Further one supposes that the irreversible

process considered is linear . This amounts to the assumption that the flux

is proportional to the force,

dx

dτ
= LX, L > 0, (3.3)

where L is a positive constant, independent of x and τ . One also writes

(3.3) under the form

X = R
dx

dτ
, R = L−1 > 0, (3.4)

where the dimensions of R are time × entropy × x−2. Eq. (3.4) is often

termed a phenomenological law . Indeed numerous dissipative phenomena,

at least to first order of approximation, take on the form of a linear relation

between a driving force X and the corresponding flux dx/dτ : Ohm’s law

in electricity, Fourier’s law of heat transfer, etc, are familiar examples. In
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linear irreversible thermodynamics, the time rate of entropy production is

the product of those two:
dS

dτ
= X

dx

dτ
. (3.5)

On the other hand, Taylor–expanding the entropy around its (maximum)

equilibrium value and keeping terms up to second–order we have

S = S0 −
1

2
sx2 + . . . , s := −

(
d2S

dx2

)
0

> 0. (3.6)

Three consequences follow from truncating the expansion (3.6) at second

order. First, the force X is a linear function of the coordinate x:

X = −sx. (3.7)

Second, in conjunction with Boltzmann’s principle (3.1), the expansion (3.6)

implies that the probability distribution for fluctuations is a Gaussian in the

extensive variable x:

P (x) = Z−1 exp

(
S

kB

)
= Z−1 exp

(
− 1

2kB
sx2
)
, (3.8)

where Z is some normalisation.1 Third, the phenomenological law (3.4)

specifies a linear submanifold of thermodynamical phase space:

R
dx

dτ
+ sx = 0. (3.9)

Fluctuations around the deterministic law given by Eq. (3.9) can be mod-

elled by the addition of a random force Fr. This turns the deterministic

equation (3.9) into the stochastic equation

R
dx

dτ
+ sx = Fr. (3.10)

We are interested in computing the path x = x(τ) under the influence of

these random forces, under the assumption that Fr has a vanishing average

value. While mimicking random fluctuations, this assumption ensures that

the net force continues to be given as in the deterministic Eq. (3.9). Now

1We will henceforth omit all normalistion factors, bearing in mind that all probabilites

are to be normalised at the end.
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our aim is to calculate the probability of any path in configuration space.

For this purpose we need to introduce some concepts borrowed from ref.

[32].

The unconditional probability density function f
(
x
τ

)
, also called one–gate

function, is defined such that the product f
(
x
τ

)
dx equals the probability

that the random trajectory x = x(τ) pass through a gate of width dx around

x at the instant τ . The conditional probability density function f
(
x2
τ2

∣∣∣x1τ1 ),

also called the two–gate function, is defined such that f
(
x2
τ2

∣∣∣x1τ1 )dx2 dx1
equals the probability that a thermodynamical path pass through a gate of

width dx2 around x2 at time τ2, given that it passed through a gate of width

dx1 around x1 at time τ1. The assumption that our stochastic process (3.10)

satisfies the Markov property ensures that the unconditional probability

f
(
x2
τ2

)
can be obtained from the conditional probability f

(
x2
τ2

∣∣∣x1τ1 ) by letting

τ1 = −∞ in the latter and setting a fixed value of x1, say x1 = 0. Informally

speaking: Markov systems have a short–lived memory.

Let us consider a time interval (τ1, τn+1) , which we divide into n subintervals

of equal length. Then the conditional probabilities obey the Chapman–

Kolmogorov equation,

f

(
xn+1

τn+1

∣∣∣x1
τ1

)
=

∫
dxn · · ·

∫
dx2 f

(
xn+1

τn+1

∣∣∣xn
τn

)
· · · f

(
x2
τ2

∣∣∣x1
τ1

)
, (3.11)

where all n − 1 intermediate gates at x2, x3, . . . , xn are integrated over. In

particular, the unconditional probability density f
(
x
τ

)
propagates according

to the law

f

(
x2
τ2

)
=

∫
dx1 f

(
x2
τ2

∣∣∣x1
τ1

)
f

(
x1
τ1

)
. (3.12)

It turns out that, for a Markovian Gaussian process, the conditional proba-

bility function f
(
x2
τ2

∣∣∣x1τ1 ) that solves the Chapman–Kolmogorov equation is

given by [87]

f

(
x2
τ2

∣∣∣x1
τ1

)
=

s

2kB

es(τ2−τ1)/2R√
π sinh [s(τ2 − τ1)/R]

(3.13)

× exp

{
− s

2kB

[
es(τ2−τ1)/2R x2 − e−s(τ2−τ1)/2R x1

]2
2 sinh [s(τ2 − τ1)/R]

}
.
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As a consistency check we observe that, in the limit τ2 →∞, the conditional

probability (3.13) reduces to the unconditional probability (3.8). Using the

Chapman–Kolmogorov equation (3.11) one can reexpress the conditional

probability (3.13) as

f

(
xn+1

τn+1

∣∣∣x1
τ1

)
= exp

[
− 1

4kB

∫ τn+1

τ1

dτ R

(
dx

dτ
+ γx

)2
]
min

, γ :=
s

R
, (3.14)

subject to the boundary conditions x(τ1) = x1 and x(τn+1) = xn+1. Above,

γ carries the dimension of inverse time, while the subscript min reminds

us that the integral is to be evaluated along that particular path which

minimises the integral.

Now f
(
x2
τ2

)
can be obtained from f

(
x2
τ2

∣∣∣x1τ1 ) by letting τ1 = −∞ and x1 = 0

in the latter. In order to take this limit in Eq. (3.14) we first define the

thermodynamical Lagrangian S to be

S :=
R

2

(
dx

dτ
+ γx

)2

, (3.15)

or, dropping a total derivative,

S =
R

2

[(
dx

dτ

)2

+ γ2x2

]
. (3.16)

The dimensions of S are entropy per unit time. The corresponding Euler–

Lagrange equation reads
d2x

dτ2
− γ2x = 0, (3.17)

while

x(τ) = x2e
γ(τ−τ2) (3.18)

is the particular solution to (3.17) that satisfies the boundary conditions

x(τ = −∞) = 0 and x(τ = τ2) = x2. Thus evaluating (3.14) along this

extremal path yields

f

(
x2
τ2

∣∣∣ 0

−∞

)
= f

(
x2
τ2

)
= exp

[
− s

2kB
(x2)

2

]
. (3.19)

This is again in agreement with Boltzmann’s principle (3.1) in the Gaus-

sian approximation (3.6). Moreover, the conditional probability density
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f
(
x2
τ2

∣∣∣x1τ1 ) admits the path–integral representation [87]2

f

(
x2
τ2

∣∣∣x1
τ1

)
=

∫ x(τ2)=x2

x(τ1)=x1

Dx(τ) exp

{
− 1

2kB

∫ τ2

τ1

dτ S
}
. (3.20)

In fact, a saddle–point evaluation of the path integral (3.20) is readily seen

to yield the two–gate function (3.14).

The above Eqs. (3.2)–(3.20) have obvious generalisations to a case with D

independent thermodynamical coordinates.

3.3 Quantum mechanics vs. irreversible

thermodynamics

The attentive reader will have noticed the striking similarity between Eqs.

(3.2)–(3.20) and the quantum mechanics of the harmonic oscillator. The

corresponding Lagrangian is

L =
m

2

(
dx

dt

)2

− k

2
x2. (3.21)

Mechanical time is denoted by the variable t; it is related to thermodynam-

ical time τ through the Wick rotation

τ = it. (3.22)

We define as usual the angular frequency ω through ω2 = k/m. Let us for

simplicity assume that the thermodynamical extensive coordinate x of the

dual irreversible thermodynamics is a length. In this way no dimensionful

factor is needed to reinterpret it as the coordinate of the harmonic oscilla-

tor in the mechanical dual theory. Then the Wick rotation (3.22) and the

replacements3
mω

~
=

s

2kB
, ω = γ (3.23)

2What quantum theorists call the Feynman path integral was independently developed

in ref. [87] by Onsager and collaborators, who appear to have arrived at the notion of

a path integral all by themselves, without previous knowledge of Feynman’s earlier work

[47].
3Implicit in the replacements (3.23) is the assumption that the thermodynamical exten-

sive variable x, and the mechanical variable x, both have units of length. A dimensionful

conversion factor is to be understood in case the dimensions do not match.
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provide us with a dictionary to establish a 1–to–1 map between the linear,

irreversible thermodynamics of section 3.2 and the quantum mechanics of

the harmonic oscillator.

Specifically, let us spell out the entries of this map, one by one [4]. The

mechanical Lagrangian (3.21) is readily obtained from its thermodynamical

counterpart (3.16) upon application of the replacements (3.22), (3.23):

S
2kB

= −L
~
. (3.24)

The above also makes it clear that the thermodynamical analogue of Planck’s

constant ~ is twice Boltzmann’s constant, 2kB. In this way the thermody-

namical path integral (3.20) becomes its usual quantum–mechanical expres-

sion. Unconditional probabilities f
(
x
τ

)
in thermodynamics become wave-

functions squared |ψ(x, t)|2 in quantum mechanics. Thus the 1–gate distri-

bution function (3.19) gives the squared modulus of the oscillator ground-

state,

f
(x

it

)
= exp

(
−mω

~
x2
)
. (3.25)

The thermodynamical conditional probabiliy (3.13) becomes proportional

to the quantum–mechanical Feynman propagator. Away from the caustics,

the latter is given by

K (x2, t2|x1, t1) =

√
mω

2πi~ sin (ω(t2 − t1))
(3.26)

× exp

{
im

2~
ω

sin (ω(t2 − t1))
[
(x22 + x21) cos (ω(t2 − t1))− 2x2x1

]}
and one actually finds

f
(x2

it

∣∣∣x1
0

)
= exp

(
iωt

2
− ∆V

~ω

)√
2mω

~
K (x2, t|x1, 0) , (3.27)

where ∆V = V (x2) − V (x1), with V (x) = kx2/2 the harmonic potential.

The Chapman–Kolmogorov equation (3.11) becomes the group property of

propagators, while the propagation law (3.12) exactly matches that for wave-

functions ψ under propagators K. Altogether, the promised 1–to–1 map is

complete.
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Our Eqs. (3.21)–(3.27) have obvious generalisations to higher dimensions.

Since the concept of equipotential submanifolds will play a key role in our

duality between quantum mechanics and irreversible thermodynamics, it

will be useful to consider the lowest dimension in which equipotential mani-

folds are 2–dimensional surfaces. Configuration space is then 3–dimensional,

which we take to be R3, coordinatised by x, y, z. For simplicity we will

assume the harmonic potential to be isotropic, so the harmonic force is

Fh = −k(x, y, z). On the thermodynamical side of our correspondence,

this translates into the fact that Onsager’s (inverse) coefficients Rx, Ry,

Rz in Eq. (3.4) are all equal, so the dissipative force acting on the sys-

tem is Fd = R(dx/dτ,dy/dτ,dz/dτ). We then have a thermodynamical

Lagrangian

S =
R

2

[(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

+ γ2(x2 + y2 + z2)

]
(3.28)

and a mechanical Lagrangian

L =
m

2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

− ω2(x2 + y2 + z2)

]
. (3.29)

The latter has the family of 2–dimensional spheres x2 + y2 + z2 = ρ2 as

equipotential surfaces within the mechanical configuration space R3. We

claim that the thermodynamical counterpart of this family of spheres is the

family of 5–dimensional submanifolds(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

+ γ2(x2 + y2 + z2) = ρ2 (3.30)

within the thermodynamical phase space R6; we may call the above hyper-

surfaces isoentropic submanifolds. Although we seem to have a dimensional

mismatch between isoentropic submanifolds and equipotential surfaces, this

mismatch disappears if we restrict to those thermodynamical trajectories

that satisfy the equation of motion of the thermodynamical Lagrangian

(3.28). This equation was given in (3.17) and solved in (3.18); we see that, on

shell , the velocity dx/dτ is proportional to the coordinate x. This property

effectively allows us to replace the term (dx/dτ)2 + (dy/dτ)2 + (dz/dτ)2 in

Eq. (3.30) with a constant multiple of x2 +y2 +z2. In turn, this reduces the
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family of 5–dimensional submanifolds (3.30) to a family of 2–dimensional

spheres—exactly as in the mechanical case.

We conclude that equipotential surfaces for the mechanical problem become

isoentropic surfaces for the thermodynamical problem, and viceversa. This is

in nice agreement with the results of ref. [116] for the gravitational potential,

in the context of a theory of emergent spacetime.

3.4 Beyond the harmonic approximation

While explicit expressions for our map between quantum mechanics and

irreversible thermodynamics are difficult to obtain beyond the harmonic

approximation considered so far, some key physical ideas can be extracted

from the previous analysis and generalised to an arbitrary potential. On the

thermodynamical side, this generalisation implies going beyond the Gaussian

approximation made in Eq. (3.6) or, equivalently, beyond the assumption

(3.7) of linearity between forces and fluxes.

Let a mechanical system be described by a Lagrangian function L = L(qi, q̇i).

For simplicity we assume our configuration space to be RD; an additional R
stands for the time axis. The mechanical time variable t, initially real, will

be complexified presently.

We will equate certain spacetime concepts (on the left–hand side of the

equations below) to certain thermodynamical quantities (on the right). To

begin with, we observe that the two physical constants ~ and kB allow

one to regard time t and temperature T as mutually inverse, through the

combination
1

t
=
kB
~
T. (3.31)

Admittedly, this observation is not new [30].

Corresponding to the mechanical system governed by the Lagrangian L(qi, q̇i)

there will be a thermodynamical system whose dynamics will be governed by

an entropy S =
∫
Sdt. Following our previous result (3.24), let us postulate

the following differential relation between the two of them:

1

~
Ldt =

C

2kB
dS =

C

2kB
Sdt, C ∈ C. (3.32)
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Again, dimensionality arguments basically fix the two sides of the above

relation, but leave room for a dimensionless number C. Agreement with the

Wick rotation (3.22) requires that we set C = −i. Now Eq. (3.32) overlooks

the fact that the right–hand side contains the exact differential dS, while

the differential Ldt on the left–hand side is generally not exact. In other

words, while there exists a well–defined entropy function S =
∫
Sdt, the

line integral I =
∫
Ldt generally depends on the trajectory in RD being

integrated along.

The mechanical action I, however, can define a path–independent function

of the integration endpoint if we restrict to a certain class of trajectories

in RD. Let us see how this comes about. Let V = V (qi) be the potential

function of the mechanical system under consideration. The equation

V (qi) = const (3.33)

defines, as the constant on the right–hand side is varied, a family of (D−1)–

dimensional, equipotential submanifolds of RD. An elementary example,

when D = 3, is the case of the Newtonian potential generated by a point

mass located at the origin O. Then the above family of equipotential surfaces

is a family of concentric spheres Sρ of increasing radii ρ > 0, all centred at

O. This family of equipotentials, singular only at O, defines a foliation

of R3 − {O}, so the latter space equals the union ∪ρ>0Sρ of all leaves Sρ.
This foliation can also be used to define a coordinate system on R3 − {O}.
Namely, one splits R3 − {O} into 2 tangential directions to the spheres of

the foliation, and 1 normal direction. For example, the standard spherical

coordinates ρ, θ, ϕ centred at O qualify as such a coordinate system, ρ being

the normal coordinate and θ, ϕ the tangential coordinates.

Returning now to the general case when both D and V (qi) are arbitrary, Eq.

(3.33) defines, for each particular value of the constant on the right–hand

side, one equipotential leaf Ln of a foliation ∪nLn of RD. Here the subindex

n stands for a certain (local) coordinate n on RD that is normal to all the

leaves. The D−1 tangential coordinates thus span the (D−1)–dimensional

leaves Ln, each one of them being located at a specific value of the normal

coordinate n. We will assume that all the leaves Ln are compact.

Trajectories within RD that run exclusively along this normal coordinate n,

thus being orthogonal to the leaves, are such that the action integral I does
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defines a function In of the integration endpoint; the subindex n reminds

us of the restriction to these normal trajectories. Independence of path

is merely a consequence of the 1–dimensionality of the normal directions

to the equipotential leaves Ln. This is the particular class of trajectories

mentioned above: along them, Ldt defines an exact differential, dIn. For

these normal trajectories, the differential equation (3.32) makes perfect sense

as an equality between two exact differentials. For these normal trajectories

we can write
1

~
In −

C

2kB
S = const. (3.34)

Now the sought–for thermodynamics cannot be the standard thermodynam-

ics of equilibrium processes as presented in any standard textbook, say, ref.

[23]. Among other reasons for this not being the case, standard equilibrium

thermodynamics does not include time as one of its variables. We have

already in section 3.3 produced evidence that it must in fact be the explic-

itly time–dependent, classical thermodynamics of irreversible processes as

developed by Onsager, Prigogine et al [87, 95]. We will present arguments

in section 3.5, to the effect that quantum states arise through a dissipa-

tive mechanism. For completeness the thermodynamical dual to quantum

mechanics must be supplemented with the relation

1

T
=
∂S

∂U
, (3.35)

which must always be satisfied. So we take (3.35) to define the internal

energy U of the thermodynamical theory, given that T and S have already

been defined.

3.5 Quantum states as equivalence classes of

classical trajectories

A key consequence of using normal and tangential coordinates in RD is that

quantum states ψ, to be constructed presently, will factorise as

ψ = ψtψn, (3.36)
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or sums thereof. Here, the normal wavefunction ψn depends exclusively on

the normal coordinate n, while ψt is a function of the tangential coordi-

nates. For example, in the case of the Coulomb potential, the wavefunction

ψt would be a spherical harmonic Ylm(θ, ϕ), while ψn would be a radial

wavefunction Rnl(ρ). This construction contains elements that are very

reminiscent of those present in ref. [116]. In this latter paper, equipotential

surfaces of the gravitational potential are identified as isoentropic surfaces.

Our equipotential leaves are the counterpart of the holographic screens of

ref. [116].

Moreover, the classical mechanics exhibits a precise mechanism whereby

different classical trajectories coalesce into a single equivalence class that

can, following ref. [111], be identified as a single quantum state ψ. So the

presence of Planck’s constant ~ in Eq. (3.32) obeys not just dimensional

reasons—it is the sure sign of an information–loss mechanism, a dissipative

processs that is truly quantum in nature.

Let us see how this dissipation comes about. In order to do this we need

to explain why many different classical trajectories coalesce into one single

quantum state ψ. A quantum of area on the leaf Ln measures L2
P , where

LP denotes the Planck length. According to the holographic principle, at

most 1 bit of information fits into this quantum of area L2
P . One classical

trajectory traversing this quantum of area corresponds to 1 bit of infor-

mation. Classically one can regard the surface density of trajectories as

being correctly described by a smooth distribution function: there fit some

1.4 × 1069 classical trajectories into each square meter of area on the leaf

Ln[19]. Although this is a huge number, it sets an upper limit on the poten-

tially infinite number of classical trajectories that can traverse one quantum

of area L2
P .

The holographic principle alone would suffice to account for the lumping

together of many different classical trajectories into one equivalence class.

One equivalence class, or quantum state, would be comprised by all those

different classical trajectories crossing one given quantum of area L2
P .

Of course, the actual number of quantum particles traversing one square

meter of area on the leaf Ln is much smaller than the above 1.4 × 1069.

The reason is simple: quantum effects become nonnegligible on matter well
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before quantum–gravity effects become appreciable on the geometry. Again,

the existence of a (now particle–dependent) quantum of area is responsible

for this. This can be seen as follows.

Let m be the mass of the particle under consideration. Its Compton wave-

length λC = ~/(mc) imposes a fundamental limitation on its position, that

we can call a quantum of length, denoted Q1. This Q1, which is particle–

dependent, is of a fundamentally different nature than the geometric quan-

tum of length LP . On configuration space RD, this gives rise to a quan-

tum QD−1 of (D− 1)–dimensional volume within the leaf Ln, with measure

(proportional to) λD−1C , and to a quantum of length Q1 along the normal

coordinate.

In the presence of more than one particle species with different masses, each

mass mi defines one value of the quantum Q
(i)
D−1. Then a quantum of volume

that remains valid for all particles is the largest value of all those Q
(i)
D−1. This

is the quantum of volume determined by the lightest particle.

Let us now elucidate how quantum states ψ can arise as equivalence classes

of different classical trajectories. By Eq. (3.36) we have to account for the

appearence of the normal wavefunction ψn and of the tangential wavefunc-

tion ψt.

Starting with ψt, let us consider all the different classical trajectories travers-

ing any one quantum of volume QD−1 within a leaf Ln. The allowed values

of the momentum carried by those trajectories are those compatible with

the uncertainty principle. Since the particle has been spatially localised to

an accuracy of λC along each tangential coordinate, the corresponding mo-

mentum can be specified to an accuracy of ~/λC . Therefore, corresponding

to a spatial quantum of volume QD−1 in the leaf, we have a quantum of

volume PD−1 = (~/λC)D−1 in momentum space.

We are now in a position to state a postulate:

All the different classical trajectories traversing any quantum of volume

QD−1 in the leaf Ln, and simultaneously traversing a quantum PD−1 in

tangential momentum space, are to be regarded as different representatives

of just one tangential state ψt.

An analogous postulate for the normal coordinate reads:
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All classical trajectories traversing any quantum of length Q1 along the nor-

mal coordinate n, and simultaneously traversing the corresponding quantum

P1 in normal momentum space, make up one normal state ψn.

In support of the above postulate, let us return to Eq. (3.23), where the me-

chanical combination mω/~ has been identified with the thermodynamical

quotient s/(2kB). The constant s, defined in Eq. (3.6), carries the dimen-

sions of entropy × x−2, so s/(2kB) has the dimensions x−2. Thus s/(2kB)

is homogeneous to the inverse square of the Compton wavelength, λ−2C .

On the other hand, the constant s (and the frequency γ in (3.23)) are all the

data one needs in order to univocally specify the irreversible thermodynam-

ics that is dual to the given quantum mechanics. The previous statement,

which holds exactly true in the harmonic approximation of section 3.3, is

raised to the category of a principle in the above postulate. Indeed, let

us assume going beyond the harmonic approximation in mechanics. In the

thermodynamical dual theory, this is equivalent to considering terms be-

yond quadratic in the Taylor expansion (3.6). Higher derivatives d3S/dx3,

d4S/dx4, etc, evaluated at the equilibrium point, simply introduce new con-

stants s3, s4, etc, which can be dimensionally accounted for in terms of just

two physical constants, namely kB and λC . Up to a set of dimensionless

coefficients, all the data we need in the irreversible thermodynamics can be

constructed in terms of kB and powers of λC .

These arguments render our above postulate a very plausible statement.

Moreover, they provide an estimate of the entropy increase (i.e., of the

amount of information loss) involved in the lumping together of many classi-

cal trajectories into just one quantum state. Namely, the increase in entropy

∆S due to the formation of one equivalence class of classical trajectories is

a positive multiple of λ2C times the coefficient s,

∆S = nsλ2C , n > 0, (3.37)

where n is a dimensionless number . (Admittedly, our arguments leave n un-

determined, although one could resort to Landauer’s principle [72] in order

to argue that n must be of order unity). More importantly, the surface den-

sity of entropy s can be naturally identified, via Eq. (3.37), with the entropy

increase ∆S due to the formation of quantum states as equivalence classes
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[110, 111]. In other words, the dissipation that is inherent to irreversible

thermodynamics has a natural counterpart in quantum mechanics.

Having described the dissipative mechanism whereby classical trajectories

organise into quantum states, we go next to a counting of the number of

quantum states. Since the leaf Ln has been assumed compact, it encloses

a finite number Nn of volume quanta QD−1. Tentatively identifying this

number Nn with the (complex) dimension of the tangential Hilbert space

Ht, we immediately realise that the quantum of momentum PD−1 is con-

tained an infinite number of times within tangential momentum space (this

is however a countable number of times). Indeed the momenta may grow

to arbitrarily large values. Therefore, the tangential Hilbert space Ht is

infinite–dimensional, and separable.

On the other hand, the dimension of the normal Hilbert space Hn is infinite

already from the start (again a countable infinity, hence Hn is separable).

The reason for this is the noncompactness of RD: the normal coordinate

n must cover an interval of infinite length.4 This implies that the normal

coordinate encloses an infinite (though countable) number of length quanta

Q1. Multiplication by the number of independent momentum quanta P1

does not alter this separable, infinite–dimensionality of Hn.

Altogether, the complete Hilbert space H of quantum states is the tensor

product Ht⊗Hn. However, because it singles out the normal coordinate n,

one might worry that our construction depends on the particular choice of

a leaf Ln within the foliation. Now the only possible difference between any

two leaves Ln1 and Ln2 is the value of their (D − 1)–dimensional volume.

Hence the numbers of volume quanta Nn1 and Nn2 they enclose may be

different—but they are both finite. This possible difference is washed away

upon multiplication by the (countably infinite) number of momentum quanta

PD−1 corresponding to each leaf. The dimension ofHt is therefore countably

infinite regardless of the point, n1 or n2, along the radial coordinate—that

is, regardless of which leaf is considered.5

4In case more than just one normal coordinate is needed, this statement is to be

understood as meaning the sum of all the lengths so obtained.
5We should remark that the assumption of compactness of the leaves Ln can be lifted

without altering our conclusions. A noncompact leaf encloses an infinite (yet countable)

number of volume quanta QD−1. Upon multiplication by an infinite (yet countable)
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As explained in ref. [3], determining the tangential wavefunctions ψt does

not require a knowledge of the specific dynamics under consideration. In-

stead, this tangential dependence is univocally fixed by the geometry of the

leaves Ln. In more technical terms, the wavefunctions ψt must provide a

complete orthonormal set for a unitary, irreducible representation of the

isometry group of the leaves Ln. Moreover, as argued in ref. [3], the mod-

ulus squared |ψ|2, evaluated at the value n, is proportional to the surface

density of entropy flux across the leaf Ln.

3.6 Quantum uncertainty vs. the second law

Just as Planck’s constant ~ represents a coarse–graining of phase space into

cells of minimal volume, or quanta of action, so does Boltzmann’s constant

kB represent a quantum of entropy . This implies that any process must

satisfy the condition

∆S = NkB, N ∈ N. (3.38)

The above expresses a quantised form of the second law of thermodynamics.

The extreme smallness of the numerical value of kB in macroscopic units

makes this quantisation macroscopically unobservable. In particular, unless

N = 0, the second law becomes

∆S ≥ kB. (3.39)

In this form, the second law is actually a rewriting of the quantum–mechanical

uncertainty principle for the canonical pair E, t:

∆E∆t ≥ ~
2
. (3.40)

Of course, this derivaton of the uncertainty relation ∆E∆t ≥ ~/2 is heuris-

tic, because time is a parameter in quantum mechanics. It is only in the

number of momentum–space quanta PD−1, the dimension of the tangent Hilbert space Ht

remains denumerably infinite. This form of holography in which the leaves are noncompact

replaces the notion of inside vs. outside the leaf with the equivalent notion of one side

of the leaf vs. the other side. One should not dismiss this possibility as unphysical: the

constant potential, for example, can be regarded as having either compact or noncompact

equipotential submanifolds.
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limit kB → 0 that the second law (3.39) reduces to its classical formulation

∆S ≥ 0. The limit kB → 0 is the thermodynamical counterpart of the usual

semiclassical limit ~→ 0 of quantum mechanics.

We conclude that the equivalence between Eqs. (3.39) and (3.40) is a conse-

quence of our basic postulate (3.32). In other words, the second law (3.39)

expresses, in the thermodynamical theory, the same statement as the uncer-

tainty principle (3.40) expresses in the quantum–mechanical theory.

Our correspondence implies that, while one needs two canonical variables

E, t in order to express the uncertainty principle in the quantum theory, just

one variable S is needed in order to write the second law. An equivalent

way of saying this is that entropy is a selfconjugate variable: one does not

have to multiply it with a canonical variable (say, ξ) in order to obtain a

product ξS carrying the dimensions of the quantum kB. The variable S

already carries the dimensions of its corresponding quantum kB.

3.7 Discussion

The holographic principle of quantum gravity states that there fits at most

1 bit of information into each quantum of area L2
P in configuration space,

where LP is Planck’s length. For quantum mechanics, in section 3.5 we have

postulated that

There fits at most 1 quantum state into each quantum of volume (λC)2D

in phase space, whereby the Compton length λC of the particle in question

extends once along each coordinate q and once along each conjugate momen-

tum p in a 2D–dimensional phase space.

Thus our postulate is conceptually analogous to the holographic principle

of quantum gravity. We should stress, however, that our postulate does not

follow from, nor does it imply, the holographic principle of quantum gravity.

We can summarise our construction as follows. Let a quantum–mechanical

system be given in configuration space RD. Let this latter space be foliated

as per ∪nLn, where each leaf Ln is an equipotential submanifold, in dimen-

sion D − 1, of the given mechanical potential function V (qi). Assume that

each leaf Ln encloses a finite D–dimensional volume Vn, so ∂Vn = Ln. Then
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quantum states in Vn are equivalence classes of different classical trajecto-

ries. These equivalence classes comprise all those classical trajectories that

fit into one given quantum of volume in configuration space, with the corre-

sponding momenta inside the corresponding quantum in momentum space.

No quantum particle can be located to an accuracy better than its Compton

wavelength.6 Hence a physically reasonable unit for defining this quantum

of length (and thus areas and volumes) is the Compton wavelength. Config-

uration space is subdivided into many such elementary volume quanta, each

one of them (with the corresponding quanta in momentum space) defining

one different quantum state.

The quantisation of phase–space area by Planck’s constant ~ proceeds along

lines that are somewhat similar to ours, although not exactly identical. We

recall that, semiclassically, the (symplectic) area element dp ∧ dq, divided

by ~, gives the number of different quantum states fitting into that area

element. However, the coordinate width dq may be arbitrarily squeezed,

provided the momentum dp is correspondingly enlarged, and viceversa.

On the contrary, our construction makes use of the Compton wavelength λC
as a fundamental quantum of length (for the specific particle considered),

below which no sharper localisation is possible: there is no squeezing the

particle below this lower limit. This gives rise to an arrangement of different

classical trajectories into equivalence classes that, following ref. [111], we

identify with quantum states. This is an irreversible, dissipative mechanism

that exhibits the emergent nature of quantum mechanics. The Hilbert space

of quantum states is determined as described in section 3.5.

Under our correspondence, an irreversible thermodynamics can be mapped

into a quantum mechanics, and viceversa. This correspondence may be

regarded as dictionary that allows one to switch back and forth between a

quantum–mechanical picture and a thermodynamical picture of one and the

same physics.

A key point to remark is the following. Thermodynamical approaches to

quantum theory are well known [30, 81]. In particular, the link between

(complex–time) quantum mechanics, on the one hand, and the equilibrium

6Unless, of course, one is willing to allow for pair creation out of the vacuum, thus

quitting quantum mechanics and entering field theory.
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statistical mechanics of the Gibbs ensemble, on the other, has been known

for long. We should stress that we have not dwelled on this long–established

connection. Rather, the new correspondence explored here is that between

(complex–time) quantum mechanics, and the classical thermodynamics of

irreversible processes. Classicality of the thermodynamics means that ~
does not appear on the thermodynamical side of the correspondence, its role

being played instead by Boltzmann’s constant kB. Irreversibility implies the

existence of dissipation, as befits the presence of quantum effects.



Chapter 4

Entropy, topological theories

and emergent quantum

mechanics

4.1 Motivation

The approach of emergence of quantum mechanics has provided interesting

clues into the deeper structure of the theory. The statement that standard

quantum mechanics is an emergent phenomenon [38, 39, 112, 113] has found

further support in a series of papers, some of which have been reviewed in

ref. [44]. Although this is a huge topic to summarise here, let us briefly

mention some key points of this approach. The underlying notion is that

it provides a coarse grained version of some deeper theory, out of which

quantum mechanics emerges as a kind of effective description. This effective

description, in using variables that arise as averages over large collections

of individual entities carrying the truly fundamental degrees of freedom,

ignores the underlying fine structure. These fundamental degrees of freedom

have been identified in refs. [112, 113] as those of cellular automata.

This state of affairs is reminiscent of the relation between thermodynamics

(as an emergent phenomenon) and statistical mechanics (the corresponding

underlying theory). Based on this analogy, we have in previous publica-

49
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tions (see ref. [44] and refs. therein) established a bijective map that one

can define between quantum mechanics, on the one hand, and the classical

thermodynamics of irreversible processes, on the other [87, 95]. It must be

stressed that the classical thermodynamics of irreversible processes [87, 95]

is conceptually quite different from the usual thermostatics of equilibrium as

presented in the standard textbooks [23]. Specifically, in the theory of irre-

versible processes, the continual production of entropy provides a rationale

for the dissipation, or information loss, that has been argued to lie at the

heart of quantum mechanics [112, 113]. The relevance of thermodynamical

concepts to quantum theory and gravity has been emphasised recently in

refs. [8, 81, 89, 92, 108].

It might thus appear that the usual quasistatic thermodynamics [23], i.e.,

the thermostatics of equilibrium processes, possesses no quantum mechani-

cal dual theory at all. In this letter we point out that such a conclusion is

not true: the thermostatics of equilibrium processes does have a quantum

mechanical dual, namely, a quasistatic quantum mechanics. Under qua-

sistatic we mean that the kinetic term in the mechanical Lagrangian can be

neglected compared to the potential term.

Neglecting the kinetic term in the Lagrangian function forces one to look

elsewhere for the dissipative mechanism that is characteristic of quantum

theory [112, 113]. In particular, such a mechanism can no longer be identified

with the continual production of entropy associated with Onsager’s kinetic

term Lij q̇
iq̇j . The reciprocity theorem [87] ensures Lij = Lji, and dissipa-

tion requires that this matrix be positive definite; the latter two properties

ensure that Lij qualifies as a metric. The result of neglecting the kinetic

term in the Lagrangian is a mechanics bearing some resemblance to topo-

logical field theory [13]. Indeed, once the metric represented by the kinetic

term is neglected, correlation functions can no longer be metric dependent.

Hence, while correlators can still depend on the topology of the underlying

manifold, they can no longer depend on its metric structure. In our case the

underlying manifold will be given by the equipotential submanifolds (within

configuration space) of the potential function.
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4.2 A quasistatic mechanics

A quasistatic mechanics is obtained by neglecting the kinetic term K in the

mechanical Lagrangian L = K −U , and keeping only the potential term U :

L = −U. (4.1)

Since our Lagrangian does not depend on the velocities q̇, this phase space

is constrained by the requirement that all momenta vanish, p = 0, and the

Hamiltonian equals

H = U. (4.2)

We can now construct the reduced phase space corresponding to this re-

duced configuration space, and eventually quantise it.1 When moving along

equipotential submanifolds, the particle is effectively free; whenever motion

takes place between neighbouring equipotentials, forces will cause the par-

ticle’s kinetic energy to increase or decrease. However, the allowed motions

must be quasistatic, so even for these motions K must be negligible com-

pared to U . In classical mechanics, motion along equipotential submanifolds,

plus a vanishing kinetic energy, imply that a classical particle must forever

stay at rest. Quantum mechanically, due to the uncertainty principle, a

(more or less localised) free particle always carries a nonzero kinetic energy.

So neglecting the kinetic energy of a quantum particle implies a large uncer-

tainty in the position. This large uncertainty is reflected in a large spread

of the corresponding wavepacket: the latter encompasses a large interval of

different classically allowed positions, or states, all of which coalesce into a

single quantum state. It is only in the limit of complete delocalisation in

space that a quantum particle can carry zero kinetic energy.

We have just described an information loss mechanism whereby different

classical states (different spatial positions on an equipotential submanifold,

corresponding to different classically allowed equilibrium states) are lumped

together into just one quantum state. This information loss has been argued

to be a key feature of the quantum world.

1For our purposes it will not be necessary to apply Dirac’s theory of constrained quan-

tisation [31].
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4.3 The thermostatics dual to quasistatic

mechanics

We claim that the quasistatic quantum mechanical model described in sec-

tion 4.2 possesses a dual theory: the classical thermostatics of equilibrium

processes. In what follows we will exhibit the claimed duality explicitly.

The classical thermostatics of equilibrium [23] is a theory of quasistatic

processes. In particular, all kinetic energies are neglected; the processes de-

scribed either are in thermal equilibrium, or at most differ infinitesimally

from thermal equilibrium. This feature is in sharp contrast with the ther-

modynamics of irreversibility [87, 95], that we described in previous pub-

lications [44] as a thermodynamical dual of quantum mechanics, whenever

the kinetic energies involved could not be neglected .

Next we recall that classical thermostatics is, like quantum mechanics, an

emergent theory. By emergent we mean that classical thermostatics is the

result of coarse graining over very many microscopic degrees of freedom; the

resulting theory renounces the knowledge of detailed information about its

constituent degrees of freedom, retaining just a handful of relevant averages

such as pressure, volume and temperature. In other words, an information

loss mechanism is at work . This situation is similar to that described in

section 4.2 for the passage from classical mechanics to quantum mechanics.

In the dual thermostatics considered here, the counterpart of the mechanical

action I =
∫
Ldt is the entropy S. We will identify isoentropic submani-

folds (of thermodynamical state space) with equipotential submanifolds (of

mechanical state space). This is justified because, in the approach of emer-

gence, forces are (proportional to) entropy gradients. In the particular case

of the gravitational force, this identification has been put forward in ref.

[116]; it coincides with the viewpoint applied in the theory of irreversibil-

ity [95] and, indeed, with the whole programme of the emergent physics

paradigm. In this way the quantum mechanical exponential

exp

(
− i

~
I

)
(4.3)
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becomes, in the dual thermostatics,

exp

(
S

kB

)
. (4.4)

The correspondence between expressions (4.3) and (4.4) has been known for

long, having been discussed more recently in ref. [8] from the point of view of

statistical mechanics. However, we would like to stress that the theory being

considered here as dual to quantum mechanics is not statistical mechanics,

but the thermostatics of equilibrium emerging from the latter.

Finally the connection between the mechanical time variable t and the tem-

perature T is as follows:2

i

~
t←→ − 1

kBT
, (4.5)

where ~, kB are Planck’s constant and Boltzmann’s constant, respectively.

The double arrow is to be understood as replace every occurrence of it/~ in

the mechanical theory with −1/kBT in the thermostatical dual, and vicev-

ersa. Quasistatic mechanics therefore corresponds to isothermal processes

in the dual thermostatics.

4.4 The quasistatic mechanics dual to

thermostatics

Given some specific thermostatical systems, below we illustrate how to define

their corresponding (quasistatic) quantum mechanical duals.

4.4.1 The ideal gas

An expression for the entropy of a system in terms of its thermodynamical

variables is called a fundamental equation for the system [23]. To be specific

let us consider 1 mole of an ideal gas occupying a volume V at a fixed

temperature T . Its fundamental equation reads

S(V ) = S0 + kB ln

(
V

V0

)
, (4.6)

2This substitution is widely applied in thermal field theory, see e.g. ref. [62].
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where S0 is the entropy in the fiducial state specified by V0; we take S0 to

contain a constant contribution from the fixed temperature T . The entropy

depends only on the volume V ; the latter, running over (0,∞), can be

regarded as the thermodynamical coordinate for the isothermal processes of

an ideal gas.

In order to construct a kinetic energy operator K for the quantum theory,

the standard rule is

K := − ~2

2M
∇2, (4.7)

where ∇2 is the Laplacian operator on functions. By definition, the Lapla-

cian requires a metric gij :

∇2 =
1
√
g
∂i

(√
ggik∂k

)
, g = |det(gij)|. (4.8)

The fundamental equation (4.6) provides us with a clue as to which metric

can be meaningfully chosen. We first observe that Eq. (4.6) is valid in

3–dimensional space, where the volume V scales like r3; here r, θ, ϕ are

spherical coordinates. This suggests using the Euclidean metric in R3,

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2, (4.9)

and imposing the following two requirements. First, motion along the radial

direction r must cause an increase or decrease of the entropy, as per the

fundamental equation (4.6), with V = 4πr3/3; second, the sphere r = r0
must define an isoentropic surface for each r0.

Further support for our argument follows from a classic result by H. Weyl:3

the volume V occupied by the ideal gas within Euclidean space is related, in

3We quote this result from ref. [84]: let R ⊂ R3 be a bounded region with piecewise

smooth boundary, and let V (R) =
∫
R

√
g d3x denote its volume with respect to some

Riemannian metric on R3. Then the eigenvalue equation for the Laplacian on R, ∇2f =

λf , supplemented with some mild boundary conditions, has a countable infinity of real

eigenvalues λn satisfying 0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ . . .. These eigenvalues can be arranged into

a partition function Z(t),

Z(t) := Tr exp
(
t∇2) =

∞∑
n=1

exp (tλn) , (4.10)

and it turns out that the small t asymptotics of Z(t) is given by

Z(t) ' V (R)

(4πt)3/2
, t→ 0. (4.11)
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a natural way, to the spectrum of the Laplacian operator within (and on the

boundary surface of) V .

We will initially define the Hilbert space H of quasistatic quantum mechan-

ics as the space of those states that minimise the expectation value of the

kinetic energy, subject to the constraint that they be normalised (plus some

boundary conditions to be specified below). Thus introducing a Lagrange

multiplier −λ ∈ R, we need to solve

δ

δ|ψ〉
(〈ψ|K|ψ〉 − λ〈ψ|ψ〉) = 0, 〈ψ|ψ〉 = 1. (4.12)

Since K is selfadjoint, Eq. (4.12) leads to

K|ψ〉 = λ|ψ〉, (4.13)

so the Hilbert space H is initially defined as

H := Ker (K − λmin) , (4.14)

where λmin is the minimal kinetic energy; we have seen that λ ≥ 0. We

will presently see how the inclusion of a potential function U affects the

definition (4.14) of the Hilbert space.

4.4.2 Motion along isoentropic surfaces

We first analyse motion along a given isoentropic surface, which we take to

be the unit sphere S2. The angular part ∇2
S2 of the Laplacian operator on

R3 leads to the kinetic energy operator KS2 :

KS2ψ := − ~2

2M
∇2
S2ψ = − ~2

2M

1

sin θ

[
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin θ

∂2ψ

∂ϕ2

]
. (4.15)

Within the space L2(S2) the eigenvalues λ of Eq. (4.13) are ~2l(l+1)/(2M),

with l ∈ N ; the least kinetic energy for motion on S2 corresponds to the

zeroth spherical harmonic Y00 = (4π)−1/2:

KS2Y00 = 0. (4.16)

An analogous result holds within Rd (it is not necessary to assume that d = 3; it is not

necessary that the metric be the Euclidean one; it is also not necessary to assume that R is

a sphere). However, the Euclidean assumption is suggested by the fundamental equation

(4.6), while the assumption of spherical symmetry (in no way imposed by the ideal gas)

provides a welcome simplification.
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The corresponding particle is completely delocalised on S2, as befits the fact

that its momentum vanishes exactly. The Hilbert space HS2 is defined as

the linear span of the spherical harmonic Y00, i.e.,

HS2 = Ker
(
∇2
S2

)
. (4.17)

On a compact, connected manifold, the only harmonic functions are the

constants; the specific value (4π)−1/2 is determined by normalisation. Al-

though we have computed dimHS2 explicitly, the finite dimensionality of

Ker
(
∇2
S2

)
⊂ L2(S2) was already guaranteed on the basis of general re-

sults concerning the theory of elliptic operators on compact Riemannian

manifolds [100].4 A finite dimensional Hilbert space is a feature of many

topological theories [13]: although a metric was initially required to define

a Laplacian operator, the metric dependence is softened in the end, through

the requirement of quasistatisticity (4.12).

Finally we can add a potential function U = U(r) depending only on the

radial variable r and the previous arguments remain entirely valid. We

then get back to the situation described in section 4.2: a particle moving

quasistatically along the equipotential submanifolds of a certain potential.

4.4.3 Motion across isoentropic surfaces

Next we analyse motion across isoentropic surfaces. The radial part ∇2
r of

the Laplacian operator on R3 gives rise to the kinetic energy operator Kr:

Krψ := − ~2

2M
∇2
rψ = − ~2

2M

(
d2ψ

dr2
+

2

r

dψ

dr

)
. (4.18)

By Eqs. (4.13) and (4.18) we need to solve

d2ψ

dr2
+

2

r

dψ

dr
+ c2ψ = 0, c2 :=

2Mλ

~2
≥ 0; (4.19)

4In this particular case, one can more simply apply the Hodge theorem [101]: since the

2–sphere S2 is a compact, orientable Riemannian manifold, we have

dim Ker
(
∇2

S2

)
= b0(S2) = 1,

where b0 is the zeroth Betti number of the manifold in question.



4.4. QUASISTATIC MECHANICS DUAL TO THERMOSTATICS 57

a fundamental set of solutions is
{
ψ±(r) = r−1 exp(±icr)

}
. A vanishing

kinetic energy is attained when c = 0. However the corresponding wave-

function, ψ(r) = 1/r, is neither regular at r = 0, nor square integrable over

the interval (0,∞). Imposing regularity of ψ(r) at r = 0 one is left with the

wavefunctions

ψ(r) =
1

r
sin (cr) , (4.20)

while the wavenumber c ∈ R remains undetermined. We can determine c if

we recall the relation between the squared wavefunction |ψ|2 and the entropy

[44]:

|ψ|2 = exp

(
S

kB

)
. (4.21)

Collecting different microstates into a single pure quantum state is remi-

niscent of Von Neumann’s density matrix formulation of the entropy of a

mixed quantum state. However, even a pure state embodies a probability

distribution; the latter has an associated Shannon entropy. The entropy of

a pure state is not monotonic in time under Schroedinger evolution; this

problem remains unsolved.

Let r0 be the radius of the fiducial sphere in Eq. (4.6). When evaluated at

r = r0, Eq. (4.21) becomes, by Eq. (4.20),

1

r0
sin(cr0) = exp

(
S0

2kB

)
. (4.22)

Now the sine function is bounded between −1 and +1. This requires fine

tuning the value of the fiducial entropy S0 as a function of the fiducial radius

r0, or viceversa, if Eq. (4.22) is to have a real solution for c. The simplest

choice is to formally set S0 = −∞. This choice has the added bonus that

Eq. (4.22) admits real solutions for c, without the need to fine tune r0 as a

function of S0; it corresponds to imposing the additional boundary condition

ψ(r0) = 0. Then the admissible eigenfunctions, with their corresponding

wavenumbers cn ∈ R, are given by

ψn(r) =

√
2

r0

1

r
sin (cnr) , cn =

nπ

r0
n = 1, 2, . . . (4.23)

We have normalised ψn within L2 ([0, r0]).
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The least kinetic energy is attained when n = 1. Therefore we define the

Hilbert space Hr as the kernel

Hr = Ker
(
∇2
r + c21

)
. (4.24)

This 1–dimensional space is generated by the wavefunction ψ1(r). More

generally, the finite dimensionality of Ker
(
∇2
r + c2n

)
⊂ L2([0, r0]) for all

n = 1, 2, . . . is guaranteed by the theory of elliptic operators on compact

Riemannian manifolds [100].

So far, the total Hilbert space H is the tensor product of the spaces (4.17)

and (4.24):

H = HS2 ⊗Hr. (4.25)

We have up to now considered a free particle. If a potential function U(r)

is included, then the Hilbert space (4.24) must be redefined to be

Hr = Ker

(
− ~2

2M
∇2
r −

~2

2M
c21 + U(r)

)
, (4.26)

and the latter substituted back into Eq. (4.25). The above kernel remains

finite dimensional. This is because the addition of U(r) does not alter the

ellipticity of the Hamiltonian, hence general theorems concerning the spec-

trum of elliptic operators on compact Riemannian manifolds continue to

apply [100]. Of course, the presence of a potential on the quantum me-

chanical side modifies the fundamental equation (4.6) of the corresponding

thermostatics.

We close this section with some remarks.

i) The compact configuration space [0, r0] × S2 has advantage that, due

to energy quantisation, one can univocally identify a nonvanishing state of

least kinetic energy. On the noncompact configuration space [0,∞) × S2,

the allowed energy eigenvalues run over [0,∞), and no nonvanishing state

of least energy exists.

ii) Results analogous to those presented above would continue to hold if

the free quantum particle were placed in a cubic box of volume L3, with

vanishing boundary conditions for the wavefunction on the sides of the cube.

The use of Cartesian coordinates renders isoentropic surfaces (now cubes)

somewhat clumsier to work with than spheres, but the expectation value of

the entropy (see Eq. (4.28) below) remains metric independent, and also
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the Hilbert space continues to be 1–dimensional.

iii) Analogous results would hold as well if we worked in d–dimensional

Euclidean space Rd, viz : finite dimensionality of the Hilbert space, and

metric independence of the expectation of the entropy.

4.4.4 A metric free entropy

It is instructive to compute the expectation value of the entropy in the state

(4.23). We set V = 4πr3/3, V0 = 4πr30/3, and write the quantum mechanical

operator corresponding to the classical entropy of Eq. (4.6) as

Ŝ(r) = S0 + 3kB ln

(
r̂

r0

)
. (4.27)

The carets are meant to indicate quantum operators. Subtracting the infi-

nite constant S0 one finds an expectation value of the entropy

〈ψn|Ŝ|ψn〉 = 3kB

∫ r0

0
r2|ψn(r)|2 ln

(
r

r0

)
dr = 3kB

(
Si(2πn)

2πn
− 1

)
, (4.28)

where Si(x) :=
∫ x
0 t
−1 sin t dt is the sine integral function. In particular, all

terms depending on r0 drop out of Eq. (4.28). This is in perfect agreement

with the topological character [13] of our model: the entropy cannot depend

on the radius r0 of the fiducial sphere, because the latter requires a metric

for its definition.

4.4.5 The quantum mechanical partition function

The quantum mechanical partition function Zqm(t) is defined by

Zqm(t) =
∑
n

dimHn exp

(
− i

~
Ent

)
, (4.29)

where Hn is the Hilbert eigenspace corresponding to the energy eigenvalue

En. The above sum is usually divergent, but it can be made to converge by

Wick rotating the time variable as per

Zqm(τ) =
∑
n

dimHn exp

(
−1

~
Enτ

)
. (4.30)
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In the quasistatic limit, the above sum is dominated by the least energy

eigenvalue, Emin, and Zqm(τ) becomes Zqqm(τ), the subindex “qqm” stand-

ing for quasistatic quantum mechanics:

Zqqm(τ) = dimHmin exp

(
−1

~
Eminτ

)
. (4.31)

Therefore

Zqqm(0) = dimHmin, (4.32)

and the partition function of quasistatic quantum mechanics computes the

dimension of the Hilbert space of quantum states; also a conclusion that is

reminiscent of topological models [13].

4.5 Conclusions and outlook

The application of differential and Riemannian geometry to the theory of

thermodynamical fluctuations has turned out to be extremely useful [98,

20, 46]. Thus, e.g., the classical thermodynamics of irreversible processes

[87, 95] requires for its formulation a metric on phase space. This metric is

provided by Onsager’s matrix of kinetic coefficients Lij . The metric enters

the quantum mechanical dual theory [44] through the kinetic term in the

mechanical Lagrangian.

On the contrary, the thermostatics of equilibrium processes [23] is genuinely

metric free. Therefore, if thermostatics is to possess any quantum mechan-

ical dual at all, this dual theory should be a topological theory [13], in the

sense that it should be metric independent.

That the classical thermostatics of equilibrium processes should possess a

quantum mechanical dual is suggested by two observations. First, by the

claim that quantum mechanics is an emergent phenomenon [38, 39, 112, 113,

44, 105]. Second, by the widespread opinion that thermodynamics (be it of

equilibrium [23] or nonequilibrium [87, 95]) is the paradigm of all emergent

sciences. These conclusions remain unaltered even if, as argued in ref. [24],

the emergent aspects of quantum mechanics can only become visible at very

high energies.
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Two guiding principles are at work here: the notion that forces are en-

tropy gradients, and the requirement that all processes be quasistatic. En-

tropy gradients, while defining a direction for evolution, ignore microscopic

structures, retaining only coarse grained averages: this is a feature of emer-

gent phenomena. Ignoring the metric structure of the underlying manifold

amounts to ignoring the kinetic term in the Lagrangian. Quantum mechani-

cally, due to the uncertainty principle, the effects of the kinetic term cannot

be cancelled completely, unless one accepts a complete delocalisation of the

particle in space. The result of following these two guiding principles is a

quasistatic quantum mechanics, which is dual to the classical thermostatics

of equilibrium processes, and shares a number of key properties in common

with topological, i.e., metric free models.

After completion of this work there appeared ref. [26], where the WKB

expansion of quantum mechanics is developed from the point of view of

topological string theory [78]. Ref. [26] provides further evidence of the

existing links between topological theories and quantum mechanics. Some

of these links have been analysed in the present paper, from the alterna-

tive standpoint of the approach of emergence of quantum theory; further

connections are being studied in an upcoming publication.
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Chapter 5

Conclusion

Is quantum mechanics an effective, emergent theory? This is the question

that motivates this thesis and the whole body of research under the umbrella

of emergent quantum mechanics.

Current physics is far from being A Theory of Everything. What we have are

different physical theories operating at different energy scales, which creates

the need to study their intertheoretical relationships. How can Quantum

Mechanics and General Relativity be made compatible? How do Thermody-

namical theories emerge from their underlying mechanics? How does Classi-

cal Mechanics emerge from Quantum Mechanics? May Quantum Mechanics

and/or Relativity emerge from a more fundamental theory? Is spacetime

a low energy -crystallized- fluid? Is the wavefunction the result of some

coarse-graining?

We have seen that the need to revisit the foundations of the most success-

ful physical theory comes motivated both by its inner problems and by its

intertheoretical relationship with both general relativity and classical me-

chanics. The idea that the solution may come from a more fundamental

theory is motivated both by the probabilistic nature of its results and by

the recursive belief that there is no ultimate theory, or at least no so far

from the Planck scale.

The contributions of this PhD thesis, in the form of three articles [45, 44, 22],

can be summarized as follows:

63
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• Inspired by Madelung’s hydrodynamical interpretation [76], and mo-

tivated by the role of dissipation in the emergent approach [36], we

developed a mapping between the Quantum Hamilton-Jacobi equa-

tion and the Navier-Stokes equation. According to it, the quantum

potential (that “internal mechanism of the continuum”), can be seen

as the viscous term in the Navier-Stokes equations. The correspon-

dence is only valid in the semiclassical approximation, but this is not

so problematic since the mapping itself (just like the Madelung map-

ping [118]) is only invertible if the Bohr-Sommerfeld quantization con-

dition applies for any loop. A first consequence of the mapping is that

the viscosity to entropy density ratio is to leading order η′

s = o
(

~
kB

)
.

This is in agreement with the theoretical [69] and experimental [75]

result that, for a quark-gluon plasma, the viscosity to entropy density

ratio is greater than 1
4π

~
kB

, which suggests that the missing factor in

our analysis is 1
4π . Another consequence of the mapping is a picture in

which non-stationary states thermalize into stationary states, which

have zero viscosity.

• In another vein, inspired by Onsager’s formulation of irreversible ther-

modynamics [87] and by Verlinde’s work on emergent gravity [116],

we give a mapping between Feynman’s propagators for the harmonic

oscillator and thermodynamic irreversible Markovian processes in the

linear regime. In this analogy, the equipotential surfaces of the me-

chanical problem correspond to isentropic surfaces of the thermody-

namical problem. As suggested by the holographic principle [19], we

conjecture that, to every mechanical lagrangian, there will correspond

a thermodynamical one. Going beyond the harmonic oscillator means

going beyond the linear regime and the markovian approximation on

the thermodynamical side, far from equilibrium, to a realm where not

so many exact results are known yet.

• Finally, we ask ourselves: if quantum mechanics is dual to irreversible

thermodynamics, is there any quantum mechanical theory that is dual

to classical thermostatics? The answer seems to be yes. At least, we

show how a Hilbert space can be constructed from a thermostatical

theory defined by an equation of state (that is, an entropy function

on the macrostates). The idea underlying thermostatics is that pro-
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cesses take place very slowly, so that kinetic energy can be neglected.

The uncertainty principle prevents us from graciously removing the

kinetic energy term in the quantum hamiltonian, but we can always

minimize it. The result is a finite dimensional Hilbert space, obtained

as the kernel of certain operator. Inspired by the holographic princi-

ple again, we define an entropy operator acting on the states of the

Hilbert space, which depends on the entropy function of the thermo-

statics at hand. For the quantum mechanical theory dual to the ideal

gas thermostatics, it turns out that the average value of the entropy is

metric-independent, whence the connection with topological theories.

Since thermodynamics is the queen of the emergent theories, it is our im-

pression that the previous mappings support the believe that quantum me-

chanics is also emergent, and that its current problems may be solved once

the fundamental theory is known.
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[99] Schroedinger, E. Die gegenwärtige situation in der quantenmechanik.

Naturwissenschaften 23 (1935). translation by J.D. Trimmer available in

The present situation in quantum mechanics, Proceedings of the American

Philosophical Society 124, 323–338 (1984).



74 BIBLIOGRAPHY

[100] Schwarz, A. Quantum Field Theory and Topology. Springer-Verlag, Berlin,

1993.

[101] Schwarz, A. Topology for Physicists. Springer-Verlag, Berlin, 1994.

[102] Seligman, N., and Graham, N., Eds. The Many Worlds Interpretation of

Quantum Mechanics. Princeton University Press, Princeton, 1973.

[103] Smolin, L. On the nature of quantum fluctuations and their relation to

gravitation and the principle of inertia. Class. Quant. Grav. 3 (1986), 347.

[104] Smolin, L. Quantum gravity and the statistical interpretation of quantum

mechanics. Int. J. Theor. Phys. 25 (1986), 215.

[105] Smolin, L. Quantum mechanics and the principle of maximal variety. Foun-

dations of Physics 46 (2016), 736. arXiv:1506.02938 [quant-ph].

[106] Stephens, C., ’t Hooft, G., and Whiting, B. Black hole evaporation

without information loss. Class. Quant. Grav. 11 (1994), 621. arXiv:gr-

qc/9310006.

[107] Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377 (1995).

arXiv:hep-th/9409089.

[108] Svozil, K. Space and time in a quantized world. Int. J. Theor. Phys. 54

(2015), 4376.

[109] ’t Hooft, G. The fate of the quantum. arXiv:1308.1007 [quant-ph].

[110] ’t Hooft, G. Quantum gravity as a dissipative deterministic system. Class.

Quant. Grav. 16 (1999), 3263. arXiv:gr-qc/9903084.

[111] ’t Hooft, G. Emergent quantum mechanics and emergent symmetries. AIP

Conf. Proc. 957 (2007), 154. arXiv:0707.4568 [hep-th].

[112] ’t Hooft, G. The mathematical basis for deterministic quantum mechanics.

J. Phys. Conf. Ser. 67, 012015 (2007). arXiv:quant-ph/0604008.

[113] ’t Hooft, G. The Cellular Automaton Interpretation of Quantum Mechan-

ics. Springer, 2016. arXiv:1405.1548 [quant-ph].

[114] Tegmark, M. Shut up and calculate, 2007. arXiv:0709.4024 [physics.pop-

ph].

[115] Vaidman, L. All is ψ. Journal of Physics: Conference Series 701, 012020

(2016).

[116] Verlinde, E. On the origin of gravity and the laws of newton. JHEP 29

(2011). arXiv:1001.0785[hep-th].



BIBLIOGRAPHY 75

[117] Verlinde, E. Emergent gravity and the dark universe, 2016.

arXiv:1611.02269 [hep-th].

[118] Wallstrom, T. C. Inequivalence between the Schrodinger equation and

the Madelung hydrodynamic equations. Physical Review A 49 (1994), 1613.

[119] Wick, D. The Infamous Boundary. Seven Decades of Heresy in Quantum

Physics. Copernicus, an imprint of Springer-Verlag, New York, 1995.

[120] Witten, E. Anti–de Sitter space and holography. Adv. Theor. Math. Phys.

2 (1998), 253. arXiv:hep-th/9802150.

[121] Yin, Z., and Li, T. Bringing quantum mechanics to life: from

Schrödinger’s cat to Schrödinger’s microbe. Contemporary Physics (2017).

DOI: 10.1080/00107514.2016.1261860.

[122] Zurek, W. Decoherence, einselection, and the quantum origins of the clas-

sical. Rev. Mod. Phys. 75 (2003), 715. arXiv:quant-ph/0105127.


