Table of Contents

1. Thesis outline and Objectives	17
1.1. Thesis outline	17
1.2. Objectives of the thesis	18
2. Introduction	23
2.1. Energy context	23
2.2. Utilization of natural gas	26
2.3. Aromatic hydrocarbons production	30
2.4. Zeolites as catalysts	34
2.5. Methane dehydroaromatization over Mo/zeolite catalysts	37
2.5.1. State and location of molybdenum in Mo/zeolite catalysts	42
2.5.2. The nature of carbonaceous deposits	45
2.5.3. Addition of different co-reactants on methane dehydroaromat	ization
reaction	48
2.6. H ₂ pumping through proton-conducting ceramic membranes	52
2.7. Methane dehydroaromatization over Mo/HZSM-5 catalyst with	
continuous H ₂ removal or O ₂ injection	56
2.8. References	59
3. Methodology	69
3.1. Reactants	69
3.2. Zeolite preparation	69
3.2.1. ZSM-5 zeolite	69

3.2.2. MCM-22 zeolite	71
3.2.3. IM-5 zeolite	72
3.2.4. ITQ-13 zeolite	73
3.2.5. TNU-9 zeolite	74
3.2.6. Chabazite zeolite	75
3.2.7. ZSM-22 zeolite	76
3.2.8. NU-87 zeolite	77
3.2.9. NU-85 zeolite	78
3.2.10. Mazzite zeolite	78
3.2.11. Beta zeolite	79
3.2.12. Mordenite zeolite	80
3.3. Catalyst manufacturing process	81
3.3.1. Granulated catalysts	81
3.3.1.1. Mo incorporation to the zeolite	81
3.3.1.2. Shaped of the catalyst	82
3.3.2. Extrudated catalysts	82
3.3.2.1. Extrudated catalyst	82
3.3.2.2. Extrudated II catalyst	83
3.4. BaZr _{0.7} Ce _{0.2} Y _{0.1} O _{3-δ} dense ceramic membranes manufacture	83
3.4.1. Electrode preparation	84
3.4.1.1. Mo ₂ C/Cu/BZCY72 anode	85
3.4.1.2. Copper anode	85
3.5. Characterization techniques	86
3.5.1. Nitrogen sorption analysis	86
3.5.2. Ammonia temperature programmed desorption (NH ₃ -TPD)	86
3.5.3. Thermogravimetric and derivative thermogravimetric analyses	
(TGA/DTA)	87

87
88
ance)
88
89
90
92
93
93
CP-OES)
94
94
95
95
98
109
n with
109
109
110
111
n with
112
st 112
H ₂ , 1:4
113
113

3.6.1.2.4. Use of different space velocity and change the cataly	/st
amount and the feed gas flow using the same space velocity (2	500
mL·h ⁻¹ ·g _{cat} ⁻¹) with the FBR	_ 114
3.6.1.2.4.1. Use of different space velocity with the 6% (wt	.)
Mo/MCM-22 catalyst	_ 114
3.6.1.2.4.2. Change the catalyst amount and the feed gas f	ow
using the same space velocity with the 6% (wt.) Mo/HZSM-	5
catalyst	_ 115
3.6.2. Catalytic Membrane Reactor	_ 115
3.6.2.1. Catalytic Membrane Reactor with continuous $\rm H_2$ removal	
through BaZr $_{0.7}$ Ce $_{0.2}$ Y $_{0.1}$ O $_{3-\delta}$ tubular membranes	_ 116
3.6.2.1.1. Experimental procedure	_ 121
3.6.2.1.2. Operating conditions of each experiment with CMR-	TM
	_ 125
3.6.2.2. Catalytic Membrane Reactor with Quartz Tube (CMR-QT)	_ 128
3.6.2.2.1. Experimental procedure	_ 129
3.6.2.2.2. Different operating conditions	_ 130
3.6.2.2.1. Use of different space velocities with the CMR-	QT
	_ 130
3.6.2.2.2.2. Co-feeding of H_2 using the CMR-QT	_ 131
3.7. References	_ 132
4. Effect of the zeolite on MDA reaction	137
4.1. Different HZSM-5 zeolites with 3% (wt.) of Mo	_ 137
4.1.1. Effect of the Si/Al ratio	_ 142
4.1.2. Effect of the crystal size	_ 143
4.2. Effect of the Mo content on the best HZSM-5	_ 144

4.3. Different zeolites versus the best HZSM-5 with 3% (wt.) Mo	148
4.4. MCM-22 versus the best HZSM-5 with 6% (wt.) Mo	153
4.5. Conclusions	163
4.6. References	165
5. Effect of the catalyst activation on MDA reaction	_ 169
5.1. 6% (wt.) Mo/HZSM-5 catalyst	169
5.2. 6% (wt.) Mo/MCM-22 catalyst	173
5.3. Conclusions	177
5.4. References	178
6. Effect of the space velocity on MDA reaction	_ 183
6.1. Effect of the 6% (wt.) Mo/HZSM-5 catalyst amount and the feed g	as flow
using a space velocity of 1500 mL·h ⁻¹ ·g _{cat} ⁻¹	183
6.2. Effect of the space velocity on MDA reaction using the 6% (wt.)	
Mo/MCM-22 catalyst	186
6.2.1. Effect of the space velocity using the standard activation	186
6.2.2. Effect of the space velocity using the new activation	189
6.2.2. Effect of the space velocity using the new activation 6.3. Conclusions	
	195
6.3. Conclusions	195 196
6.3. Conclusions	195 196

7.1.2. Effect of co-feeding H_2O over 6% (wt.) Mo/HZSM-5 catalyst on MD	ÞΑ
reaction	202
7.1.3. Effect of co-feeding $\rm H_2O$ over 6% (wt.) Mo/MCM-22 catalyst on M	DA
reaction	206
7.1.3.1. Effect of co-feeding 1.08% of $\rm H_2O$ after different times on stre	eam
in dry conditions for the 6% (wt.) Mo/MCM-22 catalyst	206
7.1.3.2. Effect of co-feeding 1.08% and 0.86% of $\rm H_2O$ over 6% (wt.)	
Mo/MCM-22 catalyst	212
7.2. Effect of co-feeding H ₂	225
7.2.1. Thermodynamic study of co-feeding H ₂	225
7.2.1.1. Thermodynamic study of co-feeding H_2 without and with the	
addition of H ₂ O	227
7.2.2. Effect of co-feeding 6% of H_2 with the standard activation of the	
catalyst	230
7.2.3. Effect of co-feeding H_2 over the 6%Mo/MCM-22 catalyst with the	
new activation	235
7.2.3.1. Effect of co-feeding different concentrations of H_2 without an	nd
with H_2O addition	240
7.3. Effect of co-feeding CO ₂	246
7.3.1. Thermodynamic study of co-feeding CO ₂	247
7.3.2. Effect of co-feeding 2% of CO_2 over 6% (wt.) Mo/zeolite catalysts of	on
MDA reaction	248
7.4. Conclusions	255
7.5. References	259

8. Effect of catalyst regeneration with H_2 on MDA reaction	n
	26
8.1. Effect of the 6%Mo/HZSM-5 catalyst regeneration with H ₂	_ 2
8.1.1. Effect of the 6%Mo/HZSM-5 catalyst regeneration with $\rm H_{\rm 2}$ in dry	
conditions	_ 2
8.1.2. Effect of the 6%Mo/HZSM-5 catalyst regeneration with $\rm H_2$ in wet	
conditions	_ 2
8.2. Effect of the 6% Mo/MCM-22 catalyst regeneration with H_2 in dry	
conditions	_ 2
8.3. Conclusions	_ 2
8.4. References	_ 2
9. Effect of the catalyst manufacturing process on MDA	
	_
reaction	27
9.1. Granulated catalysts obtained by different procedures: 6%Mo/HZSN	1-5
and 6%Mo/MCM-22	_ 2
9.2. Extrudated catalyst obtained by a new procedure: 6%Mo/MCM-22 _	_ 2
9.3. Conclusions	_ 2
9.4. References	_ 2
10. Effect of H_2 removal through $BaZr_{0.7}Ce_{0.2}Y_{0.1}O_{3-\delta}$ tubulo	ar
membranes on MDA reaction	29
10.1. Effect of H ₂ removal through BaZr _{0.7} Ce _{0.2} Y _{0.1} O _{3-δ} tubular membrane	on
MDA reaction	2

10.2. Effect of the anode type on the BZCY72 tubular membrane on MDA	
reaction with H ₂ removal	311
10.3. Effect of the temperature on MDA reaction with H ₂ removal	317
10.4. Effect of co-feeding 10% of H_2 on MDA reaction with H_2 removal	325
10.5. Effect of the current density applied on the electrochemical cell on	
MDA reaction with H ₂ removal	331
10.6. Conclusions	337
10.7. References	340
11. Conclusions	345
List Figures	353
List II Tables	367
List III Abbreviations	375
Resumen/Resum/Summary	379
Scientific Contribution	387
Agradecimientos/Acknowledgements	389