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Abstract 

Platinum is the electrode material with the highest catalytic activity for the hydrogen 

evolution reaction (HER). However, its high cost and scarcity are the two major barriers 

for its usage in the industrial alkaline water electrolysis, which requires searching for 

other cheaper and more available materials with good catalytic activity. Ni-based 

materials have attracted more and more attention due to their good activity for the HER 

and sufficient corrosion resistance in alkaline solutions at considerable low cost. 

According to the Brewer intermetallic bonding theory, molybdenum alloyed with nickel 

(hypo-hyper-d-electronic transition metal) could improve the intrinsic catalytic activity 

for the HER. 

In this work, Ni and NiMo metallic coatings were galvanostatically electrodeposited on 

a stainless steel AISI 304 substrate by means of the double-template electrochemical 

process. The evaluation of these electrodes as H2-envolving cathodes was done in 30% 

wt. KOH by pseudo-steady-state polarization curves and electrochemical impedance 

spectroscopy (EIS) at different temperatures. From Tafel curves results, it is shown that 

the NiMo electrodes have higher catalytic activity than Ni. On the other hand, from EIS 

results, it is possible to conclude that the NiMo electrodes showed higher intrinsic 
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catalytic activity for HER than the pure Ni electrode as a consequence of alloying hypo-

hyper-d-electronic transition metals. 

 

Keywords: NiMo alloys, HER, Surface Roughness factor, catalytic activity, alkaline 

water electrolysis. 
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1. Introduction 

 
As an alternative to fossil fuels, hydrogen is considered one of the most 

promising energy carriers for the future because it is versatile, environmentally 

compatible and it could be produced from renewable energy sources [1-3]. There are 

several methods to produce hydrogen, but alkaline water electrolysis is one of the most 

promising methods for clean and renewable hydrogen production [4-6]. However, its 

high cost, both economic and energetic, restrains the use of this technique for hydrogen 

large-scale production [4]. This cost is directly proportional to the operating voltage, 

which depends on the overpotential of the oxidation and reduction reactions taking 

place at the anode and cathode respectively. That is why the effort in developing new 

cathode materials with lower overpotential for the hydrogen evolution reaction (HER) 

reduces the cost of energy from hydrogen production by electrolysis [7]. 

The optimum electrode material for HER must combine strong catalytic activity, 

large surface area, stability of performance and low cost [8]. Platinum is the electrode 

material with the highest catalytic activity for HER. However, its high cost and scarcity 

are the two major barriers for its usage in the industrial water electrolysis, which 

requires searching for other cheaper and more available materials with good catalytic 

activity [4, 9, 10]. Ni-based materials have attracted more and more attention due to 

their good activity for HER and sufficient corrosion resistance in alkaline solutions at 

considerable low cost [10-13]. In order to improve the intrinsic catalytic activity, binary 

or ternary catalytic systems have been deeply studied such as: NiCo [14-18], NiFe [19-

22], NiW [19,23], NiCu [24], NiAl [25], NiZn [26,27].   

According to the Brewer intermetallic bonding theory [28], when metals of the 

left half of the transition series in the periodic table with empty or less-filled d-orbitals 

are alloyed with metals of the right half of the series with more filled d-bands, a 
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maximum in bond strength and stability of the intermetallic alloy phases is expected 

[28], there is a well-pronounced synergism in the electrocatalysis [29-30]. The d-orbital 

participates in both the lattice and the chemisorptive bond, so when two hypo-hyper-d-

electronic transition metals mutually interact, changes in catalytic activity are expected. 

This synergistic effect often exceeds the effects of the individual parent metals and 

approaches reversible behavior, it is they can be used both as cathodes and anodes, 

within a wide range of current densities [28,31-32].  

As it has been mentioned, nickel and nickel based alloys have been widely 

studied as cathodes for HER. Among these materials, NiMo has particularly high 

catalytic activity [23,25,33-41].  

The aim of the present work is the development of 3D macroporous Ni and 

NiMo electrodes in order to evaluate their suitability for the HER in terms of catalytic 

activity. The developed electrodes were characterized morphologically by confocal laser 

scanning microscopy, SEM and EDX; and electrochemically in 30 wt.% KOH solution 

by means of pseudo-steady-state polarization curves and electrochemical impedance 

spectroscopy (EIS). 
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2. Experimental 

2.1. Preparation of electrodes 

The metallic coatings were galvanostatically electrodeposited on a stainless steel 

AISI 304 substrate with a cross-sectional available area of 0.5 cm2 previously pretreated 

to guarantee an adherent deposit. The pretreatment consists in an initial roughing down 

and polishing with silicon carbide emery paper with different grits (220, 500, 1000 and 

4000) to a mirror surface finish. Then the electrode surface was degreased by immersing 

it in 25 wt.% NaOH at 90 °C for 1 minute and stripped by immersing it, in this case, in 

18 wt.% HCl at room temperature for 1 minute. This was followed by an anodic 

treatment in 70 wt.% H2SO4 for 3 minutes at a current density of 1080 A m-2 [42], and 

finally a cathodic treatment in a solution of 240 g L-1 of NiCl2 and 125 mL L-1 HCl at 

room temperature for 5 minutes at a current density of 269 A m-2, the aim of this step is 

to produce a thin, adherent deposit of nickel which serves as a base for the subsequent 

electrodeposition [43]. Between each treatment and before the electrodeposition, the 

electrode was washed with distilled water. 

The formation of electroactive coatings was done via a double-template 

electrochemical process described in our previous works [44,45]. By means of this 

process is possible to obtain self-supported nanoramified (denditric) deposits in a simple 

way. It consists of an electrochemical deposition which takes place simultaneously with 

the hydrogen evolution. The hydrogen bubbles generated in highly acidic media and at 

high cathodic current densities function as a dynamic template during Cu deposition. 

The resulting structures are 3D foams of Cu with highly porous ramified (denditric) 

walls. Afterwards the Cu macroporous layer acted as a template for the nickel and 

nickel-molybdenum deposition. Table 1 summarizes the bath composition and 

deposition conditions for the fabrication of the electroactive coatings. As it can be seen 



 6 

from this Table, three different electrocatalysts have been developed. The Ni electrode 

was obtained onto a Cu template electrodeposited from a bath containing CuSO4, H2SO4 

and HCl. It has been shown [46] that HCl addition decreases the size and the 

agglomeration of the branches which form the wall of the foam, resulting in a larger 

specific surface area. This is because the chloride ions catalyze the reduction of copper 

[47-49]. Even a trace amount of chloride ion in the solution would change the reaction 

mechanism for the electron transfer from the outer-sphere reaction (water-water bridge) 

to inner-sphere reaction (chloride bridge), resulting in much higher exchange current 

density of the Cu2+/Cu+ reaction step [46]; and therefore the foam wall is more 

effectively filled with copper deposits. Two different NiMo electrodes have been 

developed, however in this case, adding HCl to the electrodeposition bath to obtain the 

copper template made the subsequent deposits of NiMo alloy be not enough adherent. 

Therefore, the template was performed without the presence of chloride ions. The 

electrodeposition bath was the same for both NiMo developed electrodes [50] and the 

only difference in the operating conditions between the NiMo1 and NiMo2 electrodes 

was the time of the NiMo electrodeposition. 30 minutes were been employed to obtain 

the NiMo1 electrocatalyst and 60 minutes for the NiMo2.   

Figure 1a shows the cell used for the electrodeposition process. In this 

thermostated one-compartment cell, the substrate surface to be coated is placed in 

horizontal “face-up” position, allowing the free release of the generated gas bubbles. 

The counter electrode was a 0.57 cm2 surface area platinum electrode. The reference 

electrode was a commercially available Ag-AgCl (3 M KCl electrolyte) electrode. The 

electrodepositions were carried out by using an AUTOLAB PGSTAT302N 

potenciostat/galvanostat.  
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The surface morphologies and compositions of the developed electrocatalytic 

coatings were studied by means of an OLYMPUS LEXT OLS3100-USS confocal laser 

scanning microscope, and a ZEISS ULTRA 55 field emission scanning electron 

microscope (FE-SEM) coupled with an Energy-Dispersive X-Ray (EDX) analysis. 

 

2.2. Electrochemical measurements 

The evaluation of these electrodes as H2-envolving cathodes was done in 30 

wt.% KOH by pseudo-steady-state polarization curves and electrochemical impedance 

spectroscopy (EIS) at different temperatures: 30, 40, 50, 60, 70 and 80 ºC. The 

operating conditions were described in our previous works [14,17,18]. 

The electrochemical measurements were carried out in the electrochemical cell 

P200002526 [51] showed in Figure 1.b. In this cell, the developed electrocatalysts were 

used as the working electrodes, placing the electrode/electrolyte interface in a vertical 

plane, in order to allow the free evolution of the produced hydrogen bubbles when 

necessary. In this case, the counter electrode was a large-area Ni foam produced from 

0.17 cm thick INCOFOAMTM sheets, with 50 pores per linear inch. The reference 

electrode and the potenciostat/galvanostat were the same which were used in the 

electrodeposition process. 
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3. Results and discussion 

3.1. Morphology and composition of the electrodes 

Figure 2 shows the field emission scanning electron microscopy micrographs of 

the developed electrocatalysts at low (Fig. 2a, 2d and 2g) and high (Fig. 2b, 2e, and 2h) 

magnifications; and 3D confocal laser microscopy micrographs (Fig. 2c, 2f and 2i). As 

it can be seen from Fig. 2a, the Ni electrode presents a 3D foam structure whose walls 

are composed of a large number of small-ramified branches (Fig. 2b). This type of 

macrostructure is obtained because of the electrodeposition of Cu occurs 

simultaneously with hydrogen generation, so that the sites where bubbles of H2 are 

generated there is no metal available for electrodeposition, forming pores with different 

sizes which depend on the size of the hydrogen bubbles. In the Ni electrode, that size is 

around 120-220 µm. 

From the NiMo1 micrographs it can be shown that only 30 minutes of 

electrodeposition onto the Cu template structure are enough to lead to a different 

macrostructure. The pores are not completely defined (Fig. 2d) and the branches of the 

walls of the 3D foam structure are further bonded (Fig. 2e). If we increase the time of 

electrodeposition of NiMo up to an hour (Electrode NiMo2) the macrostructure 

obtained (Fig. 2g) is more similar to the one obtained with the Ni electrode but the 

branches will show less order and smaller size of the pores, obtaining, as much, pores 

of 150 µm. 

Table 2 shows the composition of the investigated electrocatalytic coatings in 

at.% obtained by means of EDX analysis coupled to the FE-SEM. As it can be 

observed, increasing the electrodeposition time from 30 to 60 minutes, the amount of 

Mo in the deposit increases, reaching a 14.3 at.%. The copper used as a template for the 

coating of Ni-Mo is not detected by EDX analysis indicating that the Cu template is 
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completely covered by the Ni-Mo alloy. This is interesting as the aim of this work is to 

evaluate the catalytic activity towards the HER of the NiMo cathodes. 

 

3.2. Polarization measurements 

Figure 3a shows the Tafel polarization curves obtained in 30 wt.% KOH for  the 

developed electrocatalysts at 30 ºC (filled dots) and 80 °C (empty dots). The curves 

were corrected with respect to the equilibrium potential for the HER and the ohmic drop. 

As it can be observed, the catalytic activity increases with the temperature because the 

kinetic of the reaction improves with this parameter. The curves exhibit the classic Tafel 

behavior, indicating that the HER on these electrodes is purely kinetic controlled and 

can be described by the Tafel equation, jba log+=h , where h (V) represents the 

overpotential responsible of the cathodic current density j (A cm-2), b (V decade-1) is the 

Tafel slope, and a (V) is the intercept. Exchange current density j0 (A cm-2) can be 

determined by the equation: 

0log)/()3.2( jFRTa c ´= a  (1) 

The cathodic transfer coefficient, ac, can be obtained from the Tafel slope using the 

equation (2): 

)/()3.2( FRTb ca-=  (2) 

where R (= 8.314 J mol-1 K-1) and F (=96,485 C mol-1)  are the gas and the Faraday 

constants, respectively. 

The apparent kinetic parameters obtained as have been explained above are collected in 

Table 3. As it can be observed, Tafel slope and exchange current density increase with 

the temperature, however at 80 ºC, NiMo1 and NiMo2 electrodes suffer a decrease in 

these parameters. This fact could be due to at this temperature, HER is more vigorous 

and the hydrogen bubbles can block the pores of the electrode structure, diminishing the 
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catalytic activity of the electrodes. The linear regression fitting of the Tafel polarization 

curves recorded at 30 ºC and 80 ºC showed in Figure 3.a, which allow to calculate the 

apparent kinetic parameters, are collected in Table 4.  As it can be observed, the R2 

values demonstrate that the fits are goods and the Tafel slope and exchange current 

density have been determined with high precision. 

According to the literature of HER on transition metals [10,11,19] and the kinetic 

parameters obtained (Tafel slopes, b, ranging from 0.113 V dec-1 to 0.137 V dec-1 at 30 

ºC, and cathodic transfer coefficient, αc, close to 0.5) we can conclude that the HER on 

the developed electrocatalysts takes place via the Volmer-Heyrovsky mechanism. 

Table 3 includes the overpotentials at a fixed current density of -100 mA cm-2, 

h100. This parameter is a good indicator of the amount of energy required to produce a 

fixed amount of hydrogen. In order to better compare the values of this parameter for 

the developed electrodes, the obtained values have been plotted in Fig. 3b. From this 

Figure is shown that the Ni-Mo electrodes exhibit a better catalytic behaviour than the 

Ni electrode.      

The obtained kinetic parameters, h100 and j0 are quite similar to those obtained by 

Kubisztal et al. [52] for a NiMo coating with a higher wt.% Mo but lower roughness 

factor. Fan and Piron [23] also obtained similar h100 values for a Ni-Mo electrocatalyst 

with a comparable wt.% Mo but with far lower j0 and rf. 

Another good parameter to assess the catalytic activity is the apparent activation 

energy (Ea) at equilibrium potential [53]. The lower the activation energy, the lower the 

energy requirements for hydrogen production. The exchange current density is related to 

the activation energy by the Arrhenius law as show the following equation [54]:  

TR
E

Aj a 1
303.2

'log 0 ×
×

-=  

 

 

 

 

 

(3) 
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where A’ (A cm-2) is the pre-exponential factor. 

Representing log j0 vs 1/T, a straight line is obtained, the slope from which the 

activation energy can be calculated. Table 4 collects the linear regression obtained from 

the Arrhenius plot with the corresponding R-squared, who indicates the goodness of the 

fit. This table also includes the activation energy values obtained from the slope of the 

linear regression equation. From these values we easily observe that the electrode 

NiMo2 exhibits a significant improvement in the catalytic activity for HER, since the 

activation energy value for this electrocatalyst is reduced to half respect the Ni electrode. 

The Ea value obtained for the nickel electrode is very similar to the value obtained by 

other authors when HER takes place via Volmer-Heyrovsky mechanism [17,54-57] and 

the same occurs with the NiMo electrodes [58].  

 

3.3. Electrochemical impedance spectroscopy measurements 

Both, an increase in the electrode surface area and changes in the electrode 

composition can improve the catalytic activity of the cathodes for HER. In order to 

distinguish between both effects, two different concepts can be defined: the apparent 

catalytic activity, based on the surface area and the intrinsic catalytic activity, based on 

the effective surface area. The parameters obtained above from the polarization 

measurements are based on the geometric area of the electrodes, so we can concluded 

about the overall catalytic activity, but not differentiate about the effect of the surface 

area and the composition of the electrode.  

In order to distinguish between the intrinsic and the apparent catalytic activity of 

an electrode, the effective surface area of the electrode must be calculated. This 

effective surface area is proportional to the double layer capacitance, which refers to 

two layers of charges, which behaves like a capacitor [59]. A concept of Roughness 
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factor, Rf, which is the ratio between the real active surface area and the geometrical 

area of the electrode or what is the same, the ratio between the double layer capacitance 

of a rough electrode surface and the double layer capacitance of a smooth electrode 

surface, is employed to quantify the surface area participating in electrode reaction [60].   

To obtain the double layer capacitance, the EIS technique is widely employed 

[14,16,59], by using an equivalent circuit to fit the impedance of an electrode reaction 

and estimate the electric parameters. 

Figure 4 shows the EIS response on the developed electrocatalysts by means of the 

Nyquist (Fig. 4a) and Bode (Fig. 4b) diagrams. The EIS spectra for the Ni electrode 

reveals the presence of two strongly overlapped semicircles related to two time 

constants. However, in the impedance data of NiMo1 and NiMo2 electrodes it can be 

observed two deformed semicircles clearly differentiated and two maximums in the 

Bode representation, it is a two-time constants system. As it can be seen from Fig. 4, the 

diameter of both semicircles diminishes with the overpotencial applied and the same 

behaviour is observed with the temperature. This fact implies that both time constants 

are related to the kinetics. This response has been correctly modeled with the equivalent 

circuit of Fig. 5a. This circuit, initially proposed by Armstrong and Henderson, models 

the EIS response of a system formed by two semicircles, one at high frequencies, related 

to the charge transfer and the low frequency semicircle associated with hydrogen 

adsorption. 

When the overpotential applied is too high, the HER is more vigorous and it is 

difficult to obtain a good EIS spectra, so only one deformed semicircle is observed, it is 

one-time constant system. In these cases a classical Randles EEC model in which the 

double layer capacitance was replaced by a constant phase element (CPE) (Fig. 5b) was 

employed.  
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In the EIS spectra of all the developed electrocatalyts, at high frequencies, before 

the formation of the first semicircle, a straight line is observed. This behaviour is 

independent of the overpotential applied and the same occurs with the temperature, so it 

is related to the geometry of pores in the electrode surface. The modeling of the 

impedance response of porous electrodes has been well developed, due to the 

importance of these materials in electrocatalysis. Keyser et al. [61] studied the 

impedance response of materials with different pore geometries in absence of faradic 

reaction. Figure 6 shows the Nyquist diagram which summarizes the behavior at high 

frequencies associated with the porosity of the material, on the most common pore 

geometries. Electrodes with cylindrical pores (1) show a 45° straight line at high 

frequencies in the complex plane representation, while the wedge-shaped porous 

electrodes (5) have a linear behavior with slopes up to 45°. When the electrodes have 

the shapes (2), (3) or (4) the complex plane impedance at high frequencies reveals a 

partial or fully semicircle. Although Keyser et al. [61] studies are performed in absence 

of electrochemical reaction (only ohmic drop), this EIS response of the pores at high 

frequencies has been experimentally evidenced and patterned on porous electrodes 

under HER [13,62]. 

As an example, in Fig. 6, the experimental impedance spectra recorded on the 

electrode Ni at 0 mV and 50 °C has been overlapped with the H. Keyser et al. Figure of 

the EIS spectra on different porous electrodes. As can be seen, the experimental EIS 

spectra of Ni electrode coincides with the obtained by Keyser for wedge-shaped pores. 

The same porous shape has been obtained for the NiMo electrodes.  

In order to obtain the effective surface area of the developed electrocatalysts, the 

roughness factor has been calculated by means of the double layer capacitances 

obtained with the Brug equation [63]:  
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11 /1)1(1
1

1
1 ])/([ nn

Sdl RRQC --- +=  (4) 

Table 5 reports the EEC parameters obtained by fitting the experimental data to the 

equivalent circuit with the software Zview® and the calculated Cdl values. The surface 

roughness factor (Rf) has also been included in Table 5, determined by means of the 

quotient between the Cdl of porous and smooth electrodes [60,64], which approximates 

to 20 µF cm-2 [12,13]. The Rf values are up to 1200, indicating that the effective surface 

area is far bigger than the geometric area. These Rf values are in the same magnitude 

order than those reported in literature for electrodeposited Raney Ni-Zn [65], pressed 

powder Raney Ni-Zn [13], and thermal arc sprayed porous Ni cathodes [66]. Among the 

developed electrocatalyts, the NiMo2 electrode shows the highest Rf values, so this is 

the electrode with the highest apparent catalytic activity. 

With the Rf values, the effective surface area can be calculated using the 

relation fRAA ×=' , where A’ is the effective surface area and A is the geometric area. 

Then, current density based on the effective surface area can be determined as '/' Aij = , 

which allows to evaluate the intrinsic catalytic activity. Figure 7 shows the Tafel curves 

of the developed electrocatalysts with respect to j’. As it can be observed from Fig. 7, 

the Tafel curves corrected to respect the effective surface area for both NiMo electrodes 

at 80 ºC are collapsed, indicating that both electrodes have the same behaviour at these 

conditions. The intrinsic kinetic parameters: Tafel slope, exchange current density and 

cathodic transfer coefficient; obtained from the linear Tafel polarization curves 

corrected with respect the roughness factor showed on Fig.7 are collected in Table 7. As 

it can be observed, the Tafel slope and cathodic transfer coefficient are in the same 

order of magnitude that those obtained with the apparent polarization curves, indicating 

that the same suggestion that the HER on the developed electrodes takes place via 

Volmer-Heyrovsky mechanism. 
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In order to better conclude about the intrinsic catalytic activity of the 

investigated electrocatalysts, the activation energy based on the effective surface area 

(intrinsic activation energy, Ea’) can be calculated from the exchange current densities 

corrected with the obtained Rf  values, j0’. The Ea’ values and the corresponding linear 

regression expression have been collected on Table 6. As it shown, the NiMo electrodes 

have higher intrinsic catalytic activity than the Ni electrode because its activation 

energy has been reduced to half. Both NiMo electrodes have similar Ea’ values, so 

similar intrinsic activity. This improvement in the intrinsic catalytic activity could be a 

consequence of the synergetic effect of the hypo-hyper-d-electronic transition metals 

alloy on hydrogen evolution [15-16]. 
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4. Conclusions 

3D macroporous Ni and NiMo cathodes have been developed and characterized 

both morphological and electrochemically for hydrogen evolution reaction (HER) in 30 

wt.% KOH solution. The cathodes were synthesized via a double-template 

electrochemical process. The typical three-dimensional metal foam structure with 

dendritic walls was obtained.  

From the electrochemical study it can be concluded that by alloying Nickel with 

Molybdenum it is possible improve the apparent and the intrinsic catalytic activity for 

HER. The activation energy values have been calculated from the exchange current 

densities. The results of this parameter and both the apparent and intrinsic kinetic 

parameters indicate that the HER on these electrodes takes place via Volmer-Heyrovsky 

mechanism.  

EIS results allow us to conclude about the effective surface area which is related 

to the apparent catalytic activity and allow us also to conclude about the porous shape.  

The developed electrodes present a wedge-shaped pores according to the Keyser et. al 

studies. Combining EIS and Tafel results it also can be shown that the NiMo electrodes 

have higher intrinsic catalytic activity than the Ni electrode regardless of the atomic 

percentage of Mo in the alloy. 
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Table 1 Bath compositions and operating conditions used to obtain 3D macroporous 
electrodes 

Electrode 
Bath Composition (M) Operating Conditions 

Cu Template Ni/NiMo 
Electrodeposition 

Cu Template Ni/NiMo 
Electrodeposition 

Ni 
CuSO4 0.05 NiSO4 1.26 T (ºC) 25 T (ºC) 50 
H2SO4 0.50 NiCl2 0.19 jd (A cm-2) 0.10 jd (A cm-2) 0.05 
HCl 0.01 H3BO3 0.60 Time (s) 450 Time (s) 3600 

NiMo1 
CuSO4 0.05 NiSO4 0.20 T (ºC) 25 T (ºC) 25 

Na2MoO4 0.02 jd (A cm-2) 0.10 jd (A cm-2) 0.04 

H2SO4 0.50 Na3C6H5O7 0.30 Time (s) 450 Time (s) 1800 
NH4OH Excess pH 0.5 pH 9.5 

NiMo2 
CuSO4 0.05 NiSO4 0.20 T (ºC) 25 T (ºC) 25 

Na2MoO4 0.02 jd (A cm-2) 0.10 jd (A cm-2) 0.04 

H2SO4 0.50 
Na3C6H5O7 0.30 Time (s) 450 Time (s) 3600 

NH4OH Excess pH 0.5 pH 9.5 
     

 
 



 27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Composition of the 
investigated electrocatalytic 

coatings in at.% 
Catalyst Ni Mo 

Ni 100.0 - 
NiMo1 96.1 3.9 
NiMo2 85.7 14.3 
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Table 3 Apparent kinetic parameters of the HER obtained 
from the polarization curves recorded in 30 wt.% KOH 

solution at different temperatures 

Catalyst Temperature (ºC) 
30 40 50 60 70 80 

Ni 
b (mV dec-1) 96.3 98.0 101.7 105.2 108.7 114.5 
j0 (mA cm-2) 0.38 0.40 0.57 0.73 0.94 1.11 
αc 0.62 0.63 0.63 0.63 0.63 0.61 
η100 230 234 227 223 220 226 
NiMo1 
b (mV dec-1) 136.0 146.2 159.0 170.8 181.6 152.6 
j0 (mA cm-2) 2.64 5.48 9.84 16.99 27.51 8.05 
αc 0.44 0.42 0.40 0.39 0.37 0.46 
η100 216 185 160 132 104 125 
NiMo2 
b (mV dec-1) 129.0 125.0 135.6 139.4 146.5 147.6 
j0 (mA cm-2) 6.79 8.05 12.49 14.31 17.33 17.78 
αc 0.47 0.50 0.47 0.47 0.46 0.47 
η100 151 137 123 117 111 149 
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Table 4  Linear regression fitting of the Tafel polarization curves recorded on the 
investigated electrocatalytic coatings in 30 wt.% KOH solution at 30 and 80 ºC 

Catalyst 
Linear regression 

Temperature 
30 80 

Ni 9976.0;3293.0log0963.0 2 =-×-= Rjh  9941.0;3385.0log1145.0 2 =-×-= Rjh  

NiMo1 9995.0;3506.0log1360.0 2 =-×-= Rjh  9998.0;3196.0log1526.0 2 =-×-= Rjh  

NiMo2 9992.0;2797.0log1290.0 2 =-×-= Rjh  9994.0;2583.0log1476.0 2 =-×-= Rjh  
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Table 5 Apparent activation energy values, Ea (kJ mol-1), of the 
investigated electrocatalytic coatings in 30 wt.% KOH solution 

Catalyst Linear regression Ea (kJ mol-1) 

Ni 991.0;831.3110110.2log 23
0 =+××-= R

T
j  40.4 

NiMo1 863.0;071.4110983.1log 23
0 =+××-= R

T
j  38.0 

NiMo2 966.0;387.1110077.1log 23
0 =+××-= R

T
j  20.6 
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Table 6 Surface roughness factors, Rf, determined from the EIS study on the investigated 
electrocatalytic coatings at 30 wt.% KOH solution at 50ºC 

Electrode |h| 
 (mV) 

RS  
(W cm2) 

Rct  

(W cm2) 

Q1 
(W-1 cm-2sn) n1 

Cdl 

 (F cm-2) 
Rads  

(W cm2) 
Q2 

(W-1 cm-2sn) n2 
Cads 

 (F cm-2) Rf 

Ni 

    0 0.13 14.8 0.084 0.79 0.050 13.8 0.27 0.68 0.10 2481 
  51 0.15   8.1 0.061 0.80 0.037   3.9 0.20 0.64 0.07 1866 
100 0.14   3.8 0.061 0.78 0.035 - - - - 1754 
147 0.15   1.5 0.048 0.80 0.029 - - - - 1430 

NiMo1 

    0 0.31 3.42 0.048 0.85 0.038 7.12 0.60 0.75 0.40 1923 
  63 0.31 2.52 0.040 0.84 0.031 0.87 1.69  0.71 0.93 1572 
106 0.31 1.55 0.034 0.84 0.029 0.21 5.47 0.70 2.22 1299 
146 0.31 0.81 0.032 0.84 0.024 - - - - 1201 

NiMo2 

     0 0.28 1.36 0.088 0.85 0.067 31.1 0.80 0.80 0.58 3366 
   54 0.29 1.10 0.055 0.90 0.047 0.96 1.57 0.73 0.90 2326 
   93 0.30 0.78 0.044 0.90 0.037 0.21 2.80 0.80 1.67 1831 
126 0.30 0.46 0.048 0.87 0.037 - - - - 1835 
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Table 7 Intrinsic kinetic parameters of the HER 
obtained from the polarization curves recorded in 30 

wt.% KOH solution at different temperatures 

Catalyst Temperature (ºC) 
30 50 80 

Ni 
b’ (mV dec-1) 89.0 85.1 91.1 
j’0 (µA cm-2) 0.28 0.28 0.32 
α’c 0.61 0.64 0.59 
NiMo1 
b’ (mV dec-1) 119.3 121.8 95.9 
j’0 (µA cm-2) 2.29 4.81 5.50 
α’c 0.45 0.44 0.56 
NiMo2 
b’ (mV dec-1) 104.7 114.0 92.7 
j’0 (µA cm-2) 1.91 5.54 10.56 
α’c 0.57 0.56 0.76 
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Table 8 Intrinsic activation energy values, Ea’ (kJ mol-1), of the 
investigated electrocatalytic coatings in 30 wt.% KOH solution 

Catalyst Linear regression Ea’ (kJ mol-1) 

Ni 976.0;663.3110248.3log 23
0 =+××-= R

T
j  62.2 

NiMo1 857.0;653.0110921.1log 23
0 =+××-= R

T
j  36.8 

NiMo2 986.0;142.0110798.1log 23
0 =+××-= R

T
j  34.4 
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Fig. 1 a Thermostated one-compartmented cell for the electrodeposition process; b 
Electrochemical cell P200002526 for the electrochemical measurements 
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Fig. 2 FE-SEM images and 3D confocal laser micrographs of Ni electrode (a, b, c), 

NiMo1 electrode (d, e, f) and NiMo2 electrode (g, h, i). Magnification: ×30 (a, d, g), 
×1000 (b, e, h) and ×100 (c, f, i) 
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Fig. 3 a Linear Tafel polarization curves recorded on the investigated electrocatalytic 
coatings in 30 wt.% KOH solution at 30 (filled dots) and 80 ºC (empty dots); b 

overpotentials at a current density of -100 mA·cm-2, h100, recorded on the investigated 
electrocatalytic coatings in 30 wt.% KOH solution 

 
 



 37 

 
a -25

-20

-15

-10

-5

0
0 5 10 15 20 25

Z' / W cm2

Z
'' 

/
 W

 c
m

2
       0 mV
 -   51 mV
 - 100 mV
 - 147 mV

-0.8

-0.6

-0.4

-0.2

0.0
0.0 0.2 0.4 0.6 0.8

 

b -70

-60

-50

-40

-30

-20

-10

0
0.01 0.1 1 10 100 1000 10000

Frequency / Hz

P
h

as
e 

/
D

eg
re

es

       0 mV
 -   51 mV

 - 100 mV
 - 147 mV

 
c -8

-6

-4

-2

0
0 2 4 6 8

Z' / W cm2

Z
'' 

/ 
W

 c
m

2

       0 mV
   - 63 mV
 - 106 mV
 - 146 mV

-0.8

-0.6

-0.4

-0.2

0.0
0.2 0.4 0.6 0.8 1.0

 

d -60

-50

-40

-30

-20

-10

0
0.01 0.1 1 10 100 1000 10000

Frequency / Hz

P
h

as
e 

/
 D

eg
re

es

      0 mV
 -  63 mV
 -106 mV
 -146 mV

 

e -16

-14

-12

-10

-8

-6

-4

-2

0
0 2 4 6 8 10 12 14 16

Z' / W cm2

Z'
' /

 W
 c

m
2

       0 mV
 -   54 mV
 -   93 mV
 - 126 mV

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0
0.2 0.8 1.4 2.0 2.6

 

f -60

-50

-40

-30

-20

-10

0
0.01 0.1 1 10 100 1000 10000

Frequency / Hz

P
h

a
se

 /
 D

e
g

re
e
s

      0 mV
 -  54 mV
 -  93 mV
 -126 mV

 
 

Fig. 4 Impedance data obtained in 30 wt.% KOH solution at 50º C for Ni electrode (a, 

b), NiMo1 electrode (c, d) and NiMo2 electrode (e, f). Nyquist representation (a, b, c) 

and Bode representation of the phase angle as a function frequency (d, e, f). Symbols 

are the experimental points and solid lines are modelled data
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Fig. 5 EEC models used to explain the EIS response of the HER on the developed 
electrocatalysts: a two-time constant parallel model (2TP) and b one-time constant (1T) 

 
 
 
 
 

 
 



 39 

 

 
 

Fig. 6 Schedule of the pore geometry by means the comparison of the experimental 
spectra with the Nyquist diagram of high frequency impedance spectra in different pore 

geometry electrodes obtained by Keyser et. al [52]

1

2

3

4

5

Experimental Spectra

Z’ / W cm2

Z
’’

/ 
W

cm
2

1

2

3

4

5

Experimental Spectra

Z’ / W cm2

Z
’’

/ 
W

cm
2



 40 

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0
log (| j'  | / A cm-2)

 h
 /

 V

30 ºC  80 ºC

 
 

Fig. 7 Linear Tafel polarization curves recorded on the investigated electrocatalytic 
coatings in 30% wt. KOH solution at 30 (filled dots) and 80 ºC (empty dots), illustrating 

the intrinsic activity 
 
 
 
  


