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Abstract

The aim of the antenna diagnosis is the detection of errors in ma-
nufactured antennas. Since this diagnosis is quite hard to carry
out by just observing field measurements, the diagnosis is done by
using the reconstructed equivalent currents on a surface close to the
antenna. This thesis describes different possibilities to perform this
reconstruction on a flat surface from spherical near-field measure-
ments. Specifically, the modal expansion techniques are extensively
studied and applied to practical situations.

The main problem of the modal techniques is the limitation in the
resolution of the reconstructed equivalent currents. The reason for
this limitation is the small region available in the plane wave spec-
trum (whose Fourier transform are the equivalent currents). In
this thesis this problem is studied and several examples are shown.
Moreover, the possibilities to improve the resolution are described.
Among these possibilities, the use of an extrapolation technique is
proposed. By using this technique, the non-visible spectrum is esti-
mated from the known region (the visible spectrum) and additional
information about the antenna, e.g. the size of the antenna.

Among the different extrapolation techniques, the most commonly
used techniques are described and compared. Firstly, the itera-
tive Papoulis-Gerchberg algorithm is applied by using the size and
shape of the antenna. Then, the direct versions of this algorithm,
i.e., the extrapolation matrix by rows and columns, and the ge-
neralized extrapolation matrix, are described. Finally, the PDFT
transformation is studied and compared to the previous algorithms.
All these techniques are applied to real situations with a significant
improvement of resolution.

The last chapter of this thesis deals with the probe calibration pro-
cedures. These procedures are especially important in antenna di-
agnosis since they allow to take into account the effect of the probe
in the field measurement. Thus, the best diagnosis of the antenna
under study may be carried out. In this thesis, the iterative probe
calibration algorithm proposed by Hansen is described. In addition,
several alternatives to this algorithm for three different situations
are proposed. These techniques are verified in real situations with
quite good results.
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Resumen

El objetivo del diagnóstico de antenas es la detección de errores
en antena fabricadas. Dado que este diagnóstico es dif́ıcil de re-
alizar simplemente observando medidas de campo, el diagnóstico
se realiza usando las corrientes equivalentes reconstruidas en una
superficie próxima a la antena. Esta tesis describe diferentes posi-
bilidades de realizar esta reconstrucción en una superficie plana a
partir de medidas esféricas en campo próximo. En concreto, se es-
tudian extensivamente, y se aplican a situaciones reales, las técnicas
de la expansión modal.
El problema principal de las técnicas modales es la limitación en la
resolución de las corrientes equivalentes. La razón de esta limitación
es la pequeña región disponible del espectro de ondas planas (cuya
transformada de Fourier son las corrientes equivalentes). En esta
tesis se estudia este problema, se muestran varios ejemplos y se
describen las posibilidades de mejorar la resolución. De entre estas
posibilidades, se propone el uso de una técnica de extrapolación con
la que estimar el espectro no visible a partir de la región conocida (el
espectro visible) y de información adicional sobre la antena como,
por ejemplo, el tamaño de la antena.
Entre las diferentes técnicas de extrapolación, se describen y com-
paran las técnicas más usadas comúnmente. En primer lugar, se
aplica el algoritmo iterativo de Papoulis-Gerchberg usando el tama-
ño y la forma de la antena. Después se describen las versiones direc-
tas de este algoritmo, es decir la matriz de extrapolación por filas
y columnas y la matriz de extrapolación generalizada. Finalmente,
se estudia la transformación PDFT y se compara con los algoritmos
anteriores. Todas estas técnicas son aplicadas en situaciones reales
con una importante mejora en la resolución.
El último caṕıtulo de esta tesis trata de los procedimientos de cal-
ibración de sonda. Estos procedimientos son especialmente impor-
tantes en el diagnóstico de antenas ya que permiten tener en cuenta
el efecto de la sonda en la medida de campo. De este modo, se puede
llevar a cabo el mejor diagnóstico de la antena bajo estudio. En
esta tesis se describe el algoritmo iterativo de calibración de sondas
propuesto por Hansen. Además se proponen varias alternativas a
este algoritmo para tres situaciones diferentes. Estas técnicas son
verificadas en situaciones reales con resultados bastante buenos.
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Resum

L’objectiu del diagnòstic d’antenes és la detecció d’errors en antenes
fabricades. Donat que aquest diagnòstic és prou dif́ıcil de real-
itzar simplement observant mesures de camp, el diagnòstic es real-
itza utilitzant els corrents equivalents reconstrüıts en una superficie
próxima a l’antena. Esta tesi descriu diferents possibilitats per a
realitzar aquesta reconstrucció en una superificie plana a partir de
mesures esfériques de camp pròxim. En concret, s’estudien exten-
sivament, i s’apliquen a situacions reals, les técniques de l’expansió
modal.
El problema principal de les técniques modals és la limitació en la
resolució dels corrents equivalents. La raó d’aquesta limitació es
la redüıda regió disponible de l’espectre d’ones planes (la transfor-
mada de Fourier del qual són els corrents equivalents). En aquesta
tesi s’estudia aquest problema, es mostren diversos exemples i es
descriuen les possibilitats per millorar la resolució. D’entre aque-
stes possibilitats, es proposa l’ús d’una técnica d’extrapolació amb
la qual estimar l’espectre no visible a partir de la regió coneguda
(l’espectre visible) i d’informació adicional sobre l’antena, com per
exemple, les dimensions de l’antena.
Entre les diferents técniques d’extrapolació existents, es descriuen
i comparen les técniques més usades comunment. En primer lloc,
s’aplica l’algoritme d’extrapolació de Papoulis-Gerchberg usant les
dimensions i la forma de l’antena. Després es descriuen les versions
directes d’aquest algoritme, es a dir, la matriu d’extrapolació per
files i columnes, i la matriu d’extrapolació generalitzada. Final-
ment, s’estudia la transformació PDFT i es compara amb els algo-
ritmes anteriors. Totes aquestes técniques són aplicades en situa-
cions reals amb una important millora en la resolució.
L’últim caṕıtol d’aquesta tesi tracta del procediments de calibració
de la sonda. Aquests procediments són especialment importants en
el diagnòstic d’antenes perquè permeten tindre en compte l’efecte
de la sonda en la mesura del camp. D’aquesta manera, es pot portar
a terme el millor diagnòstic de l’antena en estudi. En aquesta tesi
es descriu l’algoritme iteratiu de calibració de sondes propost per
Hansen. A més a més es proposen diverses alternatives a aquest
algoritme per a tres situacions diferents. Aquestes técniques són
verificades en situacions reals amb resultats prou bons.
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Chapter 1

Introduction

The design of an antenna involves several steps. Firstly, the specifications of the
antenna are established according to both the application in which the antenna
must be used and the parameters that characterize the antenna [1]. Secondly, a
study is carried out in order to find out the kind of antenna (an array antenna,
a patch antenna, a reflector, etc.) that best fits the specifications stated in
the first step. Finally, the physical dimensions of the selected antenna are
determined according to the specifications.

After the design process, an analysis of the resulting antenna is carried out.
The aim of this analysis is to check if the antenna satisfies the specifications.
There are several methods of analysis, e.g. the Method of Moments (MoM) [2],
the Finite Difference Time Domain method (FDTD) [3] or the Finite-Element
method (FEM) [3], which may be implemented by own codes or by commercial
software [4]-[6]. If the result of the analysis does not satisfy exactly the desired
specifications, an optimization algorithm, e.g. a genetic algorithm (GA) [7] or
the particle swarm optimization (PSO) [8], may be applied. Thus, the design is
optimized so that the designed antenna satisfies the specifications in the most
accurate way.

Once the design, analysis and optimization have been carried out, the an-
tenna is manufactured. This is one of the most difficult steps since the result
does not depend on who is manufacturing the antenna, but on the precision
of the manufacturing instrument. The tolerance of this instrument is known a
priori, however, this knowledge may not be enough. If the tolerance is large,
the manufactured antenna may be quite different from the designed antenna.
Consequently, the resulting antenna may not satisfy the specifications. In ad-
dition, it is worth to mention that the tolerance is a physical term. Thus, the
higher the frequency is, the worse the tolerance in electrical terms is. Hence,
at high frequencies, the manufacturing problems may rise.
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The simplest way to avoid the manufacturing problems consists in taking
into account the tolerance of the manufacturing instrument during the design
and optimization processes [9]. Thus, the bad behavior of the manufacturing
instrument is prevented and corrected.

Nevertheless, even though the above technique is employed, the manufac-
tured antenna must be always checked. This check determines, first, if the
physical dimensions of the antenna agree with the design and, then, if the an-
tenna satisfies the specifications. To do this second part, the radiation pattern
of the antenna, as well as the S11 parameter, are normally measured.

If the above measurements are within the margins of variation of the spe-
cifications, the antenna behaves as it was desired and, hence, the antenna may
be used in the desired application. However, if the above measurements are not
within these margins, another process must be started. The aim of this pro-
cess, which is known as antenna diagnosis, is to find out the source of the error,
either in the design or in the manufacture, that has caused the bad behavior
of the antenna.

The antenna diagnosis is done from measurements of the field radiated
by the antenna. If these measurements are taken far from the antenna, a
problem arises. Whereas these measurements allow to determine whether the
specifications of the antenna are satisfied or not, they do not allow the errors to
be easily located. To do this location in an easy way, the field on points close
to the antenna must be used. By using this field, the location of the errors of
the antenna is immediate.

The problem of this option lies in the difficulty of measuring the field on
points close to the antenna. In [10] this problem is studied and the use of small-
loop probes placed on the surface where the field must be known is proposed.
Nevertheless, even though this set-up is used, reflections and couplings may
take place between the probes and the antenna.

For this reason, instead of measuring the field on points close to the an-
tenna, the radiated field is measured far from the antenna, where reflections
and couplings do not take place. Later, this field is backpropagated (from the
field measured far from the antenna to the field on a surface close to the an-
tenna) to carry out the antenna diagnosis. This transformation is known as
the inverse problem and constitutes the basis of this thesis.

Once the tangential field to the surface of interest is known a simply trans-
formation may be carried out. This transformation consists in obtaining the
equivalent currents on this surface. The aim of this transformation is to locate
in an easy way the errors of the antenna by using the physical connotations of
the equivalent currents. Hence, from now on, the aim of the inverse problem
will be the determination of the equivalent currents on a surface close to the
antenna.
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The inverse problem may be solved by an integral equation method [11],
[12] or by a modal expansion method [13], [14]. In this thesis, though a brief
description of the integral equation methods is done to compare some results
and the complexity of both methods, the attention is focused on the modal
expansion methods. For this reason, firstly, a review of the expansions for the
main coordinate systems, namely, planar, cylindrical and spherical, is done. In
addition, the modal expansion for the oblate spheroidal coordinate system is
presented and the way to compute the spheroidal coefficients and the spheroidal
wave functions is described.

The first step of the inverse problem must be always to establish the coordi-
nate system in which the measurements are taken, and the coordinate system
in which it is described the surface where the currents are desired. The appli-
cation of the above methods strongly depends on these definitions and, hence,
these definitions must be done at the beginning of the solution of the inverse
problem.

On the one hand, in this thesis the attention is focused on antennas whose
main radiating surface is flat. Thus, the aim is to obtain the currents on a plane
close to the antenna. For this reason, a planar coordinate system is the most
suitable coordinate system to express the equivalent currents for the antenna
diagnosis.

On the other hand, one of the most used measurement systems is the spheri-
cal measurement system since it allows a complete sphere around the antennas
to be measured. Thus, no loss of information is produced while measuring
the radiated field. In addition, the anechoic chamber of the electromagnetic
radiation group (grupo de radiación electromagnética, GRE), where this the-
sis has been developed, includes a spherical measurement system so that, by
studying this kind of measurements, real measurement may be used to test the
techniques studied in this thesis. Therefore, a spherical measurement will be
assumed from now on.

The radiated field may be measured either in the far-field region or in the
near-field region [15]. For the integral equation methods, this difference does
not entail any change in the derivation of the solution. However, for the modal
expansion methods, the fact of measuring in the near-field region or in the
far-field region, may lead to different algorithms.

The reason for this difference lies in the information present in both field
regions. Whereas the evanescent waves, and the information they contain,
are not present in the far-field region, the near-field region may include these
evanescent waves. Hence, if the field is measured in the near-field region (and
quite close to the antenna) the information present in these waves might be
considered during the inverse algorithm. By doing so, the resolution of the
equivalent currents might be improved.
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Thus, if the field is measured in the far-field region, and a modal expansion
method is used, the microwave holographic technique [16]-[18] may be directly
applied. The aim of this technique is to determine the plane wave spectrum,
whose Fourier transform is the field on a plane (except by a phase correction
due to the position of this plane). The advantage of having the far field is
the easy transformation of this field into the plane wave spectrum. Thus, the
equivalent currents on the surface of interest may be easily obtained by using
the field in the far-field region.

Nevertheless, if the field is measured in the near-field region, two different
possibilities arise. Firstly, it may be assumed that the evanescent waves have
been measured. In this case, in order to take into account the information
present in these waves, a direct transformation technique [13],[19] must be
applied. This transformation, which is known as SWE-to-PWE transformation,
computes the plane wave spectrum from the spherical near-field measurement.
Thus, no loss of information is produced during the backpropagation.

Secondly, it may be assumed that the evanescent waves have not been mea-
sured or, even though these waves have been measured, it may be assumed that
the information of these waves may be ruled out. In this case, the inverse trans-
formation may be carried out in two steps. First, the near-field measurement is
transformed into far-field by means of a near-field to far-field transformation in
spherical coordinates [20]. Then, by using the microwave holographic technique
over the computed far-field [14], the equivalent currents may be determined on
the surface of interest.

In this last case, the most difficult part lies in the transformation of the
near-field measurement into far-field. This transformation has been widely
studied in literature [20]-[22] for several coordinate systems[23]. Specifically for
spherical near-field measurements, the transformation is extensively described
and studied by Hansen in [20].

One of the most important problems regarding the near-field to far-field
transformation is the probe correction [24], which considers the effect of the
probe in the measurement. In [20] the transformation is proposed by assuming
first-order probe correction, e.g. an open-waveguide excited by the TE11 mode.
This correction entails an additional problem: the determination of the probe
receiving coefficients (which characterize the probe in reception), what is nor-
mally known as probe calibration. This probe calibration is also studied in this
thesis due to the strong effect of the receiving coefficients in the transformation
of the near-field into far-field.

By looking at both ways to reconstruct the equivalent currents, it may be
conclude that the first way is the most suitable if the field is measured in the
near-field region. However, it is worth to mention that the evanescent waves
are strongly attenuated at short distances. Thus, in order to measure these
waves, the measurement must be taken quite close to the antenna. Many times
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this is not possible due to the geometry of the measurement system or the
coupling between the probe and the antenna under test (AUT). Hence, the
most common situation is normally closer to the second situation, i.e., when
it is assumed that the evanescent waves are not present in the measurement.
Thus, instead of using the measured near-field, the far field (which does not
include the information of the evanescent waves) may be considered in the
inverse problem.

From the point of view of the microwave holographic technique, the conse-
quence of just considering the far field may be observed in the computed plane
wave spectrum. By using the far field, just a small region of the spectrum
(a circle of radius k, where k is the wavenumber) is available. This region is
known as visible spectrum and the consequence of just knowing a small region
of this spectrum is the restriction in the resolution of the equivalent currents.

Since the plane wave spectrum is related to the equivalent currents by a
Fourier transform (actually the Fourier transform relation is between the spec-
trum and the field on the surface of interest, but this field is directly related to
the equivalent currents), if a small region of the spectrum is known, the reso-
lution of the equivalent currents is limited to a certain value, even though the
spectrum is extended with zeros. Specifically, considering that just the visible
spectrum is known, the resolution that may be achieved is of just 1 λ in the
equivalent currents. In this thesis several examples are shown.

In order to improve the resolution, the region of the plane wave spectrum
beyond the circle of radius k, the so-called non-visible spectrum, must be de-
termined. To do this, the use of an extrapolation technique [25] is proposed in
this thesis. The aim of these techniques is to determine a signal from a known
segment of this signal and a priori information.

The most widely used extrapolation technique is the Papoulis-Gerchberg
algorithm [26]-[28], which implements the extrapolation iteratively by using a
band-limitation in the transformed domain. By using this technique interesting
results are obtained, as this thesis shows. However, the Papoulis-Gerchberg
algorithm has several drawbacks, e.g. the application of the extrapolation by
iterations and the low speed of convergence. For this reason the acceleration
of the algorithm has also been studied [29] with the aim of achieving the same
estimate in a lower number of iterations.

Moreover, direct versions of the iterative Papoulis-Gerchberg algorithm
have been presented to be able to extrapolate signals with a high number
of iterations. These techniques form the so-called extrapolation matrix [30] to
perform the extrapolation by multiplying this matrix by the known segment
of the signal. For 2-D signals, two different versions of the extrapolation ma-
trix have been proposed: the extrapolation matrix by rows and columns [31]
and the generalized extrapolation matrix [32]. In this thesis, both versions are
described and several examples are shown.
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Beside the iterative Papoulis-Gerchberg algorithm, other useful extrapola-
tion algorithms have been proposed [33]-[35]. Among these algorithms, one of
the most interesting techniques is the Prior discrete Fourier transform (PDFT)
[36]. This technique performs the extrapolation in a single step, similarly to
the extrapolation matrix. The application of this technique to a real situation
offers quite good results and even better than those obtained with the iterative
Papoulis-Gerchberg algorithm. In this thesis, the PDFT is also presented and
applied to several situations.

By using the previous extrapolation algorithms, the resolution in the equi-
valent currents is improved, from 1 λ with just the visible spectrum, up to
0.3-0.4 λ in the estimate obtained with the extrapolation techniques. Thus, by
using these improved equivalent currents, the antenna diagnosis may be done
more accurately and, hence, the errors of the antenna can be easier detected.

Finally, it must be pointed out that this thesis has been developed in the
Grupo de Radiación Electromagnética (GRE), which is part of the Instituto de
Telecomunicaciones y Aplicaciones Multimedia (ITEAM) in the Universidad
Politécnica de Valencia (UPV). In addition, this work has been supported by
the Spanish Ministry of Education and Science (Ministerio de Educación y
Ciencia) under the FPI research fellowship program TEC2004-04866-C04-01,
which is co-financed by the European Social Fund (ESF), and under the project
TEC2007-6698-C04-03.

1.1 Objectives of the thesis

The objectives of this thesis are:

1. Describe the main techniques to determine the equivalent currents on a
flat surface close to an antenna from spherical near-field measurements.
As commented above, these techniques may be divided into two main
groups: the integral equation techniques, and the modal expansion tech-
niques. In this thesis, both techniques are described paying special atten-
tion to the modal expansion techniques. Specifically, the spherical wave
expansion is used to reconstruct the equivalent currents either with a
direct transformation of by using the far field as an intermediate step.

In addition, the possibility of using the oblate spheroidal wave expansion
is proposed and the algorithm to reconstruct the equivalent currents by
using this expansion and spherical measurements is described.

2. Describe the limitation in resolution of the equivalent currents by using
measurements taken at far distances. The aim is to determine the resolu-
tion that may be achieved in the limit case, in which case just the visible
spectrum is available, and show several examples.
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1.2 Structure of the thesis

3. Present several methods to improve the resolution in the reconstructed
equivalent currents of an antenna. Since the low resolution is due to
the limited known region of the plane wave spectrum, several algorithms
are reviewed and, other, proposed, with the aim of increasing the reso-
lution. These methods are based on extrapolation techniques and apply
additional information to achieve the improvement in resolution.

4. Propose several techniques for the probe calibration. The main aim of the
probe calibration is to determine the receiving coefficients of the probe
used in the spherical near-field measurement. By knowing these coeffi-
cients, an accurate probe correction may be applied in the determination
of the spherical coefficients. Thus, the reconstruction of the equivalent
currents by means of the spherical wave expansion may be done in the
most accurate way. This thesis proposes three different techniques to
determine the probe receiving coefficients.

1.2 Structure of the thesis

This thesis is organized as follows:
Chapter 2 reviews the solution of the vector wave equation in a source-free

region. The solution is described in four different coordinate systems, namely,
planar, cylindrical, spherical and oblate spheroidal coordinate system. In addi-
tion, this chapter describes the algorithms that must be applied to determine
the coefficients of the modal expansions in the planar and spherical coordinate
systems. Special attention is paid to this last case due to the extensive use of
this transformation in later chapters.

Chapter 3 describes the main techniques to carry out the reconstruction of
the equivalent currents of an antenna from spherical near-field measurements.
Among the presented techniques, special attention is focused on the modal
expansion techniques and, specially, in the technique that makes use of the
far field as an intermediate step. Several examples with simulated and real
antennas are shown and compared. Finally, the reconstruction of the equiva-
lent currents on a flat surface is proposed by using the oblate spheroidal wave
expansion. The way in which the spheroidal vector functions are computed
is explained in detail in Appendix D and the transformation of the spherical
coefficients into the spheroidal coefficients is described in the actual chapter.

Chapter 4 studies the resolution achieved by using measurements taken at
several distances. The attenuation of the evanescent waves is determined and
depicted. Moreover, the limit case, in which no evanescent wave is measured,
i.e., just the visible plane wave spectrum is available, is considered. For this
case the resolution is determined and several examples are shown. Finally, the
possibilities to improve this resolution are detailed and compared.
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Chapter 5 presents several techniques to improve the resolution by esti-
mating the non-visible plane wave spectrum with an extrapolation technique.
In this chapter, these techniques are defined, and a review of the state of the
art is done. Then, one of the most widely used extrapolation techniques, the
Papoulis-Gerchberg algorithm, is applied to the extrapolation of the plane wave
spectrum. Later, the direct versions of this algorithm, the so-called extrapola-
tion matrices, are studied and applied to both, simulated and real situations.
Finally, another direct technique, the prior discrete Fourier transform, is de-
scribed and applied.

Chapter 6 proposes several algorithms to carry out the probe calibration
for first-order probes. As a result, the receiving coefficients of the probe under
study are determined, which allow the probe correction to be applied. Thus, the
transmitting coefficients of an antenna may be accurately obtained by removing
the effect of the probe in the spherical measurement. Three different situations,
depending on the possibilities of the laboratory, are studied: when 2 identical
antennas are available, when just 2 different antennas are available but the
gain of one of them is known, and when previous situation are not possible
and, hence, three different antennas are required but an a priori knowledge
about the antennas is not necessary.
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Chapter 2

Field modal expansions

The introduction has established the general aims of this thesis. All these aims
deal with the way on how the radiated field of an antenna is treated in order to
get as much information as possible of the behavior of the antenna, either on
a surface closed to the antenna or in the far-field region. It is, then, important
to start with a review of the basic theory related to the electromagnetic fields,
from the Maxwell’s equations to the expression of the electric field as a modal
expansion.

This chapter carries out this review in the main coordinate systems (pla-
nar, cylindrical and spherical) paying specific attention to the spherical wave
expansion, which will be widely used the rest of this thesis. Furthermore, this
chapter also introduces the wave expansion in an oblate spheroidal coordinate
system, which will be used in future chapters as an important resource for
back-propagation on planes.

Finally, this chapter explains the way in which the weights of the modal
expansions can be computed from the radiated field measurements in planar
and spherical coordinates. In this last case, a practical example is shown in
order to verify the accuracy and the usefulness of the method.

2.1 Maxwell’s equations

Time-harmonic fields [37] may be expressed as [38]:

E(x, y, z, t) = E(x, y, z)e−jωt. (2.1)

By assuming this dependence, the Maxwell’s equations in a homogeneous,
isotropic and linear medium can be expressed in the following way [37]:
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∇× ~E = −jωµ ~H (2.2)

∇× ~H = jωε ~E + ~J (2.3)

∇ · ~E = ρ/ε (2.4)

∇ · ~H = 0 (2.5)

where ~E and ~H are the the electric and magnetic field vector respectively,
~J is the volume current density, ρ is the volume charge density, ε is the per-
mittivity tensor and µ is the permeability tensor. For a general case both, the
permittivity and the permeability, can be matrices. However, in this thesis, just
isotropic medias are considered and, hence, ε and µ are just scalar quantities.

In the Maxwell’s equations, electric and magnetic field vectors are coupled
together. In order to decouple these vectors another equation, which is known
as continuity equation must be used. This equation may be expressed, assuming
time-harmonic fields (2.1), as follows:

∇ ~J = −jωρ (2.6)

By using this equation, a new expression, the so-called wave equation, is
obtained for both, the electric and magnetic field vectors [11].

The wave equation for the electric field vector can be derived by taking the
curl of expression (2.2) and substituting (2.3) on the result of this operation.
Then, using (2.6), the wave equation is obtained with no dependence with
regard to ρ. If some additional vector identities are applied [11], the resulting
equation may be expressed as:

∇2 ~E + k2 ~E = jωµ ~J − ∇∇ ·
~J

jωε
, (2.7)

where k is the wavenumber expressed as k = ω
√
εµ.

For the magnetic field vector, similar operations can be carried out which
lead to the following wave equation:

∇2 ~H + k2 ~H = −∇× ~J. (2.8)

As can be observed, the electric and magnetic wave equations depend on
the currents. However, if these equations are solved in a source-free region, this
dependence disappears and the wave equations are expressed as:

∇2 ~E + k2 ~E = 0, (2.9)
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∇2 ~H + k2 ~H = 0. (2.10)

These expressions are the vector wave equations in a source-free region,
which are also known as vector Helmholtz equations. They will be used in next
sections to derive the electric field in this kind of regions (the magnetic field
may be derived in the same way, hence, it is not detailed).

Before proceeding, it is worth to mention that the election of the sign in
the exponential of the time-harmonic fields (2.1) is arbitrary. Hence, the ob-
tained results are valid for both cases, ejωt and e−jωt. However, it must be
pointed out the common election in engineering is e−jωt, whereas the election
in (2.1) is ejωt, which is more common in physics. Thus, the choice must be
taken into account when dealing with the formulation derived in this thesis.
Indeed, special care must be taken when combining the results from this thesis
with the results obtained from other sources, which might follow the common
definition in engineering e−jωt. The reason for such election is the use of a
main reference [20], which chooses ejωt. For the sake of simplicity, it has been
decided to follow this definition, adapting the formulation from other sources
to this choice.

2.2 Solution of the wave equation: modal ex-
pansion

A general solution to the vector Helmholtz equation can be implemented as a
weighted sum of orthogonal vector wave functions. A detailed description on
how this is achieved can be found in [37] and [39]. Basically, the procedure
followed to derive the general solution is divided in two parts. The first one
consists of solving the scalar Helmholtz equation (2.11) in order to obtain the
generating function ψ.

∇2ψ + k2ψ = 0. (2.11)

Solution of (2.11) is carried out, first, expressing the Laplacian operator
(∇2) in the coordinates in which the solution is desired. Then, the separation
of variables technique [37] is applied in order to obtain the final solution. The
main drawback of this technique is that the separation of variables technique
cannot be applied for any existing coordinate system. It is just possible in the
following 11 orthogonal coordinate systems [40]:

1. Rectangular (or cartesian, or planar)

2. Circular cylinder (or cylindrical)
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3. Elliptic cylinder

4. Parabolic cylinder

5. Spherical

6. Conical

7. Parabolic

8. Prolate spheroidal

9. Oblate spheroidal

10. Ellipsoidal

11. Paraboloidal

In this thesis, however, just rectangular, circular cylinder, spherical, and
prolate and oblate spheroidal coordinate systems are used. Hence, the scalar
Helmholtz equation can be solved applying the separation of variables technique
for all the cases dealt with in this thesis.

Once the scalar Helmholtz equation has been solved, the result is used to
obtain the transverse electric (TE) and magnetic (TM) solutions with regard
to the main direction of propagation. These solutions constitute an orthogonal
and complete set of solutions and, thus, the field in the source-free region of
interest can be expressed as a weighted sum of (TE) and (TM) fields.

In order to achieve the TE and TM solutions from (2.9) and (2.10), the
electric (F) and magnetic (A) vector potential are used. How these potentials
are derived is beyond the scope of this thesis. For a detailed description, see
[37]. However, for our purpose, it is important to note that the solution, as the
solution to the scalar Helmholtz equation, depends on the coordinate system.
For instance, if TE and TM solutions transversal to z axis are considered, it
can be deduced [37] that the TE electric field (ETE) and the TM electric field
(ETM ) have the following expressions:

ETE = −∇× (ẑψ) (2.12)

ETM =
1
jωε
∇×∇× (ẑψ), (2.13)

where ψ is the solution of the scalar Helmholtz equation (2.11) in the de-
sired coordinate system and the operator nabla (∇) must be expressed in this
coordinate system.
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Although similar solutions can be found for other coordinate systems, it
must be taken into account that some coordinate systems do not support or-
thogonal vector wave solutions. Specifically, just the first six coordinate sys-
tems [40] of the previous list of 11 coordinate systems that allow separation
of variables for the scalar Helmholtz equation support these kinds of solutions.
Therefore, special attention will have to be paid when dealing with solutions
for the spheroidal coordinate systems in future sections. For the moment, how-
ever, attention is going to be focused on the three main coordinate systems
(namely rectangular, circular cylinder and spherical) since these systems offer
easy mechanical scanning surfaces [24] as well as simple orthogonal functions.

Summing up, the process needed to obtain a general solution to the vector
wave equation starts from the solution to the scalar Helmholtz equation (2.11)
in the desired coordinate system. Then, this solution is used to compute the
orthogonal vector wave functions (TE and TM), which are solutions of the
vector wave equation (2.9). Finally, a weighted sum of the vector TE and TM
fields, which is known as wave expansion or modal expansion, is established to
completely express the field in the source-free region.

Since the procedure and results depend on the coordinate system, the next
sections briefly show the solution in the main coordinate systems as well as
in the oblate spheroidal coordinate system. Among all the solutions, special
attention is focused on the spherical coordinate systems, since this system is
extensively used the rest of this thesis.

2.2.1 Plane wave expansion (PWE)

The solution of vector Helmholtz equation in a rectangular coordinate system
(defined in Fig. 2.1), has been widely studied, e.g. [37], [39], though the deepest
study was done by Clemmow in [41]. As commented above, the first step to
derive this solution consists of solving the scalar Helmholtz equation (2.11).
Particularly for the rectangular coordinate system, this is a straightforward
step since each term derived form the separation of variables depends on just
one coordinate. This leads to a solution formed by harmonic functions:

ψ = ejkxxejkyyejkzz (2.14)

where the constants kx, ky and kz are related to the wave number (k) in
the following way:

k2
x + k2

y + k2
z = k2 (2.15)

In addition, it can be proved that not only (2.14) is solution of the scalar
wave equation (2.11), but also a linear combination of this expression. This
combination can be expressed as
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Figure 2.1: Rectangular coordinate system: definition.

ψ =
∫ ∞
−∞

∫ ∞
−∞

f(kx, ky)ejkxxejkyyejkzzdkxdky. (2.16)

Once the scalar equation has been solved, the TE and TM solutions must
be obtained. These solutions may be deduced with regard to any axis, however,
in this thesis the transversal functions with regard to the z axis are of special
interest. Hence, the expression (2.12) must be used to derive the electric field
components (Ex, Ey, Ez). By doing so, if the solution (2.16) is considered, the
obtained field can be expressed as a linear combination of plane waves in the
following way:

~E(x, y, z) =
∫ ∞
−∞

∫ ∞
−∞

~AE(kx, ky)ejkxxejkyyejkzzdkxdky. (2.17)

Expression (2.17) is the electric field modal expansion in rectangular co-
ordinates, which is normally known as plane wave expansion (PWE). In this
expression two different parts can be clearly distinguished. The first one are
the vector wave functions (ejkxx, ejkyy, ejkzz), i.e., the plane waves, and the
second one are the planar coefficients ~AE(kx, ky). These coefficients are nor-
mally known as plane wave spectrum and will be extensively used in future
chapters.

2.2.2 Cylindrical wave expansion (CWE)

The circularly cylinder coordinate system shown in Fig. 2.2, from now on cylin-
drical coordinate system for simplicity, is widely used because its scanning sur-
face for radiation measurements can be mechanically implemented in an easy
way. For this reason, the solution of the vector Helmholtz equation in this co-
ordinate system has also been extensively studied. For instance, this solution
was described by Harrington [37] and Stratton [39]; deeper, by Leach in his
thesis [42] and, later, in a related work [43], and by Romeu also in his thesis
[44].

As can be seen in all the mention works, the solution of the scalar wave
equation in cylindrical coordinates can be written as follows:
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Figure 2.2: Cylindrical coordinate system: definition.

ψ = Z(c)
n (kρρ)ejnφejkzz (2.18)

where constants kρ, kz and k are related in the following way

k2
ρ + k2

z = k2 (2.19)

and where Z(c)
n (kρρ) is the bessel function of order n (see Appendix A).

Depending on the parameter c this function corresponds to the bessel function
of first kind (Jn(kρρ)) if c = 1; the bessel function of second kind (Nn(kρρ)),
or Neumann function, if c = 2; or the Hankel function of first (H(1)

n (kρρ)) or
second (H(2)

n (kρρ)) kind if c = 3 or c = 4 respectively.
In order to choose the most suitable bessel function, the behavior of the

waves must be considered. To do this, it must be taken into account that,
whereas the bessel functions of first and second kind indicate standing waves,
the Hankel functions represent outward and inward traveling waves. Thus, since
in this thesis transmitted field is being studied, what means outgoing waves
from the origin, Hankel functions are going to be considered. Specifically, if
dependence of field with regard to time established in equation (2.1) is assumed,
the Hankel function that must be chosen is the function of first kind, which
represents outward traveling waves.

Once the bessel function has been chosen, the scalar solution (2.18) must
be used to solve the vector Helmholtz equation. With this purpose, as in the
rectangular coordinate system, the solution is going to be split into TE and TM
solutions with regard to z direction. In this case, however, though equations
(2.12) and (2.13) can also be applied, the solution is not as straightforward as
in planar coordinates because the extension of the nabla operator (∇) must be
carried out in cylindrical coordinates. By doing so, the exact Eρ, Eφ and Ez
components of field for the TEz and TMz solutions are obtained.

However, it can be considered that, not only the expression (2.18) is solution
of the scalar Helmholtz equation, but also a weighted sum of these functions.
This sum can be done over n and kρ, or over n and kz, but not over kρ and kz
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since they are interrelated [37]. For this thesis the second option is considered
and, thus, the weighted sum of solutions is expressed as:

ψ =
∞∑

n=−∞

∫ ∞
−∞

fn(kz)H(1)
n (kρρ)ejnφejkzzdkz (2.20)

where fn(kρ) are the weights and the Hankel function of first kind has been
assumed.

If the solution expressed in (2.20), instead of the one from (2.18), is con-
sidered to solve the vector Helmholtz equation, the cylindrical wave expansion
may be expressed as follows [43]:

~E(ρ, φ, z) =
2∑
s=1

∞∑
n=−∞

∫ ∞
−∞

asn(kz) ~Msnkz (ρ, φ, z)dkz (2.21)

where asn(kz) are the cylindrical wave coefficients, and ~Msnkz (ρ, φ, z) are
the cylindrical wave functions whose expressions are:

~M1nkz (ρ, φ, z) =

(
jnH

(1)
n (kρρ)
ρ

ρ̂− ∂H
(1)
n (kρρ)
∂ρ

φ̂

)
ejnφejkzz (2.22)

~M2nkz (ρ, φ, z) =

(
−jkz

k

∂H
(1)
n (kρρ)
∂ρ

ρ̂+

(
nkz
kρ

φ̂+
k2
ρ

k
ẑ

)
H(1)
n (kρρ)

)
ejnφejkzz

(2.23)
Thus, a general solution to the vector wave equation (2.9) has been obtained

in cylindrical coordinates using a wave expansion technique. When dealing with
the radiation of an antenna, this field will represent the radiated field by the
antenna outside its minimum enclosing cylinder. The reason for such limitation
is the fact that the wave equation has been solved in a source-free region and
the region inside this cylinder contains the antenna, i.e., a source.

2.2.3 Spherical wave expansion (SWE)

The spherical coordinate system, defined in Fig. 2.3, has become one of the
most used in antenna measurements. The main reason for this election is the
fact that the spherical coordinate system is the simplest measurement system
allowing the measurement of the radiated field on a canonical surface (with r
constant) enclosing completely the antenna. This is an important fact since,
only measuring the field in the whole surface enclosing the antenna, all the
information is considered. Other coordinate systems, such as rectangular or
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Figure 2.3: Spherical coordinate system: definition.

cylindrical, need two canonical surfaces to describe a surface enclosing com-
pletely the antenna, what normally means harder work on field measurement.

Being one of the most used coordinate systems, the solution of the vector
wave equation in a spherical coordinate system has been extensively studied
by many authors, e.g. Harrington [37], Stratton [39] or Hansen [20]. This last
publication offers a specially detailed formulation about the solution in spheri-
cal coordinates, and deals with problems related with spherical measurements.
Hansen’s book assumes the dependence with regard to time assumed at the
beginning of this chapter (2.1).

From [20], the solution to the scalar wave equation applying the separation
of variables technique in the spherical coordinate system can be expressed as
follows:

ψ = z(c)
n (kr)Lmn (cos θ)ejmφ (2.24)

where z(c)
n (kr) are the spherical Bessel functions of order n (see Appendix A),

and Lmn (cos θ) are the associated Legendre function of degree n and order m
(see Appendix B). There are two types of Legendre functions, the first and
second kind functions. However, in order to guarantee ψ finite from θ = 0 to
θ = π, first kind functions (Pmn (cos θ)) must be chosen as well as integer values
for degree n [37].

The spherical Bessel functions can be computed from the Bessel functions
with the following expression:

z(c)
n (kr) =

√
π

2kr
Z

(c)
n+1/2(kr) (2.25)

where Z(c)
n (kr) are the Bessel functions explained previously for the cylindri-

cal wave expansion. In this case, the same parameter c appears, with the same
meaning as in the cylindrical case. Therefore, since outward traveling waves
are also desired for the spherical case, c = 3 must be the election (z(3)

n (kr)),
i.e. the spherical Hankel function of first kind (h(1)

n (kr)).
In the spherical coordinate system, like in previous systems, a weighted sum

of the solution of the scalar wave equation is also solution of the scalar wave
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equation. The difference with regard to other coordinate systems is that, now,
the sum is performed with a double sum, instead of an integral. Thus, the
weighted sum is expressed as:

ψ =
∑
n

∑
m

qmnh
(1)
n (kr)Pmn (cos θ)ejmφ (2.26)

where qmn are the coefficients of the weighted sum.
Once the scalar equation has been solved, the vector Helmholtz equation

may be solved. To do this, the first option consists of expressing the solution
by means of transversal solutions with regard to z direction (TEz and TMz

solutions [37], as in previous coordinate systems). However, a simpler solution
can be found if transversal solutions with regard to the r direction, i.e., TEr

and TMr solutions, are considered. A detailed explanation on how this is
carried out and its particularities can be found in [37].

Before detailing the expressions for the TEr and TMr fields, it must be
pointed out that, as commented above, Hansen’s notation [20] is applied in this
thesis. The use of this notation implies a somewhat different solution to the
scalar wave equation. The reason for this change is a power-normalization in
the spherical waves that makes an outgoing wave with amplitude 1 radiate 1/2
watt. Thus, the normalized solution to the scalar wave equation is expressed,
in general (considering all inward, outward or standing waves), as follows:

F (c)
mn(r, θ, φ) =

1√
2π

1√
n(n+ 1)

(
− m

|m|

)m
z(c)
n (kr)P̄ |m|n (cos θ)ejmφ (2.27)

where P̄ |m|n (cos(θ)) are the normalized associated Legendre functions and
factor (−m/|m|)m is 1 for m=0.

Hence, instead of considering (2.24), the expression of the normalized solu-
tion must be used. If this is done, the TEr and TMr fields that are derived
are the same as in [20], and the final solution, the so-called spherical wave
expansion, is expressed in the following way:

~E(r, θ, φ) =
k√
η

∑
smn

Q(c)
smn

~F (c)
smn(r, θ, φ), for r > r0 (2.28)

where η is the admittance of medium (η =
√
ε/µ), r0 is the radius of the

minimum sphere enclosing the antenna, Q(c)
smn are the spherical wave coefficients

and ~F
(c)
smn(r, θ, φ) are the spherical wave functions expressed as follows:
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~F
(c)
1mn(r, θ, φ) =

1√
2π

1√
n(n+ 1)

(
− m

|m|

)m [
z(c)
n (kr)

jmP̄
|m|
n (cos θ)
sin θ

ejmφθ̂

−z(c)
n (kr)

dP̄
|m|
n (cos θ)
dθ

ejmφφ̂

]
(2.29)

~F
(c)
2mn(r, θ, φ) =

1√
2π

1√
n(n+ 1)

(
− m

|m|

)m [
n(n+ 1)

kr
z(c)
n (kr)P̄ |m|n (cos θ)ejmφr̂

+
1
kr

d

d(kr)
{krz(c)

n (kr)}dP̄
|m|
n (cos θ)
dθ

ejmφθ̂

− 1
kr

d

d(kr)
{krz(c)

n (kr)}jmP̄
|m|
n (cos θ)
sin θ

ejmφφ̂

]
(2.30)

As commented above, in previous expressions it must be chosen c = 3, i.e.,
the spherical Hankel functions of first kind, in order to just consider outward
traveling waves. By doing so, the only remaining step to obtain the radiated
field by an antenna is the way in which the spherical wave coefficients are
computed. Section 2.3.2 will explain this procedure.

2.2.4 Spheroidal wave expansion (SoWE)

The spheroidal coordinates [45], [46] are less used than previous coordinates.
They are not as intuitive as planar, cylindrical and spherical, and the formula-
tion derived from these new coordinates is somewhat more difficult. However,
these kind of systems offer interesting applications, as it will be seen in future
chapters. For this reason, the solution of the vector Helmholtz equation in
these coordinates is studied in this section.

There are two kinds of spheroidal systems: the prolate spheroidal coordi-
nate system and the oblate spheroidal coordinate system. Both are depicted in
Fig. 2.4, where d is the focal distance and η, ξ and φ are the spheroidal coordi-
nates. As can be observed in this figure, the spheroidal systems are formed by
rotating an ellipse around the z axis. Depending on the positions of the ellipse
focuses, a prolate (if they are in the z axis) or an oblate (if they are in the x or
y axis, or in general in the XY plane) spheroidal coordinate system is formed.
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(a) Prolate. (b) Oblate.

Figure 2.4: Spheroidal coordinate systems.

The prolate and oblate spheroidal coordinate systems are similar, but diffe-
rent. This means that, despite both start from a rotated ellipse, the resulting
canonical surface, i.e., a surface with ξ constant, is not the same. Whereas
in the prolate coordinates the resulting surface is similar to a rugby ball, in
the oblate coordinates, this surface is quiet similar to an Olympic discus. The
immediate consequence of this fact is that formulation derived from these two
coordinate systems is different and, therefore, they must be studied indepen-
dently.

For the sake of simplicity, in this thesis just the oblate spheroidal coordinate
system is considered. The reason for this election is related to the aim of
currents reconstruction in the XY plane raised in the introduction. As it
will be seen in future chapters, the oblate coordinates offer the possibility of
computing the field on a surface close to a flat surface in the XY plane, thus
the currents can be obtained at points close to the desired plane.

The solution of the scalar Helmholtz equation in the oblate spheroidal coor-
dinates, though being one of the coordinates systems which allow the separation
of variables [40], has not been as widely studied as the solution in previous co-
ordinates systems. However, recently Li et al. [47] published an extensive study
about the spheroidal coordinates and the solution of the wave equation in these
coordinates.

From [47], if the dependence with regard to the time is changed to that of
the expression (2.1) (in [47] the usual definition is considered), the solution to
the scalar Helmholtz equation in the oblate spheroidal coordinate system can
be expressed as:
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ψ = S(p)
mn(−jc, η)R(q)

mn(−jc, jξ)ejmφ (2.31)

where c = kd, and S
(p)
mn(−jc, η) and R

(q)
mn(−jc, jξ) are the spheroidal angu-

lar functions and the spheroidal radial functions, respectively. For the detailed
expressions of these functions and a detailed explanation on how they are com-
puted, see Appendix D.

Regarding to indices p and q, on the one hand, the index p is used to select
the first or second order spheroidal angular functions, which depend on the
associated Legendre functions of first and second kind, respectively. As in the
spherical case, the first kind functions must always be chosen in the case dealt
with in this thesis [48], thus p = 1 is assumed from now on. On the other
hand, the index q has the same meaning as the index c of the bessel functions
in cylindrical and spherical wave functions. Therefore, since the main interest
in this thesis is focused on the outward traveling waves and the dependence of
(2.1) is assumed, q = 3 must be chosen.

Of course, as in other coordinate systems, a weighted sum of the simple
solution of the scalar equation is also solution. Thus, instead of (2.31), the
following solution, where the desired indices are already indicated and αmn are
the weights of the sum, may be considered:

ψ =
∑
m

∑
n

αmnS
(1)
mn(−jc, η)R(3)

mn(−jc, jξ)ejmφ (2.32)

Once the scalar Helmholtz equation has been solved, the solution to the
vector Helmholtz equation must be derived. However, as it was commented
above, the spheroidal coordinate systems are not among the six coordinate
systems in which the vector Helmholtz equation solution can be expressed as
transverse solutions to a coordinate surface [40]. The reason for this problem
is that the spheroidal radial functions are not orthogonal [47] and, therefore,
the TE and TM field with regard η, ξ or φ cannot be deduced.

In [47] it is explained the way the previous drawback is overcome. This
procedure is similar to the one suggested by Harrington [37] as an alterna-
tive for the spherical solution. It consists of obtaining transversal solutions
with regard to a component of a coordinate systems among the six coordinate
systems in which this is possible, e.g. x̂, ŷ, ẑ or r̂, instead of the spheroidal
components. Thus, transversal solutions, for instance TEz and TMz if they
are with regard to ẑ, are derived using the solution to the scalar Helmholtz
equation (2.31). Thus, the solution is expressed in spheroidal coordinates, but
in cartesian components.

Once this solution has been deduced, a transformation of cartesian compo-
nents into spheroidal components is done by applying transformation formulas
of Appendix D, what leads to a solution of the wave equation in spheroidal
components and coordinates.
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When the previous procedure is applied [47], the following expressions for
the vector wave functions using TEz and TMz solutions and (2.31) can be
stated:

~M1mn(η, ξ, φ) = ∇× (ψẑ) (2.33)

~M2mn(η, ξ, φ) =
1
k
∇×∇× (ψẑ) (2.34)

The solution of previous equations and the transformation into spheroidal
components can be performed by using the expressions of Appendix D. If this
is done, the spheroidal vector wave functions are obtained. The expressions for
these functions are:

~M1mn(η, ξ, φ) =
jmηSmnRmn√

(ξ2 + η2)(1 + ξ2)
ejmφξ̂

+
jmξSmnRmn√

(ξ2 + η2)(1− η2)
ejmφη̂

−
√

(1 + ξ2)(1− η2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

]
ejmφφ̂

(2.35)

~M2mn(η, ξ, φ) =√
1 + ξ2

kd
√
ξ2 + η2

[
m2ξSmnRmn

(ξ2 + η2)(1− η2)

− ∂

∂η

(
(1− η2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

])]
ejmφξ̂

+

√
1− η2

kd
√
ξ2 + η2

[
− m2ηSmnRmn

(ξ2 + η2)(1− η2)

+
∂

∂ξ

(
(1 + ξ2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

])]
ejmφη̂

+
jm
√

(1 + ξ2)(1− η2)
kd(ξ2 + η2)

[
Smn

(1− η2)
∂ξRmn
∂ξ

− Rmn
(1 + ξ2)

∂ηSmn
∂η

]
ejmφφ̂

(2.36)
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where, for the sake of simplicity, S(1)
mn(−jc, η) has been denoted as Smn, and

R
(3)
mn(−jc, jξ) as Rmn.

Finally, the general solution to the vector Helmholtz equation is expressed
as a weighted sum of both previous spheroidal vector wave functions in the
following way:

~E(η, ξ, φ) =
∑
smn

αsmn ~Msmn(η, ξ, φ) (2.37)

As pointed out above, the previous result is only valid for the oblate sphe-
roidal coordinates. If the solution in the prolate spheroidal coordinate system
is desired, a similar procedure might be carried out [47], what would lead to
similar, though different, spheroidal vector wave functions.

2.3 Wave coefficients determination

In the first section of this chapter it has been shown that the field present in
a source-free region can be obtained by solving the vector Helmholtz equation.
Later, in the second section, a general solution of this equation in four different
coordinate systems has been found. This solution is expressed as a weighted
sum of the vector wave functions expressed on each coordinates. The applied
weights are known as wave coefficients and characterize the field that is being
studied. For instance, the wave coefficients may be used to characterize the
radiated field by an antenna. In addition, by doing so, the coefficients not
only characterize the field, but also the antenna. Hence, the same coefficients
may be used to compute the field at any spatial point outside the minimum
canonical surface enclosing the antenna.

The main problem concerning the wave coefficients is the way in which they
are computed. For simple cases, an analytical solution can be deduced, as is
done for the spherical wave coefficients of the electric and magnetic Hertzian
dipole in [20]. However, for complex situations, or real antennas, this is not
possible, and the wave coefficients must be computed from field measurements.
Although it is not specifically necessary, it is advisable to perform the trans-
formation of field measurements into wave coefficients from measurements in
a coordinate surface. For instance, if spherical wave coefficients must be ob-
tained, measurements on a sphere mesh are recommended.

Therefore, the available measurement system determines the wave coeffi-
cients that can be easily obtained. For this thesis the available facility includes
an anechoic chamber with a spherical measurement system. For this reason the
algorithm used for computing the spherical coefficients from spherical measure-
ments is going to be explained. Furthermore, though a planar measurement
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system is not available, transformation of planar measurements into planar
coefficients is also going to be detailed since it will be used in next chapters.

2.3.1 Planar coefficients

As mentioned above, in order to compute planar coefficients, the most suitable
election is to use planar measurements. This kind of measurement systems
performs tangential measurements on a plane like the one depicted in Fig. 2.5.
The position of the plane measurement with regard to the cartesian axes de-
pends on the application. For the purpose dealt with in this thesis, the most
suitable choice is a plane with z component constant, i.e., the plane shown in
Fig. 2.5.

Figure 2.5: Rectangular coordinate system: canonical surface.

Once the tangential components of the electric field to the plane of Fig. 2.5
have been measured, i.e. Ex(x, y, z0) and Ey(x, y, z0), the planar coefficients
can be computed. These coefficients, as commented Section 2.2.1, are known
as plane wave spectrum ( ~AE(kx, ky)) and just depend on the spectral variables
(kx, ky). The way this spectrum is obtained is by means of the following Fourier
transform (FT) [23],[49]:

~AE(kx, ky) =
∫ ∞
−∞

∫ ∞
−∞

~E(x, y, z0)e−jkxxe−jkyye−jz0
√
k2−k2

x−k2
ydxdy, (2.38)

where, as can be observed, just an inversion of (2.17) has been carried out.
Of course, though expressed as continuous inverse Fourier transform, in

practice the transformation of plane measurements into plane wave spectrum is
performed by means of a discrete Fourier transform (DFT). Thus, the integrals
are expressed as follows:

24



2.3 Wave coefficients determination

~AE(kx, ky) =
Nx∑

n=−Nx

Ny∑
m=−Ny

~E(n∆x,m∆y, z0)e−jn∆xkxe−jn∆ykye−jz0
√
k2−k2

x−k2
y

(2.39)
where (2Nx + 1) and (2Ny + 1) are the number of measurement points in

the x and y axes, and ∆x and ∆y are the spacing for the mesh measurement
in the x and y axes, respectively.

Once ~AE(kx, ky) has been obtained, the computation of the field is a straight-
forward step since just expression (2.17) must be applied. At this point, how-
ever, one limitation must be taken into account. Since solution has been derived
for a source-free region, the field computed with (2.17) will only be valid for
this kind of regions. This means that, for instance, if an antenna is placed in
z < 0 and close to the XY plane, the field can only be computed with (2.17)
in z > 0, i.e., the region without sources.

2.3.2 Spherical coefficients

The spherical coefficients are not computed as straightforward as the planar
coefficients. The formulas to express the coefficients Q(c)

smn as a function of the
spherical measurement ( ~E(r, θ, φ)) does not just consists of a Fourier transform,
but requires a more complex algorithm.

Furthermore, the complexity is increased with regard to the planar coeffi-
cients because, now, real measurements taken with real probes are considered.
Previously, when computing the planar coefficients from plane measurements,
the use of real probes has not been considered because planar measurements
have not been available for this thesis. However, now, since the available facil-
ity includes a spherical measurement system, real measurements are used and,
hence, the effect of the probe, especially in those measurements taken in the
near-field region, must be taken into account.

The way in which the effect of the probe is considered is known as probe
correction and has been widely studied for a general case, e.g. by Paris [50] or
Yaghjian [24] and, specifically for the spherical coordinate system, by Larsen
[51]. Inclusion of probe correction in the algorithm for computing the spher-
ical coefficients is a hard task. For this reason, in [52], Larsen introduced
an improved algorithm to easily consider the influence of the probe in the
measurements. Later, Hansen [20] summarized this algorithm and its related
formulation.

There are two levels of probe correction: first-order probe correction [51],[20]
and high-order probe correction [53]-[57]. Whereas the first-order just considers
low-order probe receiving modes, i.e., general probe behavior, the high-order
carries out a complete correction considering all the modes necessary for this
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purpose. Of course, the high-order is more accurate than the first-order; how-
ever, in this thesis, not much accuracy is needed and, hence, only the first-order
probe correction is going to be considered.

The first consequence of taking into account the probe correction is the fact
that the algorithm does not take as data the electric field ( ~E) present on the
measurement points, but the amplitude of the received signal (ω) in the probe
on each point. Of course these both quantities are not the same because of
the effect of probe in measurements. In order to correct this difference, probe
correction incorporates the knowledge of the incoming modes to the probe
(receiving coefficients).

Once it has been established the kind of probe correction to apply, it must
be described the points where the measurements must be taken in order to
compute the spherical coefficients. The algorithm [20] requires measurements
on the points depicted in Fig. 2.6. As can be observed, these points form a
spherical surface where the measurement points are equispaced in θ and φ,
and placed at r = A from the origin of the spherical coordinate system. In
addition, the algorithm requires measurements with two different orthogonal
polarizations (χ = 0 and χ = π/2) on each point. Therefore, two different
measurements (or one if both polarizations are measured at the same time)
must be carried out.

Figure 2.6: Rectangular coordinate system: canonical surface.

The previous measurements (w(A,χ, θ, φ)) are related to the outgoing spher-
ical waves Q(3)

smn by means of the transmission formula [20]. This formula, how-
ever, does not determines the coefficients Q(3)

smn, but the so-called transmitting
coefficients (Tsmn), which are related to Q(3)

smn by [20]:

Q(3)
smn = vTsmn (2.40)

where v is the amplitude of the incoming wave to the local port of the
antenna under test. From now on this notation will be assumed and, hence,
the aim will be the determination of the transmitting coefficients.
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2.3 Wave coefficients determination

By using these coefficients, the transmission formula can be expressed as
follows:

w(A,χ, θ, φ) =
v

2

∑
smn
µ

Tsmne
jmφdnµm(θ)ejµχPsµn(kA) (2.41)

In (2.41), dnµm(θ) are the rotation coefficients (whose complete expressions
can be found in Appendix C), and Psµn(kA) are the probe response constants.
These constants depend on the spherical coefficients characterizing the antenna
in reception, i.e. the coefficients for the incoming modes to the probe. These
coefficients, which are known as receiving coefficients (Rσµν), are used to elim-
inate the effect of the probe in the spherical measurement. These coefficients
are employed to compute the probe response constants as follows:

Psµn(kA) =
1
2

∑
σν

Csn(3)
σµν (kA)Rσµν (2.42)

where Csn(3)
σµν (kA) are the translation coefficients whose expressions can be

found in Appendix C.
From [20], the derivation of an equation to express in an easy way the

transmitting coefficients (Tsmn) as a function of the measurement w(A,χ, θ, φ)
can be achieved by means of a three-fold integral transform. First, the function
wµ(A, θ, φ) is computed with the following Fourier transform:

wµ(A, θ, φ) =
1

2π

∫ 2π

χ=0

w(A,χ, θ, φ)e−jµχdχ (2.43)

Then, wµ(A, θ, φ) is used to obtain the function wµm(A, θ) by means of
another Fourier transform in φ:

wµm(A, θ) =
1

2π

∫ 2π

φ=0

wµ(A, θ, φ)e−jmφdφ (2.44)

Finally, the function wnµm(A) is computed applying the following integral
to the previous function:

wnµm(A) =
2n+ 1

2

∫ π

θ=0

wµm(A, θ)dnµm(θ)sinθdθ (2.45)

The ways in which the previous integrals are done in practice are beyond
the scope of this thesis. For a detailed explanation on this issue see [20].

Once the previous three-fold integral transform has been derived, a relation
between the transmitting coefficients, the functions wnµm(A) and the probe
response constants Psµn(kA) must be established. By assuming first-order
probes, e.g. an open-ended circular waveguide excited by the TE11 mode [20],
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just the receiving coefficients with µ = ±1 must be considered since these
coefficients are the only coefficients that are not negligible in the first-order
probes receiving coefficients. Consequently, only the probe response constants
Ps±1n(kA) must be taken into account and, hence, the transmitting coefficients
may be obtained as:

T1mn =
1
v

(
P21n(kA)wn−1m(A)− P2,−1n(kA)wn1m(A)

P21n(kA)P1,−1n(kA)− P11n(kA)P2,−1n(kA)

)
(2.46)

T2mn =
1
v

(
P11n(kA)wn−1m(A)− P1,−1n(kA)wn1m(A)

P2,−1n(kA)P11n(kA)− P21n(kA)P1,−1n(kA)

)
(2.47)

Unfortunately, when applying (2.46) and (2.47) in practice one problem
arises. Since probe response constants are necessary, and the probe receiving
coefficients must be used to compute these constants, these receiving coefficients
must be available to obtain the transmission coefficients. However, this is not
always possible since special algorithms and additional measurements must
be carried out in order to compute the probe receiving coefficients. These
algorithms are part of a more general procedure, which is known as probe
calibration, and will be deeply studied in Chapter 6. Until then, it will be
considered that the probe receiving coefficients are known, and therefore, the
transmission coefficients will be determined with no problems.

Hence, the determination of the spherical coefficients is not as straightfor-
ward as for the planar case, but can be easily achieved by using (2.46) and
(2.47). Once this has been carried out, the antenna under test is characterized
in transmission by the transmitting coefficients and its radiated field can be
computed with (2.40) and (2.28).

Finally, it must commented that, normally, the field is required in the far-
field region, i.e., at points with r > 2D2/2, where D is the diameter of the
antenna. In this region it can be considered that the shape of the radiation
pattern does not change and just an attenuation of the pattern takes place.
Mathematically this fact is achieved by using the approximation of Hankel
functions for r → ∞ (see Appendix A) in the spherical wave functions (2.29),
(2.30). By doing so, the electric field can be expressed as follows:

~E(r, θ, φ)|
FF
→ k√

η

1√
4π

ejkr

kr
v ~K(θ, φ) (2.48)

where ~K(θ, φ) is the normalized far-field pattern obtained in the following
way:

~K(θ, φ) =
∑
smn

Tsmn ~Ksmn(θ, φ) (2.49)
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In this expression, ~Ksmn(θ, φ) are the spherical wave functions in the far-
field region derived from the particularization of the spherical wave functions
(2.29), (2.30) for r →∞. From [20], these far-field functions can be expressed
as:

~K1mn(θ, φ) =

√
2

n(n+ 1)

(
− m

|m|

)m
(−j)n+1ejmφ[

jmP̄
|m|
n (cos θ)
sin θ

θ̂ − dP̄
|m|
n (cos θ)
dθ

φ̂

] (2.50)

~K2mn(θ, φ) =

√
2

n(n+ 1)

(
− m

|m|

)m
(−j)nejmφ[

dP̄
|m|
n (cos θ)
dθ

θ̂ +
jmP̄

|m|
n (cos θ)
sin θ

φ̂

] (2.51)

Therefore, the field in the far-field region can be computed applying (2.48),
which just requires the computation of the far-field wave functions (2.50) and
(2.51), instead of the much more complicated was functions (2.29) and (2.30).

Practical results In order to verify the described algorithm, an antenna was
measured and its transmitting coefficients were computed. Then, the radiated
field was obtained at the same distance where the measurements had been done
to test the accuracy of the method. Finally, the field in the far-field region was
also computed in order to show all the possibilities of the algorithm.

The measured antenna was a slot-array antenna at 36.85 GHz. In the upper
part of each slot, a passive dipole was placed in order to obtain a circularly
polarized field. Fig. 2.7(a) shows the lower part of the substrate placed over
the feeding waveguide, and Fig. 2.7(b) shows the upper part of the substrate
with the passive dipoles. The position of the dipoles with regard to the slots
is depicted in Fig. 2.8. In addition, in this figure it is shown the position of
the antenna with regard to the coordinate system in the measurement facility.
It must be pointed out that, in Fig. 2.8, for the sake of simplicity just some
elements have been drawn. As shown in pictures of Fig. 2.7, the antenna is
formed by 40 elements, but just 16 have been drawn.

The slot-array antenna was measured on the spherical mesh shown in Fig. 2.6
and at a 0.92 m of distance, i.e., in the near-field region. Once this measure-
ment had been carried out, the transmitting coefficients of the antenna were
computed, firstly, determining the probe response constants (2.42) by means of
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(a) Lower part of the substrate: slots. (b) Upper part of the substrate: dipoles.

Figure 2.7: Picture of the measured slot array antenna with passive dipoles at
36.85 GHz

Figure 2.8: Diagram of the measured slot array antenna with passive dipoles
at 36.85 GHz

the probe receiving coefficients (which had been previously computed as will be
described in Chapter 6), and, then by applying (2.46) and (2.47). Finally, the
field at the same measurement distance was obtained with (2.40) and (2.28).

Fig. 2.9 shows a comparison between the measured near field at 0.92 m
on the XZ plane (Fig. 2.9(a)) and on the Y Z plane (Fig. 2.9(b)), and the
computed field at the same distance using the spherical wave expansion (2.28).
As can be observed, both fields are quite similar and just a few points are
different in amplitude. This fact confirms the accuracy of the method for
computing the transmitting coefficients as well as the radiated field.
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Figure 2.9: Comparison of the measured and computed near-field on the main
planes of the slot-array antenna at 36.85 GHz.
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Finally, the field in the far-field region was computed by applying (2.48).
Fig. 2.10 shows this field on the main planes. Here it can be seen that, in the
far-field region, the antenna has a high directivity, as it should be in an antenna
formed by many (40) elements. In this case no other data is available in order
to verify wether the computed far field is correct or not. However, since the
computed field at the same measurement distance (Fig. 2.9) is quiet accurate,
it can be concluded that the way in which the far field was computed is correct.
Thus, this algorithm will be used in future chapters to compute the far field
from near-field measurements.

−40
−36
−32
−28
−24
−20
−16
−12
−8
−4

0

−80 −60 −40 −20 0 20 40 60 80

θ [deg]

E
[d

B
]

(a) Field on the XZ plane (AZIMUTH)

−40
−36
−32
−28
−24
−20
−16
−12
−8
−4

0

−80 −60 −40 −20 0 20 40 60 80

θ [deg]

E
[d

B
]

(b) Field on the Y Z plane (ELEVATION)

Figure 2.10: Computed field in the far-field region on the main planes of the
slot-array antenna at 36.85 GHz.
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Chapter 3

Equivalent currents

The design or manufacturing processes of an antenna may be affected by errors.
The location of these errors is carried out by the so-called antenna diagnosis
procedure, which utilize the information of field measurements. By observing
these measurements, however, the errors are hard to detect. For this reason,
the equivalent currents on a surface close to the antenna are employed. The
way in which these equivalent currents are obtained is one of the objectives
stated in the introduction. This chapter describes several methods to obtain
the equivalent currents and shows several real results.

3.1 Introduction

The equivalent currents of an antenna are defined by means of the field equiv-
alence principle. The first section of this chapter reviews this principle and
describes the most important cases for this thesis. By now, however, it is im-
portant to note that the determination of the equivalent currents on a surface
is done from the electric or magnetic field on this surface.

To determine this field, the first option consists in measuring the field di-
rectly on the surface close to the antenna where the currents are needed. For
this purpose, small-loop probes may be placed close to the antenna which allow
the field to be measured on the surface of interest [10]. The drawback of this
technique is the reflection and coupling that may take place between the probes
and the antenna. This effect may lead to non-correct field measurements and,
hence, to wrong equivalent currents. For this reason, this option is normally
ruled out and other techniques are adopted.

The second option computes the field on the surface of interest from field
measurements taken far from the antenna. This backpropagation is part of a
more general topic known as inverse problem. This problem has been studied
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in many areas, e.g. X-rays, seismic waves, atomic structures. It is defined, in
the most general of cases, as the determination of the cause of a phenomenon
from measurements of this phenomenon [58]. Specifically in the electromagnetic
branch, the inverse problem may be defined as the determination of the source
characteristics (the antenna) from measurements of the field radiated by the
source [58],[59].

In order to solve the inverse problem, several techniques may be applied.
These techniques can be divided into two main groups: integral equation (IE)
methods [11], [12] and modal expansion methods [13], [14]. On the one hand,
the aim of the integral equation methods is to obtain the equivalent sources
that radiate the same field that has been measured. To do this, the solution of
the wave equation in a source region is used and an integral equation is solved
by means of a numerical method, e.g. the method of moments (MoM) [60] or
the finite difference time domain technique (FDTD) [61].

On the other hand, the aim of the modal expansion methods is to obtain
the field on the surface of interest by backpropagation and, later, the equivalent
currents by means of the equivalence principle. By doing so, the solution of the
wave equation in a source-free region, described in Chapter 2, can be applied.

A comparison of both kind of techniques can be found in [62] and also in
[63], where the integral equation method is referred as Sources reconstruction
method (SRM). In this thesis the attention is focused on the modal expansion
techniques, though a briefly review of the integral equation methods is also
done.

No matter the method is chosen, the solution always depends on the coor-
dinate system in which measurements are taken and on the surface where the
equivalent currents are desired. The study of every specific case is beyond the
scope of this thesis. The aim is rather the study of one of the most common
situations. This situation consists in obtaining the equivalent currents on a
flat surface from spherical near-field measurements. Many antennas present
a plane radiating part so that the equivalent currents must be determined on
a flat surface. Furthermore, one of the most important measurement systems
is the spherical measurement system since it allows for complete sphere mea-
surements which do not entail loss of information. For the sake of generality,
near-field measurements may be considered to obtain the best result.

Regarding the modal expansion methods, by using spherical near-field mea-
surements, the spherical wave expansion must be used and, hence, the spherical
coefficients must be obtained. This fact leads to a restriction: since the solu-
tion of the wave equation in a source-free region expressed by means of the
spherical wave expansion is only valid outside the minimum sphere enclosing
the antenna, the field cannot be obtained on the desired flat surface close to the
antenna. For this reason, a change in the coordinate system must be carried
out.

34



3.2 Field equivalence principle

This change is normally done from spherical coordinates to planar coordi-
nates by using the plane wave spectrum (PWE) as an intermediate step. The
transformation of the plane wave spectrum into the field on a plane is per-
formed by means of a Fourier transform, as described in Section 2.3.1. Since
the field in spherical coordinates is considered to be in the near-field region, two
different ways exits to perform the above transformation: compute the PWE
directly from the measurements [13], [64], or compute firstly the far-field and,
later, by applying this field, determine the PWE, what is normally known as
the microwave holographic technique [16]-[18]. In this chapter both methods
are described.

If a more general transformation is desired, the spherical coefficients may
be transformed into oblate spheroidal coefficients. By doing so, the field is
expressed by means of the oblate spheroidal wave expansion, described in Sec-
tion 2.2.4. The advantage of this expansion lies in the fact that it is valid
at points outside the minimum spheroid enclosing the antenna, even on a ex-
tremely flat spheroid surrounding the antenna.

This chapter is organized as follows: first the equivalence principle is re-
viewed and, then, the integral equation methods are described. Later, the
modal expansion techniques are studied and, finally, the transformation of the
spherical coefficients to spheroidal coefficients is described.

3.2 Field equivalence principle

The field equivalence principle [11],[12] allows a source (e.g. an antenna) to
be replaced by an equivalent source. This last source is equivalent within
a region because they produce the same field in this region than the original
source. Electrically, sources are represented by current densities (electric J and
magnetic M) and, hence, the equivalent sources may be named as equivalent
currents. The significance of these currents arises when they are obtained on
a surface enclosing an antenna. In this case, the radiated field by the antenna
outside the enclosing surface can be computed by using the equivalent currents
instead of the original antenna.

For this thesis the equivalent currents are required on a plane surface (it
is supposed the radiating part of the antenna is mainly flat). In this case, the
equivalence principle works as depicted in Fig. 3.1. As can be observed, in the
original problem (Fig. 3.1(a)) the source, i.e., the antenna, is radiating the field
~E1 and ~H1 inside and outside the infinite surface enclosing the source formed
by the infinite flat surface S and the infinite surface S∞, i.e., in the volumes
V1 and V2.

In Fig. 3.1(b) the original problem is substituted by the equivalent problem.
In this situation, the source has been replaced by the equivalent currents on
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(a) Original problem. (b) Equivalent problem. (c) Love’s equivalent.

Figure 3.1: Principle of equivalence.

the surface S, which are noted as ~Js and ~Ms. These currents radiate the same
field outside the infinite surface enclosing the source (V2), though the field
radiated inside this volume (V1) is different ( ~E and ~H). This characteristic,
however, entails an advantage. Since the region inside the infinite surface is not
of interest, the field in this region can be anything. Thus, ~E and ~H can be set
to zero. This situation, depicted in Fig 3.1(c), is known as Love’s equivalent.
As can be observed, in this case, the equivalent currents can be computed from
just the field in the region of interest as follows:

~Js = n̂× ~H1 (3.1)

~Ms = −n̂× ~E1 (3.2)

Beside the Love’s equivalent problem, two additional equivalence principles
may be stated by taking in advantage that the inner zone to the infinite surface
(V1), and the field in this region, are not of interest. The first equivalent
problem is the one depicted in Fig. 3.2. In this case, a perfect electric conductor
(PEC) is placed inside the volume V1. By doing so, the electric equivalent
currents on the surface vanish and, hence, just the magnetic currents must
be considered (see Fig. 3.2(a)). This other problem may become harder than
the Love’s equivalence since the presence of the conductor must be considered
when computing the radiated field by the equivalent currents. However, since
the magnetic currents are on a flat surface, the image theory may be applied to
simplify the problem. The resulting problem is depicted in Fig. 3.2(b) where,
as can be observed, the equivalent currents are:

~Ms = −2n̂× ~E1 (3.3)

The advantage of the equivalent problem depicted in Fig. 3.2(b) lies in the
fact that the magnetic currents (3.3) radiate in an unbounded medium and,
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hence, the radiated field may be computed easier than in the problem with the
PEC.

(a) Equivalent problem with
PEC.

(b) Equivalent problem with
PEC from image theory.

Figure 3.2: Principle of equivalence for the case of a perfect electric conductor.

The third equivalent problem, depicted in Fig. 3.3, places a perfect magnetic
conductor (PMC) in the region where the radiated field is not of interest (V1).
As can be observed in Fig. 3.3(a), now the equivalent magnetic currents on
the surface vanish and, hence, just the electric currents must be considered.
In this case, as in the above problem, the image theory may be applied. By
doing so, the problem is simplified as shown in Fig. 3.3(b), where the equivalent
problem is formed by just the equivalent electric currents of (3.4) radiating in
an unbounded medium.

~Js = 2n̂× ~H1 (3.4)

(a) Equivalent problem with
PMC.

(b) Equivalent problem with
PMC from image theory.

Figure 3.3: Principle of equivalence for the case of a perfect magnetic
conductor.
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3.3 Integral equation methods

The aim of the integral equation methods applied to the inverse problem is to
find the sources that produce the same field that has been measured. To do
this, the wave equation is solved in a source region what leads to an integral
equation. The solution of this equation is achieved by means of a numerical
method [3]. Among the existing methods, the Finite Difference Time Domain
method (FDTD) [61], [65], the Finite-Element method (FEM) [66], and, spe-
cially, the Method of Moments (MoM) [2] are widely employed in literature.

The solution of the wave equation with arbitrary sources is a hard problem
with a high computational cost. For this reason, the equivalence principle
is first applied so that the wave equation is solved by just considering the
equivalent currents. The shape and position of the surface where the equivalent
currents are determined must be chosen in such a way that a great amount of
information is obtained but without increasing the complexity of the problem.
Recently several works have been presented with the aim of solving the inverse
problem on arbitrary three-dimensional surfaces [63],[67]. To do this, the love’s
equivalence principle (see Fig. 3.1(c)) is applied and the electric and magnetic
equivalent currents are obtained by means of the method of moments.

Nevertheless, an easier situation may rise if attention is focused on the radi-
ating part of the antenna. By doing so, flat equivalent surfaces may be applied,
e.g. near the aperture of a horn [68] or on the surface of a plane array [69].
The advantage of considering flat surfaces arises because the second and third
equivalent problems, depicted in Fig. 3.2 and Fig. 3.3, respectively, may be ap-
plied. Thus, just one kind of equivalent currents, which characterize the whole
problem, must be considered. It is worth to mention that, though both solu-
tions are completely correct, the result might be interpreted more intuitively
by choosing one approach or another, depending on the specific situation. For
instance, if the antenna were formed by slots, it might be convenient to use the
equivalent magnetic approach to be closer to the real situation.

The equivalent magnetic approach from planar measurements [60],[70] or
from spherical measurements [68] considers the situation of Fig. 3.2(b). By
doing so, the wave equation may be easily solved [11] by just using the electric
vector potential ~F . Thus, the radiated electric field ~E can be obtained from
the vector ~F as follows:

~E = −1
ε
∇× ~F . (3.5)

Since the electric vector potential ~F is related to the magnetic currents
~M by means of the convolution of these currents and the Green’s function,

the relation between the radiated electric field ~E and the equivalent magnetic
currents ~M using the equivalent magnetic approach is given by:
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~E(~r) = − 1
4π
∇×

∫∫
S0

~M(~r′)G(~r, ~r′)dS′ (3.6)

where ~r′ are the points of the surface where the equivalent currents are
desired, ~r are the points where the electric field is measured, S0 is the surface
of interest, and G(~r, ~r′) is the three-dimensional Green’s function expressed as
follows:

G(~r, ~r′) =
ejk|~r−~r

′|

|~r − ~r′| . (3.7)

Similarly for the equivalent electric approach [22], the wave equation may be
solved considering the problem depicted in Fig. 3.3(b). In this case, the general
solution of the wave equation in a source region by means of the potential
vectors [11] may be also applied. By doing so, since the magnetic currents are
not present, the electric field can be expressed as a function of the magnetic
vector potential ~A in the following way:

~E = −jωµ ~A+
1
jωε
∇(∇ · ~A). (3.8)

The relation between the potential ~A and the electric currents ~J is the
convolution of these currents and the three-dimensional Green’s function (3.7)
expressed as follows:

~A(~r) =
1

4π

∫∫
S0

~J(~r′)G(~r, ~r′)dS′ (3.9)

where ~r′, ~r and S0 have the same meaning as in (3.6). Substituting (3.9)
into (3.8) the field ~E(~r) is found.

The solution of (3.6) and (3.9) may be deduced by applying the method of
moments with point matching [22] or Galerkin’s type solution [70]. Whichever
option is chosen, the result is an equation system that must be solved to ob-
tain the desired currents. This step normally becomes the most difficult step
because, at first, the number of unknowns and equations may not be the same.
Hence, the method of least squares [71] must be applied to be able to solve
the system. Furthermore, the equation system is normally ill-conditioned and,
therefore, must be solved by, for instance, the Singular Value Decomposition
(SVD) method (considering the most significant singular values) [71], the Con-
jugate Gradient (CG) method [72],[73] or the Generalized Minimal Residual
(GMRES) method [72],[73].

In addition, the equation system may require regularization, e.g. the Tikho-
nov regularization technique [74],[75], to obtain faithful results. These kinds
of techniques, however, present some drawbacks, such as the election of the
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suitable parameters to obtain the best results without losing information [76],
what enhances the difficulty in finding accurate results.

The study in depth of all the previous approaches (electric and magnetic)
and the different possibilities for the solution of the equation system is beyond
the scope of this thesis. It is worth, however, to show how the solution for a
specific case might be obtained.

3.3.1 Equivalent magnetic approach

In this section, the case of an antenna with a planar radiating surface parallel
to the XY plane and mainly radiating towards z positive is studied. Fig. 3.4(a)
depicts a diagram of this situation if the antenna were a horn. In this case, the
aperture of the horn is not exactly on the XY plane, but extremely close to this
plane so that the computation of the equivalent currents on a flat surface in the
XY plane contributes valuable information about the field on the aperture.

(a) Diagram of the problem.
(b) Discretization of the

equivalent magnetic surface.

Figure 3.4: Equivalent magnetic approach.

The application of the equivalence principle in Fig. 3.4(a) by using a flat
equivalence surface on the XY plane, and the insertion of a PEC (see Fig. 3.2),
leads to a simplified equivalent problem. In this problem neither the antenna
nor the PEC are present and, hence, just the magnetic equivalent currents on
the equivalent magnetic surface must be considered.

In order to faithfully follow the general aim of this thesis, spherical near-
field measurements (Emeasθ ,Emeasφ ) are considered [68] for the solution of the
equivalent magnetic approach, as depicted in Fig. 3.4(a).

The solution of the problem is achieved by solving the vector wave equation
in a source region. Since the equivalent magnetic approach is being considered,
only the equivalent magnetic currents (3.3) must be obtained and, hence, the
integral equation that must be solved is the one depicted in equation (3.6).

To do this, the method of moments with point matching is applied [68].
For this purpose, the first step consists in discretizing the surface of interest as
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depicted in Fig. 3.4(b). Thus, the discrete points where the equivalent currents
must be obtained can be expressed as:

xp = −ωx
2
− ∆x

2
+ p∆x (3.10a)

yq = −ωy
2
− ∆y

2
+ q∆y (3.10b)

By considering the previous discretization, the equivalent magnetic currents
may be expressed as follows:

Mx(x′, y′) =
Nx∑
p=1

Ny∑
q=1

apq∆x∆yδ(x′ − xp, y′ − yq) (3.11a)

My(x′, y′) =
Nx∑
p=1

Ny∑
q=1

bpq∆x∆yδ(x′ − xp, y′ − yq) (3.11b)

where (x′,y′) are the points of the surface where the equivalent magnetic
currents must be obtained, Nx and Ny are the number of discrete points in
the x and y axes, respectively, apq and bpq are the weights of Mx and My,
respectively, and δ(x, y) is the Dirac delta function [46].

The advantage of the discretization stated in (3.11) arises when evaluating
the integral of (3.6). The use of the function δ(x, y) allows the integral to be
replaced by their integrand evaluated at the positions of the function δ(x, y).

Once the integrals have been evaluated, one step still remains. Since the
result of the integral is in cartesian coordinates and the measurement is in
spherical coordinates, a change of coordinate system must be carried out. This
is an easy step that may be done by applying the following formulas, where the
r component has been neglected:

Eθ = cos θ cosφEx + cos θ sinφEy − sin θEz (3.12a)

Eφ = − sinφEx + cosφEy (3.12b)

The spherical near-field measurements are known at discrete points on a
sphere around the antenna. Hence, a point matching procedure [2] may be
applied what leads to express the solution by the following equation system:[

Emeasθ (θ, φ)
Emeasφ (θ, φ)

]
=
[
L11 L12

L21 L22

] [
Mx

My

]
. (3.13)
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where the vectors Mx and My are just the weights of the equivalent currents
in the discretization stated in (3.11), i.e., apq and bpq, and the block-matrices
L11, L12, L21 and L22 are obtained as follows:

L11 =
∆x∆y

4π
ejkRmn

R2
mn

(
−jk +

1
Rmn

)
(
cos θm sinφmzfm + sin θm(yfm − ycn)

) (3.14a)

L12 = −∆x∆y
4π

ejkRmn

R2
mn

(
−jk +

1
Rmn

)
(
cos θm cosφmzfm + sin θm(xfm − xcn)

) (3.14b)

L21 =
∆x∆y

4π
ejkRmn

R2
mn

(
−jk +

1
Rmn

)(
cosφmzfm

)
(3.14c)

L22 =
∆x∆y

4π
ejkRmn

R2
mn

(
−jk +

1
Rmn

)(
sinφmzfm

)
(3.14d)

where (θm,φm) are the mth measurement points (which transformed into
cartesian coordinates are noted as (xfm,yfm,zfm)), the points (xcn,ycn) are the nth
current points in the coordinate system (x′,y′) and Rmn is the distance between
the field points and the current points computed as:

Rmn =
√

(xfm − xcn)2 + (yfm − ycn)2 + (zfm)2. (3.15)

As stated above, the solution of the equation system requires special al-
gorithms because of the ill-conditioning of the problem. For this thesis, the
GMRES method has been chosen, though depending on the specific case, other
method might become more accurate or faster.

Simulated results

The solution for equivalent magnetic approach described above was tested with
the antenna shown in Fig. 3.5. As can be observed, the antenna is formed by two
x̂-directed slots placed along the x axis and separated by 0.8 λ (one in x = 0.4λ
and the other one in x = −0.4λ) at the operating frequency (300 MHz).

The spherical near-field radiated by the antenna was simulated with FEKO
[4] at R = 1 λ. This field was used to solve the equation system derived from the
integral equation technique for the equivalent magnetic approach (3.13) what
allowed the equivalent magnetic currents to be obtained on the XY Plane.
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Figure 3.5: Simulated slot-array antenna.

Fig. 3.6 shows the result in linear scale. As it was expected, the y component
of the equivalent currents is negligible and just the x component is significant.
This behavior rises because the slots are oriented in the x direction and, hence,
the main component of the real magnetic current is Mx.
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Figure 3.6: Equivalent magnetic currents for the slot-array antenna obtained
with the integral equation method.

In order to verify the accuracy of the method in placing the maximum of the
currents on the correct position, i.e., where the slots are, the section of the x
component (Mx) at y = 0 has been represented in logarithmic scale in Fig. 3.7.
As can be observed in this figure, the maximum of the currents are correctly
placed on the positions where the slots where placed for the simulation. There-
fore it can be concluded that the described approach and the solution of the
equation system by the GMRES method are correct.

3.4 Modal expansion methods

In Chapter 2 the solution of the vector wave equation in a source-free region was
derived. This solution was implemented for each coordinate system by means
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Figure 3.7: Section of the x component (Mx) at y = 0.

of a weighted sum of orthogonal basis functions, which were also noted as modal
expansions or wave expansions. The way in which these weights (or coefficients)
are computed from radiated field measurements is described in Section 2.3
for the planar and spherical wave expansion. By doing so, the coefficients
characterize the antenna and, hence, the radiated field can be computed in
other points by just inserting the computed coefficients into the weighted sum.

Regarding the inverse problem, the modal expansion technique presents a
major drawback. Since the solution is derived in a source-free region, this
solution does not allow the equivalent currents to be directly obtained as in
the integral equation methods. For this reason, a different approach must be
considered.

This other approach requires to back-propagate the field, from the mea-
surement points to the points on the surface where the equivalent currents are
desired. By determining the field on this surface, the equivalence principle (see
Section 3.2) can be applied, what leads to the desired equivalent currents.

This second approach entails an additional problem. The modal expansion
is only valid outside the minimum surface enclosing the antenna. The problem
arises when the radiating surface, close to which the equivalent currents must
be obtained, is different from the measurement system, as it is the case of
this thesis. In this case, the closest points to the antenna where the field
can be computed by means of the modal expansion may be too far from the
radiating surface and, hence, they may not contribute valuable information for
the antenna diagnosis.

Specifically for this thesis, a spherical measurement system is considered,
and the radiating surface is supposed to be plane. Hence, the equivalent cur-
rents must be obtained on a flat surface close to this radiating surface in order
to obtain valuable information about the antenna. However, the spherical mea-
surement (either in the far-field or in the near-field region) allows the spherical
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coefficients to be easily computed and, therefore, the spherical wave expansion
is applied. This expansion is only valid outside the minimum sphere enclosing
the antenna, as indicated in (2.28). This minimum sphere is far from the de-
sired surface, as depicted in Fig. 3.8, and, hence, the field on this sphere cannot
be used to perform an accurate antenna diagnosis.

Figure 3.8: Options for the modal expansion technique using spherical
near-field measurements.

In order to obtain the field on the desired flat surface, a coordinate system
change (from a spherical coordinate system to a planar coordinate system)
may be applied. This change is normally performed by means of the plane
wave spectrum, which is related to the field on a plane surface by a Fourier
transform (2.17) [41],[23].

Assuming spherical near-field measurements, the transformation of these
measurements (or the computed spherical coefficients) into the plane wave spec-
trum may be done in two different ways. Both ways are depicted in Fig. 3.8.
As can be observed, one way (Option 1 ) makes use of the far field as an in-
termediate step to, later, back-propagate the field to the surface close to the
antenna. The other way (Option 2 ) directly computes the field on the surface
of interest from the spherical near-field measurements. Next, both options are
described and several results are shown.
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3.4.1 Option 1: Microwave holographic technique

The first option applies the so-called Microwave holographic technique (MHT)
[16], [17], [18], which is used in many applications, e.g. in reflector antennas
diagnosis [77] or in location of defective elements in array antennas [78].

The MHT obtains the field distribution on a plane surface close to the an-
tenna from far-field measurements by means of a Fourier transform. To do this,
two steps are carried out. Firstly, the plane wave spectrum is obtained from
far-field measurements and, later, the computed plane wave spectrum is used
to determine the field on the surface of interest by means of a Fourier trans-
form (2.17). This second step has been previously described (see Section 2.2.1),
thus, the point of interest now is the way in which the plane wave spectrum
and the far-field measurements are related.

To obtain this relation, the asymptotic expansion for kz � 1 of the electric
field (2.17) must be derived by the method of steepest descent [12]. This
asymptotic expansion can be represented as [23]:

~EFF (R, θ, φ) =
jk cos θejkR

R
~AE(kx, ky) (3.16)

where ~EFF (R, θ, φ) is the far field in spherical components (θ,φ), R is the
measurement distance, ~AE(kx, ky) is the plane wave spectrum and, kx and ky
are the spectral points given by:

kx = k sin θ cosφ (3.17a)

ky = k sin θ sinφ (3.17b)

Hence, from (3.16), the plane wave spectrum can be easily computed from
the spherical far-field. The spectral points (kx,ky) where the spectrum is ob-
tained are determined from the spatial points (θ,φ) where the far field is known
by (3.17a) and (3.17b). These relations, however, entail a major problem. By
observing them, it can be deduced that equispaced spatial points lead to a
non-equispaced spectral grid. Therefore, the Fourier transform of the plane
wave spectrum required for the computation of the field on the surface of in-
terest (2.17) cannot be performed by the traditional Fast Fourier Transform
(FFT) algorithm [79], which can only be applied on functions at equispaced
points.

For this reason, other algorithms must be used. For instance, one possibil-
ity might be the application of an interpolation procedure to the plane wave
spectrum to obtain the spectrum on an equispaced spectral grid. Another pos-
sibility might consist in directly computing the Fourier transform by means of
the Discrete Fourier transform (DFT) or, in a faster way, the Non-Uniform
Fast Fourier Transform (NUFFT) algorithm [80]-[81].
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In this thesis, however, another solution is adopted. Since the transmitting
coefficients are available, the far field can be computed at any spatial point.
For this reason, instead of an equispaced spatial grid, a equispaced spectral
grid is chosen. By doing so, the far field is computed in the non-equispaced
spatial grid (θ,φ) determined according to the following expressions, derived
from (3.17a) and (3.17b):

θ = arcsin


√
k2
x + k2

y

k

 (3.18a)

φ = arctan
(
ky
kx

)
. (3.18b)

Hence, no matter the region where the measurement is taken (far-field or
near-field region), firstly the transmitting coefficients Tsmn are determined from
the spherical measurement as described in Section 2.3.2. Later, the far field
is obtained in the suitable points by applying (2.28) or the asymptotic expres-
sion (2.48). If the first expression is used, the distance at which the field is
determined must be chosen according to the antenna size so that the field is
computed in the far-field region.

Therefore, the steps that must be carried out to obtain the equivalent cur-
rents from spherical near-field measurements by using the microwave holo-
graphic technique are [14]:

1. The spherical wave coefficients Tsmn are computed from the spherical
near-field measurement.

2. The points (θ,φ) where the far field must be determined are obtained
from a equispaced grid (kx,ky) and the expressions (3.18a) and (3.18b).

3. The coefficients Tsmn are used to obtain the field in the far field region
~EFF (R, θ, φ).

4. The far field is applied in (3.16) to determine the plane wave spectrum
~AE(kx, ky).

5. The tangential field ~E(x, y) on the surface of interest (according to Fig. 3.8,
this surface is a plane parallel to the XZ plane) is obtained by means of
the Fourier transform of the spectrum (2.17).

6. The equivalent currents are determined from the tangential field obtained
in the previous step by applying the equivalence principle.
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Next sections show the result obtained by applying this algorithm to several
antennas. By doing so, the accuracy and usefulness of the method will be
shown. In addition, the aim of the next examples is to show the advantages of
knowing the equivalent currents for the antenna diagnosis.

Practical results 1

In this first example, the above algorithm was tested with the X-band slot-
array antenna shown in Fig. 3.9. As can be observed, the antenna is formed
by 7 x̂-directed slots, fed in phase, and placed along the x axis at different
y positions to obtain a cosine distribution. The separation between slots is
1.98 cm, i.e., 0.66 λ at the operating frequency (10 GHz) as shown in Fig. 3.9.

(a) Picture. (b) Diagram.

Figure 3.9: Measured X-band slot-array antenna.

The spherical field measurement of the antenna was taken at 2.70 m (90 λ
at 10 GHz). Hence, taken into account the antenna dimensions (number of
slots and separation between slots), the field was measured in the far-field
region. This field was used to carry out the algorithm described above, from
the computation of the transmitting coefficients to the determination of the
equivalent currents.

Fig. 3.10 shows the computed far field pattern on the main planes by using
the transmitting coefficients computed in the first step. As can be observed,
both patterns are quite similar to their respective ideal patterns (beside the
slightly higher sidelobes than in the ideal pattern in theXZ plane). In addition,
though it cannot be seen in Fig. 3.10(a), the antenna is not exactly pointing
towards θ = 0◦ as it was designed.

Fig. 3.11 shows the absolute value in linear scale of the x and y components
of the resulting equivalent currents determined in the sixth step of the above
algorithm, as well as a black box to indicate where the antenna was located.
As can be observed, the currents are all completely inside the radiating part of
the antenna (the slots) and an oscillatory behavior can be observed due to the
different position of the slots in the y axis along the x axis (see Fig. 3.9(b)).
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Figure 3.10: Computed far field of the X-band slot-array antenna at 10 GHz
obtained by means of the spherical wave expansion.

Furthermore, the x component has a higher level, as it must be since the slots
are x̂-directed slots whose main magnetic current is in this direction.
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Figure 3.11: Absolute value of the equivalent magnetic currents for the
X-band slot-array antenna at 10 GHz obtained with the Microwave

holographic technique.

The design of the antenna was done to feed all the slots in phase. Thus,
a constant phase should be observed on reconstructed equivalent currents. In
order to verify this fact, the phase of these currents has been represented in
Fig. 3.12. As can be observed, the x component Fig. 3.12(a) has an almost
constant phase along the x axis. The y component Fig. 3.12(b), is not constant,
however, this phase is not significant since the absolute value Fig. 3.11(b) has
a low level because of the direction of the slots, and, hence, this phase may be
considered as noise.

The behavior of the absolute value and phase may be better observed in
Fig. 3.13. Here, the equivalent currents have been represented on the exact
position where the slots are and, hence, the values of the currents are indicated
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Figure 3.12: Phase of the equivalent magnetic currents for the X-band
slot-array antenna at 10 GHz obtained with the Microwave holographic

technique.

with regard of the 7 slots. Fig. 3.13(a) shows the absolute value in dB compared
to the ideal envelope of the slots amplitude and Fig. 3.13(b) shows the phase
in degrees compared with the ideal constant phase of the currents. From these
figures it may be concluded (beside the value inside the slot, which cannot be
exactly observed) that the envelope of the absolute value is correct. In addition,
the phase has a variation of 50◦, caused by the incorrect position of the slots
along the y axis. This variation is the reason because the antenna is not exactly
pointing towards θ = 0◦, as commented above.
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Figure 3.13: Equivalent magnetic currents on the slots positions for the
X-band slot-array antenna at 10 GHz obtained with the Microwave

holographic technique.
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Practical results 2

The MHT was also applied to the antenna studied in the example of Sec-
tion 2.3.2. As described there, this antenna is a slot-array antenna with passive
dipoles above each slot to obtain a circularly-polarized field. Fig. 2.7 shows a
picture of the main sides of the antenna, and Fig. 2.8 shows a diagram of the
antenna.

As commented in that example, a spherical near-field measurement was
taken at 36.85 GHz to, later, compute the transmitting coefficients. Thus, the
first step of the algorithm described above was already done and the far field
in the suitable points (θ,φ) (obtained from a equispaced spectral grid (kx,ky)
by (3.18a) and (3.18b)) could be obtained. Later, the rest of the algorithm was
applied and, finally, the equivalent electric currents were obtained.

Fig. 3.14 shows the absolute value of the equivalent electric currents on a
plane close to the XY plane (where the passive dipoles are placed). As can
be observed, the currents appear just where the radiating part of the antenna
is (indicated by a black square). Furthermore, a different level on the x com-
ponent (Jx in Fig. 3.14(a)) and on the y component (Jy in Fig. 3.14(b)) can
be observed. This difference is the reason for the high maximum axial ration
(4.41 dB) of the antenna (it was design for 0 dB).
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Figure 3.14: Absolute value of the equivalent electric currents for the
slot-array antenna with dipoles at 36.85 GHz obtained with the microwave

holographic technique.

Although it has not been commented above, the slots of the antenna are
separated λg/2 (where λg is the wavelength in the waveguide) to feed the slots
in phase. To verify if the slots are correctly placed, the phase of the equivalent
electric currents for the x and y components is shown in Fig. 3.15. As can be
seen, a constant phase is obtained in both components and, hence, it may be
concluded that the slots were placed correctly with regard to the x axis on the
waveguide.

Fig. 3.16 shows the section of the equivalent electric currents at y = 0
compared with the ideal distribution. Fig. 3.16(a) shows the section for the
absolute value in logarithmic scale and Fig. 3.16(b) shows the section for the
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Figure 3.15: Phase of the equivalent electric currents for the slot-array
antenna with dipoles at 36.85 GHz obtained with the microwave holographic

technique.

phase of each component compared to the ideal phase of the x component (the
ideal phase of the y component is the phase of the x component shifted 90◦).

By observing Fig. 3.16(a), an important problem with regard to the assem-
bly of the antenna can be detected. As can be observed, just 20 peaks can be
detected, however, the antenna is formed by 40 elements. Hence, just half of
the elements are excited, what justifies the high lobes at 30◦ in the XZ plane
of the far field depicted in Fig. 2.10(a).
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Figure 3.16: Section of the equivalent electric currents at y=0 for the
slot-array antenna with dipoles at 36.85 GHz obtained with the microwave

holographic technique.

Therefore, this example shows the accuracy of the algorithm depicted above
for reconstructing the equivalent currents of an antenna. Furthermore, the
example shows the usefulness of knowing the equivalent currents of an antenna
to locate errors.
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Practical results 3

The equivalent currents reconstruction algorithm by the MHT was also tested
in another practical case. In this case, the antenna under study was the antenna
depicted in Fig. 3.17, where the position with regard to the coordinate system
has been indicated. The antenna is a 2D slot-array antenna with, as in the
previous example, passive dipoles to obtain a circularly-polarized field. The
operating frequency was 36.85 GHz and the spherical measurement was taken
at 1.86 m (229.63 λ). Considering the size of the antenna, which diameter is
36.22 cm, the measurement was taken in the near-field region.

Figure 3.17: 2D array antenna measured at 36.85 GHz.

Firstly, the transmitting coefficients were obtained and, then, the far field
was computed. Fig. 3.18 shows the co-polar component of this field on the main
planes (XZ and Y Z) compared to the ideal field. As can be observed, the field
on XZ plane (Fig. 3.18(a)) agrees very well with the ideal field, however, the
field on the Y Z plane differs from the ideal field. In order to find out the error
that had caused this difference, the equivalent currents were reconstructed.
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Figure 3.18: Computed far field of the 2D array antenna at 36.85 GHz
obtained by means of the spherical wave expansion.
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To do this, the algorithm described above, from the computation of the co-
efficients Tsmn to the determination of the equivalent magnetic currents ( ~Ms),
was applied. Fig. 3.19 shows the absolute value in linear scale of the recon-
structed equivalent electric currents. Several conclusions may be adopted from
this figure. Firstly, the antenna is only radiating in the part where the radi-
ating elements, namely slots and passive dipoles, are. Secondly, the amplitude
of the y component is higher than the amplitude of the x component. And,
finally, the lower part (y < 0) of antenna has a higher amplitude than the upper
part (y > 0). These considerations allow the antenna to be improved for the
manufacturing of the next prototype.
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Figure 3.19: Absolute value of the equivalent electric currents for the 2D array
antenna at 36.85 GHz obtained with the microwave holographic technique.

Fig. 3.20 shows the phase in degrees of the reconstructed currents. In order
to be able to interpret this phase it must be taken into account that the antenna
was design to have all the elements in phase. Thus, by observing Fig. 3.20 it is
clear that this aim was not achieved since every row of elements has a random
phase.
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Figure 3.20: Phase of the equivalent electric currents for the 2D array
antenna at 36.85 GHz obtained with the microwave holographic technique.

The differences with regard to the ideal distributions of the absolute value
and phase may be better observed in Fig. 3.21. In this figure, the section of the
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y component (the component with higher amplitude) at x = 5λ and x = −5λ
(at both sides of the antenna) of the reconstructed currents is represented
and compared to the ideal distributions. By looking at this figure it can be
concluded that the major problem lies in the phase distribution (Fig. 3.21(b))
along the y axis of the antenna, which is quite different from the ideal case.
The absolute value distribution (Fig. 3.21(a)), though different from the ideal,
does not differ enough to cause the high sidelobes of the radiation pattern in
elevation (Fig. 3.18(b)).
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Figure 3.21: Section of the equivalent electric currents at x = 5 λ and x = −5
λ for the 2D array antenna at 36.85 GHz obtained with the microwave

holographic technique.

Due to the bad phase distribution in the y component along the y axis,
a correction of the antenna was carried out in order to obtain a better phase
distribution. After this correction, the antenna was measured again and, later,
the equivalent currents were obtained once again. Fig. 3.22 shows the distribu-
tion along the y axis, at x = 5λ and x = −5λ, of the antenna after correction.
As can be observed, now, the distribution looks like the ideal distribution in
both, absolute value and phase.

Fig. 3.23 shows the computed far-field pattern of the antenna after correc-
tion on the main planes. Now, not only the XZ plane looks like the ideal
pattern, but also the Y Z plane. Of course, there are still small differences with
regard to the ideal pattern. However, comparing Fig. 3.18(b) and Fig. 3.23(b)
it can be concluded that a great improvement was achieved by using the re-
constructed equivalent currents and improving the antenna suitably.
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Figure 3.22: Section of the equivalent electric currents at x = 5 λ and x = −5
λ for the 2D array antenna after correction at 36.85 GHz obtained with the

microwave holographic technique.
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Figure 3.23: Computed far field of the 2D array antenna after correction at
36.85 GHz obtained by means of the spherical wave expansion.

3.4.2 Option 2: SWE to PWE transformation

The second option performs a direct transformation, from the spherical near-
field measurement to the near-field on the surface of interest, without employing
the far field. By doing so, the information present on the evanescent modes
(which are present in the near field, but not in the far field) can be used. Thus,
a higher accuracy may be achieved on the reconstructed equivalent currents.
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This direct technique is known as Spherical wave expansion-to-Planar wave
expansion (SWE-to-PWE) transformation. It has been recently proposed by
Cappelllin [13],[19], and applied to the diagnosis of an offset reflector antenna
[64] with quite good results. In this section a briefly review of this technique
is carried out.

The aim of the SWE-to-PWE transformation is to obtain the plane wave
spectrum ( ~AE(kx, ky)) directly from the transmitting coefficients (Tsmn) (which
must be previously computed from the spherical near-field measurement). In
order to determine this relation, first the spherical wave functions (~F (3)

smn(~r))
are expressed as an expansion of plane waves (ejkz) in the following way [82]
(valid only for z > 0):

~F
(3)
1mn(~r) =

(−j)n
2π
√
n(n+ 1)

∫ π

−π

∫
C+

~Y mn (α, β)ejkŝ·~r sinα dα dβ (3.19)

~F
(3)
2mn(~r) =

j(−j)n
2π
√
n(n+ 1)

∫ π

−π

∫
C+

ŝ× ~Y mn (α, β)ejkŝ·~r sinα dα dβ. (3.20)

The vector ŝ is related to the unitary cartesian vectors as:

ŝ = sinα cosβx̂+ sinα sinβŷ + cosαẑ (3.21)

where β ∈ [−π, π] and α is a complex variable which domain is the contour
C+ shown in Fig. 3.24.

Figure 3.24: Domain of the variable α (C+).

In (3.19) and (3.20), the basis functions ~Y mn (α, β) are given by [83]:

~Y mn (α, β) =− j 1√
(2π)

(
− m

|m|

)m(
∂

∂α
P̄ |m|n (cosα)ejmβ β̂

− 1
sinα

P̄ |m|n (cosα)jmejmβα̂
) (3.22)
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where P̄mn (cosα) is the normalized associated Legendre functions (see Ap-
pendix B) and the vectors α̂ and β̂ are expressed, from the unitary cartesian
vectors, as:

α̂ = cosα cosβx̂+ cosα sinβŷ − sinαẑ (3.23a)

β̂ = − sinβx̂+ cosβŷ. (3.23b)

By substituting (3.19) and (3.20) into the spherical wave expansion (2.28),
the field may be expressed for z > r0 (being r0 the radius of the minimum
sphere enclosing the antenna) as follows [13]:

~E(~r) =
jk

8π2

∫ π

π

∫
C+

Ê(ŝ)ejkŝ·~r sinα dα dβ (3.24)

where the spectrum Ê(ŝ) is given by:

Ê(ŝ) =
∞∑
n=1

n∑
m=−n

(−j)n4π
√
η
√
n(n+ 1)

[
T2mnŝ× ~Y mn (α, β)− jT1mn

~Y mn (α, β)
]

(3.25)

The comparison of the field expressed by (3.24) and the field expressed by
means of the plane wave spectrum (2.17) allows to establish the following rela-
tion [13] between the spectrum in the (α, β)-domain (Ê(ŝ)) and the spectrum
in the (kx, ky)-domain (the plane wave spectrum ( ~AE(kx, ky))):

~AE(kx, ky)ejkzz =
1

4πkz
Ê(ŝ)ejk cosαz (3.26)

In the previous relation, it must be taken into account that, from (3.21),
the spectral variables (kx, ky) and the vector ŝ may be related by ŝ = ~k/k,
where ~k = kxx̂+ ky ŷ + kz ẑ.

The significance of (3.25) lies in the way the spherical near-field measure-
ment is directly related to the plane wave spectrum.

In order to clarify the way this direct transformation is done, the following
list describes the steps that must be carried out to perform the SWE-to-PWE
transformation:

1. The transmitting coefficient (Tsmn) are determined from the spherical
near-field measurement.

58



3.4 Modal expansion methods

2. The spatial points (θ, φ) are determined from the equispaced grid (kx,ky)
and the expressions (3.18a) and (3.18b). Then, the points (α, β) are
obtain by substituting θ by α and φ by β.

3. The spectrum in the (α, β)-domain (Ê(ŝ)) is computed with (3.25).

4. The plane wave spectrum ( ~AE(kx, ky)) is obtained by inserting Ê(ŝ)
into (3.26).

5. The field close to the antenna is computed from the spectrum ~AE(kx, ky)
by (2.17).

6. The equivalence principle is applied to determine the equivalent currents.

Practical results

The SWE-to-PWE technique was tested with the antenna studied in the first
example of the previous section. Specifically, the antenna was the X-band slot-
array antenna shown in Fig. 3.9. As commented in that example, a spherical
far-field measurement was taken at 2.7 m (90 λ at the operating frequency,
10 GHz). As in that case, the MHT might have been directly applied to the far-
field measurements. However, it was a good test to check the whole algorithm
in a known situation. In addition, the application of the SWE-to-PWE to this
antenna allows the MHT and the SWE-to-PWE techniques to be compared in
the same situation.

To obtain the equivalent magnetic currents, the algorithm described above
was carried out. Fig. 3.25 shows the absolute value of these currents as well
as a black box to show where the antenna is placed. As can be observed, the
amplitude of the x component (Fig. 3.25(a)) is the only significant component
(the y component (Fig. 3.25(b)) is negligible) and a oscillatory behavior due to
the different position of the elements in the y axis may be observed.
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Figure 3.25: Absolute value of the equivalent magnetic currents for the
X-band slot-array antenna at 10 GHz obtained with the SWE-PWE

technique.
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Fig. 3.26 shows the phase of the computed equivalent currents. In this case,
a constant phase is again obtained since the slots where placed to feed all of
them in phase. Thus, a result close to the ideal is obtained. The y component
Fig. 3.26(b) is not considered because the absolute value has a extremely low
level and, hence, this component may be considered noise.
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Figure 3.26: Phase of the equivalent magnetic currents for the X-band
slot-array antenna at 10 GHz obtained with the SWE-PWE technique.

The value of the equivalent magnetic currents on the positions of the slots
is shown in Fig. 3.27 in both, absolute value in dB (Fig. 3.27(a)) and phase in
degrees (Fig. 3.27(b)). As can be observed, the absolute value is quite similar
to the envelope of the ideal distribution, and the phase presents a variation of
50◦ around the ideal distribution.
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Figure 3.27: Equivalent magnetic currents on the slots positions for the
X-band slot-array antenna at 10 GHz obtained with the SWE-PWE

technique.

Therefore, looking at all these results, and comparing them to the results
obtained with MHT (see Fig. 3.11, Fig. 3.12 and Fig. 3.13), it can be con-
cluded that the same result is obtained with the SWE-to-PWE transformation
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and the microwave holographic technique. The advantage of the SWE-to-PWE
technique arises with near-field measurements. In these cases, the information
present in the evanescent modes may be considered and, hence, a better reso-
lution may be achieved.

Regarding the computation time, no great differences were detected on com-
puting the previous example with the MHT or the SWE-to-PWE transforma-
tion. Specifically, the computation of the transmitting coefficients (required
in both techniques) took around 10 seconds, and the computation the basis
functions (quite similar in both cases) took around 30 seconds. Then, the
spectrum was obtained in around 5 seconds, and the FFT algorithm was ap-
plied to the computed spectrum, what did not take almost time due to the fast
FFT algorithm implemented in MATLAB.

3.5 Equivalent currents by means of the sphe-
roidal wave expansion

The aim of the current chapter is to obtain the equivalent currents on a flat sur-
face from spherical near-field measurements. In previous section, the solution
has been the transformation of the spherical coefficients to a planar coordinate
system by the plane wave spectrum. By doing so, the field could be determined
on the flat surface of interest. There is, however, another option which has not
been mention up to now.

This option consists in using a spheroidal oblate coordinate system to de-
termine the field and, hence, the equivalent currents, near the plane of interest.
Recently, this coordinate system has been applied in several applications, e.g.
in near to far-field transformations [48] or in inverse problems [84],[85]. This
last case is of special interest for this thesis.

The advantage of the spheroidal oblate coordinate system lies in the di-
fferent shapes the canonical surface can adopt. By varying the spheroidicity
parameter (see Appendix D) and the radial component ξ, the resulting surface
with ξ-component constant may become extremely flattened spheroids. In the
extreme case, these spheroids may become a plane so that the field can be
obtained even on a flat surface. Fig. 3.28 shows several spheroids for different
ξ components and c = 1 (the spheroidicity parameter).

Regarding the validity of the wave expansion, it is worth to mention that the
solution derived Section 2.2.4 for the spheroidal oblate coordinate system (the
spheroidal wave expansion) is only valid in a source-free region. The advantage
now is that the source-free region in a spheroidal oblate coordinate system
is the region outside the minimum flattened spheroid enclosing the antenna.
This minimum spheroid might be the one depicted in Fig. 3.28(a), so that
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Figure 3.28: Flattened spheroids resulting from the oblate spheroidal
coordinate system with c = 1 and several ξ.

this surface is quite close to the source and, hence, the field on this surface
contributes valuable information about the antenna.

Fig. 3.29 compares the cross sections the minimum enclosing surface in a
spherical coordinate system and the minimum enclosing surface in a spheroidal
oblate coordinate. As can be observed, there is a great advantage in using the
spheroidal oblate coordinate system instead of the spherical coordinate system.

Figure 3.29: Comparison of the minimal enclosing sphere and the minimal
enclosing spheroid.

In order to obtain the field in a spheroidal oblate coordinate system, two
different parts may be distinguished. The first one consists in obtaining the
oblate spheroidal coefficients. This computation might require measurements
on an oblate measurement system and the solution of a transmission formula
in spheroidal coordinates, as in the spherical case. However, the spheroidal co-
ordinate system is hard to implement mechanically and, hence, this possibility
is not normally used. In addition, for this thesis, the only available measure-
ments are taken in a spherical system, which allow the transmitting coefficients
(Tsmn) to be easily determined.
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Therefore it must be established the way the oblate spheroidal coefficients
(αsmn) are determined from the transmitting coefficients (Tsmn). In [86] the
formulas to carry out this transformation are derived. If the suitable corrections
are done to express this relation assuming the time variation stated for this
thesis (2.1), the transformation can be expressed as follows:

Tsmk(−j)k =
∑
n

αsmn(−j)kd|m|nk−|m|(−jc) (3.27)

where dmnk (−jc) are the expansion coefficients (see Appendix D).
As can be observed in (3.27), the transformation of spherical coefficients

into spheroidal coefficients is performed by solving an equation system. Fur-
thermore, the transformation depends on the spheroidicity parameter (c). The
election of this parameter depend on the size of the surface where the equiva-
lent currents must be obtained since it restricts the minimum surface with ξ
constant enclosing the antenna.

The second part computes the field on the surface of interest by means of
the spheroidal wave expansion (2.37) and the spheroidal coefficients computed
with (3.27). Appendix D describes in detail the way in which the spheroi-
dal vector wave functions (required in the computation of the spheroidal wave
expansion) are obtained, from the spheroidal angular and radial functions to
the secondary parameters (the spheroidal eigenvalues and the expansion coef-
ficients).

Summing-up, the steps that must be carried out to determine the field and,
in turn, the equivalent currents on points close to the antenna by means of the
spheroidal wave expansion are:

1. The transmitting coefficients (Tsmn) are computed from the spherical
near-field measurements as described in previous sections.

2. The spheroidicity parameter (c) is determined so that the minimum sur-
face with ξ-component constant encloses the antenna.

3. The transmitting coefficients are transformed into the oblate spheroidal
coefficients (αsmn) by (3.27).

4. The field on the minimum flattened spheroid is computed by means of
the coefficients computed in the previous step and the spheroidal wave
expansion described in Section 2.2.4.

5. The equivalent currents are determined by applying the equivalence prin-
ciple.

The transformation into spheroidal coordinates allows to compute the field
on closed points to the antenna without using the far field. Hence, it works simi-
larly to the direct transformation (SWE-to-PWE) described in Section 3.4.2 (in
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CHAPTER 3. EQUIVALENT CURRENTS

both cases the measurements in the near-field region are directly transformed
into the near-field on closed points to the antenna). The difference of both me-
thods lies in the difficulty of computing the basis functions. Whereas the basis
functions for the SWE-to-PWE transformation (3.22) are easily computed, the
computation of the spheroidal vector wave functions (see Appendix D) may
become a hard task. For this reason, the SWE-to-PWE technique might be
preferable to the spheroidal technique.

However, it must be pointed out an interesting advantage may be found
in the using of the spheroidal coordinate system. This technique might be
applied in a wider range of cases than the SWE-to-PWE transformation. For
instance, not only currents on flat surfaces may be determined, but also on
elliptic surfaces and on spherical surfaces. Moreover, this is done with a uniform
notation for all, plane, ellipse and sphere surfaces.
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Chapter 4

Visible spectrum

As described above, the equivalent currents of an antenna can be obtained from
near-field or far-field measurements. The use of near-field measurements may
lead to obtain the equivalent currents with a higher resolution than with far-
field measurements. This chapter explains the reasons for this higher resolution
and describes the limitations of this possibility in a real situation. In addition,
the behavior of the plane wave spectrum by considering near-field or far-field
measurements and the resolution achieved on each case are described.

4.1 Introduction

The reconstruction of the equivalent currents is known, in general, as the in-
verse source problem [59]. As proved in [58], this problem has a non-unique
solution due to the presence of the so-called non-radiating sources [87]. As a
consequence, the resolution of the reconstructed equivalent currents is limited
to a certain value which cannot be overcome even though measurements at
very short distances are done.

These very close measurements, however, may be done to recover the so-
called radiating sources. Unfortunately, these kinds of measurements are hard
to perform in practice due to the coupling between the probe and the AUT,
and the limitations of the measurement facility. For these reasons, the measure-
ments are taken, at least, at few wavelengths from the AUT. The problem arises
because the so-called evanescent waves are exponentially attenuated. There-
fore, these waves cannot be normally measured and, hence, the information
they contain is not considered in the reconstruction of the equivalent currents,
what reduces the resolution of these currents.

In the limit case, no evanescent wave is measured and only the propagating
waves are considered. Regarding the plane wave spectrum, this situation means
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CHAPTER 4. VISIBLE SPECTRUM

that just a small region of the spectrum, which is known as visible spectrum,
can be used. This region allows to establish a maximum resolution of 1 λ in
the reconstructed equivalent currents.

To improve this resolution, the plane wave spectrum in the spectral points
outside the visible region must be determined. To do this, the radiated field
must be measured as close to the antenna as possible and the SWE-to-PWE
transformation may be applied. However, in some cases, this is not possible and
just far-field measurements are available. In these cases, additional techniques
must be applied to improve the resolution. Next chapter studies in depth these
other techniques.

The chapter is organized as follows. First the inverse source problem and
the non-radiating sources are described and defined, respectively. Then, the
behavior of the evanescent waves is depicted. Later, the resolution as a function
of the available region of the plane wave spectrum is determined. Finally, the
options to improve the resolution of the equivalent currents are studied.

4.2 The inverse source problem and the non-
radiating sources

As described in previous chapter, the inverse problem is defined as the deter-
mination of the cause of a phenomenon from measurements of the phenomenon
[58]. This problem is investigated in many areas, e.g. in spectroscopy, X-ray
crystallography or seismology. Through these investigations it has been found
that, in most of the cases, the inverse problem is ill-posed.

The concept of ill-posedness, referred to the inverse problem, involves two
characteristics: the non-uniqueness of the solution and the ill-conditioning of
the problem. To explain these concepts, the direct problem shown in Fig. 4.1
may be observed. In this direct problem, the objects in the currents space are
transformed into the images in the field space by means of the operator A. As
can be observed, the direct problem does not entail any problem (every objet
is transformed into a single image). However, the inverse problem (A−1) has
the previous two characteristics. On the one hand, the solution of the inverse
problem is non-unique because one image lead to two different objects. Thus,
when applying the inverse (A−1) to this image, two different solutions can be
obtained. On the other hand, it can be observed in Fig. 4.1 that two close
images lead to two far objects. This is known as ill-conditioning because a
little error, e.g. produced by noise, in the image (which is the measured space
in the inverse problem) may lead to two quite different solutions.

In [58], a solution for the non-uniqueness of the inverse problem is proposed.
It consists in adding prior knowledge of the sources to the inverse problem. As
depicted in Fig. 4.2, this prior knowledge allows the solution to be limited to
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4.2 The inverse source problem and the non-radiating sources

Figure 4.1: Direct problem whose inverse problem is ill-posed

just a small region. By doing so, the non-uniqueness problem may be solved
as well as the ill-conditioning of the problem.

Figure 4.2: Application of prior knowledge to the solution of the inverse
problem

There are several kinds of inverse problems. Concerning to this thesis,
the inverse problem of interest is the inverse source problem. This problem
is specifically defined as the determination of the properties of an antenna
from the measurements of the radiated field by that antenna [58], i.e., the
reconstruction of the equivalent currents. In this case, the non-uniqueness of
the solution may be explained from the point of view of the non-radiating (NR)
sources.

NR sources are defined as those sources that generate a field that vanishes
identically at every point outside the support region of the antenna [88]. Over
the past years, several publications have proposed methods to specify these
sources by forcing boundary conditions on the surface of the support of the
antenna. For instance, in [89] and [90] two methods are proposed to specify
non-radiating scalar sources with or without spherical symmetry, respectively.
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CHAPTER 4. VISIBLE SPECTRUM

Similarly, in [84] a method is proposed to specify the NR sources in a vectorial
form.

Regarding the problem dealt with in this chapter, it must be emphasized
that the field generated by the NR sources vanishes, i.e., it is not simply expo-
nentially attenuated [87]. Also, it must be pointed that another characteristic
of the NR sources is that their Fourier transform also vanishes [88]. Hence, the
plane wave spectrum does not contain information about the NR sources.

From the above explanation two conclusions arise. Firstly, if far-field mea-
surements are used to obtain the equivalent currents, an approximate solution
is always obtained. The reason lies in the non-contribution of some part of the
currents (the NR sources) to the plane wave spectrum, which is directly related
to the far field.

Secondly, even though near-field measurements are taken, the NR sources
cannot be recovered because the NR sources do not radiate beyond the sup-
port region of the antenna. The only possibility of recovering all the sources
consists in measuring the field inside the support region. Nevertheless, these
measurements cannot be performed with a spherical measurement system and,
in addition, if this measurement would be possible, a lot of drawbacks should
be overcome (such as the coupling between the probe and the AUT).

Therefore, no matter the distance at which the radiated field is measured
in a spherical measurement system, some sources (the NR sources) cannot be
recovered by just using the field measurement. Consequently, the resolution of
the reconstructed equivalent currents is limited to a certain value which cannot
be overcome.

Assuming this limitation, this thesis is focused on achieving this maximum
resolution by recovering the radiating sources. In general, these sources as well
as the non-radiating sources form part of any antenna. However, for the sake
of simplicity, from now on it will be assumed that the antenna is formed by
just the radiating sources. Thus, by obtaining the equivalent currents of an
antenna, the radiating sources will be determined.

4.3 Evanescent waves

The waves radiated by the radiating sources may be classified as: propagating
waves and evanescent waves. The difference between them lies in the behavior
of the wavenumber. To describe this fact, the following plane wave may be
considered:

E(x, y, z) = E0e
jkxxejkyyejkzz (4.1)

where the constants kx, ky and kz are related, from (2.15), as follows:
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4.3 Evanescent waves

kz =
√
k2 − k2

x − k2
y. (4.2)

Assuming kx and ky reals, this relation allows two different situations to be
clearly distinguished. These two situations depend on the condition stated in
the following expression:

k2
x + k2

y ≤ k2 (4.3)

In the first situation, (kx,ky) satisfy the above condition and, hence, the
constant kz in (4.2) is real. Thus, the plane wave is considered to be a propa-
gating wave because the exponentials in (4.1) are all imaginary.

In the second situation, the constants (kx,ky) do not satisfy the condition
stated in (4.3) and, hence, the constant kz in (4.2) is imaginary. The insertion of
this imaginary constant in (4.1) produces a real exponential (i.e., since kz = ja,
the field in (4.1) behaves as E ∝ e−az). Thus, the wave vanishes exponentially
with z forming the so-called evanescent wave.

In general, this behavior may be seen from the point of view of the plane
wave spectrum ( ~AE(kx, ky)). From its definition, the spectrum are the weights
of the plane waves propagating in different directions whose integral, accord-
ing to (2.17), allows the electric field to be computed. Therefore, instead of
considering just one plane wave, all the waves included in the plane wave spec-
trum must be studied. By doing so, two different regions can be established in
the plane wave spectrum according to the different situations depicted above.
These two regions are shown in Fig. 4.3.

Figure 4.3: Regions in the plane wave spectrum

As can be observed in Fig. 4.3, the points of the spectrum (kx,ky) satisfying
the condition (4.3) form the so-called visible spectrum (also known as visible
region). However, the points (kx,ky) that do not satisfy (4.3) form the so-called
non-visible spectrum (also known as invisible spectrum or invisible region).
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CHAPTER 4. VISIBLE SPECTRUM

The term visible refers to the possibility of obtaining the waves from the
far field. From (3.16) it can be seen that there is a direct relation between
the spectrum in the spectral points (kx,ky) and the far field in the spatial
points (θ,φ). The relation between (kx,ky) and (θ,φ) is stated by (3.17a) and
(3.17b). As can be observed, just the points (kx,ky) satisfying the condition
(4.3) produce real angles (θ,φ). Hence, from the far field (either measured
or computed from near-field measurements) just the visible spectrum can be
obtained.

Physically, this characteristic arises because the plane waves in the invisible
spectrum are exponentially attenuated and, hence, they are not present in
the far-field region. Thus, in this region, just the propagating waves can be
measured and used. In order to show this behavior, Fig. 4.4 represents the
attenuation produced by the exponential (ejkzz) for several kr (being kr =√
k2
x + k2

y) at different distances z. As can be observed, after 10 wavelengths,
the evanescent waves are attenuated by more than 100 dB. Furthermore, it
must be taken into account that the waves that have been represented are
those close to the circle of radius k. If waves placed far from this circle had
been considered, the attenuation would have been higher than the observed
in Fig. 4.4 since, as depicted in this figure, the higher kr is, the faster the
evanescent wave is attenuated.
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Figure 4.4: Attenuation of the evanescent waves.

Therefore, two conclusions may be adopted from the behavior of the waves
radiated by the antenna. Firstly, if the field in the far-field region (either
measured or computed) is considered, just the propagating waves, i.e., the
visible spectrum, can be computed.

Secondly, near-field measurements might be considered to reconstruct di-
rectly the equivalent currents of the antenna. However, it must be taken into
account that the waves that may be present in the near-field region but not
in the far-field region are only the evanescent waves. These waves, as depicted
in Fig. 4.4, are exponentially attenuated with the distance and, hence, very
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close measurements to the antenna must be performed in order to be able to
measure them.

4.4 Visible spectrum: resolution in the equiva-
lent currents

So far, the waves radiated by the radiating sources have been classified in
evanescent and propagating waves. Thus, it is worth to study the effect in the
reconstructed equivalent currents if all these waves (propagating and evanes-
cent) are measured or if just the propagating waves, which can always be mea-
sured (whichever the measurement distance is), are taken into account. To do
this, the relation between the plane wave spectrum and the equivalent currents
must be considered.

From previous chapters, this relation is stated by a Fourier transform of
the plane wave spectrum. If only the propagating waves are considered, just
the visible spectrum is used to reconstruct the equivalent currents. However,
if the evanescent waves are considered, the non-visible spectrum is also used.
Of course, due to the exponentially attenuation of the evanescent waves, not
all the evanescent waves can be measured, but some of them and, specifically,
those waves with (kx,ky) close to the circle of radius k. Hence, there is a limit
on the maximum region of the plane wave spectrum applied to reconstruct the
equivalent currents. From the Fourier transform properties [79], the limits in
the kx axis (±kxmax) and in the ky axis (±kymax) of the plane wave spectrum,
and the precision in the equivalent currents are related as follows:

∆x =
π

kxmax
(4.4a)

∆y =
π

kymax
(4.4b)

where ∆x and ∆y are the spatial precision in the x and y axis, respectively.
In the limit case, in which just the visible spectrum can be applied (±kxmax =

±kymax = k), the precision becomes:

∆x =
λ

2
(4.5a)

∆y =
λ

2
(4.5b)
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As commented above, the evanescent waves are hard to measured, thus,
their information is not normally used. For this reason, the most typical situa-
tion is the last one, in which just the visible spectrum is applied. To illustrate
the resolution achieved in this situation, the antenna formed by 2 x̂-directed
slots (also studied in the previous chapter) was simulated again. In this case,
however, the field was computed in the far-field region. In addition, four di-
fferent cases with four different separations between the slots were considered.
Fig. 4.5 shows the diagram with the variable Sepx indicating the separation
between the slots, which positions are: −Sepx/2 and Sepx/2 in the x axis.

Figure 4.5: Diagram of the antenna formed by 2 slots with several separations
between the slots.

Once the far field was simulated with FEKO [4], the microwave holographic
technique (see Section 3.4.1), which just uses the far-field information, was
applied. As a result, the equivalent currents were obtained on a surface close
to the XY plane. Fig. 4.6 shows the x component of the resulting equivalent
magnetic currents for the different separations (the y component is negligible).
As can be observed, the closer the elements are, the harder it is to distinguish
them.

Fig. 4.7 shows the cross section at y = 0 of the reconstructed equivalent
currents for all the separations depicted in Fig. 4.6. By looking at these cross
sections, it can be observed how the positions of the maximums, which corre-
spond to the positions of the slots, are correctly placed. However, for the case
of a separation of 0.8 λ and 0.4 λ, the maximums are not clearly distinguished,
and, hence, the slots are not detected.

To explain this situation, the concepts of precision and resolution must
be reviewed. On the one hand, the precision is the distance between two
consecutive points in the spatial domain. On the other hand, the resolution
is the ability to distinguish the spectral response of two or more signals [91].
Thus, for this thesis, the resolution is the minimum separation that must exist
between two consecutive elements to be clearly distinguished.

The main difference between these two concepts lies in the possibility of
improving each one. Whereas the precision can be easily increased, the im-
provement of the resolution is hard to be obtained.

In order to increase the precision, a zero padding technique may be applied
to the spectral signal [91]. This technique adds zeros beyond the known region
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Figure 4.6: Reconstructed equivalent currents from far-field measurements
using the microwave holographic technique for the antenna formed by 2 slots

with several separations between the slots.

on points were the spectral signal is not known. Thus, smoother spatial signals
are obtained due to the interpolation produced in the spatial domain [91]. In
the above examples, if the zero padding technique were not applied, i.e., if just
the visible spectrum were used, the currents would be obtained on samples
separated λ/2 (4.5), i.e., the precision would be λ/2.

Nevertheless, as can be observed in Fig. 4.6 and Fig. 4.7, the currents are
depicted on closer points. This is because the zero padding technique was
applied to improve the precision up to λ/4. The resulting plane wave spectrums
from this zero padding are shown in Fig. 4.8.

By looking at the above results, it can be observed how the zero padding
increases the precision but not the resolution. Thus, even though more zeros
would had been added to the spectrum, the slots separated 0.8 λ and 0.4 λ
could not have been distinguished.

Hence, the improvement of resolution is not achieved by just adding zeros
in the non-visible spectrum, but the exact value of the spectrum in this region
must be known. Furthermore, it is also important the window employed for the
spectrum. In this thesis, a rectangular window [79] is used, which is the best
window regarding the resolution. However, other windows, e.g. a hamming
or a triangular window, might have been applied to decrease the sidelobes. In
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Figure 4.7: Section at y = 0 of the reconstructed equivalent currents from
far-field measurements using the microwave holographic technique for the

antenna formed by 2 slots with several separations between the slots.

this thesis, this problem is not dealt with and, hence, the rectangular window
is applied to the known spectrum.

By using the beamwidth at −3 dB of the rectangular window (∆−3dB =
2/δk) [91],[79], and the width of the visible spectrum (δk = 2k), see Fig. 4.3,
it may be deduced that the maximum resolution that can be achieved by just
using the visible spectrum is 1 λ. Next section deals with the ways in which
this resolution can be improved.

4.5 Improvement of resolution

The improvement of resolution in the reconstructed equivalent currents con-
sists, basically, in obtaining the non-visible spectrum. The information of this
part of the spectrum is present in the evanescent waves, whose measurement
depends on the measurement distance and on the dynamic range of the net-
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Figure 4.8: Visible region with zero padding of the y component of the plane
wave spectrum for the antenna formed by 2 slots with several separations

between the slots.

work analyzer. Thus, if the measurement is taken at a quite short measurement
distance so that the network analyzer can measure some part of these waves,
the non-visible spectrum can be directly computed.

In these cases, the use of the microwave holographic technique (see Sec-
tion 3.4.1) would eliminate this information since this technique just considers
the visible spectrum. To avoid this problem the SWE-to-PWE transformation
(see Section 3.4.2) may be used. This technique applies the information of the
measured evanescent waves to obtain the non-visible spectrum.

To illustrate the advantages of this technique, the SWE-to-PWE transfor-
mation was applied to reconstruct the equivalent currents of the slot-array
antenna formed by 2 elements and separated 0.8 λ (see Fig. 4.5). In this case,
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instead of simulating the radiated field in the far-field region, the field was
obtained in the near-field region, at 1 λ, as in the example of Section 3.3. By
doing so, the field was simulated close enough to include several evanescent
waves.

Once the spherical near-field measurement was obtained, the transmitting
coefficients were determined and the algorithm described in Section 3.4.2 was
carried out. As a result, the plane wave spectrum was not only computed in the
visible region, but also in the invisible region on points satisfying the condition:√
k2
x + k2

y ≤ 1.5k (from this limit, the resolution allows the elements separated

0.8 λ to be distinguished). Fig. 4.9 shows this spectrum. As can be observed,
the obtained region was greater than the visible region, though a problem arose
in the circle of radius k. The spectrum on this circle could not be obtained due
to the constant kz in the denominator of the expression (3.26). In the circle
of radius k the constant kz is 0 and, hence, by applying (3.26), a singularity
is produced at these points. In [64] a solution to this problem is proposed by
means of the Weyl identity [92].
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Figure 4.9: y component of the plane wave spectrum from near-field
measurements using the SWE-to-PWE transformation for the antenna formed

by 2 slots separated 0.8 λ

Moreover, it must be pointed out that the number of modes applied to
the computation of the plane wave spectrum was higher than the usual limit
of N = kr0 + 10 proposed in [20]. As described in [13], a higher number of
modes are required to achieve the convergence in the non-visible spectrum.
Specifically, the number of modes used in this example was N = kr0 + 40.

By applying the plane wave spectrum of Fig. 4.9 to reconstruct the equiva-
lent currents, a better resolution was obtained in these currents. Fig. 4.10(a)
shows the 2D representation of the x component of the equivalent magnetic
currents and Fig. 4.10(b) shows the cross section of these currents at y = 0. As
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can be observed, the use of the non-visible spectrum enhances the resolution
so that, now, both slots are clearly distinguished.
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Figure 4.10: Reconstructed equivalent currents from near-field measurements
using the SWE-to-PWE transformation for the antenna formed by 2 slots

separated 0.8 λ.

From previous results it can be seen that the non-visible spectrum is re-
quired to improve the resolution in the reconstructed equivalent currents. The
problem arises on choosing the technique to compute the non-visible spectrum.
If just the modal expansion methods are considered, the above technique (SWE-
to-PWE transformation) offers quite good results for near-field measurements.
However, several drawbacks can be found.

First of all, the near-field measurement must be taken extremely close to
the antenna in order to be able to measure the evanescent waves. For instance,
the previous example required to simulate the near-field at 1 λ to include
the information of the evanescent waves up to kr = 1.5k in the plane wave
spectrum. Nevertheless, this was not a realistic situation since, in practice,
this measurement would have entailed serious coupling problems between the
probe and the antenna.

In addition, the dynamic range of the network analyzer and the noise level
must be also taken into account. These factors limit the minimum measurable
radiated field power and, hence, the evanescent waves that can be measured.
For instance, for the real antennas studied in Section 3.4.1 with MHT, it was
not possible to achieve the convergence with the SWE-to-PWE transformation
though the measurement was taken in the near-field region and quite close to
the antenna. For these cases, the dynamic range of the network analyzer should
have been larger than 50 dB. Furthermore, at these levels, the reflectivity of
the anechoic chamber also affects the measurement and, hence, may mask the
evanescent waves.
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Moreover, as described in [13], the number of modes required to achieve the
convergence in the non-visible spectrum is higher than the typical N = kr0 +10
limit. To increase this limit, the number of sample points in the measurement
grid must be enhanced, what entails a longer measurement time and a higher
computational cost, specially for electrically large antennas.

Therefore, in many cases, the non-visible spectrum cannot be obtained with
just near-field measurements, e.g. because the near-field measurement cannot
be taken close enough to the antenna, or because the dynamic range of the
network analyzer is not wide enough. All these reasons lead normally to just
be able to consider the visible spectrum.

In these cases, other techniques must be applied. Next chapter deals with
these techniques which, basically, add prior knowledge of the antenna to ob-
tain the non-visible spectrum. By doing so, part of the evanescent waves is
recovered. Thus, the resolution is enhanced in the reconstructed equivalent
currents.
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Chapter 5

High-resolution algorithms

The plane wave spectrum used to reconstruct the equivalent currents of an
antenna is restricted to a limited region. In the limit case, just the visible spec-
trum is available, what limits the resolution to just 1 λ in the spatial domain.
To improve this resolution, the non-visible spectrum must be determined. This
chapter describes and introduces several techniques to carry out the computa-
tion of the non-visible spectrum by using prior information about the antenna.

5.1 Introduction

The determination of the non-visible spectrum from the visible spectrum may
be done by an extrapolation technique [25]. The general goal of this technique
is to estimate a signal f(t) from a limited known segment g(t) of this signal
and a priori information about the signal f(t), either in the actual domain (t)
or in the transformed domain (f).

To achieve an accurate estimate of f(t), several methods have been proposed
to perform the extrapolation. The most common methods are: the maximum
entropy method [34] and minimum error energy method [26]-[33]. The main
difference between these methods is the non-linearity of the maximum entropy
method in front of the linearity of the minimum error energy method. For this
reason the minimum error energy method has become the most widely used
technique.

Specifically, the Papoulis-Gerchberg algorithm, which implements a mini-
mum error energy method, has been the most widely used algorithm. Interest-
ing applications can be found in literature, e.g. to reduce the truncation errors
in near-field measurements [93],[94] or to locate surface distortions in large re-
flector antennas [95]. The most important problem of this technique is that the
extrapolation is done by means of an iterative algorithm whose stop criterion
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has not been found up to date. Furthermore, the speed of convergence of the
iterative technique is low and, hence, a long computation time is required to
obtain an accurate estimate.

To accelerate the convergence of the Papoulis-Gerchberg algorithm an acce-
leration constant was proposed in [29]. Also, direct versions of the algorithm,
the so-called extrapolation matrix for 1-D signals [30] or 2-D signals [31],[32]
have been proposed. The aim of these techniques is to obtain the same result
that would be obtained with the Papoulis-Gerchberg algorithm after a specific
or an infinite number of iterations.

In addition, an interesting direct technique, the so-called Prior discrete
Fourier transform [36], has been proposed. The criterion of extrapolation of
this technique is the minimum weighted norm, which is slightly different from
the criterions used in the above methods. The advantage of the Prior discrete
Fourier transform lies in that it offers quite good results [96] in the reconstruc-
tion of the equivalent currents for real antennas.

The chapter describes all these techniques as follows: First a review of
the most important extrapolation techniques is done. Then, the Papoulis-
Gerchberg algorithm is described in its iterative version by applying all the
available information about the antenna. Later, the extrapolation matrix in
1-D and 2-D of the Papoulis-Gerchberg algorithm is presented. Finally, the
prior discrete Fourier transform is described and several real results are shown.

Before to proceed, however, it must be pointed out that all the results
presented in this chapter have been done with MATLAB R© (R2007a). The
computer had a processor Pentium R© 4 at 3.2 GHz and 2 GB of RAM memory.
Thus, all the computation times that are indicated from now on are referred
to this computer.

5.2 Extrapolation techniques

The extrapolation techniques estimate a signal f(t) from a segment g(t) of this
signal. Fig. 5.1 shows graphically this goal for the 1-D case.

Figure 5.1: Extrapolation technique.
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Mathematically, both signals related as:

g(t) =

 f(t), |t| ≤ T

0, |t| > T
(5.1)

The estimate is done by incorporating additional information to the extra-
polation procedure. One of the most common data is the band-limitation in
the transformed domain. Thus, if a signal in the time domain is limited in
the frequency domain by ω0, the following condition may be imposed in the
transformed domain:

F (ω) = 0, |ω| > ω0 (5.2)

In general, this band-limitation may be seen as a mask on the transformed
domain. If the signal is just band-limited, the mask is a rectangular window.
However, more information may be known about the transformed signal, e.g.
some knowledge about the shape of the signal or some periodicity in the spec-
trum. For this reason, a more general way to express the prior information
about the transformed signal is the following expression:

Fprior(ω) = P (ω)F (ω) (5.3)

where P (ω) is the prior information function.
The way in which this information is introduced in the extrapolation pro-

cedure depends on the specific method applied for the extrapolation. These
methods are characterized by the criterion used to find the best estimate. In
literature, several useful methods may be found, however, the most common
are the maximum entropy method and the minimum error energy method.

On the one hand, the goal of the maximum entropy method (or Burg’s
maximum entropy method) [34],[35] is to maximize the integral entropy given
by:

H =
∫ π/∆

−π/∆
ln(f̂(t))dt (5.4)

where H is the entropy and f̂(t) is the estimate of the signal obtained with
the extrapolation method.

This is the basic definition of the Burg’s method and, as can be observed,
it is a non-iterative and non-linear method which does not include the in-
corporation of new information in its primary definition. The main problem
of this technique is its tendency to produce spurious when the data is over-
sampled [97]. To avoid this problem, prior information may be incorporated
as a weighting function [97] to the method. By doing so, and considering the
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non-linearity of the method, a high degree of resolution may be obtained in the
extrapolated signal.

On the other hand, the minimum error energy method is based on minimi-
zing the error energy (E) of the estimated signal f̂(t) with regard to the ideal
signal f(t). This energy may be expressed as:

E =
∫ ∞
−∞
|f(t)− f̂(t)|2dt. (5.5)

The most important algorithm that applies this method is the so-called
Papoulis-Gerchberg algorithm. This algorithm was first proposed in 1973 by
Papoulis [26] and, independently, in 1974 by Gerchberg [27]. Later, Papoulis
proved the convergence of the method in 1975 [28].

The Papoulis-Gerchberg algorithm is applied on band-limited signals (5.2).
The estimation is performed iteratively, by replacing the known part in the
time domain and filtering in the transformed domain. Though in [28] the
convergence of the algorithm was proved, no general stop criterion has been
established. Nevertheless, the stop criterion has been studied for special cases.
For instance, in [98] a stop criterion was proposed for the application of the
method in the reduction of truncation errors in near-field measurements. Also,
in [99] a study of the number of iterations to achieve accurate results in the
reconstruction of the equivalent currents was done.

An accelerate version of the Papoulis-Gerchberg algorithm was proposed
in [29] and a non-iterative version based on the extrapolation matrix in [30],[31].
This last version allows the estimate to be obtained after a specific number of
iterations or after an infinite number of iterations, i.e., the result towards which
the iterative algorithm converges.

Apart from the Papoulis-Gerchberg algorithm, other methods have been in-
troduced whose goal is to minimize the integral (5.5). Among these methods,
one of the most important methods is the method proposed by Cadzow [33]
based on alternating orthogonal projections [100]. This method has an itera-
tive and a non-iterative version [101] - [103]. The result of this non-iterative
algorithm is the same as the result obtained in [104] by minimum least squares.

Nevertheless, it is worth to mention that other extrapolation criterions have
been introduced, though they are less used. The goal of these criterions is to
improve the solution in specific cases or extend the applicability of the previous
criterions. For instance, in [105] and [106] time domain limitations are applied
to improve the extrapolated signal within the region of the signal obtained with
the previous methods.

Furthermore, energy constraints can be also applied to improve the ex-
trapolated signal. By doing so, the error done by not measuring the signal
on maximum energy positions may be corrected [107]. In addition, a generic
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mask (5.3) may be used to indicate an approximate shape of the estimated
signal [108], or to compensate the effect of noise on measurements [109].

Another important method is the Prior discrete Fourier transform [36],
which applies the minimum weighted norm criterion to perform the extrapola-
tion. This transformation goes beyond the simply band-limitation (5.2), and
is able to apply an arbitrary mask of prior information (5.3). In addition, the
extrapolation is non-iterative, what avoids long iterative procedures. However,
it is worth to mention that other problems must be faced up to such as the
ill-conditioning and the size of the resulting equation systems.

Among all the previous extrapolation methods, this thesis pays special at-
tention to the Papoulis-Gerchberg algorithm. The reason for this election is the
linearity of the method and the wide range of applications of algorithm [95],[94].
First of all, the iterative version is reviewed and, then, the direct transforma-
tions are also studied. Later, the Prior discrete Fourier transform is fully
discussed and applied, since it is a general technique with quite good practical
results.

Before study all these algorithms, two comments must be done. Firstly,
it must be pointed out that, all these algorithms are normally proposed for
1-D signals and, later, extended to the 2-D case. In this chapter the aim is to
extrapolate the visible plane wave spectrum. Hence, the interest lies in the 2-D
versions of the algorithms. For this reason, though the 1-D versions may be
shortly explained in some cases, the attention is focused on the 2-D versions.

Secondly, a small change must be applied to the common versions of the
algorithms. Normally, for 2-D signals, the signal is known (and limited) in the
spatial domain and the band-limitation is produced in the spectral domain.
However, in the case dealt with in this chapter, the known (and limited) 2-D
signal is the visible spectrum, and the band-limitation is done in the spatial
domain since this limitation is done from the knowledge of the maximum size
of the antenna. Thus, a change is always done in the order of application of the
Fourier transforms to adapt the algorithms to the requirements of this chapter.

5.3 Papoulis-Gerchberg algorithm

The Papoulis-Gerchberg algorithm is an extrapolation technique for band-
limited signals. The 1-D version of the algorithm starts from the known seg-
ment of the signal to extrapolate (5.1). As additional information, the band-
limitation of the signal in the transformed domain (5.2) is used. The estimation
is done iteratively in such a way that, on each iteration, the error energy of the
estimated signal decreases.

Basically, the algorithm works as follows. Firstly, the known segment of
the signal (g(t)) is transformed into the frequency domain (G(ω)) by means of
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a Fourier transform (for discrete signals, the FFT algorithm is normally em-
ployed). Secondly, the signal G(ω) is filtered according to the band-limitation
of the signal that is being estimated (5.2). As a result, a filtered signal (F1(ω))
is obtained. Later, this signal is transformed into the time domain (f1(t)) by
an inverse Fourier transform (the IFFT algorithm for discrete signals). This
signal is not exactly the same as the original signal g(t), nor the ideal signal
f(t). However, from (5.1), it is known that the estimate f1(t) must be exactly
g(t) between −T and T . For this reason, the values of the signal f1(t) in [−T, T ]
are substituted by the values of g(t) in this interval. By doing so, a new signal
is obtained (g1(t)) which is the result of the iterative algorithm after the first
iteration.

The above algorithm is repeated iteratively so that the signal obtained on
each iteration (gn(t)) is a better estimate of the signal f(t) than the estimation
in the previous iteration (gn−1(t)). Mathematically, the iterative Papoulis-
Gerchberg algorithm may be expressed as follows:

gn(t) = wn−1(t) ∗ sinTt
πt

(5.6)

where gn(t) is the estimation of the signal f(t) in the n-th iteration, the
symbol ∗ indicates convolution, and the signal wn(t) is given by:

wn(t) =

 g(t), |t| ≤ T

gn(t), |t| > T
(5.7)

with g0(t) = 0.
The application of the Papoulis-Gerchberg algorithm to 2-D signals requires

several modifications. First of all, the Fourier transforms (direct and inverse)
must be 2-D transforms. In practice, these transformations are done by first
applying the Fourier transform by rows and, later, by columns. For discrete
signals the Fourier transform is normally performed by the Fast Fourier Trans-
form (FFT) algorithm and the Inverse Fast Fourier Transform (IFFT) algo-
rithm [79].

Furthermore, as commented above, the signal to extrapolate in this chapter
is a signal in the spectral domain, and the band-limitation is known in the
spatial domain (the equivalent currents are limited by the size of the antenna).
For this reason, the order of application of the previous Fourier transforms
must be on the way round of the algorithm described above for 1-D signals.

Finally, for 2-D signals, the band-limitation in the transformed domain does
not just consist in applying a rectangular window. In 2-D, the limitation in the
transformed domain may be a square, but also a triangle, a circle, or, in general,
any shape. Thus, the band-limitation in the spatial domain may adapt to the
shape of the antenna that is being studied. In addition, the known segment of
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the spectrum may have any shape, however, for the case under study for this
thesis, this shape is always a circle of radius k, i.e., the visible spectrum.

By applying the previous considerations, the 2-D version of the Papoulis-
Gerchberg algorithm works as depicted in Fig. 5.2. As can be observed, the
algorithm starts from the visible spectrum with zeros outside the circle of radius
k (the non-visible region). This spectrum is first transformed into the spatial
domain by an inverse Fourier transform. The resulting signal is filtered by
applying the known limitation of the signal in the spatial domain (in general,
the filter may be any function fitted to the shape of the antenna). Later, the
filtered signal is transformed into the spectral domain by a Fourier transform.
Finally, the visible spectrum is substituted into the signal obtained after the
last transformation, what allows the estimate in the first iteration (G1(kx, ky))
to be obtained.

Figure 5.2: 2-D Papoulis-Gerchberg algorithm.

The previous procedure is repeated iteratively, what leads to obtain better
estimates of the spectral signal in the non-visible spectrum on each iteration
(proof of convergence of this 2-D version can be found in [31],[110]). The last
step consists in transforming the resulting spectrum (the known visible region
and the estimated non-visible spectrum) into the space domain. By doing
so, the equivalent currents are obtained with an improved resolution since the
known part of the plane wave spectrum is larger.
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Similarly to the 1-D version of the algorithm, the estimation at the n-th
iteration Gn(kx, ky) of the 2-D Papoulis-Gerchberg algorithm may be expressed
as follows:

Gn(kx, ky) = Wn−1(kx, ky) ∗ FFT2D{f(x, y)} (5.8)

where the symbol ∗ indicates 2-D convolution, FFT2D{f(x, y)} is the
Fourier transform of the generic filter in the spatial domain (f(x, y)), and the
signal Wn(kx, ky), particularized to the case in which the known segment is the
visible spectrum, is obtained as:

Wn(kx, ky) =


G(kx, ky),

√
k2
x + k2

y ≤ k

Gn(kx, ky),
√
k2
x + k2

y > k

(5.9)

with G0(kx, ky) = 0.
The election of the number of iterations that must be applied to obtain a

good estimate depends on the case. For this thesis, as pointed out in [99], the
adopted stop criterion has been a tradeoff between the number of iterations,
the computation time and the improvement achieved on each iteration. Thus,
the time used to perform one iteration has been compared to the improvement
of the estimate on one iteration. Furthermore, a tendency of both factors has
been compared and, from this behavior, a conclusion about the number of
iterations to apply has been taken.

Simulated results 1 The Papoulis-Gerchberg algorithm was tested with
the slot-array antenna depicted in Fig. 4.5. This antenna is formed by two
x̂-directed slots placed on the x axis. The separation between the slots was
0.8 λ for this test. As in the example of Section 4.4, the field radiated by
the antenna was simulated with FEKO [4] in the far-field region. Later, the
Microwave holographic technique was applied to this field what allowed the
plane wave spectrum to be obtained.

As can be observed in Fig. 4.8(c), the obtained spectrum only contains
information in the visible region. In order to obtain the non-visible spectrum,
the iterative algorithm depicted in Fig. 5.2 was applied. As space filter, a
square mask of 1.6 λ × 1.6 λ was applied.

The number of iterations was chosen according to the difference between
consecutive iterations and the time required to compute one iteration. Fig. 5.3(a)
shows the cross section of the y-component of the plane wave spectrum for sev-
eral number of iterations. In addition, the result is compared with the ideal
cross section. As can be observed, the higher the number of iterations is, the
more the resulting spectrum seems to the ideal spectrum. However, it can
also be seen that the relative improvement between 100 and 1000 iterations is
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higher than between 1000 and 5000 iterations. For this reason, the stop num-
ber was chosen at 5000 iterations. More iterations could have been employed,
however the improvement would not have been significant for the increase on
the computation time. Regarding to this computation time, for the case of
5000 iterations, the computation time was of around 20 min, though it must
be pointed out this time strongly depends on the computer and on the precision
used for the computations.

Fig. 5.3(b) shows the equivalent magnetic currents obtained from the plane
wave spectrum obtained after several number of iterations, and a comparison to
the ideal distribution. As can be observed, since the known region of the spec-
trum for a high number of iterations is quite large, the resolution is enhanced.
Thus, for the case of 5000 iterations, both slots are clearly distinguished.
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Figure 5.3: Cross sections of the result of the Papoulis-Gerchberg algorithm
after several number of iterations for slot-array antenna formed by 2 slots

separated 0.8 λ.

In order to show the behavior in 2-D, Fig. 5.4 shows the 2-D representations
of the plane wave spectrum (y-component) and the equivalent magnetic cur-
rents (x-component) after 5000 iterations. As can be observed, the non-visible
region of the plane wave spectrum is partly known, not only in the kx direc-
tion, but also in the ky direction. As a result, the equivalent currents shown in
Fig. 5.4(b) allows the slots to be clearly distinguished.

Simulated results 2 In order to test the Papoulis-Gerchberg algorithm in
a more complex situation, the antenna depicted in Fig. 5.5 was simulated with
FEKO [4] in the far-field region at 300 MHz. As can be observed, the antenna
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Figure 5.4: Result of the Papoulis-Gerchberg algorithm after 5000 iterations
for the slot-array antenna formed by 2 slots separated 0.8 λ.

is formed by 25 x̂-directed slots uniformly distributed in 5 rows and 5 columns
(a 5×5 slot-array antenna). The separation between elements is 0.4 λ, i.e., the
separation is smaller than the maximum resolution achieved with the visible
spectrum. In this antenna, one element was not fed so that, the aim of the
reconstruction algorithms is to find this slot. In Fig. 5.5 the slot that was not
fed is filled with a black color.

Figure 5.5: 5×5 slot-array antenna with elements uniformly distributed and
separated 0.4 λ, and one slot not fed.

Fig. 5.6 shows the result obtained by applying the MHT described in Sec-
tion 3.4.1 to the simulated far field of the antenna. As can be observed, just the
visible spectrum is obtained (see Fig. 5.6(a)). This region just allows a resolu-
tion of 1 λ and, hence, the elements of the antenna cannot be distinguished, as
shown in Fig. 5.6(b). In addition, if the slot that is not fed were not known, it
would not be possible to determine exactly which slot is not fed.

To improve the resolution, the Papoulis-Gerchberg algorithm depicted in
Fig. 5.2 was applied to the visible spectrum of Fig. 5.6(a). As a filter, a square
mask (with ones inside the mask and zeros outside) of 2 λ × 2 λ centered
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Figure 5.6: Result obtained by applying the MHT to the computed far-field
of the 5x5 slot-array antenna at 300 MHz.

at the origin was applied. After 5000 iterations it was detected that the im-
provement achieved by one iteration did not worth its computation time and,
hence, the algorithm was stopped (the 5000 iterations took 20 minutes to be
computed). Fig. 5.7(a) shows the spectrum obtained after 5000 iterations and,
as can be observed, part of the non-visible spectrum was determined. This new
information, however, was not enough in this case to be able to distinguish the
slots and detect the slot that was not fed. As can be seen in Fig. 5.7, a small
improvement can detected in the reconstructed equivalent current, but it is
clearly not sufficient for this antenna. Hence, it can be concluded that, though
the iterative algorithm work in many cases, in other cases is may not be enough
to use the maximum size of the antenna. Thus, more prior information about
the antenna is required to improve the resolution of the equivalent currents.

Practical results The iterative Papoulis-Gerchberg algorithm depicted in
Fig. 5.2 was also tested with the X-band slot-array antenna shown in Fig. 3.9.
This antenna was measured in the far-field region at 2.70 m. The operating
frequency was 10 GHz.

In Section 3.4.1 it is described the way in which the plane wave spectrum
was determined. As a result, the visible spectrum shown in Fig. 5.8(a) was
obtained, what led to the equivalent magnetic currents shown in Fig. 5.9(a).
To improve the resolution of these currents, the iterative algorithm of Fig. 5.2
was applied to the spectrum of Fig. 5.8(a) with a rectangular spatial filter of
5.12 λ × 2 λ centered at the origin.

Fig. 5.8(b) shows the plane wave spectrum after 5000 iterations. As can be
observed, part of the non-visible spectrum is obtained. However, some kind of
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Figure 5.7: Result obtained by applying the MHT to the computed far-field
of the 5x5 slot-array antenna at 300 MHz and the Papoulis-Gerchberg

algorithm with 5000 iterations.

singularities are observed in the zone of the non-visible spectrum closed to the
circle of radius k. The reason of these singularities is the quite big filter used
in the iterative algorithm.
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(a) Visible spectrum (AEy).
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(b) Spectrum (AEy).

Figure 5.8: Improvement in the plane wave spectrum of the X-band slot-array
antenna formed by 7 slots by applying the Papoulis-Gerchberg algorithm with

5000 iterations.

Fig. 5.9(b) shows the equivalent currents obtained from Fig. 5.8(b). Due to
the singularities near the circle of radius k, the result is quite bad. No element
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is clearly distinguished and singularities may be observed closed to the edge of
the filter.
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(a) Initial currents (Mx).

x [λ]

y
[λ

]

 

 

0.0
0.2
0.4
0.6
0.8
1.0

−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3

(b) Final currents (Mx).

Figure 5.9: Improvement in the reconstructed equivalent currents of the
X-band slot-array antenna formed by 7 slots by applying the

Papoulis-Gerchberg algorithm with 5000 iterations.

In Fig. 5.10 the value on each slot after the application of the Papoulis-
Gerchberg is represented and compared to both, the ideal distribution and the
currents obtained from just the visible spectrum. By looking at this figure, it
can be concluded that, though singularities appear on the edge of the filter, an
improvement in the resolution is achieved inside the filter. As can be observed,
a certain cosine distribution inside the slot is observed, though the envelope
is not preserved after the application of the iterative algorithm. Thus, it can
be concluded that the Papoulis-Gerchberg algorithm works correctly, though
some little errors are detected. To eliminate these errors, new information is
required.

−28

−24

−20

−16

−12

−8

−4

0

1 2 3 4 5 6 7
slots

M
x

[d
B

]

 

 

Mx after 5000 iterations
Mx from visible spectrum
Ideal

Figure 5.10: Equivalent currents on the positions of the slots of the X-band
slot-array antenna formed by 7 slots by applying the Papoulis-Gerchberg

algorithm with 5000 iterations.
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5.3.1 Spectral periodicity

In order to improve the equivalent currents obtained by means of the Papoulis-
Gerchberg algorithm, new information about the antenna must be included.
This information consists in indicating, not only the size of the antenna, but
also the positions where the equivalent currents can only exist. For instance,
if the antenna is an array, it is known a priori that the equivalent currents are
only present on the positions where the elements of the array are placed.

The simplest situation arises when the array is formed by small elements
distributed uniformly. In this case, the equivalent currents may be considered as
a discrete function which points are equispaced. The advantage lies in that, no
matter the amplitude of the discrete points, the Fourier transform of this kind
of functions is periodic [111]. For instance, the Fourier transform of the discrete
function shown in Fig. 5.11(b), which is formed by two equispaced elements, is
the function shown in Fig. 5.11(a). As can be observed, this function is periodic
and, hence, by just knowing the periodic region, the whole function may be
determined by just replying this part on the suitable positions.
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(a) Spectrum.
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(b) Discrete signal.

Figure 5.11: Discrete function formed by 2 elements separated 0.8 λ and its
spectrum.

The period of the spectral function, i.e., the width of the region to reply
in the spectrum, is determined from the separation between elements (∆x and
∆y in the x and y axes, respectively). This period, noted as ∆kx and ∆ky, is
obtained as follows:
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∆kx =
2π
∆x

(5.10a)

∆ky =
2π
∆y

(5.10b)

The width of the replied region determines the positions where the replies
must be placed. Since the periodic region is centered in the origin, the positions
of the replies (kxrep ,kyrep) are exactly the same as the width of the periodic
region. Hence:

kxrep = ∆kx (5.11a)

kyrep = ∆ky (5.11b)

The application of this property to the equivalent currents of array antennas
implies an important advantage. Since, from this property, the plane wave
spectrum of the antenna is periodic, the whole spectrum may be determined
from just the visible spectrum. To do this, the antenna must be formed by
equispaced elements. From the separations between these elements, the period
of the spectrum is determined by (5.10) and the positions of the spectrum
(where the periodic function must be placed) by (5.11).

Example This property may be applied to the 5×5 slot-array antenna
shown in Fig. 5.5. Since the elements are separated 0.4 λ, the width of the
periodic region of the plane wave spectrum is, from (5.10), 2π/0.4 λ in both
axes (kx and ky), i.e., 2.5 if the width is normalized with regard to k. The
positions of the replies coincide with this value (5.11).

Thus, if the visible spectrum shown in Fig. 5.6(a) is replied according to
these values, the obtained plane wave spectrum is the spectrum shown in
Fig. 5.12(a). As can be observed, part of the non-visible spectrum is deter-
mined by just using the knowledge of the separation between the elements.
However, this new information is not enough to distinguish completely all the
elements with the correct amplitude. This fact can be observed in the corre-
sponding equivalent currents of this spectrum, shown in Fig. 5.12(b).

The reason for not obtaining the correct equivalent currents are the zeros
between the known regions in the spectrum shown Fig. 5.12(a). These regions
must be obtained to determine the amplitude of equivalent currents accurately.

The limit case in which the application of this technique allows the whole
spectrum to be directly obtained is that in which the elements are separated
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(a) Spectrum (AEy(kx, ky)).
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(b) Equivalent currents (Mx(x, y)).

Figure 5.12: Result obtained by applying the MHT to the computed far-field
of the 5x5 slot-array antenna at 300 MHz and replying the visible spectrum

according to the separation between elements (0.4 λ).

1/
√

2 λ. In that case, the replies of the visible spectrum overlap themselves and,
hence, the entire the spectrum is obtained. However, the closer the elements
are, the greater is the distance between the replies and, hence, the zero’s region
between the known part of the spectrum becomes larger, as shown Fig. 5.12(a)
for a separation of 0.4 λ.

To obtain the zero’s region between the replies of the visible spectrum,
the Papoulis-Gerchberg algorithm may be applied. In this case, two different
options arise depending on the order of application of each technique. Next,
both options are described.

5.3.1.1 Option 1: First PG algorithm and, then, replication of the
spectrum

In this first option [112], the Papoulis-Gerchberg algorithm is first applied by
using the maximum size of the antenna. By doing so, part of the non-visible
spectrum is obtained and, hence, the known part is larger than at the beginning,
when just he visible region is known.

Then, the width of the spectrum that must be replied is obtained by using
the separation between elements and, finally, by using this width (and the
positions of replies) the spectrum is replied. In this case, however, instead of
replying the visible spectrum, the spectrum obtained by means of the Papoulis-
Gerchberg algorithm is used. Thus, the zero’s region between replies is mini-
mized since this part is obtained by the iterative algorithm.
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Simulated results The above procedure was tested with the 5×5 slot-array
antenna shown in Fig. 5.5. The spectrum obtained after 5000 iterations is
shown in Fig. 5.7(a). As commented above, since the separation between el-
ements is 0.4 λ, the width (and the positions of the replies) normalized with
regard to k is 2.5 in the kx and ky axes. Thus, if the spectrum obtained with
the iterative algorithm is replied according the width and positions of replies,
the resulting spectrum is the one shown in Fig. 5.13(a).
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(a) Spectrum (AEy(kx, ky)).
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(b) Equivalent currents (Mx(x, y)).

Figure 5.13: Result obtained by applying the MHT to the computed far-field
of the 5x5 slot-array antenna at 300 MHz, and the algorithm described in the

option 1.

As can be observed in this spectrum, not only the visible region is replied,
but also the surrounding points around the circle of radius k, which have been
obtained by the iterative algorithm. This improved spectrum leads to the
equivalent currents shown in Fig. 5.13(b). In this case, the elements are better
distinguished than with the equivalent currents from the visible spectrum and
the amplitude of the different elements is closer to the ideal currents (in the
ideal currents, all the slots have the same weight, apart from the slot that is not
fed). Nevertheless, it must be pointed out that this amplitude is not completely
uniform. Certain variations can be observed due to the fact that the iterative
algorithm does not obtain a large enough area of the non-visible spectrum. For
this reason, the next option proposes a modification to improve the result.

5.3.1.2 Option 2: First replication of the spectrum and, then, PG
algorithm

The second option [113],[114] makes use of the spectrum replies during the
iterative algorithm so that the replies help to improve the extrapolation per-
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formed by the Papoulis-Gerchberg algorithm. To do this, the iterative algo-
rithm (shown in Fig. 5.2) not only substitutes the visible spectrum on each
iteration, but also the replies of the visible spectrum present in the non-visible
spectrum due to the discrete behavior of the antenna.

Therefore, the modified iterative algorithm for discrete signals works as
depicted in Fig. 5.14. As can be observed, the algorithm basically works as the
iterative algorithm shown in Fig. 5.2. The difference lies in the substitution
of the known part of the spectrum in the iterative algorithm. Now, since the
antenna is discrete and the elements are equispaced, it is known a priori that
the spectrum is periodic. Hence, the replies of the visible spectrum, which
positions are determined according to the separation between elements (5.11),
are also substituted.

Figure 5.14: 2-D Papoulis-Gerchberg algorithm with replies of the spectrum.

Simulated results The algorithm described above was tested with the 5×5
slot-array antenna depicted in Fig. 5.5. As commented above, according to the
0.4 λ of separation between elements, the width of the spectrum that must be
replied is 2.5 (in normalized with regard to k form). This width coincides with
the positions of the replies of the visible spectrum.

By using the previous positions of replies, the iterative algorithm depicted
in Fig. 5.14 was applied. As a result, the spectrum shown in Fig. 5.15(a) was
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obtained after 5000 iterations. By looking at this figure, and comparing this
result to the spectrum of Fig. 5.13(a), it can be seen how the spectrum ob-
tained with this second option somewhat better than the result of the first
option. Specially, on points where the spectrum of Fig. 5.13(a) is completely
zero, the spectrum shown in Fig. 5.15(a) has a correct value. As a proof of
this improvement, Fig. 5.15(b) shows the corresponding equivalent currents
determined from the spectrum of Fig. 5.15(a). In this case, not only the ele-
ments are clearly distinguished, but also the amplitude is more uniform than
the amplitude of the currents shown in Fig. 5.13(b).
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(a) Spectrum (AEy(kx, ky)).
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(b) Equivalent currents (Mx(x, y)).

Figure 5.15: Result obtained by applying the MHT to the computed far-field
of the 5x5 slot-array antenna at 300 MHz, and the algorithm described in the

option 2.

Practical results This second option was also applied to improve the re-
solution in the equivalent currents of the X-band slot array antenna shown
in Fig. 3.9. In this case, the slots are not discrete elements, however it may
be assumed that the energy is in the center of the slot and, hence, assume a
separation of 0.66 λ in the x axis (i.e., the separation between slots in this
axis). In the other axis, the y axis, the elements are not equispaced but a small
separation, i.e., the precision used for the simulation (0.01 λ), can be assumed.
Thus, the currents may inform about the position of the slots on this axis.

By using the previous separations, the algorithm depicted in Fig. 5.14 was
applied. The plane wave spectrum that was obtained is shown in Fig. 5.16(a).
By looking at this spectrum it can be seen how the assumed separation be-
tween slots in the x axis led to a periodic spectrum in the kx axis. Conse-
quently, the equivalent currents that were determined were the currents shown
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in Fig. 5.16(b). As can be observed, the energy is concentrated on points
separated 0.66 λ.
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(b) Equivalent currents (Mx(x, y)).

Figure 5.16: Improvement in the plane wave spectrum of the X-band
slot-array antenna formed by 7 slots by applying the Papoulis-Gerchberg

algorithm with 5000 iterations and replies of the spectrum (option 2).

Fig. 5.17 shows the value of the equivalent currents depicted in Fig. 5.16(b)
on the positions of the slots. By looking at this figure it can be concluded that
the replication of the spectrum does not lead to a reasonably distribution of
the currents in the y axis. Thus, though the 2-D representation indicates some
oscillation in this axis, the cross section indicates that some error has been
introduced by assuming the previous separations between slots. Next, other
kinds of filters are studied.

5.3.2 Restrictive filters

From previous results it can be seen how the Papoulis-Gerchberg in conjunction
with the replication of the spectrum may help to the diagnosis of antennas
formed by small elements. If the antenna is not formed by small elements, the
technique concentrates the energy on discrete points so that the result can be
interpreted to perform the diagnosis accurately.

Nevertheless, to improve the result when the antenna is not formed by
quite small elements, e.g., the X-band slot-array antenna formed by 7 elements
studied previously and shown in Fig. 3.9, a more complex filter may be used
during the iterative algorithm. Thus, the filter may consist not only in a square
mask according to the maximum size of the antenna, but also a mask with 1’s
on the positions of the radiating elements and 0’s outside. By doing so, the
result is constraint to positions where the equivalent currents are supposed

98



5.3 Papoulis-Gerchberg algorithm

−28

−24

−20

−16

−12

−8

−4

0

1 2 3 4 5 6 7
slots

M
x

[d
B

]

 

 

Mx with option 2 and 5000 iterations
Mx from visible spectrum
Ideal

Figure 5.17: Equivalent currents on the positions of the slots of the X-band
slot-array antenna formed by 7 slots by applying the Papoulis-Gerchberg

algorithm with 5000 iterations and replies of the spectrum (option 2).

to exist. Nevertheless, it must be taken into account that the use of these
restrictive filters does not allow the errors outside the radiating areas to be
found. Hence, special care must be taken when applying these kinds of filters
since the application of a wrong filter might lead to a non-correct diagnosis.

Practical results To test the effect of a restrictive filter, the plane wave
spectrum of the X-band slot-array antenna shown in Fig. 3.9 was extrapolated.
Fig. 5.8 shows the visible spectrum of this antenna and the spectrum obtained
by applying the Papoulis-Gerchberg algorithm with a rectangular spatial filter
(including all the slots).

In this section, the applied filter was a mask with ones on the exact positions
where the slots are, i.e., on the points where the antenna radiates, and zeros
outside. This filter may be observed in Fig. 5.18.
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Figure 5.18: Spatial filter restricted to the positions of the slots.

By applying the previous filter in the iterative algorithm, the resulting equi-
valent currents after 1000 iterations were fitted to just the positions of the slots.
Fig. 5.19(b) shows the obtained equivalent currents and, as can be observed,
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currents are only present on the points of the filter which value is 1. To obtain
these currents, the plane wave spectrum that was determined by the extra-
polation algorithm was the spectrum shown in Fig. 5.19(a). Here it can be
seen how a wide region of the non-visible spectrum is determined and a certain
periodicity is observed, as predicted in previous section due to the equispaced
behavior of the slots in the x axis.
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(b) Equivalent currents (Mx(x, y)).

Figure 5.19: Improvement in the plane wave spectrum of the X-band
slot-array antenna formed by 7 slots by applying the Papoulis-Gerchberg

algorithm with a restrictive filter and 5000 iterations.

Nevertheless, by looking at Fig. 5.19(b) is can also be concluded that the sin-
gularities have been translated from the edge of the large filter (see Fig. 5.9(b))
to the edge of the restrictive filter. This fact can also be seen in the obtained
equivalent currents on the positions of the slots shown in Fig. 5.20. In this fig-
ure it can be observed that, though certain correct behavior inside the slot can
be detected, singularities arise on the edge of the slots. To avoid these singular-
ities, a higher number of iterations might be used, however, this higher number
of iterations would increase considerably the computation time. To reduce the
computation time, next sections describe and propose several methods.

5.3.3 Acceleration constant

One of the most important drawbacks of the Papoulis-Gerchberg algorithm is
its speed of convergence. Though a termination criterion is not available, a
great number of iterations are required to achieve a result with a small error.
This high number of iterations implies a high computation time, especially for
2-D signals.
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Figure 5.20: Equivalent currents on the positions of the slots of the X-band
slot-array antenna formed by 7 slots by applying the Papoulis-Gerchberg

algorithm with a restrictive filter.

In [29] a modification of the iterative algorithm is proposed to speed up the
algorithm. The modification consists in multiplying the result on each iteration
by a factor computed from the result in the previous iteration. By doing so, the
convergence is earlier achieved and, hence, with a lower number of iterations,
the error becomes quite small to be able to stop the iterative algorithm.

The algorithm is proposed for 1-D signals, however, in this thesis the interest
is on 2-D signals (the plane wave spectrum). For this reason, in this section
the extension to 2-D is described, as proposed in [115].

The inclusion of an acceleration constant is based on the mathematical
representation of the Papoulis-Gerchberg depicted in expression (5.8). As de-
scribed above, the result on the iteration n is computed from the convolution
of the Fourier transform of the spatial filter FFT2D{f(x, y)} with the function
Wn(kx, ky) computed as shown in (5.9). To speed up the iterative algorithm,
this function is computed in a different way. In this case, a multiplicative factor
An is added on each iteration as follows:

Wn(kx, ky) =


G(kx, ky),

√
k2
x + k2

y ≤ k

AnGn(kx, ky),
√
k2
x + k2

y > k

(5.12)

with G0(kx, ky) = 0.
As can be observed in this expression, the function Wn(kx, ky) is computed

from the visible spectrum and from the non-visible spectrum (which is ob-
tained on each iteration) multiplied by the constant An. The computation of
this factor is done so that the error produced on each iteration (G(kx, ky) −
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AnGn(kx, ky)) and the signal obtained on each iteration (Gn(kx, ky)) are or-
thogonal. This orthogonal relation is expressed in the following way:

∞∑
kx=−∞

∞∑
ky=−∞

[[G(kx, ky)−AnGn(kx, ky)]−G∗n(kx, ky)] = 0 (5.13)

where G∗n(kx, ky) is the complex conjugate of the function Gn(kx, ky).
At first, from (5.13), the computation of An requires the knowledge of the

entire spectrum G(kx, ky), which is not known. However, from the derivation of
the acceleration constant described in [29], an expression to obtain An without
the requirement of knowing the correct function in the entire spectrum may be
achieved. Thus, in a similar way than in [29], the acceleration constant is given
by:

An =
Xn

Zn
(5.14)

The functions Xn and Zn are computed as:

Zn =
∞∑

kx=−∞

∞∑
ky=−∞

|Gn(kx, ky)|2 (5.15)

and

Xn = X1 +An−1(Xn−1Yn−1) (5.16)

where the function Yn is computed as follows:

Yn =
k∑

kx=−k

kymax∑
ky=−kymax

G(kx, ky)G∗n(kx, ky) (5.17)

The limits in the summations of the previous expression are chosen so that
the ideal function G(kx, ky) is only required on the spectral points (kx,ky)

inside the visible spectrum (
√
k2
x + k2

y ≤ k), i.e., the spectrum known at the
beginning. Thus, the first summation varies from kx = −k to kx = k, and the
second summation from ky = −kymax to ky = kymax , where ±kymax are the
limits on the ky axis within the visible spectrum for the value of kx taken in
the first summation.

The initial values of the functions Xn and Yn for the computation of Xn

in (5.16) are:
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A0 = 1 X0 = 0 Y0 = 0 (5.18a)

and

X1 =
k∑

kx=−k

kymax∑
ky=−kymax

|G(kx, ky)|2 (5.18b)

where the values ±kymax are defined as in expression (5.17).

Simulated results The acceleration constant was tested with the 5×5 slot-
array antenna depicted in Fig. 5.5. To perform this test, the Papoulis-Gerchberg
algorithm was first applied and, then, the spectrum was replied according to
the separation between elements. The iterative algorithm was carried out with
and without acceleration constant, as described above, for just 5 iterations.

Fig. 5.21 shows a comparison of the plane wave spectrum obtained with
and without the acceleration constant. As can be observed, if the accelera-
tion constant is not used (see Fig. 5.21(a)), singularities arise between replies
at just 5 iterations and, hence, a higher number of iterations is required to
decrease these singularities. However, if the acceleration constant is applied
(see Fig. 5.21(b)), the result after 5 iterations is quite good and looks like
the result obtained without the acceleration constant after 5000 iterations (see
Fig. 5.13(a)).

The equivalent currents obtained from the above plane wave spectrums are
shown in Fig. 5.22. As can be observed, if the acceleration constant is not used
(Fig. 5.22(a)) the obtained currents are far from the uniform distribution of the
ideal antenna. However, by applying this constant on each step of the iterative
algorithm, the equivalent currents obtained after just 5 iterations present a
quite good uniform amplitude. In addition, these currents allow the not-fed
slot to be clearly distinguished.

Unfortunately, though good results are obtained after few iterations, it must
be pointed out that the algorithm, with or without acceleration constant, con-
verges to the same result. Thus, if a high accuracy is required, a higher number
of iterations will have to be applied in both methods. At this high number of
iterations, the advantage of using the acceleration constant in front of not using
this constant is minimum and, hence, the same result is obtained in both cases.
Moreover, the computation of this factor on each iteration consumes time so
that, the same result is obtained in both cases, but the use of the acceleration
constant increases the computation time. For these reasons, if a high number of
iterations is required, e.g. 1000 iterations, the use of the acceleration constant
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Figure 5.21: Spectrum obtained by applying the MHT to the computed
far-field of the 5x5 slot-array antenna at 300 MHz and the Papoulis-Gerchberg

algorithm after 5, with and without the acceleration constant.
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Figure 5.22: Currents obtained by applying the MHT to the computed
far-field of the 5x5 slot-array antenna at 300 MHz and the Papoulis-Gerchberg

algorithm after 5, with and without the acceleration constant.

might not be advisable and other techniques, which perform the extrapolation
in a direct step, would be required. Next sections describe these techniques.
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5.4 Extrapolation matrix

As commented above, the main drawback of the Papoulis-Gerchberg algorithm
is the fact of being an iterative algorithm. In addition, the speed of convergence
is quite low and a termination criterion has not been established up to now for
a wide range of situations.

To solve these problems, a direct version of the iterative Papoulis-Gerchberg
algorithm was also proposed in [30] for 1-D signals and, later, extended to 2-
D signals in [31]. These algorithms are based on the formation of a matrix,
the so-called extrapolation matrix, which, multiplied by the known signal (the
visible spectrum for this thesis), leads to the same result as with the iterative
algorithm. The extrapolation matrix is formed by using the size of the filter
in the transformed domain (i.e., the size of the antenna) and the number of
iterations to apply.

Furthermore, under specific conditions, the extrapolation matrix can be
computed for an infinite number of iterations. Hence, the same result that
would be obtained after an infinite number of iterations with the iterative
algorithm (unreachable in a practical situation) is achieved. Thus, the best
extrapolation in the sense of the minimum error energy is obtained.

Next, a brief review of the 1-D version of the extrapolation matrix is done.
Also, the 2-D extrapolation matrix is described [31] and the drawbacks of this
solution are shown. Finally, the 2-D generalized extrapolation matrix, which
was proposed recently [32], is described.

5.4.1 1-D Extrapolation matrix

The extrapolation matrix was proposed by Sabri and Steenaart in [30] for 1-D
signals. The aim of the extrapolation matrix is to perform, by a single matrix
operation, the extrapolation of a band-limited signal which is known in just a
segment, as defined in (5.1) and (5.2).

To do this, the iterative algorithm, also expressed in (5.6) and (5.7), must
be rewritten as follows:

gn(t) = g(t) +H{gn−1(t)} (5.19)

where gn(t) is the extrapolated signal at the n-th iteration, g(t) is the
initial signal (5.1) (which is known in the interval [−T, T ]), g−1 = 0, and H is
an operator given by:

H{•} = (I −Bt)IFT{BfFT{•}} (5.20)

In the previous expression, I is the identity matrix, Bt is a time mask with
ones inside the interval [−T, T ] and zeros outside of this interval, FT{•} is
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the Fourier transform of the function over which the operand H is applied,
i.e., gn−1(t) in (5.19), IFT{•} is the inverse Fourier transform, and Bf is the
filter in the frequency domain that indicates the band-limitation of the signal
in this domain. Thus, the Bf is a mask with ones inside the interval [−f0, f0]
and zeros outside this interval, being f0 the limit of the signal in the frequency
domain.

The expression (5.19) may be developed for several number of iterations.
To do this it must be taken into account that the operands H, FT{•}, IFT{•},
Bt and Bf are implemented by matrices multiplied by the functions over which
they are applied. Thus, (5.19) can also be written as [30]:

gn(t) = g(t) +Hg(t) +H2g(t) + · · ·+Hng(t) (5.21)

Hence, the signal extrapolated after n iterations can also be expressed as:

gn(t) = Eng(t) (5.22)

where En is the so-called extrapolation matrix given by:

En =
n∑
k=0

Hk (5.23)

As can be observed, from previous expression the extrapolation of the signal
g(t) just consists in computing the operator H by (5.20) and, then, determin-
ing the extrapolation matrix En by (5.23) for the desired number of iterations.
Finally, the multiplication of this matrix by g(t) (5.22) allows the extrapolation
of this signal to be performed in a single matrix operation. In this procedure,
however, the computation of the summation present in (5.23) implies a draw-
back since the operand power to all the iterations (Hk) must be determined.
To avoid this summation, it must be pointed out that this summation is a
geometric series. Thus, instead of performing the summation, the following
expression may be used:

En = (I −Hn+1)(I −H)−1 (5.24)

where I is the identity matrix. As can be seen, by applying this other
expression, the summation must not be applied and just Hn+1 must be com-
puted.

Moreover, the extrapolation matrix may be obtained, from (5.24), for an
infinite number of iterations (n =∞) as follows [30]:

E∞ = (I −H)−1 (5.25)

provided that the eigenvalues of H (λk) satisfy the following condition:
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|λk| < 1, for all k (5.26)

Therefore, the computation of the extrapolation matrix may be done for a
specific number of iterations or even for an infinite number of iterations. In
this last case, it is obtained the estimate at which the iterative algorithm tends,
i.e., the solution with the minimum error energy.

Regarding the computation of the operator H, in [30], Sabri and Steenaart
propose the computation of the operator by means of an intermediate low-pass
matrix (IFT{BfFT{•}}). This matrix may be formed by using the Hilbert
transform [116]-[118] or, in an easier way, by using the Discrete Fourier trans-
form matrices [79]. This last formation is used in [30] and in [31] and is some-
what more practical than the application of the Hilbert transform. Thus, from
now on, the operator H will be formed by Fourier transform matrices, i.e., by
matrices with exponential functions suitably arranged.

Example In order to show the accuracy and advantages of the extrapolation
matrix, a cosine signal in the time domain with a frequency of 0.4 Hz was used.
The known segment was the interval [-0.5, 0.5] s, i.e., T = 0.5 s, and the filter
was applied with a cut frequency (f0) of 0.7 Hz. With these data, the filter
Bf and the time mask Bt were formed. In addition, the operators FT{•} and
FT−1{•} were formed as matrices by means of exponential functions. Later,
the operator H (5.20) was computed and, with this operator, the extrapolation
matrix En (5.24) for several number of iterations. Furthermore, since the
operator H satisfied the condition stated in (5.26), the extrapolation matrix
was also computed for an infinite number of iterations (5.25).

Fig. 5.23 shows the result obtained by applying the computed extrapo-
lation matrix to the known segment of the cosine signal. In Fig. 5.23(a) the
estimated signals for 100, 10000, and an infinite number of iterations are shown
and compared to the ideal signal. As can be observed, the higher the number
of iterations is, the better the obtained signal is. In addition, the best approx-
imation in the sense of the minimum error energy (for n = ∞) is determined
which, by means of the iterative algorithm cannot be obtained in practice.

The consequence of obtaining a higher part of the signal in the time domain
can be seen in Fig 5.23(b). In this figure the signal in the spectral domain is
shown and, as can be observed, the higher the number of iterations is, the
better the tones at −0.4 Hz and 0.4 Hz are distinguished.

The same extrapolation procedure was carried out but by applying the it-
erative Papoulis-Gerchberg algorithm. Fig. 5.24 shows the result for the same
number of iterations as for the extrapolation matrix (apart from the infinite
number of iterations). By comparing these results to the results of the extra-
polation matrix is can be concluded that the same estimation is achieved by
both algorithms.
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Figure 5.23: Estimated signal from a segment in the time domain of a cosine
signal with a frequency of 0.4 Hz by means of the extrapolation matrix.

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1 0 1 2 3 4 5

t [s]

|g
(t

)|

 

 

102 iterations
104 iterations
Ideal

(a) Signal in the time domain.

−28

−24

−20

−16

−12

−8

−4

0

−1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6

f [Hz]

G
(f

)
[d

B
]

 

 

102 iterations
104 iterations
Ideal

(b) Signal in the spectral domain.

Figure 5.24: Estimated signal from a segment in the time domain of a cosine
signal with a frequency of 0.4 Hz by means of the iterative

Papoulis-Gerchberg algorithm.

The most important advantage of the extrapolation matrix is its compu-
tation time. Fig. 5.25 shows a comparison of the computation times for the
iterative algorithm and for the extrapolation matrix. As can be observed,
whereas the computation time increases linearly with the number of iterations
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for the iterative algorithm, the computation time of the extrapolation matrix
keeps practically constant for any number of iterations. Thus, better approxi-
mations can be obtained without increasing the computation time. This is the
main reason because next sections describe the extension of the extrapolation
matrix to 2-D.
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Figure 5.25: Comparison of computation times as a function of the number of
iterations for the extrapolation matrix and the iterative algorithm.

5.4.2 2-D Extrapolation matrix: rows and columns

The extrapolation matrix for 2-D signals was proposed in [31] and, later, ap-
plied to the improvement of the resolution in the reconstruction of the equiva-
lent currents in [119]. The formation of the extrapolation matrix is done by
following the same procedure as in the 1-D case. In this case, however, the
way in which the algorithm is applied is the inverse of the algorithm explained
for the 1-D case, i.e., the signal is known in a segment of the spectral domain
and the band-limitation is in the spatial domain. Thus, the extrapolation pro-
cedure estimates a signal F (kx, ky) from a segment G(kx, ky). For this thesis,
this segment is the visible spectrum and, hence, may be expressed as:

G(kx, ky) = BkxkyF (kx, ky) (5.27)

where Bkxky is a mask function given by:

Bkxky =


1,

√
k2
x + k2

y ≤ k

0,
√
k2
x + k2

y > k

(5.28)
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With this definition of the signal to extrapolate, the 2-D version of the
iterative algorithm may be expressed in the following way:

Gn(kx, ky) = G(kx, ky) +HGn−1(kx, ky) (5.29)

where H is an operator given by:

H = (I −Bkxky )TF2D{BxyITF2D{•}} (5.30)

with I the identity matrix; TF2D{•} and ITF2D{•} the 2-D direct and
inverse Fourier transforms, respectively; and Bxy a mask function with ones
on the positions where the spatial signal may be non-zero and zeros on the
positions where it is known a priori that the signal is zero.

In practice, the application of the previous operator is not as straightforward
as in the 1-D case. The problem arises in the determination of the 2D Fourier
transforms. The simplest form to compute these transforms is by forming two
matrices which perform the transformation by 2 matrix multiplications, one
on the right and the other one on the left. Thus, one of the matrices (TFcol)
is multiplied on the left and performs the Fourier transform by columns, and
the other matrix (TFrow) is multiplied on the right and performs the Fourier
transform by rows. These matrices are formed as follows:

TFcol =


1 1 1 . . . 1
1 W 1 W 2 . . . W (N−1)

1 W 2 W 4 . . . W 2(N−1)

...
...

...
. . .

...
1 W (N−1) W 2(N−1) . . . W (N−1)(N−1)

 (5.31)

TFrow =


1 1 1 . . . 1
1 Q1 Q2 . . . Q(M−1)

1 Q2 Q4 . . . Q2(M−1)

...
...

...
. . .

...
1 Q(M−1) Q2(M−1) . . . Q(M−1)(M−1)

 (5.32)

where W = e−jπ/N and Q = e−jπ/M , N is the number of rows of the
matrix G(kx, ky) and M the number of columns. In case of inverse transforms,
W becomes W = ejπ/N for ITFcol and Q becomes Q = ejπ/M for ITFrow.

Therefore, the operator H cannot be applied as it is indicated in (5.30)
since the operators TF2D{•} and ITF2D{•} must be divided into TFrow and
TFcol. By doing so, the operator cannot be grouped at one side of the matrix to
extrapolate as for the 1-D case to form a single extrapolation matrix. However,
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if the situation is simplified, two different operators H may be formed. This
simplification consist in considering just square regions in the spectral (Bkxky )
and the spatial (Bxy) domains. Thus, these regions can be split into two parts
as follows:

Bkxky = BkxBky (5.33a)

Bxy = BxBy (5.33b)

where Bkx and Bx are column vectors and Bky and By are row vectors. In
general, these vectors are formed from the limits (±amax) on each dimension
as:

Ba =

 1, |a| ≤ amax

0, |a| > amax

(5.34)

The previous simplification allows the recursive procedure to be expressed
in the following way:

Gn(kx, ky) = BkxF (kx, ky)Bky +HcolGn−1(kx, ky)Hrow (5.35)

where the operators Hcol and Hrow are given by

Hcol = (I −Bky )TFcol{ByITFcol{•}} (5.36a)

Hrow = (I −Bkx)TFrow{BxITFrow{•}} (5.36b)

The iterative expression (5.35) can be developed as for the 1-D case (5.21).
The result can be grouped at both sides of the function Gn(kx, ky) what leads
to express the estimation at the n-th iteration as follows:

Gn(kx, ky) = Ecoln G(kx, ky)Erown (5.37)

where Ecoln and Erown are the extrapolation matrices by rows and columns
whose expressions are:

Ecoln =
n∑
k=0

Hk
col (5.38a)

Erown =
n∑
k=0

Hk
row (5.38b)
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Similarly to the 1-D case, the previous geometric series can be faster com-
puted by applying the following expressions:

Ecoln = (I −Hk+1
col )(I −Hcol)−1 (5.39a)

Erown = (I −Hk+1
row )(I −Hrow)−1 (5.39b)

The extrapolation matrices may also be computed for an infinite number of
iterations (n =∞) by:

Ecol∞ = (I −Hcol)−1 (5.40a)

Erow∞ = (I −Hrow)−1 (5.40b)

As commented above, to be able to apply the previous extrapolation matri-
ces the eigenvalues of Hcol and Hrow (λk) must satisfy the following condition:

|λk| < 1, for all k (5.41)

These 2-D extrapolation matrices imply several drawbacks. Firstly, the
known segment is limited to a square region. Thus, the extrapolation matrices
cannot be applied over the entire visible spectrum, which is a circle od radius k.
The known region must be limited to the maximum square region inside the
visible region, as shown in Fig. 5.26, since, if a larger region were used, the
zeros surrounding the visible region would be assumed as correct values. This
fact would lead to a non-correct result. For this reason, the amount of informa-
tion that can be used for this extrapolation is smaller than with the iterative
algorithm since part of the known information must be ruled out.

Figure 5.26: Region of the spectrum used by the 2-D extrapolation matrix by
rows and columns.

Secondly, the spatial filter must be a square function. This fact limits the
shape of the antennas that can be considered with this algorithm. In addition,
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it does not allow complex shapes to be taken into account, such as for the
X-band slot-array antenna studied above.

Finally, by looking at (5.37), it can be seen how the extrapolation is per-
formed, first by rows and, later, by columns. This is an approximation since
the extrapolation by rows does not take into account the result of the extra-
polation by columns. Hence, the result is not exactly the same as with the
iterative algorithm.

Nevertheless, it must be pointed out that the extrapolation matrices by
rows and columns may be useful in many cases. Especially when the visible
spectrum near the circle of radius k has a low level, in order to eliminate so
little information as possible. In addition, for linear arrays, the technique is
quite interesting since the fact of performing the extrapolation by rows and
columns separately has a low effect in this kind of antennas.

The most important advantage of this procedure is its low computation
time. No matter the number of iterations, the computation time does not
grow since the same operations are done for any number of iterations. Hence,
a high number of iterations may be applied to improve the estimated signal.
Furthermore, if the condition (5.41) is satisfied, the result after an infinite
number of iterations may be obtained.

Simulated results 1 The extrapolation matrix by rows and columns was
first tested with the array formed by two x̂-directed slots placed on the x axis
and separated 0.8 λ (see Fig. 4.5). To do this test, a square filter in the spatial
domain of 1.6 λ×1.6 λ was applied, i.e., the same filter as in Section 5.3 when
the iterative Papoulis-Gerchberg algorithm was applied. The region of the
spectrum that was considered, however, was not the entire visible spectrum,
but the larger square region inside the circle of radius k (see Fig. 5.26). Thus,
all the values of the plane wave spectrum considered in the extrapolation are
correct.

With the previous data, the extrapolation matrices by rows and columns
were formed (5.39) to estimate the spectrum with 5000 iterations. Fig. 5.27
shows the result of this extrapolation procedure. As can be observed, the non-
visible spectrum determined by this technique (see Fig. 5.27(a)) is correct and
even better than the result obtained by applying the iterative algorithm (shown
in Fig. 5.4(a)). The reason for this behavior is the particular symmetry of this
antenna, which makes this technique specially useful for this antenna.

The consequence of the greater region obtained with the extrapolation ma-
trix by rows and columns is the quite good equivalent currents obtained from
the estimated spectrum. As can be observed in Fig. 5.27(b), both elements
are completely distinguished and correctly placed. This improvement can also
be observed in Fig. 5.28, where the cross section of the obtained currents at
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Figure 5.27: Estimate of the non-visible spectrum with 5000 iterations, and
its corresponding equivalent currents, by using the extrapolation matrix by

rows and columns for the slot-array of 2 elements separated 0.8 λ.

y = 0 is compared to the cross section obtained with the iterative algorithm
with 5000 iterations (also shown in Fig. 5.3(b)).
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Figure 5.28: Cross section at y = 0 of the estimated equivalent currents with
5000 iterations by using the extrapolation matrix by rows and columns and

the iterative algorithm for the slot-array of 2 elements separated 0.8 λ.

Nevertheless, the enhancement of resolution is not the main advantage of
this technique. The most important improvement lies in the computation
time. Whereas the iterative Papoulis-Gerchberg algorithm took 20 minutes
to perform the estimation with 5000 iterations, the extrapolation by rows and
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columns just took 35 seconds. Furthermore, in this last case, the number of
iterations might have been enhanced without increasing the computation time.

Simulated results 2 The second test of the extrapolation matrix by rows
and columns was done with the 5×5 slot-array antenna depicted in Fig. 5.5.
The spatial filter was a 2 λ×2 λ square mask and, the region of the spectrum
that was considered was, as explained above, the larger square inside the circle
of radius k as shown in Fig. 5.26.

The extrapolation matrices by rows and columns (5.39) were computed for
5000 iterations. Fig. 5.29(a) shows the estimated spectrum and, as can be ob-
served, similar results to the application of the iterative algorithm are obtained
(see Fig. 5.7(a)). Thus, as in the iterative algorithm, the corresponding equi-
valent currents are correct but without the enough resolution so that all the
slots are clearly distinguished (see Fig. 5.29(b)).
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Figure 5.29: Estimate of the non-visible spectrum with 5000 iterations, and
its corresponding equivalent currents, by using the extrapolation matrix by
rows and columns for the slot-array of 25 elements separated 0.4 λ with one

element not fed.

Of course, as in the previous example, the main advantage of the extra-
polation matrix is the computation time (around 35 second) compared to the
computation time of the iterative algorithm (around 25 minutes for 5000 itera-
tions). Taking advantage of this situation, the extrapolation matrices were also
computed for 1 million of iterations with the purpose of improving the resolu-
tion. As a result, the estimated spectrum was the one shown in Fig. 5.30(a).
As can be observed, the obtained spectrum is far from the ideal and, hence,
the extrapolation matrix by rows and columns does not work for any number
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of iterations for this antenna. Of course, the corresponding equivalent currents
(shown in Fig. 5.30(b)) are neither correct.
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Figure 5.30: Estimate of the non-visible spectrum with 106 iterations, and its
corresponding equivalent currents, by using the extrapolation matrix by rows

and columns for the slot-array of 25 elements separated 0.4 λ with one
element not fed.

The reason for the previous behavior lies in the restriction of the known
spectrum to just a square region smaller than the visible spectrum and the
application of, first, the extrapolation by rows and, then, the extrapolation by
columns. These limitations lead to singularities on the corners of this square
region, which produce non-correct currents. In addition, for this specific case,
the singularities arise at 1 million of iterations but, in other cases, singularities
might arise at lower iterations (if the singularities appear at a certain number
of iterations, they also appear at a higher number of iterations). For this
reason, a new extrapolation matrix is required so that, no matter the number
of iterations, the singularities do not arise and, hence, the best approximation
in the way of the minimum error energy may be achieved for any situation.

Practical results The extrapolation matrix by rows and columns was also
applied to a real antenna. Specifically, this antenna was the X-band slot-array
antenna shown in Fig. 3.9. Fig. 5.31(a) shows the estimated spectrum with
1000 iterations and Fig. 5.31(b) the obtained equivalent currents. As can be
observed in these figures, the singularities detected in the above example of
the 5×5 slot-array antenna also arise in this case. In addition, this behavior
takes place at a low number of iterations (just 1000 iterations) so that no
improvement in resolution can be obtained for this antenna with this technique.
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Figure 5.31: Estimate of the non-visible spectrum with 1000 iterations, and
its corresponding equivalent currents, by using the extrapolation matrix by

rows and columns for the slot-array of 7 elements.

Furthermore, it must be pointed out that the applied spatial filter was a
5.12λ × 1.1λ mask. This is the only possibility with this technique since,
as commented above, just rectangular filters are allowed with this technique.
Thus, no more options exist for this technique applied to the X-band slot-array
antenna.

5.4.3 2-D Generalized extrapolation matrix

The previous extension to 2-D of the extrapolation matrix entails serious draw-
backs as commented above. To overcome these drawbacks an exact general-
ization to 2-D signals of the extrapolation matrix was proposed in [32]. The
aim of this generalization is to perform the estimation by rows and columns at
the same time and, hence, consider the extrapolation as a whole procedure. In
addition, the purpose of the generalized extrapolation matrix is to be able to
apply any spectral and spatial masks. Thus, the known part of the spectrum
may be a circular region, as the visible spectrum, and the filter may be any
kind of filter so that this can fit exactly the radiating regions of the antenna.

To determine the generalized extrapolation matrix, the main problem of the
above procedure must be taken up again. This problem arises on the division
of the operator H into two parts. Thus, the extrapolation matrix is divided
into two parts and the spectral and spatial masks limited to just squares. In
order to overcome this problem, the aim is to leave all the operands inside the
operator H on one side of the signal to extrapolate (G(kx, ky)).
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The first step consists in setting the matrix to extrapolate G(kx, ky) in
vectorial form. This may be done, for instance, by applying the command
(G(:)) in MATLAB. In this case, if the matrix G(kx, ky) is the given by:

G(kx, ky) =


G(kx1, ky1) G(kx1, ky2) . . . G(kx1, kyM )
G(kx2, ky1) G(kx2, ky2) . . . G(kx2, kyM )

...
...

. . .
...

G(kxN , ky1) G(kxN , ky2) . . . G(kxN , kyM )

 , (5.42)

the rearrange G(:) sets the matrix as follows:

G(:) =



G(kx1, ky1)
G(kx2, ky1)

...
G(kxN , ky1)
G(kx1, ky2)
G(kx2, ky2)

...
G(kxN , ky2)

...
G(kxN , kyM )



(5.43)

The second step builds four matrices which, multiplied by G(:) on the left,
perform the direct or inverse Fourier transform by rows or columns. The
aim is to obtain, for instance, the same result as multiplying TFcol (5.31)
by G(kx, ky) (5.42) on the left, but multiplying the new matrix, noted as Acol,
on the left of G(:) (5.43). To do this, the new matrix, from (5.31), must be
arranged as:

Acol =


TFcol 0 . . . 0

0 TFcol . . . 0
...

...
. . .

...
0 0 . . . TFcol

 , (5.44)

where TFcol is the block matrix depicted in (5.31) and 0 is a block matrix of
zeros of the same size as the matrix TFcol. The matrix Acol is a square matrix
so that, the number of blocks in the diagonal is M , i.e., the number of columns
of G(kx, ky). Thus, the size of the matrix Acol is NM ×NM .

Similarly, a new matrix Arow must be formed to compute the Fourier trans-
form by rows by multiplying this matrix by the vector G(:) (5.43) on the left.
The formation of Arow must be done in such a way that the multiplication
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ArowG(:) led to the same result as multiplying the matrix TFrow (5.32) by
G(kx, ky) (5.42) on the right. Thus, the matrix Arow must be formed as fol-
lows:

Arow =


I I . . . I
I I ∗Q1 . . . I ∗Q(M−1)

...
...

. . .
...

I I ∗Q(M−1) . . . I ∗Q(M−1)(M−1)

 , (5.45)

where I is the identity matrix of size N ×N and Q = e−jπ/M . The number
of blocks is M ×M and, hence, the size of the matrix Arow is NM ×NM .

The inverse transforms IAcol and IArow are formed in a similar way but
changing the value of W and Q to: W = ejπ/N and Q = ejπ/M .

By using the previous matrices, the following relation is satisfied:

TFcolG(kx, ky)TFrow = AcolArowG(:) (5.46)

The difference lies in the organization of the resulting matrix. In the case
of the left side of previous expression, the result is a 2-D matrix, whereas in
the case of the right side the result is organized as a column vector. However,
since the organization is known, a reorganization of the second case allows the
matrix to be organized in 2-D, as in the left side.

Before obtaining the operator H with the new organization, the rearrange
of the spectral mask Bkxky and the spatial filter Bxy must be also carried out.
At first, these operands are matrices, however, in the case of the extrapolation
matrix by rows and columns explained above, these operands are simplified to
just vectors (5.33) which, when are applied together, form a square mask or
filter.

To overcome the previous limitation, a rearrange of the matrices Bkxky
and Bxy must be done. With this purpose, it must be considered the mask
Bkxky and the filter Bxy as matrices which, multiplied element-by-element by
the matrix over which they are applied, offer the desired result. Thus, these
matrices may be rearranged as vectors, like the matrixG(kx, ky) in (5.43). Once
this reorganization is performed, the resulting vector is placed on the diagonal
of a NM ×NM matrix of zeros. The new matrices are noted as B2Dkxky and
B2Dxy.

By doing the previous modifications, the multiplication of the resulting
matrices by a column vector, e.g. G(:), leads to the same result as multiplying
element-by-element Bkxky and Bxy by a 2-D matrix, e.g. G(kx, ky).

Using all the described matrices, the recursive algorithm described in (5.29)
may be rewritten as follows:

Gn(:) = G(:) +H2DGn−1(:) (5.47)
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where the operator H2D is formed in the following way:

H2D = (I −B2Dkxky )AcolArowB2DxyIAcolIArow (5.48)

As can be observed, now the operator is on just one side of the matrix
that must be extrapolated and, hence, the same procedure carried out for the
1-D case can be performed to form a unique extrapolation matrix. Thus, the
estimated signal after n iterations may be computed as follows:

Gn(:) = E2D
n G(:) (5.49)

where E2D
n is the 2-D generalized extrapolation matrix. This matrix may

be computed as a geometric summation of the operator H2D or, as deduced
above, in the following easier way:

E2D
n = (I − (H2D)k+1)(I −H2D)−1 (5.50)

Furthermore, as in previous sections, the extrapolation matrix may be de-
termined for an infinite number of iterations as follows:

E2D
∞ = (I −H2D)−1 (5.51)

provided that the absolute value of the eigenvalues of H2D (λk) are all
below 1.

The 2-D generalized extrapolation matrix (E2D
n ) has several advantages

and drawbacks. Regarding the advantages, it can be seen how this new matrix
overcome all the drawbacks of the extrapolation matrix by rows and columns.
Thus, the extrapolation is performed by rows and columns at the same time,
the spectral mask can adopt any shape, i.e., a circle like the visible spectrum,
and the spatial filter can also be any kind of filter so that the shape of the filter
can fit the radiating parts of the antenna.

The main drawback of the matrix E2D
n is the computation of the inverse

of the matrix (I −H2D). This matrix may be ill-conditioned and, hence, the
computation of the inverse may become a hard problem. To overcome the ill-
conditioning, the Tikhonov regularization technique [74],[75] may be used. In
this case, it must be taken into account that the election of the regularization
parameter is a hard task [76] and, hence, special care must be taken on its
election to obtain accurate results (see Section 5.5.1 for more details).

Moreover, a preconditioner [120] might be applied and inverse may be com-
puted by using the Singular Value Decomposition (SVD) method considering
the most significant singular values [71] or the Generalized Minimal Residual
(GMRES) method [72],[73].

Apart from the previous ill-conditioning, a higher problem may arise when
dealing with the matrix E2D

n . This matrix is an NM×NM matrix and, hence,
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may become a quite big matrix if the original matrix G(kx, ky), whose size is
N × M , is large. The problem arises when the matrix E2D

n does not fit in
memory. In those cases the aforementioned techniques (preconditioning, SVD
and GMRES) cannot be used as they are normally described since they require
the whole matrix in memory at the same time to perform the inverse. Thus,
other techniques must be applied.

These other techniques must perform the inverse with, at least, part of the
matrix in the hard disk, i.e., with the matrix divided in blocks and saved in
the hard disk. The inverse of matrices divided in blocks may be done, for
instance, by the SVD-block algorithm [121] or by using the QR decomposition
in blocks [122].

However, a faster algorithm has been recently proposed in [123] and im-
proved in [124]. This algorithm computes the inverse of a matrix by the in-
complete LU (ILU) decomposition by blocks with preconditioning. The results
regarding computation time and accuracy are quite good. For this thesis, this
algorithm is used to compute (I −H2D)−1.

Simulated results 1 Firstly, the proposed generalized extrapolation matrix
was applied to the slot-array antenna formed by two x̂-directed slots placed
on the x axis and separated 0.8 λ (see Fig. 4.5). To do this, as in previous
examples, a square filter of 1.6 λ×1.6 λ and centered at the origin was applied.
With this filter, the matrix B2Dxy was built.

The region considered for the extrapolation was the entire visible spectrum.
By considering the number of computed samples for this spectrum with the
microwave holographic technique and the wavenumber k (since the frequency
is 300 MHz, λ = 1 and, hence, k = 2π), a spectral mask was formed. This mask
had 1’s inside the visible region and 0’s outside. Later, by using this mask, the
matrix B2Dkxky was built.

Then, the matrices Acol, Arow, IAcol and IArow were formed according to
(5.44) and (5.45). The resulting matrices fit in memory, however, in order to
develop a general algorithm for any kind of antenna, these matrices (as well
as B2Dxy and B2Dkxky ) were divided into blocks. By using these blocks, the
operator H2D was computed with (5.48).

Finally, the generalized extrapolation matrix E2D
n was obtained (5.50) with

the previous operator H2D. Nevertheless, it must be pointed out that, during
the computation of E2D

n it was observed that the denominator (I − H2D)−1

did not include any singularity. This denominator is, actually, the extrapo-
lation matrix E2D

n for n = ∞, i.e., E2D
∞ (5.51). In addition, it was observed

that the resulting equivalent currents were quite accurate by just considering
this extrapolation matrix. For these reasons, the considered extrapolation ma-
trix was the matrix E2D

∞ and it was supposed that all the eigenvalues of H2D

were below 1. Thus, several operations were avoided, the result was faster ob-
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tained and, in addition, with a specific accuracy than with a certain number
of iterations.

By using the resulting extrapolation matrix E2D
∞ , the non-visible spectrum

was estimated by (5.49) (the resulting spectrum was organized in a vector
form but a rearrangement was applied to leave the spectrum in matrix form).
Fig. 5.32 shows the result of both, spectrum and corresponding currents. By
looking at the spectrum (see Fig. 5.32(a)) it can be seen how the generalized
extrapolation matrix obtains a quite big region of the non-visible spectrum. As
a result, the equivalent currents (see Fig. 5.32(b)) are accurately determined
since both elements are clearly distinguished and correctly placed. This can
also be observed in the comparison shown in Fig. 5.33. Comparing these figures
with the result of the extrapolation matrix by rows and columns (see Fig. 5.27
and Fig. 5.28) it can be observed that similar results are obtained. However,
the advantage of this new matrix is the possibility of employing different kinds
of spatial filters.
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Figure 5.32: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using the generalized extrapolation

matrix for the slot-array of 2 elements separated 0.8 λ.

Regarding the computation time, the generalized extrapolation matrix took
a longer time than the matrix by rows and columns to be computed and applied.
The division into blocks slowed down the process because of the several accesses
to the hard disk. Nevertheless, it must be also pointed out that, if a resolution
of around 0.4 λ is required, the difference in computation time may be small.
For this resolution, the computation time for the generalized extrapolation
matrix was of just 2 minutes, whereas, as commented above, the extrapolation
matrix by rows and columns took 35 seconds to be computed and applied.
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Figure 5.33: Cross section at y = 0 of the estimated equivalent currents by
using the generalized extrapolation matrix and the iterative algorithm with

5000 iterations for the slot-array of 2 elements separated 0.8 λ.

Simulated results 2 The generalized extrapolation matrix was also tested
with the 5×5 slot-array antenna depicted in Fig. 5.5. In this case, the spatial
filter was a 2 λ×2 λ square filter and the region of the spectrum considered for
the extrapolation was the entire visible spectrum. With these data, the matri-
ces B2Dxy and B2Dxy, as well as Acol, Arow, IAcol and IArow were formed
and divided into blocks. Then, the operator H2D was computed by (5.48)
by blocks and, finally, the extrapolation matrix E2D

∞ (5.51) was determined
(similar conclusions to those of previous example were reached for the actual
example).

The resulting generalized extrapolation matrix was applied to the visible
spectrum and, as a result, the plane wave spectrum shown in Fig. 5.34(a)
was estimated. In this case, part of the information present in the non-visible
spectrum is recovered with this extrapolation so that the equivalent currents
(see Fig. 5.34(b)) allows the not fed element to be identified.

In order to distinguish better the different elements of the antenna, the spec-
tral periodicity property, explained in Section 5.3.1., was applied. The resulting
plane wave spectrum and the equivalent currents are shown in Fig. 5.35(a) and
Fig. 5.35(b), respectively. As can be observed, the slots that is not fed is clearly
distinguished due to the non-visible part of the plane wave spectrum estimated
with the spectral periodicity and the extrapolation matrix. The rest of the
elements have almost the same amplitude, as they were simulated.

The computation time was the same as the one of the previous example. The
same region of the non-visible spectrum with the same precision was considered
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Figure 5.34: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using the generalized extrapolation

matrix with a wide filter for the 5×5 slot-array antenna with one element not
fed.
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Figure 5.35: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using the generalized extrapolation
matrix with a wide filter and replying the spectrum for the 5×5 slot-array

antenna with one element not fed.

and determined and, hence, the same computation time was required, i.e.,
around 2 minutes.

Practical results Finally, a real antenna, with a real measurement, was used
to test the generalized extrapolation matrix. This antenna was the X-band
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slot-array antenna shown in Fig. 3.9. By using this measurement, the visible
spectrum was computed with the microwave holographic technique. Later,
the same procedure described above was performed to estimate the non-visible
spectrum. The spectral mask was a circle of radius k (the visible region) and
the spatial filter was a 5.12 λ × 1.1 λ mask (a filter including all the radiating
elements).

The resulting matrix E2D
∞ (again, the computation of the matrix at a specific

number of iterations was not done) was applied to the visible spectrum of
the antenna. Fig. 5.36 shows the estimated spectrum and the corresponding
currents. As can be observed, better results than with the extrapolation matrix
by rows and columns under the same conditions (see Fig. 5.31) are obtained.
Now, no singularities arise on the corners of the spectral mask (see Fig. 5.36(a))
and, hence, the resulting equivalent currents (see Fig. 5.36(b)) do not have any
singularity. In addition, the obtained currents are more accurate than the
equivalent currents determined from just the visible spectrum (see Fig. 5.8(a)).
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Figure 5.36: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using the generalized extrapolation

matrix with a wide filter for the X-band slot-array antenna of 7 elements.

Furthermore, by using the generalized extrapolation matrix, a more restric-
tive spatial filter may be used. This advantage was used to apply a filter like
the one depicted in Fig. 5.18 (i.e., a filter with 1’s on the positions of the slots
and 0’s outside). The result that was obtained is shown in Fig. 5.37. As can be
observed, in this case the currents are confined on the positions of the slots (see
Fig. 5.37(b)). Nevertheless, by looking at the exact amplitude of the currents
on the positions of the slots shown in Fig. 5.38, it can be seen how the obtained
currents are far from the ideal currents. Hence, the algorithm does not work as
it was expected for this situation, what makes necessary to adopt a solution.
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Next section explains a solution consisting in the application of another direct
extrapolation technique, the prior discrete Fourier transform.
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Figure 5.37: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using the generalized extrapolation

matrix with a restrictive filter for X-band the slot-array antenna of 7 elements.
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Figure 5.38: Equivalent magnetic currents on the positions of the slots for the
X-band slot-array antenna formed by 7 slots by applying the generalized

extrapolation matrix.

Regarding the computation time, similar conclusions to those of previous
examples may be reached. In this case, to avoid large computation times, a
small resolution was adopted as the aim of the technique. If a high resolution
is required, the matrix formed for the extrapolation takes a few GBytes of
memory and, hence, the computation time grows exponentially.
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5.5 Prior discrete Fourier transform

Previous sections have dealt with the Papoulis-Gerchberg algorithm in its iter-
ative and direct versions. The criterion used by this technique to extrapolate a
signal from a known segment is to find out the estimation with the minimum
error energy. As commented above, other techniques have different criterions
and apply other procedures. Among these techniques, an important algorithm
is the so-called Prior discrete Fourier transform (PDFT).

PDFT was proposed for 1-D signals in [125] and for 2-D signals in [36], and
extended to the reconstruction of the equivalent current in [96]. This technique,
basically, consists in applying a prior function p(r) (containing information
about the shape and expected behavior of the antenna) to the extrapolation. By
doing so, the technique obtains a Minimum-weighted-norm (MWN) estimate,
where the squared weighted norm of a function h(r) is defined as [126]:

‖h(r)‖2 =
∫
|h(r)|2/p(r)dr (5.52)

The main advantage of the PDFT is the way in which the estimation is
directly performed, without iterations. As in previous section, this is an im-
portant characteristic since it avoids the use of long iterative algorithms. In
addition, it is worth to mention that, as stated in [127], if the prior function
just contains the support information of the function to extrapolate, the PDFT
estimate has the functional values to which the iterative Papoulis-Gerchberg
algorithm converges.

The inverse 2D PDFT technique estimates a signal F (kx, ky) from a segment
G(kx, ky) by applying prior information in the transformed domain (spatial
domain in this case). This prior information is expressed by means of a function
p(x, y) and can include any information about the spatial signal (the currents
for this thesis). If this prior information p(x, y) is just a square mask, the PDFT
technique is known as Modified discrete Fourier transform (MDFT) [125],[36].
However, this is a particular case and, in general, the function may be any
mask, e.g. several separated spots with, even, different amplitudes. In this
case, the technique is known as PDFT.

In order to determine the PDFT estimate, first, the expression of the inverse
Fourier transform of the signal G(kx, ky) after the filtering by the function
p(x, y) must be expressed. This transformation is given by:

g(x, y)filt = p(x, y)
∞∑

m=−∞

∞∑
n=−∞

G(m∆kx, n∆ky)ejxm∆kxejyn∆ky (5.53)

where ∆kx and ∆ky are the separation between consecutive points in the
kx and ky axes, respectively.
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The application of the Fourier transform over the signal g(x, y)filt does not
lead to the original function G(kx, ky). To avoid this difference, the PDFT
estimate is introduced. This estimate is obtained as follows:

PDFT = p(x, y)
∞∑

m=−∞

∞∑
n=−∞

α(m,n)ejxm∆ejyn∆ (5.54)

where α(m,n) is an intermediate function. To obtain this function it is
imposed that the Fourier transform of the PDFT estimate (5.54) must be the
known signal G(kx, ky). Thus, it can be deduced that the function α(m,n)
must be determined by solving the following equation system:

G(m∆kx, n∆ky) =
∞∑

m=−∞

∞∑
n=−∞

α(m,n)P (m∆kx, n∆ky) (5.55)

where P (kx, ky) is the Fourier transform of the prior function p(x, y).
Therefore, in order to estimate the non-visible spectrum from the visible

spectrum, first, the intermediate signal α(m,n) must be determined by (5.55)
(Section 5.5.1 deals with the way in which this system may be solved). Then,
the PDFT estimate is obtained with (5.54). This estimate is directly the spa-
tial signal and, hence, the equivalent currents with the improved resolution.
The Fourier transform of this PDFT estimate is the extrapolated plane wave
spectrum. Thus, the goal of the PDFT consists, directly, in improving the
resolution of the spatial signal, rather than extrapolate the visible spectrum
(what is achieved because of the improvement in spatial resolution).

5.5.1 Regularization

The solution of the equation system (5.55) may become a hard task since,
first, the system is quite big so that it must be divided into blocks and, then,
the condition number may be high. The first problem may be overcome by
using the incomplete LU (ILU) decomposition by blocks with preconditioning
[123],[124]. The preconditioning helps to improve the condition number of the
matrix, however, it may not be enough for the matrix dealt with in the PDFT
technique. In these cases the Tikhonov regularization technique (TRT) [74]
may be applied [126].

The TRT is used to reduce the sensitivity to noise without losing resolution.
Mathematically, this reduction is done by decreasing the condition number of
the equation system. To do this, the following general equation system is
considered:

Ax = b (5.56)
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By using TRT, the solution of this equation system considering linear least
squares is given by [74]:

x = (ATA+ µM)−1AT b (5.57)

where AT is the complex conjugate transpose of the matrix A, M is a
non-negative semidefinite matrix and µ is the regularization parameter which
controls the weight of the penalty term in the technique [74].

The election of µ and M determines the accuracy of the solution. In lit-
erature, e.g. [74], the matrix M is normally the identity matrix, though some
variations are also studied [74]. The election of the parameter µ is rather more
difficult. The smaller the parameter is, the higher the condition number is.
There are a few techniques to determine this parameter [75], [76], e.g. the
L-curve [128] or the generalized cross validation (GCV) [129]. For the next ex-
amples, the parameter µ has been chosen in the way of the L-curve, so that the
election has been a tradeoff between the filtering and the noise in the equivalent
currents. As a result, the value used in the examples shown in next sections is
0.1.

Simulated results 1 The PDFT was first tested with the slot-array antenna
formed by two x̂-directed slots placed on the x axis and separated 0.8 λ, de-
picted in Fig. 4.5. The spatial filter (p(x, y)) was a square of 1.6 λ×1.6 λ
centered at the origin, and the region used to perform the extrapolation was
the entire visible spectrum.

By using the previous data, firstly the 2D Fourier transform of p(x, y) was
done. As a result, the matrix P (kx, ky) was obtained on the discrete points
kx = n∆kx and ky = n∆ky. Then, this matrix was rearranged in a column
vector, as well as the known spectrumG(kx, ky). These two vectors were used to
obtain the intermediate function α(m,n) by solving the equation system (5.55)
by blocks [123],[124] and with TRT (µ = 0.1).

Later, the obtained function α(m,n) was used to compute the PDFT by
means of (5.54). The resulting estimated function can be observed in Fig. 5.39.
By looking at Fig. 5.39(a) it can be seen how the estimated non-visible spectrum
by PDFT is quite accurate. Proof of this accuracy can be seen in Fig. 5.39(b),
where the corresponding equivalent currents are shown. Here, it can be ob-
served how the slots are distinguished and with the correct amplitude. Similar
conclusions may be adopted by observing Fig. 5.40, where the cross section of
the currents obtained with PDFT and with the iterative algorithm are com-
pared. Nevertheless, it must be pointed out that, in this specific case, the result
is not as good as the result obtained with the iterative algorithm or with the
above extrapolation matrices.

The computation time, however, is higher than with the previous matrix
methods. Whereas, these matrix methods took around 1∼2 minutes to be
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Figure 5.39: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using PDFT for the slot-array of 2

elements separated 0.8 λ.
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Figure 5.40: Cross section at y = 0 of the estimated equivalent currents by
using PDFT and the iterative algorithm with 5000 iterations for the

slot-array of 2 elements separated 0.8 λ.

computed, the PDFT took more than 7 minutes. In addition, the obtained
currents are not as good as the currents obtained with the previous matrix
methods (compare Fig. 5.27(b) to Fig. 5.39(b)).

Nevertheless, the obtained currents with PDFT are similar to those ob-
tained with just the Papoulis-Gerchberg algorithm (see Fig. 5.4(b)). Moreover,
the computation time of PDFT (7 minutes) is lower than the computation time
of the iterative algorithm (20 minutes). Hence, for this specific case, PDFT
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obtains better results than the iterative algorithm, but worse results than the
matrix methods.

Simulated results 2 The second case in which the PDFT was tested was
with the 5×5 slot-array antenna shown in Fig. 5.5. The spatial filter was a
2 λ × 2 λ square filter and the region of the spectrum considered for the
extrapolation was the entire visible spectrum. With these data, the procedure
followed to obtain the PDFT estimation was the same as described above for
the slot-array of 2 elements. The result is shown in Fig. 5.41.

As can be observed in Fig. 5.41(a), the PDFT technique determines part
of the non-visible spectrum. However, the estimate of the equivalent currents,
shown in Fig. 5.41(b), does not allow the elements of the antenna to be clearly
distinguished. To improve this estimate, another spatial filter was applied.
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Figure 5.41: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using PDFT with a wide filter for

the 5×5 slot-array antenna with one element not fed.

This second spatial filter was a mask with ones on the positions of the 25
slots, and zeros outside of these positions. The resulting PDFT estimation is
shown in Fig. 5.42(b) where, as can be observed, now, all the elements are dis-
tinguished and the element that is not fed is also detected. The corresponding
plane was spectrum is shown in Fig. 5.42(a). By looking at this spectrum it can
be seen how, by just indicating the discrete positions of the slots with uniform
separation, the spectrum behaves like a periodic function, as it was deduced in
Section 5.3.1.

Comparing the estimate for this case to the estimate done by the methods
explained above (see Fig. 5.15(b), for the iterative algorithm; Fig. 5.30(b) for
the extrapolation matrix; and Fig. 5.35(b) for the generalized extrapolation
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Figure 5.42: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using PDFT with a restrictive filter

for the 5×5 slot-array antenna with one element not fed.

matrix) it can be concluded that the PDFT estimate performs the best es-
timation among all the described methods. The computation time (around
7 minutes) is worse than the computation time of the extrapolation matrix
(around 1∼2 minutes for both described matrices, by rows and columns and
generalized), and better than the iterative algorithm (around 20 minutes for
5000 iterations). However, the quite better results justify the increase of the
computation time with regard to the matrix methods.

Practical results Finally, the PDFT was tested with a real case, namely, the
X-band slot-array antenna formed by 7 elements depicted in Fig. 3.9. Firstly,
the PDFT estimate was obtained by applying a wide filter (p(x, y)) including
all the slots (i.e., a rectangular filter of 5.12λ × 1.1 λ). The applied known
part of the spectrum was the entire visible region and the procedure was the
same as described above for the slot-array of 2 elements.

The PDFT estimate for this filter is shown in Fig. 5.43(b), and the corre-
sponding extrapolated spectrum in Fig. 5.43(a). An improvement with regard
to the currents obtained by just using the visible spectrum (see Fig. 5.9(a))
can be observed. However, the resulting currents are far from clarifying which
elements are working correctly and which elements are not working.

Fig. 5.44 shows a cross section of the PDFT estimate of Fig. 5.43(b) on the
exact positions where the slots are. By looking at this figure it is clear that
a minimum improvement is obtained with regard to the currents determined
from the visible spectrum. This can also be observed by looking at Fig. 5.43(a),
where the extrapolated non-visible part of the spectrum is quite small.
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Figure 5.43: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using PDFT with a wide filter for

the X-band slot-array of 7 elements.

−28

−24

−20

−16

−12

−8

−4

0

1 2 3 4 5 6 7
slots

M
x

[d
B

]

 

 

Mx PDFT & wide filter
Mx from visible spectrum
Ideal

Figure 5.44: Equivalent magnetic currents on the positions of the slots for the
X-band slot-array antenna formed by 7 slots by applying PDFT with a wide

filter.

To improve the PDFT estimate, the possibility of applying any kind of filter
with this technique was used. Thus, the PDFT estimate was again obtained
but using the restrictive filter shown in Fig. 5.18. By using this filter, a quite big
improvement in the estimation was obtained, as can be seen in Fig. 5.45(b).
Here, it can be observed not only the envelope of the currents in the whole
array of slots, but also the behavior of the currents inside the slots. This is
possible because of the great part of the non-visible spectrum (see Fig. 5.45(a))
determined with the PDFT.
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Figure 5.45: Estimate of the non-visible spectrum with infinite iterations, and
its corresponding equivalent currents, by using PDFT with a restrictive filter

for the X-band slot-array of 7 elements.

The estimated equivalent currents by the PDFT can be observed better by
looking at Fig. 5.46, where the amplitude of the obtained currents on the posi-
tions of the slots is shown. As can be observed, the estimated currents improve
the currents obtained by just using the visible spectrum. The envelope of the
PDFT estimate follows the ideal distribution but, now, the cosine distribution
inside the slots can be observed.
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Figure 5.46: Equivalent magnetic currents on the positions of the slots for the
X-band slot-array antenna formed by 7 slots by applying PDFT with a

restrictive filter.
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By looking at the PDFT estimate and comparing these results to the best
equivalent currents obtained with the techniques described previously (see
Fig. 5.9(b)) for the iterative algorithm with a wide filter; Fig. 5.19(b) for the
iterative algorithm with a restrictive filter, Fig. 5.31(b) for the extrapolation
matrix by rows and columns; and Fig. 5.37(b) for the generalized extrapola-
tion matrix) it can be concluded that the PDFT is the best extrapolation of all
the described techniques. Of course, the computation time (around 7 minutes)
is worse than the computation time for the extrapolation matrices (1∼2 min-
utes), however, the PDFT estimate performs a better extrapolation and the
obtained currents look like the ideal currents in all the tests performed with
this technique.
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Chapter 6

Probe calibration

Throughout this thesis, the equivalent currents of an antenna have been re-
constructed from the spherical near-field antenna measurement by means of
a modal technique. With this aim, the first step has always been the com-
putation of the spherical coefficients (Q(3)

smn), which characterize the antenna
in transmission (also known as transmitting coefficients, Tsmn). Chapter 2,
section 2.3, explained the way in which the transmitting coefficients are com-
puted from the spherical near-field measurement by means of probe-corrected
formulas. To do this, the probe receiving coefficients were required, however,
it was pointed out that these coefficients were going to be assumed known be-
cause of the special algorithms that are required for their exact computation.
This chapter describes these special algorithms for first order-probes and shows
several examples.

6.1 Introduction

The probe receiving coefficients quantify the effect of the probe in the measure-
ment. This effect may become a heavy-negative influence in the measurement
and, as a consequence, in the computed spherical coefficients and in the re-
constructed currents. It is, then, of special interest the way in which these
coefficients are exactly computed, which is known as probe calibration. Thus,
the more accurate equivalent currents may be obtained.

Probe calibration algorithms have not been studied as extensively as probe
correction techniques, e.g. [24], [52], [130]. The most widely used algorithms
have been introduced for first-order probes [52], [20] and consist of a probe’s
radiated field measurement with an auxiliary probe and the application of
transformation techniques in conjunction with the reciprocal relation for ob-
taining the desired coefficients. The main problem with this technique is that,
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since auxiliary probe receiving coefficients are not known, the electric Hertzian
dipole coefficients must be applied, which leads to an approximate solution.

The first section of this chapter determines the error introduced by using the
electric Hertzian dipole receiving coefficients instead of the correct probe receiv-
ing coefficients. As a consequence, the computed transmitting coefficients are
not correct in absolute value and, hence, cannot be used when non-normalized
radiation patterns are required, as it is the case of gain determination.

The second section of this chapter reviews one of the most important al-
gorithms for first-order probe calibration, which is the iterative algorithm pro-
posed by Hansen [20]. Unfortunately, the restrictions with regard to the re-
quired auxiliary probe limit the scope of this algorithm and, hence, many times
this algorithm cannot be applied.

As a solution to the previous drawback, the third section of this chapter
proposes three different alternatives to the iterative algorithm for first-order
probes. These three different procedures depend on the available possibilities
in the laboratory when the probe is being calibrated. Thus, the first procedure
is applied when two identical antennas are available; the second one when
two different antennas are available and, at least, the gain of one of them
is known; and the third procedure is applied when the gain of the available
antennas are not known and, hence, the second procedure cannot be used. The
drawback of the last case is the requirement of three different antennas and
four measurements, however, it is the more general procedure since it is the
more flexible (there is no restriction about the antennas) and it does not need
any information about the antennas involved in the calibration.

Finally, this chapter explains the way the anechoic chamber was charac-
terized for the several results presented in this chapter. This is an extremely
important step because transmission formula requires the value of the signal
between the input of the AUT and the output of the probe, without the effect
of the anechoic chamber, i.e., the effect of the positioners, the connectors, the
cables, etc. If this requirement is not satisfied, wrong receiving coefficients are
obtained.

6.2 Electric Hertzian dipole receiving coefficients

As stated above, the computation of the transmitting coefficients from the
spherical near-field measurement requires prior knowledge of the probe receiv-
ing coefficients. If these coefficients are not known, the electric Hertzian dipole
receiving coefficients, analytically deduced in [20], are normally applied. The
problem arises because these analytical coefficients are ideal. Hence, they are
quite different from the receiving coefficients of an arbitrary probe even though
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the restriction of first-order probe, i.e., with just modes with µ = ±1 different
from zero, is satisfied by the arbitrary probe.

For this thesis, these last kind of probes are of interest and, hence, before
studying the probe calibration techniques, it is convenient to quantify the er-
ror introduced by using the ideal coefficients instead of the correct coefficients
of a first-order probe. To do this, the expressions deduced for the solution
of the transmission formula must be reviewed. In Chapter 2, section 2.3, the
transmitting coefficients are computed, using the result of a three fold trans-
formation of the spherical near-field measurement (wnµm(A)) and the probe
response constants (Psµn(kA)) with first-order probe correction, by means of
the expressions (2.46) and (2.47). These two expressions can be simplified as
follows:

Tsmn =
1
v

P3−s,1n(kA)wn−1,m(A)− P3−s,−1n(kA)wn1,m(A)
P3−s,1n(kA)Ps,−1n(kA)− Ps1n(kA)P3−s,−1n(kA)

. (6.1)

From this last equation, the transmitting coefficients Tsmn can be easily
determined since the amplitude of the incoming signal to the AUT (v) is known.

However, a further simplification can be applied to (6.1) by using the fol-
lowing symmetry relation for the probe response constants:

Ps,−1,n(kA) = (−1)s+1Ps1n(kA). (6.2)

Thus, if (6.2) is substituted in (6.1), the transmitting coefficients can be
expressed as:

Tsmn =
1
v

(−1)s+1wn−1,m(A) + wn1,m(A)
2Ps1n(kA)

. (6.3)

This last expression is especially useful because, independently of the receiv-
ing coefficients applied to compute the transmitting coefficients, the numerator
does not vary. Hence, when studying the effect of the receiving coefficients on
the transmitting coefficients, the attention may be focused on just the denom-
inator.

Once (6.1) has been simplified, it is easier to determine the difference be-
tween the transmitting coefficients computed by applying the electric Hertzian
dipole receiving coefficients and the correct transmitting coefficients (which
would be obtained using the correct probe receiving coefficients).

On the one hand, from (6.3), if the electric Hertzian dipole receiving coeffi-
cients are applied and its response constants are denoted as Ps1n(kA)|

DIPOLE
,

the computed transmitting coefficients can be expressed as follows:

Tsmn|DIPOLE =
1
v

(−1)s+1wn−1,m(A) + wn1,m(A)
2Ps1n(kA)|

DIPOLE

, (6.4)
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On the other hand, if the correct probe receiving coefficients are known and
the probe response constants are denoted as Ps1n(kA)|

CORRECT
, the computed

transmitting coefficients, which are the correct transmitting coefficients, can
be expressed, from (6.3), as:

Tsmn|CORRECT =
1
v

(−1)s+1wn−1,m(A) + wn1,m(A)
2Ps1n(kA)|

CORRECT

. (6.5)

As can be observed, between the transmitting coefficients of (6.4) and (6.5)
there is just a difference in the denominator, since the numerator does not
depend on the applied receiving coefficients. This is an important fact be-
cause it allows to express the relation between the computed and the correct
transmitting coefficients as follows:

Tsmn|DIPOLE = βsn(kA)Tsmn|CORRECT , (6.6)

where βsn(kA) is, from now on, the calibration factor, which can be ex-
pressed as:

βsn(kA) =
Ps1n(kA)|

CORRECT

Ps1n(kA)|
DIPOLE

. (6.7)

From (6.6) it may be concluded that an error, which is quantified by the
calibration factor (6.7), is produced because of the use of the electric Hertzian
dipole receiving coefficients instead of the correct receiving coefficients. Fur-
thermore, the following conclusions with regard to this error may be made from
(6.6) and (6.7):

• The error depends on the distance but it does not vanish for large dis-
tances. Hence, though the measurement is taken in the far-field region,
the use of the electric Hertzian dipole receiving coefficients causes an error
in the computed transmitting coefficients.

• The error depends on the indices s and n, but not on the index m.
Consequently, the calibration factor may cause mistakes in the computed
radiation pattern.

• The error consists of just a multiplicative constant, i.e., no sums, inte-
grals, etc. are needed to compute the correct transmitting coefficients
from the computed coefficients. This is a major advantage that will be
especially useful later, when removing this error from the computed co-
efficients.

Nevertheless, although it has been quantified the error caused by the use of
the electric Hertzian dipole receiving coefficients, is must be pointed out that,
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in several practical situations, the error may become negligible or not detected.
Depending on the antenna that is being used as a probe or the application
in which the computed transmitting coefficients are applied, it may not be
necessary to consider the error quantified by the calibration factor.

For instance, if the probe is an elementary antenna, like an open waveguide
or an electrically small horn, both the ideal electric Hertzian dipole receiving
coefficients and the correct elementary probe receiving coefficients are quiet
similar. Therefore, the calibration factor βsn(kA) is almost 1 and, hence, the
error is negligible.

In addition, at large measurement distances, an approximation can be ap-
plied to the calibration factor (see Section 6.2.1) which allows the error to be
considered constant for any combination of s and n. Hence, since βsn(kA) is
constant, the computed transmitting coefficients and the correct coefficients
just differ in a multiplicative factor constant for all the coefficients, what leads
to the same normalized computed and correct coefficients. Consequently, when
dealing with normalized patterns (computed from normalized transmitting co-
efficients), no error is detected and the obtained results are completely correct.

The major problem arises in two different situations. The first one is referred
to the case in which a near-field measurement is taken, i.e., at a short distance.
In this case, the calibration factor is not constant for any combination of s and
n and, hence, each computed transmitting coefficient is affected by a different
error. Therefore, though normalized coefficients are applied to compute the
normalized pattern, an error takes place and the obtained normalized pattern
is not the same as the correct normalized pattern. The reason lies in the fact
that a different error on each coefficient causes, not only a different scale, but
also mistakes in the shape of the radiation pattern which lead to a wrong
pattern.

The second situation takes place when the required pattern must be non-
normalized. This situation arises, for instance, when the gain must be deter-
mined, in which case the non-normalized far-field pattern is needed. Hence,
no matter the measurement distance, the error must be removed in order to
obtain the desired pattern. The easier case is the case of large measurement
distances, in which case just a multiplicative constant must be removed. How-
ever, of main interest is the case of short measurement distances since, if the
error is removed, the correct transmitting coefficients may be obtained from
measurements taken at short measurement distances (even in the near-field
region). Consequently, the gain may be determined with just one near-field
measurement. This is an interesting application since no far-field measurement
is required for the gain determination which, in many cases, is not possible
because of the antenna size, the frequency, the anechoic chamber size, etc.

Next sections describe the behavior of the calibration factor for large dis-
tances, which will be used in future sections to apply some approximations.
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Furthermore, the way in what the gain can be determined by means of the
transmitting coefficients is explained in order to show, later, the advantages
of determining the correct transmitting coefficients. Finally, some practical
results are depicted which show the error produced by the calibration factor
when this factor is not removed.

6.2.1 Behavior of the calibration factor at large distances

The calibration factor βsn(kA) (6.7) depends on the probe response constants
with µ=1, i.e., Ps1n(kA), which, in turn, depend on the probe receiving coeffi-
cients Rσµν and on the translation coefficients Csn(3)

σ1ν (kA) (2.42). Hence, since
the probe receiving coefficients vary for each case, in order to determine the
general behavior of βsn, the translation coefficients must be studied.

Appendix C, section C.2, shows the main expressions for the computation
of the translation coefficients. Here it can be found both the general expression
(C.12) and the asymptotic expression for large distances (C.17). In the present
section, it is of main interest the asymptotic expression (C.17b) which allows
the translation coefficients with µ=1 to be easily computed for large distances.
The interest of (C.17b) lies in the fact that, from this expression, the following
two recurrent relations for n and ν may be established:

C
s(n+1)(3)
σ1ν (kA) =

1
j

√
1 +

2
2n+ 1

C
sn(3)
σ1ν (kA); kA→∞ (6.8)

C
sn(3)
σ1(ν+1)(kA) = j

√
1 +

2
2ν + 1

C
sn(3)
σ1ν (kA); kA→∞ (6.9)

If these two expressions are applied for the computation of the probe res-
ponse constants with µ=1 of an arbitrary antenna (2.42), the following formula
is obtained:

Ps1n(kA) =
1
2

∑
σ

[
C
s1(3)
σ11 (kA)

(
n−1∏
p=0

a(1)
p

) ∑
ν

Rσ1ν

(
ν−1∏
k=0

a
(2)
k

)]
(6.10)

where

a(r)
q =

{
1 , if q = 0

(−1)rj
√

1 + 2
2q+1 , if q 6= 0 (6.11)

Of course, (6.10) is somewhat more difficult than (2.42), however, when
this expression is applied for the computation of the electric Hertzian dipole
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6.2 Electric Hertzian dipole receiving coefficients

response constants (needed for the computation of the calibration factor (6.7)),
it becomes very useful. As it is deduced in [20], the electric Hertzian dipole
receiving coefficients have just one non-zero element with µ=1. This coefficient
is the one with σ=2 and ν=1, and its value is: R211|DIPOLE = −

√
2/2. Thus,

if the calibration factor is computed (6.7), and the recurrent relation (6.10) is
applied to compute both, the arbitrary probe and the electric Hertzian dipole
response constants, the following expression is obtained for the calibration fac-
tor for kA→∞:

βsn(kA) = β =

∑
σν

(∏ν−1
k=0 a

(2)
k

)
Rσ1ν |CORRECT

R211|DIP
; kA→∞ (6.12)

As can be observed, at large distances, βsn(kA) does not depend on the
indices s and n. Therefore, the calibration factor can be considered constant
for all the computed transmitting coefficients.

However, one question must be solved: the distance from which the expres-
sion (6.12), and the conclusions derived above, can be applied. To determine
this distance, it has been compared the result that is obtained with the gene-
ral expression (C.12) (which is valid for any distance), and the result that is
obtained with the asymptotic expression (C.17b) (used previously to deduce
(6.8) and (6.9)) valid only for large distances (kA → ∞). Fig. 6.1 shows the
quadratic error as a function of the distance made by the asymptotic expres-
sion (C.17b) with regard to the general expression (C.12). As can be observed,
the error is exponentially decreased for large distances. Thus, if a threshold
of 10−5 is assumed (practical results have shown that this choice offers quite
good results), the error made by the asymptotic expressions may be considered
negligible by using measurement distances larger than 50 λ.
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Figure 6.1: Quadratic error of translation coefficients computed with the
asymptotic expression
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Therefore, for measurement distances larger than 50 λ, the expression (6.12),
and the conclusions derived from this expression, can be applied. Hence, the
error produced by considering the electric Hertzian dipole receiving coefficients
can be considered constant for all the computed transmitting coefficients. This
fact will be especially useful later, when describing a an alternate probe cali-
bration procedure for the accurate computation of the receiving coefficients.

6.2.2 Gain determination

The gain is one of the most important parameters of an antenna since it pro-
vides information about the efficiency of the antenna. The difference of the gain
with regard to other important parameters (e.g. the directivity, the reflection
parameter or the beamwidth) is the difficulty to determine it. Whereas the rest
of parameters can be easily computed from the spherical near-field measure-
ment, the gain determination normally requires additional measurements and
computations. In [131] and [132], Burgos et al. carry out an extensive descrip-
tion of the most important algorithms for the gain determination presented to
date. As can be observed in this publication, most of them require far-field
measurements and only one of them, also described in [20], can be applied with
just near-field measurements.

Unfortunately, many times far-field measurements are not possible because
of the operating frequency, the antenna size and the anechoic chamber dimen-
sions. In these cases, just near-field measurements can be carried out and, con-
sequently, the gain must be determined using the gain determination algorithm
for near-field measurements described in [20]. The most important drawback
of this algorithm is the requirement of several near-field measurements with
two auxiliary antennas, what enhances the difficulty and the required time for
the gain determination.

As an additional technique, in [20] are also deduced the formulas for the
gain determination from just the computed transmitting coefficients. The most
important drawback of this technique is the requirement of the exact compu-
tation in absolute value of these transmitting coefficients. Nevertheless, if this
problem is overcome, the gain may be determined with just one near-field mea-
surement. The way in which these correct transmitting coefficients may be
computed will be explained later, however, it is important to describe previ-
ously how the gain can be easily determined from the computed transmitting
coefficients.

With this aim, first, it must be considered that the gain is defined in the
far-field region as the relation between the power radiated per unit solid angle
in the direction (θ,φ), which can be computed from the transmitting coefficients
as:
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Prad ant(θ, φ) =
1
2

1
4π

∣∣∣∣∣∑
smn

vTsmn ~Ksmn(θ, φ)

∣∣∣∣∣
2

, (6.13)

and the power radiated per unit solid angle if the input power accepted by
the antenna were radiated isotropically, which is computed by the following
expression:

Pacc ant =
1
2

1
4π
|v|2(1− |S11|2), (6.14)

where S11 is the reflection parameter. Therefore, the gain is determined as
follows:

G(θ, φ) =

∣∣∣∣∣∑
smn

Tsmn ~Ksmn(θ, φ)

∣∣∣∣∣
2

1− |S11|2
. (6.15)

This procedure can also be applied to the computation of the directivity.
Directivity is defined in the far-field region as the relation between the power ra-
diated per unit solid angle in the direction (θ,φ) (6.13), and the power radiated
per unit solid angle if the antenna radiated isotropically, which is computed as:

Piso ant =
1
2

1
4π

∑
smn

|vTsmn|2. (6.16)

Thus, the directivity can also be obtained from the transmitting coefficients
by applying the following expression:

D(θ, φ) =

∣∣∣∣∣∑
smn

Tsmn ~Ksmn(θ, φ)

∣∣∣∣∣
2

∑
smn

|Tsmn|2
. (6.17)

6.2.3 Practical results

In order to verify the error introduced by considering the electric Hertzian
dipole receiving coefficients instead of the correct receiving coefficients, the
standard gain horn shown in Fig. 6.2 was measured at 36.85 GHz and 26.40 GHz.
As a probe, an identical antenna to that of Fig. 6.2 was used. The measurement
distance was 1.49 m, hence, considering the antenna size and the operating fre-
quencies, the spherical measurement was taken in the far-field region at both
frequencies.
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Figure 6.2: Measured standard gain horn and position with regard to the
coordinate system of the AUT.

Of course, the horn of Fig. 6.2 is not an ideal first-order probe, but an odd-
order probe. However, as Fig. 6.3 shows, the power of high odd-order modes
(µ = ±3,±5, · · · ) remains 15 dB below the power of modes µ = ±1 at both
frequencies. Thus the horn of Fig. 6.2 may be considered as a first-order probe
without leading to inaccurate results.
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Figure 6.3: Normalized power of the standard gain horn receiving coefficients
for several indices µ.

First of all, using the spherical measurement, the transmitting coefficients
were computed using the electric Hertzian dipole receiving coefficients, i.e.,
applying the expression (6.4). Later the electric far field was computed with the
expression (2.48) in the XZ and Y Z planes (Fig. 6.2 depicts the position of the
antenna with regard to the coordinate system). Fig. 6.4 shows the normalized
far-field pattern obtained from the computed transmitting coefficients.

In order to check the validity of this radiation pattern, the transmitting
coefficients were also computed by applying the correct probe receiving coeffi-
cients (the way these coefficients can be obtained will be explained later). Then,
these coefficients were used to compute again the normalized far-field pattern.
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Figure 6.4: Computed far-field of the conical horn at 26.40 GHz and
36.85 GHz using the electric Hertzian dipole receiving coefficients.

Fig. 6.5 shows the difference of this radiation pattern with regard to the ra-
diation pattern of Fig. 6.4, i.e., the pattern computed with the transmitting
coefficients obtained using the electric Hertzian dipole receiving coefficients.
As can be observed, the error is almost constant for all directions, especially in
the maximum radiation directions. The error just becomes significant in low
gain directions and, hence, may be considered negligible.
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Figure 6.5: Error of the computed far-field of the conical horn at 26.40 GHz
and 36.85 GHz using the electric Hertzian dipole receiving coefficients.

Previous results allow to be concluded that, if an error is present, this cannot
be observed in normalized values. The reason for this behavior lies in the fact
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that the measurement distance (1.49 m) is 184.44 λ at 36.85 GHz and 130.70 λ
at 26.40 GHz. Hence, as it is proved in section 6.2.1, the error introduced by
the calibration factor can be considered constant for all the coefficients. Thus,
the normalized radiation pattern obtained from both the computed and the
correct transmitting coefficients are the same and, therefore, the error caused
by the use of the electric Hertzian dipole receiving coefficients is not detected.

In order to observe this error, the gain of the antenna of Fig. 6.2 was deter-
mined with the expression (6.15). Table 6.1 shows the determined gain as well
as the measured S11 parameter (which is required for the gain determination
(6.15)), the computed directivity (which does not depend on the absolute value
of the transmitting coefficients and, hence, is correct) and the gain parameter
supplied by the antenna manufacturer (with an accuracy of ±0.25 dB).

Frequency Measured
S11

Supplied
Gain

Computed
Gain

Computed
Directivity

26.40 GHz -17.62 dB 18.10 dB 36.54 dB 18.61 dB

36.85 GHz -15.00 dB 20.80 dB 39.34 dB 20.98 dB

Table 6.1: Determined parameters of the conical horn at 26.40 GHz and
36.85 GHz using the electric Hertzian dipole receiving coefficients.

As can be observed in Table 6.1, there is a big difference between the com-
puted gain and the gain parameter supplied by the manufacturer. This differ-
ence arises because the computed transmitting coefficients are not completely
correct, as the expression (6.15) requires. The calibration factor causes a change
in the level of the computed transmitting coefficients and, hence, though these
coefficients are correct in normalized value (as shown in Fig. 6.5), the abso-
lute value is not correct. Next sections deal with the way in which the correct
receiving coefficients of an antenna can be accurately computed.

6.3 Probe pattern calibration: iterative algo-
rithm

As it has been observed, the use of the electric Hertzian dipole receiving co-
efficients does not allow the correct transmitting coefficients to be computed.
Therefore, a probe calibration technique must be applied in order to obtain the
correct receiving coefficients which, later, are used to obtain the desired correct
transmitting coefficients.

One of the most used probe calibration techniques is the iterative algorithm
proposed by Hansen [20]. This algorithm computes the correct receiving co-
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efficients of an antenna from two sets of measurements. The first one (shown
in Fig.6.6(a)) is the measurement of the radiated field of the antenna that is
being characterized (antenna A) using an auxiliary probe (antenna B) as a
probe. The second one (shown in Fig. 6.6(b) is the inverse measurement, i.e.,
the measurement of the radiated field of the auxiliary probe (antenna B) using
the antenna that is being characterized (antenna A) as a probe.

(a) Measurement MA.

(b) Measurement MB .

Figure 6.6: Measurements set-ups.

The way the iterative algorithm works is depicted in Fig. 6.7. As can
be observed in this figure, the first iteration of the iterative algorithm is the
computation of the antenna A transmitting coefficients (TAITER 1

smn ) from the
measurement MA by applying the electric Hertzian dipole receiving coefficients
Rdip (since, at this point, the antenna B receiving coefficients are not known).

Once the coefficients TAITER 1
smn are known, the antenna A receiving coeffi-

cients (RAITER 1
smn ) are deduced by means of the transformation of transmitting

coefficients into receiving coefficients. The way in which this transformation is
carried out is extensively explained in Section 6.3.1. By now, it is going to be
assumed that this transformation is obtainable.

In the second iteration, the measurement MB is used to compute the an-
tenna B transmitting coefficients (TBITER 2

smn ). In this case, however, the elec-
tric Hertzian dipole receiving coefficients are not used since the antenna A,
which is used as a probe in the measurement MB , receiving coefficients are
known from the first iteration (RAITER 1

smn ). As a result, the antenna B trans-
mitting coefficients are obtained, which are used to compute the antenna B
receiving coefficients (RBITER 2

smn ). Later, these coefficients are applied in the
third iteration, in which the measurement MA is used again to compute the
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antenna A transmitting coefficients (TAITER 3
smn ). Consequently, these last coef-

ficients are more accurate than the coefficients of the first iteration (TAITER 1
smn )

since the applied receiving coefficients in this case (RBITER 2
smn ) are closer to the

correct receiving coefficients of the antenna B than the electric Hertzian dipole
receiving coefficients (Rdip) applied in the first iteration.

Figure 6.7: Iterative algorithm proposed by Hansen.

As can be observed in Fig. 6.7, the iterative algorithm continues iteration
by iteration using the result of the previous iterations. As pointed out by
Hansen [20], after several iterations convergence is reached in the computed
transmitting coefficients of antennas A and B and, hence, the receiving coef-
ficients of the antenna that is being characterized (antenna A) are obtained
accurately.

Nevertheless, it must be taken into account that the convergence of the iter-
ative algorithm depends on the auxiliary antenna (antenna B). As indicated by
Hansen [20], the only way to reach the convergence is by using an elementary
antenna, e.g. an open waveguide or an electrically small horn, as an auxiliary
antenna, otherwise, convergence is not reached. To illustrate this, the mea-
surement of Section 6.2.3 at 36.85 GHz was used to characterize the antenna
of Fig. 6.2, which is not an elementary antenna. As it was described there,
the measurement was taken using an identical antenna as a probe, hence, both
antennas (A and B) are the same and, therefore, they both have the same
transmitting and receiving coefficients.

The advantage of this situation is that, in all iterations, the obtained coeffi-
cients should be the same if the algorithm converged. To quantify the solution
on each iteration, the transmitting coefficients power was calculated using the
following expression:
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P =
∑
smn

|Tsmn|2. (6.18)

Fig. 6.8 depicts the computed power for each iteration. As can be observed,
the transmitting coefficients do not converge; instead they oscillate for odd
and even iterations. Therefore, this example confirms that, when the auxiliary
antenna (antenna B) is not an elementary antenna, the iterative algorithm does
not converge.
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Figure 6.8: Transmitting coefficients power vs number of iterations for the
iterative algorithm proposed by Hansen.

This limitation may become a strong drawback because an elementary an-
tenna may not be available when measuring the antenna to be characterized,
or because a certain gain may be required in the auxiliary antenna (elementary
antennas have a low gain) to reduce the noise present in the received signal.
For all these reasons, in this thesis several alternatives to the iterative algo-
rithm proposed by Hansen are introduced. These alternatives are proposed in
Section 6.4 for first-order probes and for three different situations.

6.3.1 Transformation of transmitting coefficients into re-
ceiving coefficients

For reciprocal antennas, the transformation of transmitting coefficients into re-
ceiving coefficients is carried out by just applying the following expression [20]:

Rsmn = (−1)mTs,−m,n. (6.19)

However, when using the resulting receiving coefficients, it must be taken
into account that these receiving coefficients are expressed in the same coordi-
nate system as the transmitting coefficients, i.e., the resulting receiving coeffi-
cients might not be able to be directly applied in the solution of the transmis-
sion formula. Hence, before using the resulting receiving coefficients, it must
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be considered the coordinate system in which the transmitting coefficients are
expressed and the coordinate system in which the receiving coefficients are
required for the solution of the transmission formula.

Concerning to this thesis, several measurements have been taken to cali-
brate several horns. In all these measurements, the antenna which radiated
field has been measured, i.e., the AUT, has been placed with regard to the
coordinate system depicted in Fig. 6.9(a). Therefore, the transmitting coeffi-
cients computed with the transmission formula are expressed in this coordinate
system.

(a) For transmitting coefficients. (b) For receiving coefficients.

Figure 6.9: Antenna position with regard to the coordinate system.

However, as described in [20], the transmission formula is deduced consid-
ering that the receiving coefficients are expressed with regard to the coordinate
system depicted in Fig. 6.9(b). As can be seen, both, the coordinate system in
which the transmitting coefficients are computed (and the receiving coefficients
deduced from them by applying (6.19)) and the coordinate system in which the
receiving coefficients are required are not the same. Hence, a coordinate sys-
tem change must be applied to use the computed receiving coefficients in the
solution of the transmission formula.

From Fig. 6.9(a) and Fig. 6.9(b), both coordinate systems can be related
by means of a rotation of the axes. Specifically, if the rotation is expressed in
terms of the Euler angles (described in Fig. C.1), the rotation of the axes may
be expressed as:

• χ0 = −90, θ0 = 180, χ0 = 0; or as

• χ0 = 0, θ0 = 180, χ0 = 90

To do this rotation of the axes, a rotation of the spherical waves (see Ap-
pendix C) can be applied. The general expression (C.1) allows both ingoing
waves (receiving coefficients) and outgoing waves (transmitting coefficients) to
be rotated. If the rotation of transmitting coefficients is chosen, it can be de-
duced the following formula for computing the transmitting coefficients in the
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rotated coordinate system (T rotσµn), i.e., the one of Fig. 6.9(b), from the trans-
mitting coefficients in the original coordinate system (Tsmn), i.e., the one of
Fig. 6.9(a):

T rotσµn =
n∑

m=−n
ejmφ0dnµm(θ0)ejµχ0Tsmn (6.20)

Once the transmitting coefficients are obtained in the appropriate coordi-
nate system, expression (6.19) can be applied. Thus, the receiving coefficients
are obtained in the required coordinate system for the solution of the trans-
mission formula.

6.4 Alternative iterative algorithm for probe ca-
libration

In previous section it has been seen that, as pointed out by Hansen [20], the
iterative algorithm for probe calibration only converges if an elementary an-
tenna is used as an auxiliary probe. The reason for this behavior can be easily
explained by means of the calibration factor deduced in Section 6.2.

As commented above (and depicted in Fig. 6.7), the first iteration of the
iterative algorithm makes use of the electric Hertzian dipole receiving coeffi-
cients (Rdip), since the auxiliary probe receiving coefficients are not known at
this point. If the auxiliary probe is an elementary antenna, both, the electric
Hertzian dipole receiving coefficients and the auxiliary probe receiving coeffi-
cients, are quite similar. Hence, the applied auxiliary probe coefficients (Rdip)
are essentially correct and the iterative algorithm just has to obtain transmit-
ting coefficients of the probe that is being characterized.

However, if the auxiliary probe is not an elementary antenna, the error
quantified by the calibration factor βsn(kA) is produced in the first iteration
because of the use of the electric Hertzian dipole receiving coefficients. The non-
convergence problem arises because this error is not attenuated, but propagated
throughout the different iterations.

Next three sections propose alternatives for the iterative algorithm for three
different situations. The aim of these alternatives is to remove the calibration
factor from the iterative algorithm, what leads to compute the accurate trans-
mitting and receiving coefficients of the antenna that is being characterized.

6.4.1 Case 1: Two identical antennas

In this first case, the antennas involved in the probe calibration algorithm,
i.e., the probe that is being characterized (antenna A) and the auxiliary probe
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(antenna B), are identical first-order probes. This situation has two advantages:
the first one is the reduction in the number of necessary measurements. This
is because the measurements MA and MB (depicted in Fig. 6.6) are essentially
the same, since the exchange of antennas A and B for the measurement MB

produces the same result (the same set-up as in measurement MA is obtained).
Hence, just one spherical measurement needs to be taken, which is used in all
the iterations (even and odd). Fig. 6.10 depicts this spherical measurement
(M).

Figure 6.10: Measurement set-up for the case of two identical antennas
(Measurement M).

The second advantage is the chance of assuming that the transmitting coeffi-
cients of both antennas involved in the measurement M are the same. Since the
antennas are identical, their transmitting coefficients are also identical (apart
from the manufacturing errors) and, hence, the results obtained in all the iter-
ations must be the same.

Considering previous advantages, the effect of the factor βsn(kD) may be
easily introduced in the iterative algorithm. To do this, the measurement
distance (D, as depicted in Fig. 6.10) must be large enough to consider the
error constant for all combinations of s and n. Thus, instead of considering
βsn(kD), it may be assumed that this factor is just β(kD).

By doing the above assumption, the way the iterative algorithm works for
this first case can be described as follows: firstly, the AUT transmitting co-
efficients (T ITER 1

smn ) are computed from the measurement M by applying the
electric Hertzian dipole receiving coefficients (Rdip). Therefore, as it was de-
duced in Section 6.2 (6.6), the resulting transmitting coefficients T ITER 1

smn are
the correct AUT transmitting coefficients multiplied by the factor β(kD) :

T ITER 1
smn = β(kD)Tsmn|CORRECT . (6.21)

Secondly, the AUT receiving coefficients (RITER 1
smn ) are obtained from the

computed AUT transmitting coefficients as described in Section 6.3.1. As a
result, the obtained receiving coefficients are also the correct coefficients mul-
tiplied by the calibration factor. Thus, RITER 1

smn can be expressed as:
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RITER 1
smn = β(kD)Rsmn|CORRECT . (6.22)

When these coefficients are applied to compute the AUT transmitting co-
efficients in the second iteration, first, the probe response constants must be
computed. From expression (2.42), it can be deduced that the obtained con-
stants are also the correct probe response constants multiplied by the factor
β(kD) (Psµn(kD)ITER 1 = β(kD)Psµn(kD)|

CORRECT
), since this factor does

not depend on the indices s and n, as stated above. Consequently, if the
computed probe response constants are inserted into (6.3), the transmitting
coefficients can be expressed as:

T ITER 2
smn =

1
β(kD)

Tsmn|CORRECT . (6.23)

As can be observed, in this iteration, the transmitting coefficients T ITER 2
smn

are not the correct transmitting coefficients multiplied by β(kD), but divided
by β(kD). Therefore, the receiving coefficients (RITER 2

smn ) deduced from these
coefficients are also the correct receiving coefficients divided by β(kD), i.e., the
receiving coefficients in the second iteration are:

RITER 2
smn =

1
β(kD)

Rsmn|CORRECT . (6.24)

From these coefficients, the probe response constants in the second iteration
are the correct probe response constants divided by β(kD). Hence, if these
probe response constants are used to compute the transmitting coefficients in
the third iteration (6.3), the resulting coefficients can be expressed as follows:

T ITER 3
smn = β(kD)Tsmn|CORRECT . (6.25)

Therefore, the computed transmitting coefficients in the first (T ITER 1
smn )

and third (T ITER 3
smn ) iterations are the same. If the iterative process continues,

it can be observed that the second and fourth iterations behave in the same
way, i.e., T ITER 4

smn = T ITER 2
smn . In general, this behavior takes place for even and

odd iterations, i.e., the computed transmitting coefficients in the odd iterations
are always the same, and the computed transmitting coefficients in the even
iterations are also the same.

Fig. 6.11 (where, for the sake of simplicity, the dependence of β(kD) with
regard to kD has not been noted) depicts the procedure commented above. As
can be observed in this figure, two sets of solutions are obtained: the solution of
the odd iterations and the solution of the even iterations. Of course, the power
of the transmitting coefficients of each solution is different, what justifies the
oscillatory behavior in the computed power observed in Fig. 6.8 for the example

155



CHAPTER 6. PROBE CALIBRATION

Figure 6.11: Propagation of error throughout the iterative algorithm for the
case of two identical antennas.

described in Section 6.3, where the antennas involved in the calibration were
two identical first-order probes.

Once it has been studied the way in which the calibration factor is propa-
gated throughout the iterative algorithm, it must be determined how this error
can be removed in order to obtain the correct transmitting coefficients. To
do this, the solution of the odd and even iterations may be related. Specifi-
cally, if the transmitting coefficients computed in an odd iteration (T ITER odd

smn )
are divided by the transmitting coefficients computed in an even iteration
(T ITER even
smn ), the correct transmitting coefficients are eliminated and, hence,

the calibration factor can be easily obtained as follows:

β(kD) =

√
T ITER odd
smn

T ITER even
smn

. (6.26)

Since T ITER odd
smn and T ITER even

smn are known from the iterative algorithm,
the calibration factor β(kD) can be easily determined. Once this factor is
known, one task still remains. This task consists of multiplying the transmitting
coefficients obtained in the even iterations by the computed β(kD) or dividing
the transmitting coefficients of the odd iterations by β(kD). No matter the
way is chosen, as a result, the correct transmitting coefficients of the antenna
that is being characterized (Tsmn|CORRECT ) are accurately obtained.

Once the correct transmitting coefficients are known, the computation of the
correct receiving coefficients (Rsmn|CORRECT ) can be easily done as described
in Section 6.3.1. Thus, if the antenna that is characterized by this procedure
is used as a probe for measuring the radiated field of another antenna, the
obtained correct receiving coefficients will be used to compute accurately the
transmitting coefficients of this antenna.
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Practical results 1 The described alternative to the iterative algorithm was
tested in two different situations. The first one was the same situation as in
the example of Section 6.2.3, where the radiated field of the antenna shown
in Fig. 6.2 was measured with an identical antenna working as a probe. As
described there, the measurement distance was 1.49 m and the operating fre-
quencies were 26.40 GHz and 36.85 GHz. Therefore, in both cases, the electrical
measurement distance was larger than 50 λ and, hence, the approximation of
the calibration factor (deduced in Section 6.2.1) could be applied.

Firstly, the iterative algorithm was implemented until the eleventh iteration
was reached (the election of eleven iterations is due to the fact that it has been
observed that a more stable solution is achieved if the solution at high iterations
is considered). Then, the calibration factor was determined by means of the
expression (6.26).

Later, the computed transmitting coefficients on each iteration were suit-
ably corrected (dividing or multiplying) by the computed calibration factor.
As a result, the correct transmitting coefficients in all the iterations were ob-
tained. Fig. 6.12 shows the power of these coefficients at 36.85 GHz and, as
can be observed, the oscillatory behavior observed in Fig. 6.8 is not present.
Indeed, the power of the computed transmitting coefficients on each iteration
tends to a constant value, i.e., the algorithm converges.

Iterations
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Figure 6.12: Transmitting coefficients power evolution after factor β(kB)
correction.

In order to verify if the accuracy of the computed transmitting coefficients,
the gain was determined using the expression (6.15) and the transmitting coeffi-
cients obtained in the iteration 11. Table 6.2 shows the result for the measured
S11 parameter, the gain supplied by the manufacturer (with a tolerance of
±0.25 dB), and the computed gain and directivity. As can be observed, the
computed gain is, not only close to the value supplied by the manufacturer,
but also within the tolerance margin indicated by the manufacturer. Hence, it
can be is concluded that the computed transmitting coefficients are completely
correct.
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Frequency Measured
S11

Supplied
Gain

Computed
Gain

Computed
Directivity

26.40 GHz -17.62 dB 18.10 dB 18.25 dB 18.61 dB

36.85 GHz -15.00 dB 20.80 dB 20.87 dB 20.98 dB

Table 6.2: Determined parameters of the pyramidal horn from the correct
transmitting coefficients using the iterative algorithm for two identical

antennas.

Practical results 2 In the second situation the wideband horn shown in
Fig. 6.13 was measured using an identical antenna as a probe. The mea-
surement was taken at a distance of 1.88 m and at five different frequencies:
11.50 GHz, 11.90 GHz, 12.10 GHz, 12.30 GHz and 12.50 GHz. Hence, again the
electrical measurement distance was larger than 50 λ and the approximation of
calibration factor constant for all combinations of s and n could be assumed.

Figure 6.13: Measured wideband horn and position with regard to the
coordinate system of the AUT.

Of course, as the above antenna, the horn of Fig. 6.13 is not an ideal first-
order probe, but an odd-order probe. Nevertheless, as Fig. 6.14 shows, the
power of high odd-order modes (µ = ±3,±5, · · · ) remains 13 dB below the
power of modes µ = ±1 at 12.10 GHz. Thus, by assuming the same behavior
at the other frequencies, this horn may be considered as a first-order probe
with low error.

As in the first example, the iterative algorithm was applied to the measure-
ments taken at the different frequencies and, after 11 iterations, the calibration
factor on each frequency was determined. Then, the transmitting coefficients
computed in the eleventh iteration were suitably corrected with the determined
factor to obtain the correct transmitting coefficients. As an example, Fig. 6.15
shows the XZ and YZ planes of the normalized far-field pattern at 12.10 GHz
computed with the transmitting coefficients at this frequency.

Finally, using the correct transmitting coefficients, the gain and the direc-
tivity were computed. Table 6.3 shows these parameters in conjunction with
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Figure 6.14: Normalized power of the wideband horn receiving coefficients for
several indices µ at 12.10 GHz.
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Figure 6.15: Computed far-field of the wideband horn at 12.1 GHz using the
correct transmitting coefficients.

the measured S11 parameter and the gain value supplied by the manufacturer.
In this case, the manufacturer does not indicate any tolerance for their supplied
values. However, as can be observed, the computed values at each frequency
are all close to the supplied value what, considering the tolerances of the mea-
surement system used for the calibration and the fact of not been an ideal
first-order probe, suggests that the obtained transmitting coefficients are quite
accurate.

6.4.2 Case 2: Two different antennas

When two identical first-order probes are not available for the probe calibration,
but two different first-order probes, the solution adopted in the case 1 cannot be
applied. Of course, the use of the electric Hertzian dipole in the first iteration of
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Frequency Measured
S11

Supplied
Gain

Computed
Gain

Computed
Directivity

11.50 GHz -27.72 dB 11.30 dB 11.50 dB 12.37 dB

11.90 GHz -20.73 dB 11.22 dB 11.45 dB 12.43 dB

12.10 GHz -18.39 dB 11.25 dB 11.52 dB 12.53 dB

12.30 GHz -16.58 dB 11.35 dB 11.74 dB 12.55 dB

12.50 GHz -15.74 dB 11.50 dB 11.80 dB 12.50 dB

Table 6.3: Determined parameters of the wideband horn from the correct
transmitting coefficients using the iterative algorithm for two identical

antennas.

the iterative algorithm introduces an error which is propagated throughout the
whole iterative algorithm. However, in this case, the advantages of the case 1
are not present. Hence, two different measurements like the ones depicted
in Fig. 6.6(a) and Fig. 6.6(b) must be used (since the antennas are different,
the exchange of AUT and probe does not lead to the same measurement). In
addition, the transmitting coefficients of both antennas are completely different,
what causes a different solution in odd and even iterations.

Nevertheless, the behavior of the iterative algorithm considering the prop-
agation of the calibration factor can be studied. Thus, a similar solution to
the one of case 1 might be adopted. With this aim, Fig. 6.16 (where, for the
sake of simplicity, the dependence of the calibration factor with regard to the
distance has not been indicated), depicts the iterative algorithm if the error
introduced in the first iteration by β(kDA) (and propagated throughout the
whole algorithm) is considered. As in the previous case, it is assumed a mea-
surement distance larger than 50 λ, hence, the factor β(kDA) does not depend
on the indices s and n.

As can be observed, the iterative algorithm starts from the measurement
MA (Fig. 6.6(a)). Hence, in the first iteration, the obtained transmitting coeffi-
cients are the antenna A transmitting coefficients multiplied by the calibration
factor. This calibration factor is the error introduced by considering the elec-
tric Hertzian dipole receiving coefficients instead of the antenna B (the probe
in measurement MA) receiving coefficients, i.e., the calibration factor in this
case is defined as:

βsn(kDA) =
PBs1n(kDA)|

CORRECT

Ps1n(kDA)|
DIPOLE

. (6.27)

160



6.4 Alternative iterative algorithm for probe calibration

where PBs1n(kDA)|
CORRECT

are the probe response constants of the an-
tenna B.

Figure 6.16: Propagation of error throughout the iterative algorithm for the
case of two different antennas, starting from the measurement MA.

In Fig. 6.16, it can be seen that the factor β(kDA) is propagated throughout
the iterative algorithm, even when the antenna B transmitting coefficients are
computed. However, no error is introduced by the antenna A because the
electric Hertzian dipole receiving coefficients are not used at any point instead
of the antenna A receiving coefficients. Furthermore, it can be observed in
Fig. 6.16 that two sets of solutions are obtained: the antenna A transmitting
coefficients multiplied by β(kDA), and the antenna B transmitting coefficients
divided by β(kDA). This is a great drawback because, if the same procedure
as for the case of two identical antennas is applied to this case, i.e., if the
transmitting coefficients computed in odd and even iterations are related, the
calibration factor is expressed as follows:

β(kDA) =

√
TAITER odd

smn TBsmn|CORRECT
TBITER even

smn TAsmn|CORRECT
. (6.28)

This expression does not allow the calibration factor to be computed be-
cause it requires the knowledge of the correct antenna A and B transmitting
coefficients, which, in fact, are the aim of the algorithm. Hence, this algorithm,
and the expression (6.28), are not enough to compute the desired correct an-
tenna A transmitting coefficients.

In order to try other possibilities, the iterative algorithm can be started
from the measurement MB . Fig. 6.17, where the dependence of the calibration
factor with regard to the distance has not been noted for the sake of simplicity,
shows the behavior of the algorithm in this case. As can be observed, the
algorithm looks like the previous algorithm (depicted in Fig. 6.16), however,
now, the error introduced by the electric Hertzian dipole receiving coefficients
is noted as α(kDB). This is because the error in this case is not the same as in
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the previous case. Now, the calibration factor is the error with regard to the
antenna A receiving coefficients, i.e., in general, αsn(kDB) is defined as:

αsn(kDB) =
PAs1n(kDB)|

CORRECT

Ps1n(kDB)|
DIPOLE

. (6.29)

where PAs1n(kDB)|
CORRECT

are the probe response constants of the an-
tenna A.

Figure 6.17: Propagation of error throughout the iterative algorithm for the
case of two different antennas, starting from the measurement MB .

Similarly to the previous situation, the transmitting coefficients computed
in odd and even iterations can be related to obtain the following factor:

α(kDB) =

√
TBITER odd

smn TAsmn|CORRECT
TAITER even

smn TBsmn|CORRECT
(6.30)

This expression has the same problem as the expression (6.28), i.e., the
correct antenna A and B transmitting coefficients are required to compute
α(kDB). In addition, if expressions (6.28) and (6.30) are related, no way
has been found to compute the desired factors (β(kDA) or α(kDB)) without
requiring the correct antenna A and B transmitting coefficients.

Therefore, if two identical first-order probes are not available for the probe
calibration and, hence, two different measurements are required for the cali-
bration, the same procedure proposed for the case of two identical first-order
probes cannot be directly applied. Hence, another procedure must be used in
this situation.

In this thesis, two different solutions for two different situations are proposed
which aim is the computation of the calibration factor. Next two sections
explain both solutions.
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6.4.2.1 Application of the supplied gain

The probes used in spherical measurements are normally characterized by the
manufacturer or certified by an external laboratory. Among the common pa-
rameters that are supplied, the gain is one of the most interesting since it
provides valuable information about the antenna. Thus, in this section it is
proposed an alternative to the iterative algorithm [133] which makes use of the
probe’s gain parameter to obtain the correct probe receiving coefficients.

To do this, first it must be expressed the gain determined if the computed
transmitting coefficients on each iteration are applied. In principle, no matter
the measurement from which the algorithm starts, i.e., it may start from the
measurement MA (Fig. 6.16) or from the measurement MB (Fig. 6.17). For
instance, if the algorithm starting from the measurement MA is chosen, and
the antenna A is the antenna to be characterized, the gain of this antenna may
be expressed as follows:

G(θ, φ)|
ITER odd

=

∣∣∣∣∣∑
smn

TAITER odd
smn

~Ksmn(θ, φ)

∣∣∣∣∣
2

1− |S11|2
, (6.31)

where the coefficients TAITER odd
smn are the antenna A correct transmitting

coefficients multiplied by the calibration factor, i.e., β(kDA)TAsmn|CORRECT .
The way in which these coefficients are obtained is depicted in Fig. 6.16.

Furthermore, it must be pointed out that, if the correct transmitting coeffi-
cients were known, the gain could be determined using the following expression:

G(θ, φ)|
CORRECT

=

∣∣∣∣∣∑
smn

TAsmn|CORRECT ~Ksmn(θ, φ)

∣∣∣∣∣
2

1− |S11|2
, (6.32)

Thus, since the correct coefficients are applied, the gain determined on this
way is the correct gain and, hence, is the same as the gain supplied by the
manufacturer, i.e., G(θ, φ)|

CORRECT
= G(θ, φ)|

SUPPLIED
.

Therefore, from (6.31) and (6.32), the following relation can be established:

G(θ, φ)|
ITER odd

G(θ, φ)|
SUPPLIED

=

∣∣∣∣∣∑
smn

β(kDA)TAsmn|CORRECT ~Ksmn(θ, φ)

∣∣∣∣∣
2

∣∣∣∣∣∑
smn

TAsmn|CORRECT ~Ksmn(θ, φ)

∣∣∣∣∣
2 . (6.33)
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As can be observed in this expression, there are two unknowns: the cali-
bration factor and the antenna A correct transmitting coefficients. However,
it is assumed that the measurement distance is larger than 50 λ and, hence,
as indicated in (6.33), the calibration factor does not depend on s and n.
Thus the factor β(kDA) can be extracted from the sum and, therefore, the
expression (6.33) may be simplified. By doing so, the calibration factor can be
obtained from just known parameters as follows:

|β(kDA)| =
√

G(θ, φ)|
ITER odd

G(θ, φ)|
SUPPLIED

. (6.34)

The described procedure has several drawbacks. Firstly, just the absolute
value of the calibration factor can be computed; secondly, the measurements
must be taken at distances larger than 50 λ in order to reduce the error intro-
duced by the simplification of calibration factor; and, finally, the gain of the
antenna that is being characterized must be known.

However, all drawbacks can, normally, be overcome. With regard to the
first drawback, the resulting antenna A receiving coefficients are usually used
for the gain determination and, hence, the knowledge of the absolute value of
the receiving coefficients may be enough. Concerning to the second drawback,
at high frequencies, the restriction of a measurement distance larger than 50 λ
may be satisfied in many cases (e.g., at 10 GHz, 50 λ are 1.5 m). Finally, if the
antenna has been bought, the gain is probably known since the manufacturer
indicates the specifications of the antenna, among which the gain is always
included.

In addition, this procedure has the advantage of just requiring one mea-
surement. To do this, the gain G(θ, φ)|

ITER odd
must be determined with the

transmitting coefficients computed in the first iteration. Thus, the calibration
factor is obtained (6.34) with just one iteration and the measurement MB is
not used. Later, the antenna A transmitting coefficients are obtained from
the coefficients computed in the first iteration and, with these coefficients, the
antenna A receiving coefficients, which are the aim of the probe calibration
technique.

Nevertheless, it must be pointed out that it has been observed a convergence
behavior towards two sets of solutions after several iterations. Hence, better
solutions may be achieved if, instead of the transmitting coefficients of the
iteration 1, the transmitting coefficients computed in a higher iteration are
used.

Practical results 1 The procedure described above was tested in two diffe-
rent cases. The first one was the same as the first example of Section 6.4.1, i.e.,
the measurement of the standard gain horn depicted in Fig. 6.2 using an iden-

164



6.4 Alternative iterative algorithm for probe calibration

tical antenna as a probe. As indicated in that section, the measurement was
taken at 1.49 m and the operating frequencies were 26.40 GHz and 36.85 GHz.

Of course, the procedure described in this section is not aimed at the mea-
surement with two identical antennas, in which case the technique described
in Section 6.4.1 is more accurate. However, it is worth to test if the proposed
technique works in a familiar situation. To do this, the gain supplied by the
manufacturer (shown in Table 6.2) was used to compute the absolute value of
the calibration factor by means of (6.34). The applied transmitting coefficients
were the coefficients computed in the eleventh iteration (Fig. 6.16).

Using these data, the absolute value of the obtained calibration factor at
36.85 GHz was: |β(kD)| = 8.44. It must be pointed out that, in the previous
section, where the iterative algorithm for the case of two identical antennas was
applied, the obtained calibration factor at 36.85 GHz was: β(kD) = 2.2−8.13j,
which absolute value is 8.42. Hence, it can be concluded that this second
technique offers a quite good approximation to the correct calibration factor.

Once the calibration factor was known, the correct transmitting coefficients
were obtained using the computed coefficients in the eleventh iteration and
the obtained factor (|β(kD)| = 8.44). Table 6.4 shows the gain determined by
applying these correct coefficients. As can be seen, the computed gain is close
to the supplied gain and just a little variation (caused because of the applied
approximations) takes place. Thus, it is confirmed that the proposed technique
gives quite good results.

Frequency Measured S11 Supplied Gain Computed Gain

26.40 GHz -17.62 dB 18.10 dB 18.30 dB

36.85 GHz -15.00 dB 20.80 dB 20.70 dB

Table 6.4: Determined parameters of the conical horn from the correct
transmitting coefficients using the gain supplied by the manufacturer.

Practical results 2 In the second case, the proposed technique was applied
for the calibration of the pyramidal horn depicted in Fig. 6.18(a) (antenna A).
In this case an identical antenna was not available and, hence, a different an-
tenna was used as a probe. Specifically, the probe antenna was the corrugated
conical horn shown in Fig. 6.18(b) (antenna B). Since both antennas (A and B)
were different, the measurements MA and MB of Fig. 6.6(a) and Fig. 6.6(b),
respectively, were taken. The measurement distance was 3.26 m in the mea-
surement MA and 3.15 m in the measurement MB , and the operating frequency
was 12.1 GHz. Hence, in both cases, the measurement distance was larger than
50 λ and the approximation of the calibration factor could be applied.
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(a) Pyramidal horn. (b) Corrugated horn.

Figure 6.18: Measured antennas at 12.1 GHz.

As the algorithm for two identical antennas, the algorithm proposed in
this section is aimed at first-order probes. On the one hand, the pyramidal
horn of Fig. 6.18(a) is not a first-order probe, but an odd-order probe. Nev-
ertheless, as depicted in Fig. 6.19(a), the power of the high odd-order modes
(µ = ±3,±5, · · · ) remains 15 dB below the power of modes µ = ±1. Thus, it
may be assumed that this horn is a first-order probe with a small error.

On the other hand, the antenna of Fig. 6.18(b) is a rotationally symmetric
horn and is excited by a circular waveguide with the TE11 mode propagating.
Hence, as Fig. 6.19(b) shows, this antenna is an ideal first-order probe and,
hence, no approximations must be done with regard to this antenna.
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(a) Pyramidal horn.
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(b) Corrugated conical horn.

Figure 6.19: Normalized power of the pyramidal and conical horn receiving
coefficients for several indices µ at 12.10 GHz.

Once the measurements MA and MB were taken, the iterative algorithm
depicted in Fig. 6.16, i.e., the algorithm which starts from the measurement
MA, was applied for 11 iterations. Then, the antenna A transmitting coeffi-
cients computed in the eleventh iteration were used to determine the gain of
the antenna A. Later, this gain, and the gain supplied by the manufacturer
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(19.96 dB), were used to obtain the calibration factor by means of the expres-
sion (6.34). As a result, the obtained calibration factor was: |β(kDA)| = 3.60.

Finally, the transmitting coefficients computed on each iteration of the it-
erative algorithm were corrected and, thus, the correct antenna A and B trans-
mitting coefficients were obtained.

In order to verify if the computed transmitting coefficients were really cor-
rect, firstly, the far field was computed. Fig. 6.20 shows the main planes of
the normalized far-field pattern for both measured antennas. As can be ob-
served, no big mistakes are detected. Moreover, if the beamwidth supplied by
the manufacturer of the pyramidal horn is considered (18◦ in the XZ plane
and 18.75◦ in the YZ plane), it can be concluded that a quite good far-field
pattern was obtained. Of course, being β(kDA) constant, the same normalized
pattern would have been obtained if the non-corrected transmitting coefficients
had been applied, as pointed out in Section 6.2. However, it is worth to test
that, not only specific parameters are correct, but also the pattern computed
from the transmitting coefficients.
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Figure 6.20: Computed far-field of the horns measured at 12.1 GHz using the
correct transmitting coefficients.

Secondly, the gain of both antennas was determined applying the computed
correct transmitting coefficients. Table 6.5 shows the result for the pyramidal
horn. As can be observed, the computed gain is very close to the gain value
supplied by the manufacturer, which has a tolerance of ±0.25 dB.

Concerning the corrugated horn, the gain was also computed and the result
is shown in Table 6.6. In this case the manufacturer did not supply the gain
of the antenna and, hence, it has not been included in the table to compare
this value to the computed gain. However, it may be commented that the
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Frequency Measured
S11

Supplied
Gain

Computed
Gain

Computed
Directivity

12.10 GHz -20.80 dB 19.96 dB 19.90 dB 20.48 dB

Table 6.5: Determined parameters of the pyramidal horn at 12.1 GHz from
the correct transmitting coefficients using the gain supplied by the

manufacturer

computed gain is lower than the directivity. Hence, the computed gain is in
the valid variation margin.

Frequency Measured
S11

Computed
Gain

Computed
Directivity

12.10 GHz -20.80 dB 13.39 dB 13.74 dB

Table 6.6: Determined parameters of the corrugated horn at 12.1 GHz from
the correct transmitting coefficients of the corrugated horn using the gain

supplied by the manufacturer.

6.4.2.2 Use of an additional antenna

Sometimes, the drawbacks of the solution described in previous section cannot
be overcome. For instance, if the gain of, at least, one of the antennas involved
in the calibration procedure is not known, the described technique cannot be
applied. Consequently, another technique must be applied.

This section proposes an alternative procedure for the probe calibration for
first-order probes. This new method does not require two identical antennas
nor the gain of one of the antennas involved in the calibration. Nevertheless,
an additional antenna is required, i.e., the new method employs three different
antennas, as well as two more measurements, i.e., altogether four spherical mea-
surements must be taken. As a result, the obtained transmitting coefficients
are correct, not only in absolute value, but also in phase, since the complex
value of the calibration factor is obtained.

Before describing the way the new technique works, the measurements to be
carried out must be detailed. Considering that the antenna A is the antenna
to be characterized and the antenna B is the auxiliary probe, the first two
measurements are exactly the same as the ones depicted in Fig. 6.6, i.e., the
measurements MA and MB . To do the rest of measurements, an additional
antenna, from now on Antenna C, must be used. No special restrictions with
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regard to this antenna must be taken into account; however it must guaranteed
that the antenna works correctly at the operating frequency.

Once the antenna C has been chosen, the spherical measurements depicted
in Fig. 6.21 must be carried out. As can be observed, in both cases the radiated
field of the antenna C is measured. However, in the first case (Fig. 6.21(a)),
the probe is the antenna A and, in the second case (Fig. 6.21(b)), the probe is
the antenna B. It is important to note that the measurement distances of these
measurements must be exactly the same as the measurement distances of MA

and MB . Specifically, the measurement distance of MCA must be the same as
the measurement distance of MB , i.e., DB , and the measurement distance of
MCB must be the same as the measurement distance of MA, i.e., DA. This
aspect is necessary later to deduce the formulas to compute the calibration
factor.

(a) Measurement MCA.

(b) Measurement MCB .

Figure 6.21: Measurements set-ups for the additional antenna.

Being all the necessary measurements available, the next step can be carried
out. To do this, first the iterative algorithms depicted in Fig. 6.16 and Fig. 6.17
must be applied using the measurements MA and MB . Then, the antenna C
transmitting coefficients must be computed, as depicted in Fig. 6.22, from both,
the measurements MCA and MCB , using the electric Hertzian dipole receiving
coefficients. As can be observed, the error introduced by considering the dipole
coefficients (β(kDA) and α(kDB)) is the same as the error propagated through-
out the iterative algorithms, since the probes and the measurement distances
in measurements MA and MCB are the same, as well as in the measurements
MB and MCA.
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(a) Using measurement MCB . (b) Using measurement MCA.

Figure 6.22: Computation of the antenna C transmitting coefficients using
the electric Hertzian dipole receiving coefficients.

Therefore, at this moment, several sets of coefficients are available: the
coefficients from the iterative algorithms of Fig. 6.16 and Fig. 6.17, and the
coefficients depicted in Fig. 6.22. The advantage is that all these coefficients
are affected by just two kind of errors, namely β(kDA) and α(kDB). This fact
allows two different relations to be deduced. To do this, firstly, the transmit-
ting coefficients computed on the odd iterations of the algorithm depicted in
Fig. 6.16 (TAITER odd

smn ) and the transmitting coefficients obtained on the even
iterations of algorithm shown in Fig. 6.17 (TAITER even

smn ) must be related to
establish the following relation:

β(kDA)α(kDB) =
TAITER odd

smn

TAITER even
smn

. (6.35)

Secondly, the computed antenna C transmitting coefficients depicted in
Fig. 6.22 must be related to obtain the following expression:

β(kDA)
α(kDB)

=
TCMCB

smn

TCMCA
smn

. (6.36)

Finally, expressions (6.35) and (6.36) must be combined to deduce the fol-
lowing expressions for the computation of the calibration factors:

α(kDB) =

√
TAITER odd

smn TCMCA
smn

TAITER even
smn TCMCB

smn

, (6.37)

β(kDA) = αsn(kDB)
TCMCB

smn

TCMCA
smn

. (6.38)

Previous expressions are completely obtainable since all the factors involved
in the computation can be obtained as it has been described previously. Hence,
the calibrations factors can be determined and, with these, the correct antenna
A, B and C transmitting coefficients.

The main drawback of the described technique is the requirement of an
additional antenna and the fact of having to take two extra spherical mea-
surements. However, this technique is the most general technique since no
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assumptions have been done with regard to the kind of antennas (apart from
being first-order probes the antennas A and B) or the knowledge of the gain of
the antennas.

Practical results The algorithm described above was tested with the an-
tennas shown in Fig. 6.18 working at 12.1 GHz. Specifically, the antenna of
Fig. 6.18(a) was the antenna A, and the antenna of Fig. 6.18(b) was the an-
tenna B. As an additional antenna (antenna C), the RLSA antenna depicted in
Fig. 6.23 was used. The measurement distances in the measurements MA and
MB were the same as in the example of previous section, i.e., DA = 3.26 m and
DB = 3.15 m. For the measurements of the antenna C (MCA and MCB), the
measurement distances were suitably kept, i.e., DCB = DA and DCA = DB .

Figure 6.23: Measured RLSA antenna and position with regard to the
coordinate system of the AUT.

Firstly, the procedure described above was carried and the calibration fac-
tors were obtained. As a result, the computed factors were: β(kDA) = 0.99 +
3.64j and α(kDB) = 0.30−7.76j. If the absolute value of β(kDA), i.e., 3.77, is
compared to the value obtained with the algorithm proposed in Section 6.4.2.1,
i.e., 3.60, it is confirmed that both methods obtain similar results.

Once the calibration factors were obtained, the antenna A, B and C correct
transmitting coefficients were obtained. Fig. 6.24 shows the normalized far-
field pattern of the antenna C computed from its transmitting coefficients.
The normalized far-field pattern of the antennas A and B is the same as the
one shown in Fig. 6.20.

Finally, the gain and directivity were determined for the three antennas
using the correct transmitting coefficients. Table 6.7 shows the result. Re-
garding the pyramidal horn, the supplied gain (19.96 dB, from Table 6.5) can
be compared to the computed gain. By doing so, it can be observed that the
computed gain is quite close to the supplied value.

Unfortunately, the gain of the corrugated horn and the RLSA antenna is
not supplied and, therefore, the computed gain of these antennas cannot be
verified. However, it is worth to mention that the gain of both antennas is
below the directivity and, hence, they are within the valid margin. This fact,
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Figure 6.24: Computed far-field of the RLSA antenna at 12.1 GHz using the
correct transmitting coefficients.

in conjunction with the gain of the pyramidal horn, allows to be concluded that
the proposed technique obtains accurately the transmitting coefficients.

Antenna Measured
S11

Computed
Gain

Computed
Directivity

Pyramidal
horn

-20.80 dB 19.37 dB 20.42 dB

Corrugated
horn

-23.92 dB 13.51 dB 13.74 dB

RLSA
antenna

-18.50 dB 24.10 dB 25.31 dB

Table 6.7: Determined parameters of the pyramidal horn, the corrugated horn
and the RLSA antenna at 12.1 GHz from the correct transmitting coefficients

using the additional antenna technique.
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Chapter 7

Conclusions

This thesis has dealt with the diagnosis of antennas by means of the study
of the equivalent currents on a surface close to the antenna. These currents
have been obtained from spherical measurements which, in general, have been
considered to be taken in the near-field region.

Firstly, the vector wave equation was solved in four different coordinate sys-
tems. Among these coordinate systems, the most interesting systems for this
thesis were the planar and the spherical coordinate systems. The reason of this
choice lay in the determination of the equivalent currents on a flat surface and
the use of spherical measurements. By using the planar coordinate system, the
plane wave spectrum could be used as an intermediate step between the spher-
ical measurements and the desired currents. Chapter 3 presented two different
options to perform this transformation by using the modal expansion and the
plane wave spectrum. Also, the reconstruction of the equivalent currents was
carried out by an integral equation technique and the method of moments.

The above techniques may be divided in two groups: those that apply a
direct transformation, from the spherical near-field measurement to the field
on the surface of interest and, hence, to the desired equivalent currents (the
integral equation technique and the SWE-to-PWE technique), and those that
use the far field (the microwave holographic technique). The advantage of the
first kind of techniques is the possibility of using the information present in the
waves that are present in the near-field region (the evanescent waves) but not
in the far field region.

By looking at the results, it is clear that an improvement in resolution
is achieved by using the direct transformation. However, in a practical case,
this improvement is quite hard to achieve. The reason or this drawback was
studied in Chapter 4. Here it was shown how the evanescent waves are strongly
attenuated, at short distances. Thus, extremely short measurement distances

173



CHAPTER 7. CONCLUSIONS

must be used to measure these waves, what entails some limitations such as
reflections and coupling between AUT and probe.

Assuming that the evanescent waves cannot be normally measured, the only
information that can be used normally to reconstruct the equivalent currents
is the information present in the far field. Thus, if the field is measured in
the far-field region or if the far field is used as an intermediate step, no loss
of information is produced in most of situations. In this thesis, this last case
(i.e., the microwave holographic technique) has been considered. In Chapter 4
the resolution of the equivalent currents by using this field was studied and it
was shown how, in this situation, just the visible plane wave spectrum (i.e., a
circle of radius k) is available for the reconstruction. Moreover, in this chapter
it was deduced that, with this spectrum, the maximum resolution that can be
achieved in the reconstructed currents is 1 λ.

To increase the resolution obtained by using the far field, Chapter 5 pro-
posed several techniques. Firstly the iterative Papoulis-Gerchberg algorithm
was proposed, whose aim was to estimate the non-visible spectrum by extrap-
olating the visible spectrum and using the maximum size of the antenna. As a
result, quite accurate equivalent currents were obtained for ideal antennas. The
resolution was increased and, by looking at the examples, elements separated
0.8 λ could be clearly distinguished. However, when applying the algorithm
to an antenna with elements separated 0.4 λ, the elements could not be dis-
tinguished. This fact led to use the periodicity property of the spectrum of
antennas formed by discrete elements. This property allowed to clearly distin-
guish the elements separated 0.4 λ and to exactly determine the amplitude of
the elements. Hence, it can be concluded that the proposed technique (the it-
erative algorithm and the replication of the spectrum) increases the resolution,
from 1 λ with the visible spectrum up to 0.4 λ with the proposed technique.

Nevertheless, when applying the algorithm to a real antenna, the results
were not as accurate as it was desired. This fact led to apply more restric-
tive spatial filters (the Papoulis-Gerchberg algorithm just applies a wide filter
including all the sources). The equivalent currents were improved, and the
currents inside the slots could almost be observed. However, the algorithm
was iterative and, hence, not too much iterations could be applied. For this
reason, the direct version of the iterative algorithm was also studied in order
to improve the reconstructed equivalent currents by using a higher number of
iterations but without increasing the computation time.

This direct version was the so-called extrapolation matrix which, in 2-D,
could be implemented in two different ways. The first way was the extrapolation
matrix by rows and columns, which offered quite good results for linear arrays.
The obtained currents were the same as for the iterative algorithm but with
a lower computation time. In addition, no increase of this time was produced
by increasing the number of iterations so that a high number of iterations
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could be applied in the same time. The problems of this technique were its
limitations regarding the kind of filters, the shape of the spectrum applied
in the extrapolation and the separation of the extrapolation in two different
parts, by rows and columns. For these reasons, the second way, the generalized
extrapolation matrix was proposed.

This matrix solved the drawbacks of the extrapolation matrix by rows and
columns, but involved other problems. The generalized extrapolation matrix
required the inversion of an ill-conditioned matrix which, by not fitting in mem-
ory, had to be divided into blocks. However, by overcoming these problems, it
was shown how the results were quite accurate. In addition, the computation
time of this matrix was smaller than the computation time of the iterative al-
gorithm, and the result after an infinite number of iterations could be obtained,
i.e., the same result at which the iterative algorithm tends. Nevertheless, in
Chapter 5 it was also shown how this technique, though improving the re-
solution, does not obtains considerably better results than with the iterative
algorithm, even though an infinite number of iterations are applied.

In order to improve the obtained currents, another technique, the PDFT
(prior discrete Fourier transform), was applied. The aim of this technique is
to improve the spatial signal, i.e., the equivalent currents, rather than to ex-
trapolate the visible spectrum. The drawbacks of the PDFT were the same as
the drawbacks of the generalized extrapolation matrix, however the equivalent
currents obtained by the PDFT were quite better. Whereas the use of a wide
filter led to the same results as the iterative algorithm (the same resolution,
around 0.7∼0.8 λ, was obtained), the use of a restrictive filter improved the
results. In this last case, for antennas formed by discrete elements, the reso-
lution was also around 0.3∼0.4 λ, as in the iterative algorithm. In addition,
the application of a restrictive algorithm to a real antenna allowed the current
inside the slot to be determined.

By looking at all the above techniques, it may be concluded that the most
interesting techniques are the iterative Papoulis-Gerchberg algorithm and the
PDFT. Whereas the PDFT technique allows quite good results to be obtained
in a single operation, the iterative algorithm leads also to good results in many
cases, but without having to compute the inverse of a large matrix. Further-
more, the resolution achieved by both algorithms is almost the same (around
0.3∼0.4 λ if a restrictive spatial filter is used).

Finally, Chapter 6 proposed several algorithms to carry out the probe cali-
bration for first-order probes. Firstly, the error produced by using the electric
Hertzian dipole receiving coefficients instead of the correct receiving coefficients
was introduced. Then, three different algorithms for three different situations
were described. In the first situation the case in which two identical first-order
probes are available was described. For this case, a quite accurate algorithm
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was presented which allowed the probe receiving coefficients to be accurately
determined.

For the second situation, two different antennas were considered, but the
gain of one these antennas was assumed to be known. The algorithm proposed
for this case allowed the probe under study to be calibrated by just using one
full-sphere measurement. As shown in Chapter 6, the receiving coefficients
obtained with this algorithm were also accurate in absolute value.

The third situation involved three different antennas and four different
spherical measurements. However, no prior knowledge about the gain of the
antennas, nor two identical antennas, were required. The advantage of this
algorithm is that it allows the accurate computation of the receiving coeffi-
cients of a probe, without applying any additional data, just combining several
measurements taken in several set-ups.

Therefore, by using the above algorithms, the accurate receiving coefficients
of a first-order probe may be determined. Later, these coefficients may be used
to compute the accurate transmitting coefficients of another antenna whose
radiated field has been measured with the calibrated probe. One of the most
important applications of these transmitting coefficients is the possibility of
determining the gain of the antenna easily and with a high accuracy, even
though near-field measurements are used. As shown in results of Chapter 6,
the gain obtained by applying the computed transmitting coefficients is quite
accurate and within the margins offered by the manufacturer.

7.1 Further work

The research around the topics studied in this thesis may be continued beyond
the presented here in several ways. First of all, the inverse algorithms may be
studied in other coordinate systems, such as the cylindrical coordinate system.
These studies may be done either by applying an integral equation technique or
by applying a modal expansion technique. Regarding this last case, the research
may be also followed on the inverse transformation with the oblate spheroidal
wave expansion. In this thesis, this possibility has been pointed out and the
keys to carry out this transformation have been described. However, no result
has been shown. It would be interesting to implement this transformation in
order to be able to compare its results with the results of other techniques.

Secondly, the research may be continued by studying other extrapolation
techniques. In this thesis, several techniques have been proposed and other
techniques have been just pointed out, e.g. the maximum entropy method. It
would be interesting to apply these other techniques, whose criterions differ
from the criterions of the Papoulis-Gerchberg algorithm and the PDFT. It
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must be taken into account that the change of criterions between these two
techniques led to similar results but not identical.

In addition, it may be improved the computation of the inverse of the ill-
conditioned matrix required in the generalized extrapolation matrix technique
and the PDFT. In this thesis, the use of a couple of methods has been proposed.
However, in literature a lot of methods to compute this inverse have been
presented. It would be interesting to apply other methods to try to improve
the result obtained with these techniques.

Finally, the research may be continued on the probe calibration techniques.
In this thesis, three algorithms for first-order probes have been presented, how-
ever, these probes are not always available. For this reason, it would be in-
teresting to establish an algorithm for the calibration of odd-order probes or,
in general, high-order probes. Thus, the receiving coefficients of any probe
might be accurately obtained without approximations. By doing so, the cor-
rect transmitting coefficients of an antenna might be computed by using any
kind of antenna as a probe.
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Appendix A

Bessel functions

In this appendix, the expressions to compute the bessel functions are supplied.
The aim of this appendix is not to offer a complete and detailed formulation
about the bessel functions, which can be found in [46]. The aim is rather
to detail the minimum necessary information to compute the wave functions
appeared during this thesis. For this reason, the arguments are treated as a
variable (ρ or r) multiplied by a constant (k), as it can be found in previous
chapters.

Furthermore, it is worth to mention that, in this appendix, a slight change
in notation with regard to the rest of the thesis is done. Until now, the complex
variable

√
−1 has been denoted as j. However, in this appendix, in order to

avoid confusions with regard to the spherical Bessel function (which is referred
as jn), the complex variable

√
−1 is denoted as i.

A.1 Bessel functions of integer order: Bessel
functions

Definition

There are several kinds of Bessel functions with integer order [46]. In this
thesis, the functions of interest are those (Z) which are solution to the following
differential equation:

(kρ)2 d2Z

d(kρ)2
+ ρ

dZ

d(kρ)
+ ((kρ)2 − n2)Z = 0. (A.1)

Several solutions can be found to (A.1). All of them are normally denoted
in an uniform notation as Z(c)

n (kρ), where n is the order and kρ the argument.
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Depending on the index c, the function solution to (A.1) is one of the following
list:

1. Z(1)
n (kρ) = Jn(kρ), the Bessel function of first kind

2. Z(2)
n (kρ) = Nn(kρ), the Bessel function of second kind or Neumann func-

tion

3. Z(3)
n (kρ) = H

(1)
n (kρ), the Hankel function of first kind

4. Z(4)
n (kρ) = H

(2)
n (kρ), the Hankel function of second kind

The Hankel functions can be easily computed from the Bessel functions of
first and second kind as follows:

H(1)
n (kρ) = Jn(kρ) + iNn(kρ) (A.2)

H(2)
n (kρ) = Jn(kρ)− iNn(kρ). (A.3)

The behavior of the Bessel functions for short arguments (kρ) is shown in
Fig. A.1 and Fig. A.2. In Fig. A.1 the behavior of the first and second kind
Bessel functions is shown and in Fig. A.2 this behavior is shown for the absolute
value and phase of the Hankel function of first kind. Though not depicted, the
second kind Hankel function has the same absolute value and a 90◦ shifted
phase with regard to first kind function.
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Figure A.1: Low order Bessel functions of first and second kind.

Recurrence relations

The Bessel functions for several orders can be easily computed with the follow-
ing recurrent relation:

180



A.1 Bessel functions of integer order: Bessel functions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20

kρ

|H
(1

)
n

(k
ρ)

|

 

 n=0
n=1
n=2
n=3

(a) Absolute value of H
(1)
n (kρ)

−150

−100

−50

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20

kρ

6
H

(1
)

n
(k

ρ)
[d

eg
]

 

 n=0
n=1
n=2
n=3

(b) Phase of H
(1)
n (kρ)

Figure A.2: Low order Hankel functions of first kind (H(1)
n (kρ)).

Z
(c)
n−1(kρ) + Z

(c)
n+1(kρ) =

2n
kρ
Z(c)
n (kρ). (A.4)

In addition, the derivatives of the Bessel functions can be obtained with
one of the following recurrent expressions:

dZ
(c)
n (kρ)
d(kρ)

=
1
2

(Z(c)
n−1(kρ)− Z(c)

n+1(kρ)) (A.5a)

= Z
(c)
n−1(kρ)− n

kρ
Z(c)
n (kρ) (A.5b)

= −Z(c)
n+1(kρ) +

n

kρ
Z(c)
n (kρ). (A.5c)

Graf’s Addition theorem

In general, Graf’s Addition theorem let us express any Bessel function in one
coordinate system (Z(c)

n (w)) as a function of the same kind of Bessel function
in another coordinate system (Z(c)

n (u)) and the Bessel function of first kind in
a third coordinate system (Jn(v)) as follows:

Z(c)
n (w)einχ =

∞∑
k=−∞

Z
(c)
n+k(u)Jk(v)eikα. (A.6)
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The previous relation is only valid when |ve±jα| < |u| and when variables
u, v, w, α and χ are related in the following way:

w =
√
u2 + v2 − 2uv cosα

u− v cosα = w cosχ

v sinα = w sinχ.

(A.7)

Graf’s addition theorem can be specially useful when dealing with cylindri-
cal wave functions [134]. In this case, this theorem can be applied to translate
the Bessel functions of integer order along the y axis from one coordinate sys-
tem to another. Fig. A.3 the depicts relation between both coordinate systems
(primed and unprimed) either for a positive translation (Fig. A.3(a)) or for a
negative translation (Fig. A.3(b)).

(a) If positive translation (y0 > 0) (b) If negative translation (y0 < 0)

Figure A.3: Diagram for Bessel function translation along y axis.

However, in order to use (A.6), a correspondence must be first stated among
the variables of this expression and the cylindrical variables of Fig. A.3. Ta-
ble A.1 shows this correspondence for both kinds of translations, positive and
negative. Once this matching has been carried out, the relation for the Bessel
functions expressed in both coordinate systems can be written as follows:

Z(c)
n (kρ)ein(π/2−φ) =

∞∑
k=−∞

Z
(c)
n+k(|y0|)Jk(kρ′)eik(π/2+φ′), if y0 > 0 (A.8)

Z(c)
n (kρ)ein(π/2+φ) =

∞∑
k=−∞

Z
(c)
n+k(|y0|)Jk(kρ′)eik(π/2−φ′), if y0 < 0 (A.9)
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Table A.1: Variable correspondence.
Graf’s theorem Cylindrical system if

y0 > 0
Cylindrical system if

y0 < 0

u |y0| |y0|
v kρ′ kρ′

w kρ kρ

α π/2 + φ′ π/2− φ′

χ π/2− φ π/2 + φ

A.2 Bessel functions of fractional order: Spher-
ical Bessel functions

Definition

Several kinds of Bessel functions of fractional order can be found in literature
[46], e.g. Riccati-Bessel functions, Airy functions. For this thesis, however, the
most interesting functions are the so-called Spherical Bessel functions, which
is solution of the following differential equation:

(kr)2 d2z

d(kr)2
+ 2kr

dz

dkr
+ ((kr)2 − n(n+ 1))z = 0. (A.10)

The solutions to the previous equations are generally denoted as z(c)
n (kr),

where n is the order and kr the argument. Depending on the index c, the
solution to (A.10) is denoted as as follows:

1. z(1)
n (kr) = jn(kr), the Spherical Bessel function of first kind

2. z(2)
n (kr) = nn(kr), the Spherical Bessel function of second kind or Spher-

ical Neumann function

3. z(3)
n (kr) = h

(1)
n (kr), the Spherical Hankel function of first kind

4. z(4)
n (kr) = h

(2)
n (kr), the Spherical Hankel function of second kind

The Bessel functions of integer order and the spherical Bessel functions are
related in the following way:

z(c)
n (kr) =

√
π

2kr
Z

(c)
n+1/2(kr) (A.11)
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As for the Bessel functions of integer order, the spherical Hankel functions
and the spherical Bessel functions of first or second kind are related as:

h(1)
n (kr) = jn(kr) + inn(kr) (A.12)

h(2)
n (kr) = jn(kr)− inn(kr) (A.13)

jn(kr) =
h

(1)
n (kr) + h

(2)
n (kr)

2
(A.14)

nn(kr) =
h

(1)
n (kr)− h(2)

n (kr)
2i

(A.15)

Fig. A.4 and Fig. A.5 show the behavior of low order spherical functions for
small arguments kr. Specifically, in Fig. A.4(a) the behavior for the spherical
Bessel function of first kind is shown and in Fig. A.4(b) for the spherical Bessel
function of second kind. Moreover, in Fig. A.5(a) and Fig. A.5(b),the behavior
at the same points is depicted for the absolute value and phase, respectively,
of the spherical Hankel function of first kind.
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Figure A.4: Low order spherical Bessel functions of first and second kind.

Recurrence relations

The following recurrent expression can be stated to easily compute the spherical
functions of several orders:

1
kr
z(c)
n (kr) =

1
2n+ 1

(
z

(c)
n−1(kr) + z

(c)
n+1(kr)

)
. (A.16)
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Figure A.5: Low order spherical Hankel functions of first kind (h(1)
n (kr)).

In addition, several recurrent relations can be applied to compute the deriva-
tives of the spherical functions. In this case, general expressions are not indi-
cated, but the explicit derivatives needed for the computation of the spherical
wave functions required in chapter 2, section 2.2. These expressions, and the
way in which they are computed recursively, are:

1
kr

d

d(kr)

{
krz(c)

n (kr)
}

= z
(c)
n−1(kr)− nz

(c)
n (kr)
kr

(A.17a)

= (n+ 1)
z

(c)
n (kr)
kr

− z(c)
n+1(kr) (A.17b)

=
1

2n+ 1

(
(n+ 1)z(c)

n−1(kr)− nz(c)
n+1(kr)

)
. (A.17c)

Asymptotic behavior

For large kr arguments, both, the spherical Hankel functions and their deriva-
tives, can be approximated by the following simpler expressions valid for kr �
n:

h(1)
n (kr)→ (−i)n+1 e

ikr

kr
kr →∞ (A.18)

h(2)
n (kr)→ in+1 e

−ikr

kr
kr →∞ (A.19)
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1
kr

d

d(kr)

{
krh(1)

n (kr)
}
→ (−i)n e

ikr

kr
kr →∞ (A.20)

1
kr

d

d(kr)

{
krh(2)

n (kr)
}
→ in

e−ikr

kr
kr →∞ (A.21)

If the spherical Bessel functions of first and second order are the functions
that are required for large arguments, the previous expressions in conjunction
with (A.14) or (A.15) can be applied for their computation.
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Appendix B

Legendre functions

The Legendre functions are used to compute the spherical wave functions (see
Chapter 2). In this appendix, these functions are defined and several expres-
sions for their easy computation are shown. In addition, the expressions for
the derivatives used in the computation of the spherical wave functions as well
as some special values in critical points are indicated.

Nevertheless, as in the Appendix A, a complete study about the Legendre
functions is not done. For a detailed information about this kind of functions
see [46].

Definition

The Legendre functions are the solution (L(z)) to the following differential
equation:

(1− z2)
d2L(z)
dz2

− 2z
dL(z)
dz

+
(
n(n+ 1)− m2

1− z2

)
L(z) = 0 (B.1)

where z = x + jy (being x and y reals) and x limited to −1 ≤ x ≤ 1.
Because of this limitation, when y = 0, z may be expressed as z = cos θ,
where 0 ≤ θ ≤ π. This case is the one needed for the spherical wave functions
computation, hence, just this case will be considered from now on.

The solutions to (B.1) are known as associated Legendre functions of first
kind (Pmn (cos θ)), and associated Legendre functions of second kind (Qmn (cos θ)),
where n is the degree and m is the order. In this thesis, just first the kind func-
tions are employed, hence, just this function is studied in this appendix.

Though not necessary for this thesis, an interesting relation is stated among
associated Legendre functions of first kind and Legendre polynomials which, in
some cases, may become useful. This relation is:

187



APPENDIX B. LEGENDRE FUNCTIONS

Pmn (cos θ) = (sin θ)m
dmPm(cos θ)
d(cos θ)m

(B.2)

where the Legendre polynomial Pm(cos θ) can be computed as:

Pn(cos θ) =
1

2n!
dn((cos θ)n − 1)n

d(cos θ)n
. (B.3)

In Chapter 2, the associated Legendre functions are employed in a normal-
ized form P̄mn (cos θ). This normalization is carried out as follows:

P̄mn (cos θ) =

√
2n+ 1

2
(n−m)!
(n+m)!

Pmn (cos θ) (B.4)

The behavior of the normalized associated Legendre functions for several
degrees and orders is shown in Fig. B.1.
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Figure B.1: Normalized associated Legendre functions (P̄mn (cos θ)) for
n = 0 · · · 3 and m = 0 · · ·n.
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Recurrence relations

The associated Legendre functions can be easily computed for several orders
or degrees with the following recurrent relations:

(n−m+ 1)Pmn+1(cos θ)− (2n+ 1) cos θPmn (cos θ)

+ (n+m)Pmn−1(cos θ) = 0
(B.5a)

sin θPm+1
n (cos θ)− 2m cos θPmn (cos θ)

+ (n+m)(n−m+ 1) sin θPm−1
n (cos θ) = 0

(B.5b)

Pnn (cos θ)− (2n− 1) sin θPm−1
n−1 (cos θ) = 0 (B.5c)

The derivative of the associated Legendre functions can also be easily com-
puted with a recursive expression as follows:

dPmn (cos θ)
dθ

=


−P 1

n(cos θ), if m = 0

1
2
[
(n−m+ 1)(n+m)Pm−1

n (cos θ)

−Pm+1
n (cos θ)

], if m > 0

(B.6)
Finally, the spherical wave functions use a relation among associated Leg-

endre functions Pmn (cos θ), the function sin θ and the index m. It is, then, of
interest to indicate the following recurrent relation for this special function:

mPmn (cos θ)
sin θ

=


0, if m = 0

1
2

cos θ
[
(n−m+ 1)(n+m)Pm−1

n (cos θ)

+Pm+1
n (cos θ)

]
+m sin θPmn (cos θ)

, if m > 0

(B.7)

Special values

The computation of the Legendre functions and its derivative is normally re-
quired on the interval from θ = 0 to θ = π. Some of these points, however,
present singularities and, therefore, must be explicitly indicated.
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Since the Legendre functions are involved in the spherical wave functions
in three different ways, the special values are indicated on the critical points,
namely θ = 0, θ = π/2 and θ = π, for all ways in which the Legendre functions
are employed. Before that, however, in order to reduce notation, the following
symbol is defined:

n!! =


n× (n− 1)× · · · 3× 1, if n odd

n× (n− 2)× · · · 4× 2, if n even
(B.8)

With the previous symbol, the special values on critical points are:

P |m|n (cos θ)
∣∣∣
θ=0

=

 1, if |m| = 0

0, if |m| > 0
(B.9a)

P |m|n (cos θ)
∣∣∣
θ=π/2

=

 (−1)(n−|m|)/2 (n+|m|−1)!!
(n−|m|)!! , if (n+ |m|)even

0, if (n+ |m|)odd
(B.9b)

P |m|n (cos θ)
∣∣∣
θ=π

=

 (−1)n, if |m| = 0

0, if |m| > 0
(B.9c)

mP
|m|
n (cos θ)
sin θ

∣∣∣∣∣
θ=0

=

 0, if m 6= ±1

±n(n+1)
2 , if m = ±1

(B.10a)

mP
|m|
n (cos θ)
sin θ

∣∣∣∣∣
θ=π/2

=

 m(−1)(n−|m|)/2 (n+|m|−1)!!
(n−|m|)!! , if (n+ |m|)even

0, if (n+ |m|)odd
(B.10b)

mP
|m|
n (cos θ)
sin θ

∣∣∣∣∣
θ=π

=

 0, if m 6= ±1

±(−1)n+1 n(n+1)
2 , if m = ±1

(B.10c)
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dP
|m|
n (cos θ)
dθ

∣∣∣∣∣
θ=0

=

 0, if |m| 6= 1
n(n+1)

2 , if |m| = 1
(B.11a)

dP
|m|
n (cos θ)
dθ

∣∣∣∣∣
θ=π/2

=

 0, if (n+ |m|)even

(−1)(n−|m|+1)/2 (n+|m|)!!
(n−|m|−1)!! , if (n+ |m|)odd

(B.11b)

dP
|m|
n (cos θ)
dθ

∣∣∣∣∣
θ=π

=

 0, if |m| 6= 1

(−1)n n(n+1)
2 , if |m| = 1

(B.11c)
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Appendix C

Rotation and translation
coefficients

The expression of the spherical wave functions in one coordinate system (x,y,z)
as a function of the spherical wave functions expressed in another coordinate
system (x′,y′,z′), can be divided in two different parts: rotation and translation.
This appendix deals with how these both operations are carried out as well
as the way the new coefficients, necessary for rotation and translation, are
computed. Furthermore some special values and recurrent relations are shown
in order to quickly carry out the operations.

C.1 Rotation of spherical waves

C.1.1 Euler angles

An arbitrary rotation of a coordinate system can be performed by the triple
rotation depicted in Fig. C.1. As can be observed in this figure, a coordi-
nate system (x,y,z) is transformed into another coordinate system (x′,y′,z′) by
means of the following three steps:

1. First a φ0 rotation of (x,y,z) around the z axis is performed. The resulting
coordinate system is denoted as (x1,y1,z1)

2. The second step consist of a θ0 rotation of (x1,y1,z1) around y1 axis. As
a result, the coordinate systems (x2,y2,z2) is obtained.

3. Finally, the last rotation is performed around the z2 axis the amount
indicated by χ0. With this last rotation, the final coordinate system
(x′,y′,z′) is achieved.
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Figure C.1: Triple rotation, from (x,y,z) to (x′,y′,z′) coordinate system:
Euler angles.

The angles (χ0,θ0,φ0) are the so-called Euler angles and are normally used
to describe the previous coordinate system rotations. Thus, from now on,
these angles will be used to denote the rotation that must be carried out for
describing the system (x′,y′,z′) as a function of (x,y,z).

C.1.2 Rotation of spherical wave functions

The spherical wave functions expressed in the unprimed coordinate system
(x,y,z) can be expressed as a weighted sum of the wave functions expressed in
the primed coordinate system (x′,y′,z′). If the spherical coordinates (r,θ,φ) are
used instead of the cartesian coordinates, this relation can be expressed as:

~F (c)
smn(r, θ, φ) =

n∑
mu=−n

ejmφ0dnµm(θ0)ejµχ0 ~F (c)
sµn(r′, θ′, φ′) (C.1)

where, as can be observed, the rotations around the z axis (χ0,φ0) are per-
formed by complex exponentials, and the rotation around the y axis (θ0) is
done by means of the so-called rotation coefficients dnµm(θ0). Since the expo-
nentials are easily computed, the only remaining unknown data are the rotation
coefficients. Next section explains the way these coefficients are computed.

C.1.3 Rotation coefficients

The general expression for computing rotation coefficients is the following:
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dnµm(θ) =

√
(n+ µ)!(n− µ)!
(n+m)!(n−m)!

∑
σ

(
n+m

n− µ− σ

)(
n−m
σ

)
(−1)n−µ−σ

(
cos

θ

2

)2σ+µ+m(
sin

θ

2

)2n−2σ−µ−m
(C.2)

where the binomial is obtained as:(
a

b

)
=

a!
(a− b)!b! (C.3)

Several symmetries and special values for this kind of coefficients can be
found in [20]. For instance, in [20], the following recurrence relation is stated
among the rotation coefficients that may become very useful:

√
(n+ µ+ 1)(n− µ) sin θdnµ+1,m(θ) +

√
(n+ µ)(n− µ+ 1) sin θdnµ−1,m(θ)

+ (2m− 2µ cos θ)dnµm(θ) = 0
(C.4)

Of special interest is the specific value of the rotation coefficients for θ =
π/2, i.e. dnµm(π/2). These values are known as delta constants and noted
as ∆n

µm. They are employed for the computation of transmitting coefficients
(Tsmn) in Chapter 2. For this reason, next section shows the main expressions
to compute these constants.

C.1.4 Delta constants

The delta constants are defined as:

∆n
µm = dnµm

(π
2

)
(C.5)

Therefore, from (C.2), the delta constants can be computed in the following
way:

∆n
µm =

1
2n

√
(n+ µ)!(n− µ)!
(n+m)!(n−m)!

∑
σ

(
n+m

n− µ− σ

)(
n−m
σ

)
(−1)n−µ−σ (C.6)

Several relations can be stated among these new constants. Some of them
are shown in the following subsections.
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Symmetries

∆n
µm = (−1)µ+m∆n

mµ (C.7a)

∆n
µm = (−1)n+µ∆n

m,−µ (C.7b)

∆n
µm = (−1)n+m∆n

−µ,m (C.7c)

∆n
µm = (−1)µ+m∆n

−µ,−m (C.7d)

∆n
µm = ∆n

−m,−µ (C.7e)

∆n
µm = (−1)n+m∆n

−m,µ (C.7f)

∆n
µm = (−1)n+µ∆n

µ,−m (C.7g)

Recurrence relations

√
(n+ µ+ 1)(n− µ)∆n

µ+1,m

+
√

(n+ µ)(n− µ+ 1)∆n
µ−1,m + 2m∆n

µm = 0
(C.8a)

√
(n+m+ 1)(n−m)∆n

µ,m+1

+
√

(n+m)(n−m+ 1)∆n
µ,m−1 − 2µ∆n

µm = 0
(C.8b)

√
(n+ µ+ 1)(n− µ)

√
(n+m+ 1)(n−m)

µ+m+ 1
∆n
µ+1,m+1+

√
(n+ µ)(n− µ+ 1)

√
(n+m)(n−m+ 1)

µ+m− 1
∆n
µ−1,m−1

=
2(µ+m)

(µ+m)2 − 1
(
n(n+ 1)− (µ+m)2 + µm+ 1

)
∆n
µm

(C.8c)
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Special values

∆n
µ0 =

 0, if (n+ µ)odd

(−1)(n−µ)/2 1
2n

[(n+µ
n+µ

2

)(n−µ
n−µ

2

)]1/2
, if (n+ µ)even

(C.9a)

∆n
0m =

 0, if (n+ µ)odd

(−1)(n−m)/2 1
2n

[(n+m
n+m

2

)(n−m
n−m

2

)]1/2
, if (n+ µ)even

(C.9b)

∆n
µm = (−1)n+µ 1

2n

√(
2n

n− µ

)
(C.9c)

∆n
nm =

1
2n

√(
2n

n−m

)
(C.9d)

∆n
nn =

1
2n

(C.9e)

C.2 Translation of spherical waves

C.2.1 Translation of spherical wave functions

When two coordinate systems, (x,y,z) and (x′,y′,z′), are related by means of
the translation (A) along the z axis depicted in Fig. C.2, the spherical wave
functions defined in both systems can be related as follows:

~F (c)
sµn(r, θ, φ) =

2∑
σ=1

∞∑
ν=|µ|
ν 6=0

Csn(c)
σµν (kA)~F (1)

σµν(r′, θ′, φ′) if r′ < |A| (C.10)

and

~F (c)
sµn(r, θ, φ) =

2∑
σ=1

∞∑
ν=|µ|
ν 6=0

Csn(1)
σµν (kA)~F (c)

σµν(r′, θ′, φ′) if r′ > |A| (C.11)

where C
sn(c)
σµν (kA) are the so-called translation coefficients computed as

shown in next section.

197



APPENDIX C. ROTATION AND TRANSLATION
COEFFICIENTS

Figure C.2: Translation A along z axis, from (x,y,z) to (x′,y′,z′) coordinate
system.

C.2.2 Translation coefficients

The translation coefficients are computed as follow:

Csn(c)
σµν (kA) =

jn−ν

2

√
(2n+ 1)(2ν + 1)
n(n+ 1)ν(ν + 1)

√
(ν + µ)!(n− µ)!
(ν − µ)!(n+ µ)!

(−1)µ

|n+ν|∑
p=|n−ν|

[
j−p {δsσ (n(n+ 1) + ν(ν + 1)− p(p+ 1))

+δ3−s,σ (2jµkA)} a(µ, n,−µ, ν, p)z(c)
p (kA)

]
(C.12)

where δnm is the Kronecker delta defined as:

δnm =
{

1, if n = m
0, if n 6= m

(C.13)

and a(µ, n,−µ, ν, p) is the so-called linearization coefficient. These coeffi-
cient scan be computed with the following expression:

a(µ, n,−µ, ν, p) = (2p+ 1)

√
(n+ µ)!(ν − µ)!
(n− µ)!(ν + µ)!

(
n ν p
0 0 0

)(
n ν p
µ −µ 0

)
(C.14)

where
(
j1 j2 j3
m1 m2 m3

)
is the Wigner 3-j symbol. The way in which this

symbol is computed is detailed in Section C.2.3, however, an important prop-
erty of this symbol must be pointed out at this moment. This property is the
following:
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(
j1 j2 j3
0 0 0

)
, if (n+ ν + p) odd (C.15)

This is an important property since it means that only the linearization
coefficients satisfying the condition of (n+ν+p) even are non-zero coefficients.
This fact leads to just have to consider the following index p in the sum of
(C.12): p = |n − ν|, |n − ν| + 2, · · · , n + ν − 2, n + ν, i.e., a step of 2 must be
applied.

Symmetries

Some symmetries are stated among the translation coefficients for their easy
computation:

C
1n(c)
1µν (kA) = C

2n(c)
2µν (kA) (C.16a)

C
1n(c)
2µν (kA) = C

2n(c)
1µν (kA) (C.16b)

Csn(c)
σµν (kA) = (−1)n+νCσn(c)

sµν (kA) (C.16c)

Csn(c)
σµν (kA) = (−1)s+σ(−1)n+νC

σn(c)
s,−µ,ν(kA) (C.16d)

Csn(c)
σµν (kA) = (−1)s+σCsn(c)

σ,−µ,ν(kA) (C.16e)

Asymptotic behavior

When the translation distance A tends to ∞, i.e., kA → ∞, the following
asymptotic expressions may be applied:

Csn(3)
σµν (kA) = ◦

(
1
kA

)
, if µ 6= ±1 (C.17a)

C
sn(3)
σ1ν (kA) =

√
(2n+ 1)(2ν + 1)

2
jν−n−1 e

jkA

kA
+ ◦

(
1
kA

)
(C.17b)

C
sn(3)
σ,−1,ν(kA) =

√
(2n+ 1)(2ν + 1)

2
jν−n−1(−1)s+σ

ejkA

kA
+ ◦

(
1
kA

)
(C.17c)

where the symbol ◦
(

1
kA

)
means an error on the order of (1/kA), i.e., the

longer the electric distance is, the smaller the error produced by the previous
expressions is.

199



APPENDIX C. ROTATION AND TRANSLATION
COEFFICIENTS

C.2.3 Wigner 3-j symbol

General expression

Wigner 3-j symbols are generally denoted as:(
j1 j2 j3
m1 m2 m3

)
(C.18)

These symbols can be computed, in general, for any combination of indices
j1, j2, j3, m1, m2 and m3, as follows:

(
j1 j2 j3
m1 m2 m3

)
=

√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!

√
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!

∑
z

[
(−1)z+j1−j2−m3

z!(j1 + j2 − j3 − z)!(j1 −m1 − z)!(j2 +m2 − z)!
·

1
(j3 − j2 +m1 + z)!(j3 − j1 −m2 + z)!

]

(C.19)

Special values

Apart from the special value indicated in (C.15), the following other special
values may become specially useful when computing wigner 3-j symbols:

(
j1 j2 j1 + j2
m1 m2 −m1 −m2

)
=

(−1)−j1+j2−m1−m2

√
(2j1)!

√
(2j2)!

√
2j1 + 2j2 + 1

√
(2j1 + 2j2)!

·

√
(j1 + j2 +m1 +m2)!

√
(j1 + j2 −m1 −m2)!√

(j1 +m1)!
√

(j1 −m1)!
√

(j2 +m2)!
√

(j2 −m2)!

(C.20)
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(
j1 j2 j1 + j2 − 1
m1 m2 −m1 −m2

)
=

2(j2m1 − j1m2)(−1)−j1+j2−m1−m2

√
(2j1 − 1)!

√
(2j2 − 1)!√

(2j1 + 2j2)!
·

√
(j1 + j2 +m1 +m2 − 1)!

√
(j1 + j2 −m1 −m2 − 1)!√

(j1 +m1)!
√

(j1 −m1)!
√

(j2 +m2)!
√

(j2 −m2)!

(C.21)

(
j1 j2 j1 + j2
0 0 0

)
= (−1)−j1+j2

(j1 + j2)!
√

(2j1)!
√

(2j2)!
j1!j2!

√
2j1 + 2j2 + 1

√
(2j1 + 2j2)!

(C.22)

Recurrence relation

(
j1 j2 j3
m1 m2 m3

)
=

(2j3 + 3) ((j3 + 1)(j3 + 2)(m1 −m2) +m3j1(j1 + 1)−m3j2(j2 + 1))
(j3 + 2)

√
j3 −m3 + 1

√
j3 +m3 + 1

√−j1 + j2 + j3 + 1
√
j1 − j2 + j3 + 1

·

1√
j1 + j2 − j3

√
j1 + j2 + j3 + 2

(
j1 j2 j3 + 1
m1 m2 m3

)

− (j3 + 1)
√
j3 −m3 + 2

√
j3 +m3 + 2

√−j1 + j2 + j3 + 2
√
j1 − j2 + j3 + 2

(j3 + 2)
√
j3 −m3 + 1

√
j3 +m3 + 1

√−j1 + j2 + j3 + 1
√
j1 − j2 + j3 + 1

·

√
j1 + j2 − j3 − 1

√
j1 + j2 + j3 + 3√

j1 + j2 − j3
√
j1 + j2 + j3 + 2

(
j1 j2 j3 + 2
m1 m2 m3

)
(C.23)
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Appendix D

Spheroidal wave functions

The spheroidal coordinate systems are rarely used in electromagnetism. They
entail hard formulation and few applications may be found where these coordi-
nate systems present advantages with regard to other coordinate systems. In
this thesis, however, in Section 3.5, an interesting application has been pre-
sented. This application allows the equivalent currents of an antenna to be
determined on a plane surface from spherical measurements. To do this, the
spheroidal wave expansion, described in Section 2.2.4, is used, which, in turn,
makes use of the spheroidal wave functions.

So far no comments have been done with regard to the way these spheroidal
wave functions are obtained. This appendix describes in detail these functions
for both, the oblate and prolate spheroidal coordinate system, as well as the
special algorithms required for their computation. With this aim, first, the
prolate and oblate spheroidal coordinate systems are defined and the relation
to the cartesian coordinate system is shown. Then, the spheroidal vector wave
functions are reviewed and the expressions for the angular and radial sphe-
roidal functions are described. Finally, the algorithms that must be applied
to determine the secondary parameters found in the previous functions are
explained.

D.1 Definition

The spheroidal coordinate systems are formed by rotating an ellipse around
the z axis. Depending on the position of the foci of the generating ellipse
two different spheroidal coordinate systems are formed [47], namely the prolate
spheroidal coordinate system (if the foci are in the z axis) and the oblate sphe-
roidal coordinate system (if the foci are in the XY plane). In both spheroidal
systems, coordinates are defined by the following components:

203



APPENDIX D. SPHEROIDAL WAVE FUNCTIONS

• ξ: Radial component

• η: Angular component

• φ: Azimuthal component

For each spheroidal coordinate system, the relation of these components
with the cartesian coordinates is different. Next, these relations and the range
of variation of each component are described.

Prolate coordinate system

As commented above, the prolate coordinate system is formed by rotating
around the z axis an ellipse whose foci are in the z axis. A diagram of the
resulting coordinate system can be observed in Fig. D.1, where d is the focal
distance.

Figure D.1: Prolate spheroidal coordinate system.

The prolate spheroidal components are related to the cartesian components
as follows [47]:
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x = d
√

(1− η2)(ξ2 − 1) cosφ (D.1a)

y = d
√

(1− η2)(ξ2 − 1) sinφ (D.1b)

x = dηξ (D.1c)

where

−1 ≤ η ≤ 1, 1 ≤ ξ <∞, 0 ≤ φ ≤ 2π (D.2)

In this coordinate system, the surface with ξ-component constant forms an
ellipsoid with:

• Major axis: 2dξ

• Minor axis: 2d
√
ξ2 − 1

Oblate coordinate system

The oblate coordinate system results from the rotation around the z axis of an
ellipse whose foci are in the XY plane. Thus, the resulting coordinate system
may be depicted as in Fig. D.1, where d is the focal distance of the generating
ellipse.

Figure D.2: Oblate spheroidal coordinate system.

In this case, the relation of the oblate spheroidal components with the
cartesian components is given by:
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x = d
√

(1− η2)(ξ2 + 1) cosφ (D.3a)

y = d
√

(1− η2)(ξ2 + 1) sinφ (D.3b)

x = dηξ (D.3c)

where

−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ ≤ 2π (D.4)

In addition, it is worth to note that the surface with ξ-component constant
is a flattened ellipsoid of revolution [47] whose axes are:

• Major axis: 2d
√
ξ2 + 1

• Minor axis: 2dξ

D.2 Spheroidal vector wave functions

The solution in a source-free region of the vector wave equation is deduced
in Section 2.2.4 for the oblate spheroidal coordinate system . This solution is
expressed in the form of a modal expansion as follows:

~E(η, ξ, φ) =
∑
smn

αsmn ~Msmn(η, ξ, φ) (D.5)

where αsmn are the oblate spheroidal coefficients and ~Msmn(η, ξ, φ) are the
spheroidal vector wave functions, whose expressions are:

~M1mn(η, ξ, φ) =
jmηSmnRmn√

(ξ2 + η2)(1 + ξ2)
ejmφξ̂

+
jmξSmnRmn√

(ξ2 + η2)(1− η2)
ejmφη̂

−
√

(1 + ξ2)(1− η2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

]
ejmφφ̂

(D.6)
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~M2mn(η, ξ, φ) =√
1 + ξ2

kd
√
ξ2 + η2

[
m2ξSmnRmn

(ξ2 + η2)(1− η2)

− ∂

∂η

(
(1− η2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

])]
ejmφξ̂

+

√
1− η2

kd
√
ξ2 + η2

[
− m2ηSmnRmn

(ξ2 + η2)(1− η2)

+
∂

∂ξ

(
(1 + ξ2)
(ξ2 + η2)

[
ηSmn

∂Rmn
∂ξ

+ ξRmn
∂Smn
∂η

])]
ejmφη̂

+
jm
√

(1 + ξ2)(1− η2)
kd(ξ2 + η2)

[
Smn

(1− η2)
∂ξRmn
∂ξ

− Rmn
(1 + ξ2)

∂ηSmn
∂η

]
ejmφφ̂

(D.7)

In the above expressions, Smn = S
(1)
mn(−jc, η) (the spheroidal angular func-

tion) and Rmn = R
(3)
mn(−jc, jξ) (the spheroidal radial function), where the

parameter c is the spheroidicity parameter [135] obtained, from the wavenum-
ber (k) and the focal distance (d), as:

c = kd (D.8)

It is worth to mention that, if the vector wave equation were solved in
the prolate spheroidal coordinate system, the solution would be expressed as a
function of the angular function S(1)

mn(c, η) and of the radial function R(3)
mn(c, ξ).

Next two sections describes the spheroidal angular and radial functions used
in the solution of both, the oblate and prolate spheroidal coordinate system,
paying special attention on the functions used in the oblate solution (the case
of interest for this thesis).

D.2.1 Spheroidal angular functions

The spheroidal angular functions, in general noted as (Smn(a, η)), are the so-
lution of the following differential equation:

d
dη

[
(1− η2)

dSmn(a, η)
dη

]
+
[
λmn(a)− a2η2 − m2

1− η2

]
Smn(a, η) = 0 (D.9)
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where λmn(a) are the spheroidal eigenvalues.
The solution may be expressed as a weighted sum of Legendre functions

[45],[47]. If just the first kind Legendre functions are considered, and the vari-
able a is substituted by the values of interest (c and−jc), the spheroidal angular
functions are given by:

S(1)
mn(c, η) =

∞∑
k=0,1

dmnk (c)Pmm+k(η) (D.10a)

S(1)
mn(−jc, η) =

∞∑
k=0,1

dmnk (−jc)Pmm+k(η) (D.10b)

where Pmn (η) is the associated Legendre function of degree n and order m
(see Appendix B), and dmnk (a) are the expansion coefficients. In the above
expressions, the summation is over even values of k for (n−m) even, and over
odd values of k for (n−m) odd. Thus, k may be:

• k = 0, 2, 4, 6, · · · for (n−m) even

• k = 1, 3, 5, 7, · · · for (n−m) odd

The expansion coefficients are determined by means of the following recur-
rence relation [46],[47]:

αmk (a)dmnk+2(a) + (βmk (a)− λmn(a)) dmnk (a) + γmk (a)dmnk−2(a) = 0 (D.11)

where

αmk (a) =
(k + 2m+ 1)(k + 2m+ 2)

(2k + 2m+ 3)(2k + 2m+ 5)
a2 (D.12a)

βmk (a) = (m+ k)(m+ k + 1) +
a2

2

(
1− 4m2 − 1

(2k + 2m− 1)(2k + 2m+ 3)

)
(D.12b)

γmk (a) =
k(k − 1)

(2k + 2m− 3)(2k + 2m− 1)
a2 (D.12c)

In the above recurrence relation (D.11), the spheroidal eigenvalues λmn(a)
are required to carry out the recursive procedure. In order to obtain these
eigenvalues, the following transcendental equation [46],[45],[47] must be solved:
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D.2 Spheroidal vector wave functions

U1(λmn) + U2(λmn) = 0 (D.13)

where

U1(λmn) = χmn−m − λmn −
δmn−m

χmn−m−2 − λmn −
δmn−m−2

χmn−m−4 − λmn − · · ·

(D.14a)

U2(λmn) = − δmn−m+2

χmn−m+2 − λmn −
δmn−m+4

χmn−m+4 − λmn − · · ·

(D.14b)

In the above expressions, the dependence with regard to the parameter a
has not been included for simplicity, and the parameters χmk = χmk (a) and
δmk = δmk (a) are computed as follows:

χmk (a) = (m+ k)(m+ k + 1) +
a2

2

(
1− 4m2 − 1

(2k + 2m− 1)(2k + 2m+ 3)

)
(D.15a)

δmk (a) =
k(k − 1)(k + 2m)(k + 2m− 1)

(2k + 2m− 1)(2k + 2m− 3)(2k + 2m+ 1)
a4 (D.15b)

The computation of the expansion coefficients dmnk (a) and the spheroidal
eigenvalues λmn(a), is efficiently performed by additional algorithms. These
algorithms are explained in Section D.3.

In (D.8) and (D.7), not only the spheroidal angular functions are employed,
but also the derivatives of these functions. Next section describes how these
derivatives may be obtained for the case of oblate spheroidal coordinates.

Derivatives

The first derivatives of the spheroidal angular function can be expressed, from
(D.10), as follows:

∂S
(1)
mn(a, η)
∂η

=
∞∑

k=0,1

dmnk (a)
∂Pmm+k(η)

∂η
(D.16)

In this expression, since the derivative must be applied with regard to the
η component, the derivative just applies on the associated Legendre functions
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(the coefficients dmnk (a) do not depend on η). Hence, the derivative of S(1)
mn(a, η)

must be computed by means of the derivative of Pmk (η) with regard to η. This
derivative may be computed by the following recurrence relation [46]:

∂Pmk (η)
∂η

=
1

η2 − 1
(
kηPmk (η)− (k +m)Pmk−1(η)

)
(D.17)

Below, the explicit expressions of the first and second derivatives required
in the computation of the spheroidal vector wave functions for the oblate co-
ordinate system are deduced.

First derivative The first derivative can be obtained by substituting
(D.17) into (D.16). The resulting expression is:

∂S
(1)
mn(−jc, η)
∂η

=
∞∑

k=0,1

dmnk (−jc)
[

1
η2 − 1

(
kηPmk (η)− (k +m)Pmk−1(η)

)]
(D.18)

Second derivative The expression for second derivative can be deduced
in two different ways. The first one consists in deriving the expression (D.18)
with regard to η and using the recurrence relation (D.17) again. By doing so,
the second derivative may be expressed as follows:

∂2S
(1)
mn(−jc, η)
∂η2

=
∞∑

k=0,1

dmnk (−jc) 1
η2 − 1

[
−(m+ k)Pmm+k(η)

+η(2m+ k)(1− 2(m+ k))Pmm+k−1(η)

+(2m+ k)(2m+ k − 1)Pmm+k−2(η)
]

(D.19)

The second way takes in advantage the presence of the second derivative in
the differential equation (D.9). Thus, if the expression for the first derivative
(D.18) is inserted in (D.9), the following expression for the second derivative is
deduced:

∂2S
(1)
mn(−jc, η)
∂η2

=
1

η2 − 1

[
2η
∂S

(1)
mn(−jc, η)
∂η(

λmn(−jc) + (cη)2 − m2

1− η2

)
S(1)
mn(−jc, η)

] (D.20)
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In computing these expressions, it has been found that the results from both
expressions agree very well. However, it has also been found that the second
option (D.20) is more convenient and faster [47].

D.2.2 Spheroidal radial functions

The spheroidal radial functions, generally noted as R(p)
sm(a,Ψ), are the solution

of the following differential equation:

d
dΨ

[
(Ψ2 − 1)

dR(p)
mn(a,Ψ)

dΨ

]
−
[
λmn(a)− a2Ψ2 − m2

Ψ2 − 1

]
R(p)
mn(a,Ψ) = 0

(D.21)
where (a,Ψ) are (c, ξ) for the prolate spheroidal coordinate system or (−jc, jξ)

for the oblate spheroidal coordinate system.
The solution may be expressed as a weighted sum of spherical Bessel func-

tions (z(p)
k (r), see Appendix A) for both coordinate systems as follows:

R(p)
mn(c, ξ) =

1
∞∑

k=0,1

dmnk (c)
(2m+ k)!

k!

(
ξ2 − 1
ξ2

)m/2

∞∑
k=0,1

jk+m−ndmnk (c)
(2m+ k)!

k!
z

(p)
m+k(cξ)

(D.22a)

R(p)
mn(−jc, jξ) =

1
∞∑

k=0,1

dmnk (−jc) (2m+ k)!
k!

(
ξ2 + 1
ξ2

)m/2

∞∑
k=0,1

jk+m−ndmnk (−jc) (2m+ k)!
k!

z
(p)
m+k(cξ)

(D.22b)

where the summation index k behaves with (n −m) as for the spheroidal
angular functions (D.10).

The index p in the above expressions determine the kind of waves that
are taken into account. The application studied in this thesis just considers
outward traveling waves. Thus, assuming the time dependence stated in (2.1),
the election must be p = 3, i.e., the spherical Hankel function of first kind
(z(3)
k (r) = h

(1)
k (r)).
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The computation of the spheroidal vector wave equations requires the prior
knowledge of the first and second derivatives with regard to the ξ component of
the spheroidal radial functions. Next sections explain the way these derivatives
may be obtained.

Derivatives

The derivation of the spheroidal radial functions in the oblate coordinate system
with regard to the ξ component may be expressed, from (D.22b), as:

∂R
(3)
mn(−jc, jξ)

∂ξ
=

1
∞∑

k=0,1

dmnk (−jc) (2m+ k)!
k!

(
ξ2 + 1
ξ2

)m/2

∞∑
k=0,1

jk+m−ndmnk (−jc) (2m+ k)!
k!

∂h
(1)
m+k(cξ)
∂ξ

(D.23)

As can be observed, since most of the expression does not depend on the
variable ξ, just the derivative of the spherical Hankel function must be com-
puted. This derivative may be determined by the following recurrent relation:

∂h
(1)
n (x)
∂x

= h
(1)
n−1(x)− n+ 1

x
h(1)
n (x) (D.24)

Below, the exact expressions for determining the first and second derivatives
(obtained from the above equations) are depicted:

First derivative The first derivative can be obtained by substituting
(D.24) into (D.23). By doing so, the first derivative is given by:

∂R
(3)
mn(−jc, jξ)

∂ξ
=

1
∞∑

k=0,1

dmnk (−jc) (2m+ k)!
k!

∞∑
k=0,1

jk+m−ndmnk (−jc) (2m+ k)!
k!

(
ξ2 + 1
ξ2

)m/2
[
ch

(1)
m+k−1(cξ)−

{(
m

ξ(ξ2 + 1)
+
m+ k + 1

ξ

)
h

(1)
m+k(cξ)

}]
(D.25)
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Second derivative The second derivative can be deduced in two ways,
as for the spheroidal angular functions. The first one consists in deriving with
regard to ξ the expression (D.25) and using the recurrence relation (D.24) to
determine the resulting derivatives of the Hankel function. As a result, the
second derivative is expressed as:

∂2R
(3)
mn(−jc, jξ)
∂ξ2

=
1

∞∑
k=0,1

dmnk (−jc) (2m+ k)!
k!

∞∑
k=0,1

jk+m−ndmnk (−jc) (2m+ k)!
k!

(
ξ2 + 1
ξ2

)m/2
[{

m

2ξ2

(
2(m− 2)
(ξ2 + 1)2

+
3m+ 3k + 8

(ξ2 + 1)

)

+
(m+ k + 1) + (m+ k + 1)2

ξ2

}
h

(1)
m+k(cξ)

−
{

m

ξ(ξ2 + 1)
+

2c(m+ k + 1)− 1
ξ

}
h

(1)
m+k−1(cξ)

+c2h(1)
m+k−2(cξ)

]

(D.26)

The second way consists in using the differential equation (D.21), which con-
tains the second derivative of the spheroidal radial functions. The first deriva-
tive of these functions, included in the differential equation, may be determined
by (D.25). Thus, substituting (D.25) into (D.21), the second derivative may
be obtained as:

∂2R
(3)
mn(−jc, jξ)
∂2ξ

=
1

ξ2 + 1

[(
λmn(−jc)− {cξ}2 − m2

ξ2 + 1

)
R(3)
mn(−jc, jξ)

−2ξ
∂R

(3)
mn(−jx, jξ)

∂ξ

]
(D.27)

As in the derivatives of the spheroidal angular functions, the result of both
solutions agree very well. However, it has been found [47] that the second
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expression (D.27) is more convenient and faster and, hence, it is recommended
to use this second option.

D.3 Secondary parameters

The computation of the spheroidal angular and radial functions requires the
prior knowledge of the spheroidal eigenvalues (λmn(a)) and the expansion coef-
ficients (dmnk (a)). These both coefficients are computed by the general expres-
sions described in Section D.2.1. However, none of them allow the coefficients
to be computed directly. They rather require additional algorithms to compute
the coefficients. Next sections describe these algorithms.

D.3.1 Determination of the spheroidal eigenvalues

The spheroidal eigenvalues are determined by solving the transcendental equa-
tion (D.13). To do this, the Taylor series expansion technique or the relaxation
method may be applied, however they do not converge or lead to non-accurate
results when |c|2 is very large [47]. In order to avoid these problems, the tran-
scendental equation can be solved directly for any value of |c|2. This direct
solution, however, requires to be achieved in a different way depending on the
value of |c|2, for |c|2 ≤ 10000 or |c|2 > 10000 [136]. Below, the solution in these
two situations is described:

Case I: |c|2 ≤ 10000

In this case, the solution can be obtained by employing the Newton’s numerical
technique [137] to solve for the roots of the equation. This iterative technique
works, in general, to find the roots a function f(x), as follows:

x(p) = x(p−1) − f(x(p−1))
f ′(x(p−1))

(D.28)

where x(p) are the roots in the iteration p and f ′(x) is the derivative of f(x)
with regard to the variable x.

Specifically for the transcendental equation, the values of λmn (the depen-
dence with regard to a is not included for simplicity) on each iteration can be
obtained as:

λ(p)
mn = λ(p−1)

mn − f(λ(p−1)
mn )

f ′(λ(p−1)
mn )

(D.29)

where f(λpmn) is the value of the transcendental equation at λmn = λpmn.
This equation, in a compressed form [46],[138], can expressed as:
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f(λ(p)
mn) = N

(p)
0 − δn−m+2

M
(p)
0

(D.30)

where

N
(p)
k = χmn−m−k − λ(p)

mn −
δmn−m−k

N
(p)
k+2

(D.31)

M
(p)
k = χmn−m+k+2 − λ(p)

mn −
δmn−m+k+4

M
(p)
k+2

(D.32)

This new expression allows the derivative f(λmn) with regard to λmn (f ′(λpmn))
at λmn = λpmn to be expressed in this way:

f ′(λ(p)
mn) =

d(λmn)
dλmn

∣∣∣∣
λmn=λ

(p)
mn

=

−
[

1 +
δmn−m

(N (p)
2 )2

+
δmn−m

(N (p)
2 )2

δmn−m−2

(N (p)
4 )2

δmn−m

(N (p)
2 )2

δmn−m−2

(N (p)
4 )2

δmn−m−4

(N (p)
6 )2

+ · · ·
]

−
[
δmn−m+2

(M (p)
0 )2

+
δmn−m+2

(M (p)
0 )2

δmn−m+4

(M (p)
2 )2

+
δmn−m+2

(M (p)
0 )2

δmn−m+4

(M (p)
2 )2

δmn−m+6

(M (p)
4 )2

]
(D.33)

In addition, in [136] it is pointed out that the estimated value of λmn and
the starting and end points of the iterative algorithm must be the following to
obtain fast an accurate results:

λestimate
mn = n(n+ 1) + R

( c
2

)
(D.34)

λstart
mn = n(n+ 1)− c2

(
1− (2m− 1)(2m+ 1)

(2n− 1)(2n+ 3)

)
(D.35)

λend
mn = n(n+ 1) + c2

(
1− (2m− 1)(2m+ 1)

(2n− 1)(2n+ 3)

)
(D.36)
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Case II: |c|2 > 10000

In this case the previous Newton’s algorithm cannot be applied because excep-
tionally high accuracy in λstart

mn is required for the algorithm to evaluate the
correct eigenvalues [136]. This is because there are closed spaced roots in a
narrow range and, hence, a very accurate initial guess is required. The ex-
pression (D.35) does not fulfills this requirement and, therefore, the Newton’s
algorithm is not practical in this situation.

Nevertheless, when |c|2 > 10000, the eigenvalues can be determined ac-
curately by the algorithm proposed by Hodge [139]. In this algorithm, the
eigenvalues λmn are the eigenvalues of a tri-diagonal matrix. This matrix is
formed as follows:

For (n−m) even

Aeven
λ =



β0 (γ2α0)1/2 0 0 . . .

(γ2α0)1/2 β2 (γ4α2)1/2 0 . . .

0 (γ4α2)1/2 β4 (γ6α4)1/2 . . .

0 0 (γ6α4)1/2 β6 . . .
...

...
...

...
. . .


(D.37)

For (n−m) odd

Aodd
λ =



β1 (γ3α1)1/2 0 0 . . .

(γ3α1)1/2 β3 (γ5α3)1/2 0 . . .

0 (γ5α3)1/2 β5 (γ7α5)1/2 . . .

0 0 (γ7α5)1/2 β7 . . .
...

...
...

...
. . .


(D.38)

where, for simplicity, αk = αmk (a), βk = βmk (a), γk = γmk (a).
One of the most important problems of the Hodge’s algorithm is to decide

which matrix eigenvalue correspond to each spheroidal eigenvalue λmn(a). In
[135] it is proposed several techniques for a real/complex and indices m and
n integers/non-integers. In the easiest case, i.e., a real and m and n integers,
the eigenvalues are ordered from the lower value to the higher value, and the
correspondence is from the lower indices to the higher indices.
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D.3.2 Determination of the expansion coefficients

The expansion coefficients dmnk (a) are determined by the recursive formula
(D.11). This formula involves three consecutive expansion coefficients. Hence,
the formula requires two initial terms to start the recurrence relation. How-
ever, the only available information, apart from (D.11), are the following two
relations among the first expansion coefficients [47]:

αm0 d
mn
2 (a) + (βm0 (a)− λmn(a))dmn0 (a) = 0, (k = 0) (D.39a)

αm1 d
mn
3 (a) + (βm1 (a)− λmn(a))dmn1 (a) = 0, (k = 1) (D.39b)

Unfortunately these expressions are not enough since they just allow the
relations dmn2 (a)/dmn0 (a) and dmn3 (a)/dmn1 (a) to be obtained. By inserting these
values into the recursive formula, for k = 2 or k = 3, one additional term is
required. Therefore, the recursive process cannot be started.

In order to obtain this initial term, the following expressions [46] (deduced
from the normalization of the spheroidal angular functions) can be applied:

∞∑
k=0

(−1)k/2(k + 2m)!
2k
(
k
2

)
!
(
k+2m

2

)
!
dmnk (a) =

(−1)(n−m)/2(n+m)!
2n−m

(
n−m

2

)
!
(
n+m

2

)
!

(D.40)

∞∑
k=1

(−1)(k−1)/2(k + 2m+ 1)!
2k
(
k−1

2

)
!
(
k+2m+1

2

)
!

dmnk (a) =
(−1)(n−m−1)/2(n+m+ 1)!
2n−m

(
n−m−1

2

)
!
(
n+m+1

2

)
!

(D.41)

where (D.40) is only valid for (n − m) even (being k = 0, 2, 4, · · · ); and
(D.41) is only valid for (n−m) odd (being k = 1, 3, 5, · · · ).

By dividing (D.40) by dmn0 (a), the following relation is derived:

dmn0 (a) =
(−1)(n−m)/2(n+m)!
2n−m

(
n−m

2

)
!
(
n+m

2

)
!

1
∞∑
k=0

(−1)k/2(k+2m)!

2k( k2 )!( k+2m
2 )!

[
dmnk (a)
dmn0 (a)

] (D.42)

Similarly, if (D.41) is divided by dmn1 (a), this other expression is found:

dmn1 (a) =
(−1)(n−m−1)/2(n+m+ 1)!
2n−m

(
n−m−1

2

)
!
(
n+m+1

2

)
!

1
∞∑
k=1

(−1)(k−1)/2(k+2m+1)!

2k( k−1
2 )!( k+2m+1

2 )!

[
dmnk (a)
dmn1 (a)

]
(D.43)
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The last expressions require the relations dmnk (a)/dmn0 (a) and dmnk (a)/dmn1 (a)
to compute dmn0 (a) and dmn1 (a), respectively. In order to determine these rela-
tions, the recurrent formula (D.11) can be expressed as follows:

dmnk (c)
dmnk+2(c)

= − αmk (c)

(βmk (c)− λmn(c))− γmk (c)
dmnk−2
dmnk (c)

(D.44)

As can be observed, this expression requires a relation of coefficients to
start. This relation can be obtained, from (D.39a) and (D.39b), as follows:

dmn0 (c)
dmn2 (c)

= − αm0 (c)
(βm0 (c)− λmn(c))

(D.45a)

dmn1 (c)
dmn3 (c)

= − αm1 (c)
(βm1 (c)− λmn(c))

(D.45b)

By combining the above expressions, all the expansion coefficients may be
determined. This combination must be done as described in the following
algorithm:

1. The initial relations dmn0 (a)/dmn2 (a) and dmn1 (a)/dmn3 (a) are computed
from (D.45a) and (D.45b), respectively.

2. The relations dmnk (a)/dmnk+2(a) are determined for 0 ≤ k ≤ kmax with
(D.44).

3. The coefficients dmn0 (a) and dmn1 (a) are obtained by using the values com-
puted in the step 2 and the expressions (D.42) and (D.43), respectively.

4. The expressions (D.45a) and (D.45b) are used to determine dmn2 (a) and
dmn3 (a), respectively.

5. Finally, the rest of coefficients since may be determined by either, the
recurrent formula (D.11), or the intermediate relations obtained during
this algorithm.

The final step is to establish the maximum k (kmax) of the previous sum-
mations. This index must be chosen high enough so that as much information
as possible is included, but considering the computational cost of the algo-
rithm. In [135] it is proposed a formula for the determination of kmax from the
precision (prec) desired on resulting expansion coefficients. This formula is:

dmnkmax(c)
max{dmnk (c), 0 ≤ k ≤ kmax}

≤ 10−prec (D.46)

218



D.3 Secondary parameters

Therefore, by first computing the kmax with this expression, the algorithm
for the determination of the expansion coefficients can be practically performed
with the desired precision in the result.
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