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This work focuses on finding the most discriminatory or representative features that

allow to classify commercials according to negative, neutral and positive effectiveness

based on the Ace Score index. For this purpose, an experiment involving forty-seven

participants was carried out. In this experiment electroencephalography (EEG),

electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were

acquired while subjects were watching a 30-min audiovisual content. This content was

composed by a submarine documentary and nine commercials (one of them the ad under

evaluation). After the signal pre-processing, four sets of features were extracted from the

physiological signals using different state-of-the-art metrics. These features computed in

time and frequency domains are the inputs to several basic and advanced classifiers. An

average of 89.76% of the instances was correctly classified according to the Ace Score

index. The best results were obtained by a classifier consisting of a combination between

AdaBoost and Random Forest with automatic selection of features. The selected features

were those extracted from GSR and HRV signals. These results are promising in the

audiovisual content evaluation field by means of physiological signal processing.

Keywords: audiovisual content evaluation, effectiveness, electroencephalography (EEG), electrocardiography

(ECG), galvanic skin response (GSR), respiration, feature extraction, advanced classifiers

1. INTRODUCTION

Estimation of emotional states is a powerful tool in the marketing field. Efficient monitoring of
human emotional states may provide important and useful information for marketing purposes
(Frantzidis et al., 2010a). Such monitoring could follow either subjective or objective methods.
Subjective methods (psychology-oriented approach) are based on qualitative behavior assessment
or bymeans of questionnaires and interviews, whilst objective methods (neuropsychology-oriented
approach) consist on monitoring and analyzing the subject biosignals (Frantzidis et al., 2010a).

It is now recognized that making use of standardmarketing techniques, such as depth interviews
or focus groups, in which customers are exposed to the product in advance of its massive launch or
afterwards, provides biased answers due to the respondents cognitive processes activating during
the interview and by the influence that the interviewer may have on their recalls (Vecchiato et al.,
2014). Furthermore, people are not able to (or might not want) fully express their preferences
when they are explicitly asked (Vecchiato et al., 2011a). Therefore, marketing researchers prefer
to complement traditional methods with the use of biosignals.
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To follow the objective approach, different features of
either positive or negative emotions can be extracted from
physiological signals, such as electrocardiography (ECG),
electroencephalography (EEG), galvanic skin response (GSR) or
the breathing response (Frantzidis et al., 2010a). This techniques
allow to assess human emotions in terms of it is able to reveal
information that is unobtainable employing traditional methods
(Vecchiato et al., 2014).

Electroencephalography and the magnetoencephalography
(MEG) allow to record on a millisecond basis the brain
activity during the exposition to relevant marketing stimuli.
However, such imaging brain techniques present one difficulty:
the recorded cerebral activity is mainly generated on the cortical
structures of the brain. It is almost impossible to acquire the
electromagnetic activity yield by deep structures which are
often associated with the generation of emotional processing in
humans with EEG or MEG sensors. To overcome this problem,
high-resolution EEG technology has been developed to enhance
the poor spatial information content on the EEG activity. With
this technology, brain activity can be detected with a spatial
resolution of a squared centimeter on a milliseconds basis, but
only in the cerebral cortex.

Furthermore, autonomic activity such as Heart Rate (HR) and
Galvanic Skin Response (GSR) are also able to assess the internal
emotional state of the subject (Christoforou et al., 2015; Ohme
et al., 2011). GSR activity is actually a sensitive and convenient
way of measuring indexing changes in sympathetic arousal
associated with emotion, cognition and attention (Critchley,
2002). Lang et al. (1993) discovered that the mean value of
GSR is related to the level of arousal. Blood pressure and
Heart Rate Variability (HRV) also correlate with emotions, since
stress may increase blood pressure. Pleasantness of stimuli can
increase peak heart rate response, and HRV decreases with fear,
sadness and happiness (Soleymani et al., 2008). Respiration has
proven to be an adequate emotional indicator. It is possible
to distinguish relaxation (slow respiration) and anger or fear
(irregular rhythm, quick variations and cessation of respiration).
It is possible as well to detect laughing because it introduces
high-frequency fluctuations to the HRV signal (Appelhans and
Luecken, 2006).

Different authors have attempted to classify audiovisual
content attending to elicited emotions in watchers by means
of analyzing physiological signals. Features are extracted from
the signals and classified with different data mining algorithms,
such as Mahalanobis Distance-based (MD) classifier, Support
Vector Machines (SVMs) or C4.5 decision tree (Frantzidis et al.,
2010a,b).

Another approach is to classify audiovisual content attending
to extracted characteristics from audio or both audio and video
tracks (Wang et al., 2009). In both cases the same algorithms
are applied to the extracted features: Hidden Markov Models
(HMM), Dynamic Bayesian Networks (DBM), Gaussian Mixture
Models (GMM) and fuzzy methods (Teixeira et al., 2012).

In this paper, we aim to build a robustmethod to automatically
find the most discriminating features that allow to classify a
commercial ad in three classes (positive, neutral or negative)
based on the physiological response of the subject. These

TABLE 1 | Commercials involved in this study and grouped taking into

account the Ace Score index.

Commercial Ace Score Group

Budweiser (“Brotherhood”) 665 Positive

Coke (“Security Camera”) 641 Positive

Doritos (“Goat 4 Sale”) 626 Positive

Hyundai (“Stuck”) 611 Positive

Audi (“Bravery”) 394 Neutral

Calvin Klein (“Concept”) 362 Neutral

“Pub Loo Shocker” 210 Negative

“Carmel Limo” 167 Negative

Heineken (“The Date”) Non-evaluated -

three classes tell the ad’s power based on the ACE score
index to engage the person watching it. To achieve this, we
use different state-of-the-art machine learning techniques for
extracting features and classifying the ads watched by the
subject.

This is the basis for future studies trying to find the ad
effectiveness segmenting by gender, age, geographic location, etc.
which will help companies to better develop effective ads focused
on a specific audience.

In the remaining part of the paper, the experimental
design and the preprocessing steps, along with theoretical steps
regarding the feature extraction procedure and classifiers are
reported in Section 2, followed by the detailed presentation of
the results in Section 3. Finally, the discussion of the results can
be found in the last section.

2. MATERIALS AND METHODS

2.1. Material
Our sample consisted of forty-seven voluntary and healthy
subjects (22 males and 25 females), aged between 25 ± 5
years old. However, EEG data from twelve subjects, ECG and
respiration data from four subjects and GSR data from three
subjects were removed due to corrupted data. The corrupted
data produce standard deviation higher than the average value.
All participants had normal or corrected-to-normal vision and
hearing and they had not participated in a brain study before.
The study was approved by the Institutional Review Board
of Universitat Politècnica de València with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

In order to carry out a base study, firstly we selected eight
commercials showed on the Super Bowl 2013. These eight ads
were selected according to the Ace Score: positive, neutral and
negative ads were chosen. Ace Score is the measure of ad
creative effectiveness based on viewer reaction to national TV
ads. Respondents are randomly selected and representative of
the U.S. TV viewing audience. The results are presented on a
scale of 1-950. The ad under analysis “The Date” of Heineken
completes our selection. Table 1 shows a summary of the selected
commercials and the classification following the Ace Score index.
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The procedure of the experimental task consisted in observing
a 30-min documentary about the submarine world in which three
blocks of Super Bowl ads were inserted: the first one after 7
min from the beginning of the documentary, the second one
in the middle and the last one at the end of the trial. Each
of these blocks was formed by three commercials (Figure 1).
This audiovisual content were randomly distributed to remove
the factor “sequence” as possible confounding effect in the later
analysis.

Two hours after the experiment, users were interviewed using
an online test. In this test different frames of proposed ads
were presented. The user must connect the frames presented
with the correct ad brands. The purpose of this interview was
to know which ads were remembered and forgotten by the
subjects.

2.2. Signal Recording
2.2.1. Cerebral Recording
The cerebral activity was recorded using an instrument developed
by TwenteMedical Systems International (TMSI fromOldenzaal,
The Netherlands). This device consists in an amplification
and a digitalization stage. The amplifier (model REFA 40-
channels, Figure 2A) is composed by 32 unipolar, 4 bipolar, 4
auxiliary and 8 digital inputs. The TMSI instrument allows the
synchronization, via hardware, from its inputs.

All subjects were comfortably seated on a reclining chair
60 centimeters away from the screen. The screen used was
a 23 inches Full HD resolution (1920 × 1080 pixels). EEG
activity was collected at a sampling rate of 256 Hz while
impedances kept below 5k�. For the experiment, we used
thirty electrodes (Figure 2B) and a bracelet ground located
on the opposite wrist to the habitual subject hand. The
montage followed the International 10–20 system (Jasper, 1958;
Figure 2C).

2.2.2. Autonomic Recordings
Using the TMSI instrument and software solution for
neuroscience experiments (Neurolab from Bitbrain, Spain)
it is possible to acquire synchronized biosignals according to
the audiovisual content under evaluation. By means of two
bipolar inputs, the cardiac activity of each participant can be
registered. Two disposable electrodes (Figure 3A) are placed
on the upper chest. The first one, the electrode plugged into
positive terminal of the amplifier, is placed below of the right
clavicle and the other one, the electrode plugged into negative
terminal of the amplifier, is placed below of the left clavicle
(Figure 3D).

To measure the skin ability to transmit electrical currents
incremented due to sweating and organism changes, a galvanic
response sensor is used. This sensor consists in two cloth strips
(with velcro) in which there is an electrode sewn (Figure 3B).
The strips are placed on the fingers of the non-dominant hand.
Specifically, the electrode belonging to the positive terminal is
placed on the middle or proximal phalanx of the index finger.
In addition, the electrode belonging to the negative terminal is
placed on the middle or proximal phalanx of the middle finger

(Figure 3E). This sensor is plugged into the auxiliary channels of
the amplifier.

It is possible to plug a rubber band consisting of two electrodes
into one of the eight auxiliary channels in order to measure the
breathing (Figure 3C). This rubber band is placed on the bottom
of the rib cage (Figure 3F). The sensors measure the rubber
band deformation produced by the inhalation and exhalation
phenomena.

2.3. Signal Preprocessing
2.3.1. Cerebral Signal
The baseline of EEG traces is removed by mean subtraction and
the output dataset is band pass (0.5–40 Hz) filtered. Then, the
corrupted data channels are rejected and interpolated from the
neighboring electrodes. A corrupted data channel is identified
computing the fourth standardized moment (kurtosis) along the
signal of each electrode. The kurtosis is defined as:

K(x) =
µ4

σ 4
=

E[(x− µ)4]

E[(x− µ)2]2
(1)

whereµ4 is the fourth moment about the mean, σ is the standard
deviation and E[x] is the expected value of the signal x. Moreover,
a channel is also classified as corrupted if the registered EEG
signal is flatter than 10% of the total duration of the experiment.

Reference events are integrated into the data structure in order
to segment the EEG signal in epochs of one second. The intra-
channel kurtosis level of each epoch is computed in order to reject
the epochs highly damaged by the noise.

In the next step, Independent Component Analysis
(ICA) (Hyvärinen and Oja, 2000) is applied by means of
runica algorithm to detect and remove components due
to eye movements, blinks and muscular artifacts. Thirty
source signals are obtained (one per electrode). Then,
an automatic and embedded Matlab method (ADJUST)
(Mognon et al., 2011) is used to discriminate the artifact
components from EEG signals by combining stereotyped
artifact-specific spatial and temporal features. Components
whose features accomplish certain criteria are marked to reject
(Figure 4A). See Mognon et al. (2011) for detailed explanation
of ADJUST. In Figure 4B the spacial and temporal features
extracted by ADJUST algorithm of a typical eye blink can
be seen.

In the automatic process of artifact component identification,
ADJUST presents several true negatives, in other words, there
exists components which are composed by a lot of physiological
noise and a little useful information (brain activity) that the
algorithm does not mark to be rejected. For this reason, a trained
expert analyses manually the features of each component (the
topographic distribution of the signal, the frequency response,
the temporal and spatial features extracted by ADJUST, etc.)
in order to discover the remained artifact components. The
final objective in the preprocessing stage is to guarantee a
compromise between brain activity signal removal and artifact
remaining.

Figure 5 shows a diagram of the whole processing stage. After
this, the EEG signal is free of artifacts and it can be analyzed in
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FIGURE 1 | Diagram about the experimental design.

FIGURE 2 | EEG instrument. (A) Amplifier, (B) Cap, (C) Distribution.

FIGURE 3 | (A) EEG, (B) GSR, and (C) RSP sensors and their respective locations (D–F).

the next stage using the feature extraction metrics presented in
Section 2.4.

In order to develop the proposed preprocessing algorithm,
EEGLAB (Delorme and Makeig, 2004) and ADJUST (Mognon
et al., 2011) libraries were used.

2.3.2. Autonomic Signals
To analyze the electrocardiogram signal, the QRS complex
detection is required, so the preprocessing of the cardiac signal is
a very important step. First, the ECG signal is high-pass filtered in
order to correct the baseline problems as baseline wander caused
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FIGURE 4 | (A) The 30 IC’s with the artifact components marked in red to be rejected. (B) Spatial and temporal features and the frequency spectrum related to the

first component marked as artifact by ADJUST.

FIGURE 5 | Architecture of the EEG preprocessing stage.

by the effects of electrode impedance, the respiration or body
movements. A FIR filter (with cut off frequency of 0.5 Hz) is used
for this purpose in order to avoid the phase distortion produced
by a IIR filter, which would modify the wave morphology. In
addition, the signal DC component is eliminated subtracting the
mean. The next step is to apply a Notch filter in order to avoid the
power line interference (the interfering frequency is w0 = 50Hz).
Muscle noise cause severe problems as low-amplitude waveform
being obstructed. To eliminate this noise a low-pass filtered (with
a cut off frequency ranged from 60 to 70 Hz) is applied.

Regarding the GSR and RSP preprocessing, a morphological
filter is employed to remove the signal ripple in order to facilitate
the local maxima detection. This low-pass filter allows the
elimination of the muscle noise (high frequencies) in order to
detect more accurately the sweating peaks (into the GSR signal)
and the inhalation/exhalation peaks (into the RSP signal).

2.4. Feature Extraction
2.4.1. EEG

Global Field Power
The recorded signal obtained directly from the scalp shows
intra-cranial synchronous activation of many neurons. To
quantify the amount of cerebral activity, the Global Field Power
(GFP) (Lehmann and Skrandies, 1980) was employed using
Equation (2).

GFP =

√

∑Ne
i= 1

∑Ne
j= 1(ui − uj)

2

Ne
(2)

where ui is the potential at the electrode i (over time), uj is the
potential at the electrode j (over time) and Ne is the total number
of electrodes employed to compute the GFP.

Frontal areas are the cerebral locations mainly involved in
the memorization and pleasantness phenomena (Vecchiato et al.,
2010). Thus, the electrodes Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, Fc5,
Fc1, Fc2, and Fc6 were taken into account in the calculation.
A GFP signal was then calculated for each frequency band
considered in the experiment: δ (1–3 Hz), θ (4–7 Hz), α (8–12
Hz), β (13–24 Hz), β extended (25–40 Hz), and γ (25–100 Hz).

The blocks of neutral documentary (one before each ad block)
are baseline periods taken as a reference. The purpose of these
blocks is to be able to register the basal cerebral activity to
remove phenomena as fatigue or lack of concentration. GFP
normalization according to baseline periods provides the Zscore
index computed as:

Zscore =
GFPi − GFPB

σ (GFPB)
(3)

where GFPi is the Global Field Power during the ad under
analysis,GFPB is the Global Field Power during a period of 2-min
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of the neutral documentary previous to the block of ads where is
the ad under analysis located (Figure 1).

For each stimulus the input to the different classifiers is the
time-average value of the GFP, Zscore and log(Zscore) in each
frequency band.

Interest Index (II)
The interest index allows the commercial assessment in specific
time periods in Theta and Beta bands (Vecchiato et al., 2010).
For each ad and subject the most significant peaks for Zscore
variable were obtained, considering a peak all values that exceeds
the threshold of Zscore ≥ 3, associated with a p < 0.05 in the
Gaussian curve fitted over Zscore distribution (averaged for all
participants).

In this way, two parameters were calculated: the number
of peaks during the total duration of a particular commercial
(PNtotal) and the number of peaks during the brand exposition
periods of a particular commercial (PNbrand). The interest index
is computed for each ad and subject as:

II =
PNbrand

PNtotal
(4)

The input to the different classifiers is the percentage of interest
for each commercial.

Memorization Index (MI)
This index allows to measure the capacity of each stimulus to
be remembered (Vecchiato et al., 2011b). First, the GFP in theta
and alpha bands (associated with human memorization process
Vecchiato et al., 2011b) are normalized following:

MI =
GFPi

∑M
i= 1 GFPi

(5)

where GFPi is the Global Field Power along the duration of
the stimulus under analysis i and M is the number of temporal
samples.

In order to extract the memorization index, an on-line survey
is carried out following the method used in Vecchiato et al.
(2011c). Two hours after the experiment ends each participant
has to complete the on-line test designed by specialists in
psychology. In this test different frames of each commercial are
presented and the subject must answer some questions about
these frames. By means of this test we can check the stimuli
remembered and forgotten for each participant.

For each commercial, the population was segmented in two
groups. Subjects who remembered the ad were included in the
“remember group” and those who forgot it were included in the
“forget group”.

It is possible to compute the GFPRemember as the Global Field
Power average of participants that belong to “remember group”
for each stimuli. In the same way, a GFPForget can be extracted
taking into account the “forget group.” Finally the remember and
forget indexes are computed bymeans of a cubic smoothing from
the GFPRemember and the GFPForget in order to extract the signal
envelope. In Figure 6 the MI in theta and alpha bands for the
stimulus under study (“The Date”) can be observed.

The input to the different classifiers is the time-average value
of the remember and forget indexes for each stimulus.

Pleasantness Index (PI)
The pleasantness index is a continuous metric along the time
that provides information about the moments of the audiovisual
content that are pleasing to the participants (Vecchiato et al.,
2013). The cerebral activity registered by the left-frontal
electrodes is compared with the cerebral activity registered by the
right-frontal electrodes, so the Global Field Power in the Theta
and Alpha bands are computed employing asymmetric pairs of
electrodes obtaining GFPLeft and GFPRight for each participant
and stimulus.

From the on-line survey explained in the previous section, it is
possible to know the participants pleasure about each audiovisual
content under study. Using this information, the population is
segmented in two groups: “Like” and “Dislike.” The GFPLeft and
GFPRight for each group is obtained by means of the Global Field
Power (along the stimulus under analysis) average.

It is possible to extract the pleasantness index for each
group as:

PI = GFPRight(L/D)− GFPLeft(L/D), (6)

Finally, like and dislike pleasantness indexes are computed by
means of a cubic smoothing from the PILike and the PIDislike in
order to extract the signal envelope. In Figure 7 the PI in theta
and alpha bands for the stimulus under study (“The Date”) can
be observed.

The input to the different classifiers is the time-average value
of the like and dislike indexes for each stimulus.

Power Spectral Density (PSD)
The amount of power in each frequency band and electrode was
computed by means of theWelch periodogram (Welch, 1967). In
particular, the average of PSD is computed as:

PSDc,s =
1

Nw

Nw−1
∑

i= 0

Pxi (7)

where Nw is the number of windows along the signal of the
channel c in the stimulus s and Pxi is the periodogram for the
ith window calculated as:

Pxi =
1

N
|FFTN,xi |

2 ,
1

N

∣

∣

∣

∣

N−1
∑

n= 0

xi(n)e
−j2πnk/N

∣

∣

∣

∣

2

(8)

where N is the number of points to compute the FFT.
The window size used to compute theWelch periodogramwas

128 samples corresponding to half second of the EEG signal and
the percentage of overlapping was 50%. The input to the different
classifiers are 6 (δ, θ , α, β , β extended and γ ) ×Npe features for
each stimulus being Npe the number of asymmetric electrodes
pairs used in the experiment.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2016 | Volume 10 | Article 74

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Colomer Granero et al. Automatic Emotional Evaluation of Audiovisual Contents

FIGURE 6 | Memorization index in (A) Theta and (B) Alpha bands for “The Date.”

FIGURE 7 | Pleasantness index in (A) Theta and (B) Alpha bands for “The Date.”

2.4.2. ECG
After ECG preprocessing, the QRS is detected, specifically the R
wave, bymeans of Pan-Tompkins’ algorithm (Pan and Tompkins,
1985). The analysis of variations in the instantaneous heart
rate time series using the beat-to-beat RR-intervals (the RR
tachogram) is known as Heart Rate Variability (HRV) analysis
(American Heart Association, 1996). The balance between the
effects of the sympathetic and parasympathetic systems, the two
opposite acting branches of the autonomic nervous system, is
referred to as the sympathovagal balance and is believed to be
reflected in the beat-to-beat changes of the cardiac cycle (Kamath,
1991). The HRV analysis is based on feature extraction from

the tachogram signal in four domains: time, frequency, time-
frequency and non-linear analysis. All signals were reviewed
manually by an expert after the automatic R wave detection to
avoid the existence of false positives or false negatives and with
the aim of delete extremely noisy sections which could not be
analyzed. In this manner, the non-existence of artifacts which
could alter the signal is assured.

Some parameters extracted in the time domain used in this
study were: the maximum (maxRR) and minimum (minRR), the
average (meanRR), the median (medianRR) and the standard
deviation between RR intervals (SDRR), the standard deviation
from the RR average interval in time-windows (SDARR), the

Frontiers in Computational Neuroscience | www.frontiersin.org 7 July 2016 | Volume 10 | Article 74

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Colomer Granero et al. Automatic Emotional Evaluation of Audiovisual Contents

square root of the sum of the successive differences between
adjacent RR intervals (RMSSD), the number of successive RR
pairs having a difference less than 50 ms (RR50) and the ratio
between the RR50 and the total RRs (pRR50).

The Power Spectral Density (PSD) analysis provides
information about the amount of power in several frequency
ranges of the tachogram signal. The analysis in the frequency
domain was carried out in four frequency bands: ULF(0–0.033
Hz), VLF(0.033–0.04 Hz), LF(0.04–0.15 Hz), and HF(0.15–
0.4 Hz) bands. For this work, the ULF and VLF bands are
ignored because these frequency bands are only important in
24-h registers. The amount of power in each band is obtained
integrating the PSD signal between the bounds of the frequency
bands. The power metrics are presented in absolute values
(aLF, aHF), normalized to the total energy (nLF, nHF) or in
a percentage value of the total energy (pLF, pHF). The power
ratio between the LF and HF band provides information about
the sympathetic/parasympathetic balance. The power value of
the peak on the fundamental frequency (peakLF, peakHF) is
extracted too.

Combining the analysis in the two domains discussed above,
the time-frequency analysis is performed. In this analysis the
same parameters as in frequency domain were computed in ECG
segments of a given time-length.

Regarding to the non-linear analysis, techniques such as:
Poincaré graphs and entropy-based measures were extracted
from HRV signal. Graphs of Poincaré are a type of graphics that
try to represent the self-similarity of a signal. Graph plots the
current interval vs. the previous intervals (Fishman et al., 2012).
Normally fits an ellipse positioned on the axis identity and with
center in the middle of RR intervals. The axes of the ellipse (SD1
for the vertical axis and SD2 to the horizontal axis) represent
the variability in the short term (SD1) and long-term (SD2)
variability (Brennan et al., 2002). Sample Entropy (sampen) is
a factor that attempts to quantify the complexity or degree of
new information generated (Richman and Moorman, 2011). The
interpretation we can make of this parameter is basically that if
entropy worth 0, then consecutive sequences are identical and the
bigger its value most is the complexity of the analyzed signal.

For each stimulus and subject fifty-six parameters are
computed by means of HRVAS tool (Ramshur, 2010; Guixeres
et al., 2014) (Figure 8).

2.4.3. GSR and RSP
Ten features were extracted from the Galvanic Skin Response
signal (Figure 9A). The average, the variance and the standard
deviation of the skin conductance along specific time periods
under analysis (stimuli) was computed. In addition, the number
of local maxima and minima and the mean conductivity
difference (GF − GB) for each consecutive pair of local
minimum-maximum were calculated. For each stimulus, the
global maximum GSRmax and minimum GSRmin, the difference
of them (GSRmax − GSRmin) and the ratio between the number
of maxima and stimuli duration (peaks/time) were also extracted
from GSR signals.

Regarding to RSP signal (Figure 9B), six physiological
parameters during each stimulus were extracted. The respiratory
rate, the average level of breathing, the longest and shortest time

between consecutive breaths, the deep breathing (RSPmax) and
the shallow breathing (RSPmin).

Table 2 shows a summary of the parameters extracted from
each physiological signal. It is important to note that EEG
parameters were calculated in each frequency band (excluding
the emotional indexes calculated as described above).

2.5. Classifiers
The different tested classifiers were Naive Bayes (John
and Langley, 1995), Logistic Regression (Cessie and van
Houwelingen, 1992), Multilayer Perceptron (Kohonen, 1988),
Support Vector Machines (Chang and Lin, 2011), Linear Nearest
Neighbor search (Weber et al., 1998), Random Forest (Breiman,
2001), AdaBoost (Freund and Schapire, 1996), Multiclass
classifier (Bishop, 2006) and Bagging (Aslam et al., 2007). The
used implementations of these classifiers are included in Weka
(Hall et al., 2009; Witten et al., 2011), a broadly used data mining
software and publicly available in Weka 3 (2009).

In order to reduce dimensionallity, AttributeSelectedClassifier
also available in Weka was used (Witten and Frank, 2005). It
is a meta-classifier that takes a search algorithm and evaluator
similar to the base classifier. This makes the attribute selection
process completely transparent and the base classifier receives
only the reduced dataset. It works by finding a subset of
features using the chosen feature selection method. It then uses
this feature subset to train the specified classifier and output
a classifier model. In addition, a wrapper (Kohavi and John,
1987) can be used within the AttributeSelectedClassifier as the
feature selection method. The feature selection method is used
to evaluate the accuracy of any feature subset. The wrapper
can take any classifier and use it to perform feature selection.
The advantage of using the wrapper is that the same machine
learning algorithm can be used to evaluate the feature subset
and also to train the final classifier, therefore expecting good
results.

Once the features are extracted, the data of the dataset
must be preprocessed before the classification step. In the pre-
processing, two tasks are carried out: data normalization and data
resampling. This is necessary because the range of values of raw
data varies widely and the data set is clearly unbalanced and most
machine learning algorithms would not work properly on that
conditions. In this work, the method used for the normalization
is to standardize all numeric attributes in the given dataset to
have zero mean and unit variance and, for the resampling, the
Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla
et al., 2002) was applied.

Classifiers were tested by means of 10-fold stratified cross-
validation. In k-fold cross-validation, the original sample is
randomly partitioned into k equal sized subsamples. Of the k
subsamples, a single subsample is retained as the validation data
for testing the model, and the remaining k − 1 subsamples
are used as training data. The cross-validation process is then
repeated k times (the folds), with each of the k subsamples used
exactly once as the validation data. The k results from the folds are
then averaged to produce a single estimation. In stratified k-fold
cross-validation, the folds are selected so that the mean response
value is approximately equal in all the folds (Schneider, J., 1997).
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FIGURE 8 | Main window of the HRV analysis tool.

FIGURE 9 | (A) GSR and (B) RSP physiological signals. The most representative parameters are highlighted.

3. RESULTS

In order to find which physiological signal was the best one,
different datasets and combinations of them were used to
perform the classification:

• EEG_GFP-ZSCORE: dataset with the GFP and Zcore metrics
extracted from the EEG signal (18 features).

• EEG_PSD: dataset with the PSD metrics extracted from the
EEG signal (72 features).

• EEG_IND: dataset with the Pleasantness, Memorization and
Interest indexes’ metrics extracted from the EEG signal (8
features).

• EEG_ALL: dataset with all the before mentioned metrics
extracted from the EEG signal (98 features).
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• HRV: all the metrics extracted from the HRV signal (56
features).

• GSR: all the metrics extracted from the GSR signal (10
features).

• RSP: all the metrics extracted from the Respiration signal (6
features).

Combination of signals:

• GSR + HRV: all the metrics extracted from GSR and HRV
datasets (66 features).

• GSR + HRV + EEG_IND: all the metrics extracted from
GSR, HRV and EEG_IND (Pleasantness, Memorization and
Interest) datasets (74 features).

• GSR+HRV+ EEG_ALL: all the metrics extracted from GSR,
HRV and EEG (164 features).

Combination of signals using only features selected by
AttributeSelectedClassifier:

• GSR_SEL + HRV_SEL: only selected metrics chosen by the
best classifier with attribute selection from GSR and HRV
datasets.

• GSR_SEL + HRV_SEL + EEG_IND_SEL: only selected
metrics chosen by the best classifier with attribute selection
from GSR, HRV and EEG_IND datasets.

• GSR_SEL + HRV_SEL + EEG_ALL_SEL: only selected
metrics chosen by the best classifier with attribute selection
from GSR, HRV and EEG_ALL datasets.

A list of the features included in each dataset can be found in
Table 2. When combining signals, the instances (users) chosen
to conform the dataset were those corresponding to the dataset
of the signal with less instances, discarding all non-coincident
instances from the other datasets.

Finally, the commercial under study, namely “The Date” from
Heineken, was tested using the best classifier.

3.1. Analysis of the Features Extracted
from the Physiological Signals
The classifiers used to test the datasets were three: Ranfom Forest
(RF), Random Forest with attribute selection (ASC) and Random
Forest with MultiClass Classifier (MCC) and Bagging (BAG). We
chose Random Forest as starting point because it has proven to
be a robust and efficient classifier independently of the dataset
(Fernández-Delgado et al., 2014).

Datasets were previously balanced by means of SMOTE filter,
and Standardized, to make all features of the same magnitude.

The classification of the datasets was performed in 3
rounds. In the first one, the goal was to evaluate each dataset
individually. All datasets that obtained an accuracy of 75%
or more were selected to participate in the second round
(winning datasets). In the second round, combinations of
winning datasets were evaluated. Lastly, in the third round,
combinations of GSR and wining datasets were evaluated using
only a subset of features (selected features). Selected features for
each combination were chosen by applying to each combination
of datasets the classifier which performed best with atribute
selection.

TABLE 2 | Summary table showing all the parameters extracted from each

biosignal used in this study.

Category Parameters used

E
E
G

fe
a
tu
re
s

Metrics based on

Global Field Power

GFP

Zscore

log(Zscore)

Emotional indexes Interest Index (II)

Memorization Index (MI)

Pleasantness Index (PI)

Frequency domain

metrics

Power Spectral Density (PSD)

Brainrate

E
C
G

fe
a
tu
re
s

Time domain

metrics

MaxRR, MinRR

MeanRR, MedianRR

SDRR

SDARR

RMSSD

RR50
pRR50

Frequency domain

metrics

aLF, aHF

nLF, nHF

pLF,pHF

peakLF,peakHF

Time-frequency

domain metrics

The same parameters extracted

in frequency domain

Non-linear analysis

metrics

Poincaré Graphs (SD1, SD2)

Entropy-based measures

G
S
R
fe
a
tu
re
s

Time domain

metrics

Average

Variance

Standard deviation

Number of local minima

Number of local maxima

Peaks/Time

GF −GB
GSRmax and GSRmin
GSRmax −GSRmin

R
S
P
fe
a
tu
re
s Time domain

metrics

Respiratory Rate

Average level of Breathing

Longest time between breaths

Shortest time between breaths

RSPmax and RSPmin

Table 3 shows the classifier which performed best (among the
three before mentioned) for each dataset and its accuracy.

As can be observed in Table 3, in the first round, the datasets
that achieved an accuracy of 75% or greater were EEG_ALL,
EEG_IND, HRV and GSR. The best accuracy was obtained with
the EEG_IND dataset (84.07%) using Multi-Class, Bagging and
Random Forest. Respiration metrics did not achieve a good
classification accuracy (69.84%), andHRV accuracy (79.75%) and
GSR accuracy (77.33%) were under the EEG accuracy (84.07%).

In the second round, the following combinations were tested:
GSR + HRV, GSR + HRV + EEG_ALL and GSR + HRV
+ EEG_IND. In this case, the highest accuracy was obtained
with Random Forest with atribute selection using a combination
of all the features corresponding to GSR, HRV and EEG_IND
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TABLE 3 | Best result for each dataset.

Dataset Algorithm Positive Neutral Negative Average

EEG_ALL MCC, BAG, RF 74.29 71.43 92.86 79.52

EEG_GFP-ZSCORE MCC, BAG, RF 62.86 45.00 86.43 64.76

EEG_PSD MCC, BAG, RF 57.71 65.14 94.29 72.38

EEG_IND MCC, BAG, RF 75.00 81.62 95.59 84.07

RSP RF 68.45 58.33 82.74 69.84

HRV MCC, BAG, RF 75.46 75.46 88.34 79.75

GSR ASC, RF 84.88 73.26 73.84 77.33

GSR + HRV MCC, BAG, RF 75.00 78.57 86.43 80.00

GSR + HRV + EEG_ALL MCC, BAG, RF 75.86 75.86 93.97 81.90

GSR + HRV + EEG_IND ASC, RF 79.31 90.52 91.38 87.07

GSR_SEL MCC, BAG, RF 89.29 85.00 80.71 85.00

GSR_SEL + HRV_SEL RF 95.00 89.29 78.57 87.62

GSR_SEL + HRV_SEL + EEG_IND_SEL MCC, BAG, RF 77.59 91.38 92.24 87.07

Percentage of positive, neutral and negative ads correctly classified and average.

Bold values indicate the best performance obtained in each test and highlight the optimal combination of features for each dataset.

metrics (87.07%). The other two combinations obtained 80.00
and 81.90%, respectively.

Lastly, in the third round, the datasets tested were: GSR, GSR
+ HRV and GSR + HRV + EEG_IND. These datasets had
only the selected features by the atribute selection classifier. The
highest accuracy obtained was with Random Forest using the
selected attributes from the dataset combining GSR and HRV
signals (87.62%), and the GSR dataset alone obtained 85.00% of
accuracy using Multi-Class, Bagging and Random Forest.

The selected attributes for each dataset combination were:

• GSR: “Number of Peaks” and “Peaks/Time.”
• GSR + HRV: “Number of Peaks,” “Peaks/Time” and

“t_SDANN”.
• GSR + HRV + EEG_IND dataset: “Number of Peaks,”

“Peaks/Time,” “t_SDANN,” “mean_Theta,” “mean_Alfa,”
“Index_Theta,” “Index_Beta,” “Peaks_Brand_Theta,”
“Peaks_Theta,” “Peaks_Brand_Beta_Ext” and “Peaks_
Beta_Ext.”

3.2. Comparison of Classifiers
In the light of the results presented previously, the decision
to test two more classifiers with the best 3 datasets was taken.
The two new classifiers introduced were AdaBoost.M1 (AB)
with Random Forest and Multi-Class with AdaBoost.M1
and Random Forest. Table 4 shows how these two new
classifiers improved the accuracy by 2%, reaching the best
result with the dataset conformed by the selected attributes
from the GSR and HRV signals, obtaining 89.76% of
accuracy.

The configuration of this combination of classifiers is as
follows: the MultiClass metaclassifier was employed using a
1-against-all strategy. The classifier used by MultiClass was
AdaBoost. M1 with Random Forest as base classifier, 10
iterations, 100 as weight pruning threshold and reweighting. The
RandomForest classifier was configured to generate 100 trees

with unlimited depth and unlimited number of features to be
used in random selection.

As a final test, the best dataset was classified with 11more basic
and advanced classifiers, but none was able to beat the current
accuracy of 89.76% (Table 5).

Regarding to “The Date”, the commercial under study,
the model obtained training the best dataset with the best
classifier (i.e., Number of maxima and Peaks/Time from GSR,
SDANN from HRV trained with MultiClass, AdaBoostM1 and
RandomForest) was able to always classify “The Date” as
positive.

4. DISCUSSION

In this work we intended to build an algorithm able to classify
commercials automatically. To achieve it, we built a model using
the best possible data available and off-the-shelf algorithms.

Specifically, the main objective of this work was to find the
most discriminatory or representative features that allowed to
classify audiovisual content in 3 groups (positive, neutral and
negative) with the highest possible accuracy. To accomplish this,
we used EEG, GSR, HRV and respiration signals acquired from a
group of 47 subjects while they were watching nine commercials.
These commercials (excluding the ad under analysis) had been
classified and labeled previously according to their Ace Score
punctuation.

Tests performed show that the best classification was
achieved using features extracted from GSR and HRV signals,
namely “ Number of maxima” and “ Peaks/Time” from GSR, and
‘‘SDANN ” from HRV, with an accuracy of 89.76%. On the other
hand, the best accuracy with the EEG signal was 84.07%, attained
with the dataset formed by the interest and pleasantness indexes.
However, datasets with metrics extracted from EEG signal were
the best in classifying only negative instances.

It is important to note that with just two features extracted
from the GSR signal (“ Number of maxima” and “ Peaks/Time”)

Frontiers in Computational Neuroscience | www.frontiersin.org 11 July 2016 | Volume 10 | Article 74

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Colomer Granero et al. Automatic Emotional Evaluation of Audiovisual Contents

TABLE 4 | Final results.

Dataset Algorithm Positive Neutral Negative Average

GSR_SEL

RF 90.00 83.57 79.29 84.29

MCC,BAG,RF 89.29 85.00 80.71 85.00

ASC,RF 90.00 83.57 79.29 84.29

AB,RF 92.14 85.00 83.57 86.90

MCC,AB,RF 91.43 85.00 81.43 85.95

GSR_SEL + HRV_SEL

RF 95.00 89.29 78.57 87.62

MCC,BAG,RF 94.29 87.86 78.57 86.90

ASC,RF 95.00 89.29 78.57 87.62

AB,RF 95.00 91.43 80.71 89.05

MCC,AB,RF 95.00 91.43 82.86 89.76

GSR_SEL + HRV_SEL + EEG_IND_SEL

RF 78.45 89.66 91.38 86.49

MCC,BAG,RF 77.59 91.38 92.24 87.07

ASC,RF 79.31 87.93 88.79 85.34

AB,RF 80.17 87.93 91.38 86.49

MCC,AB,RF 78.45 87.07 93.10 86.21

Classifiers applied to the best datasets using only the features selected previously. Percentage of positive, neutral, negative and average results for the instances classified correctly.

Bold values indicate the best performance obtained in each test and highlight the optimal combination of features for each dataset.

and a combined classifier consisting of Multi-Class, Bagging and
Random Forest we were able to correctly classify 85% of the
instances. This means that it is possible to obtain an accuracy
very similar to the highest one—only 4.76% below of the highest
accuracy obtained in this study and almost 1% above the best
accuracy attained with EEG signals—with only two features
from a single signal, which makes it very simple, usable and
portable.

The implications of these results are that GSR and HRV
signals provide more relevant information to classify an
ad. That could mean that the Autonomic Nervous System
is more useful for emotion classification than the Central
Nervous System. This is supported by some other authors
who state that GSR and HRV signals are able to accurately
distinguish a user’s emotion (Yoo et al., 2005; Li and h. Chen,
2006).

Validation of the model was performed using cross-validation
in a first step and the commercial under evaluation (“The
Date”) which was not used before to train or perform the cross-
validation of the model was used in the test stage. Our model was
able to classify this ad as positive.

The shortcomings of our method are mainly two. On the
one hand, the attributes of the subjects could have been taken
into account in the classification stage in order to evaluate
commercials according to a specific population. On the other
hand, a more comprehensive and exhaustive validation with
more data could have been performed to get even more reliable
results.

Regarding to the practical meaningfulness, these promising
results could help to the development of an automatic system able
to evaluate the quality of the commercials. This system could be
helpful for the companies reducing the cost of their advertising
design. Also, this kind of software would make possible the

TABLE 5 | Results for different classifiers applied to the best dataset: GSR

(Number of maxima, Peaks/Time) + HRV (t_SDANN).

Algorithm Positive Neutral Negative Average

SVM 75.00 55.71 71.43 67.38

Multilayer Perceptron 75.00 49.29 67.14 63.81

Simple Logistic 75.00 36.43 85.71 65.71

Naive Bayes 75.00 20.00 75.00 56.67

Decision Table 75.00 22.86 83.57 60.48

Zero Rule 100.00 0.00 0.00 33.33

One Rule 57.86 56.43 60.00 58.10

Hoeffding Tree 74.29 52.14 47.86 58.10

Linear NN search 95.00 88.57 85.00 89.52

AdaBoostM1, Linear NN

search

95.00 88.57 85.00 89.52

MultiClass, AdaBoostM1,

Linear NN search

95.00 88.57 85.00 89.52

Random Forest 95.00 89.29 78.57 87.62

AdaBoostM1, Random

Forest

95.00 91.43 80.71 89.05

MultiClass, AdaBoostM1,

Random Forest

95.00 91.43 82.86 89.76

The best accuracy using the following classifiers was obtained with the default parameters

in the Weka software (Weka 3, 2009). Percentage of positive, neutral, negative and

average results for the instances classified correctly.

Bold values indicate the best performance obtained in each test and which classifier

provides the most accurate classification.

creation and evaluation of commercials focused in a particular
audience.

In future works, voting majority could be used to improve the
accuracy of each class independently, which could lead to better
global results. In addition, other signals could be used as well to
try to better discriminate among ads, such as Face Reader.
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5. CONCLUSIONS

An automatic method able to classify commercials according its
effectiveness is proposed in this paper. To achieve it, different
features from physiological signals of 47 participants watching
audiovisual contents were extracted and a model using the most
discriminatory features was built. The different tests performed
in this work show that the information provided by the GSR and
HRV signals describe with an 89.76% of accuracy the effectiveness
of the commercials. However, the negative commercials are better
discriminated using the EEG features. These conclusions are
promising in the audiovisual content evaluation field and might
be an important direction for future research on commercial
effectiveness.

AUTHOR CONTRIBUTIONS

AC is the corresponding author. He is the specialist researcher
in signal processing. AC investigated about the state of the art
in signal preprocessing and feature extraction. He developed
his own algorithms in order to preprocess the biosignals and
extract the different parameters to the classification stage.
FF is the specialist researcher in the classification stage. He

used different advanced Machine Learning methods in order
to classify commercials according to their effectiveness. FF
has also assisted in the writing of this manuscript. VN is
the director of this work. She guided to AC in order to
investigate about preprocessing signal methods and to develop
the home-made algorithms. VN reviewed the manuscript
carefully and she gave to AC and FF helpful tips for the
creation of the article. JG designed (with MA) the procedure
of the experimental task and the biosignal acquisition. He
participated in the revision of the final manuscript providing
interesting comments and ideas. MA designed (with JG) the
procedure of the experimental task and the biosignal acquisition.
He participated in the revision of the final manuscript
providing interesting comments and ideas. JA was responsible
to the physiological signal acquisition. He reviewed the final
manuscript.

ACKNOWLEDGMENTS

This work has been supported by the Heineken Endowed Chair
in Neuromarketing at the Universitat Politècnica de València in
order to research and apply new technologies and neuroscience
in communication, distribution and consumption fields.

REFERENCES

American Heart Association (1996). Task force of the european society of

cardiology and the north american society of pacing and electrophysiology. Eur.

Heart J. 17, 354–381.

Appelhans, B., and Luecken, L. (2006). Heart rate variability as an index

of regulated emotional responding. Rev. Gen. Psychol. 10, 229–240. doi:

10.1037/1089-2680.10.3.229

Aslam, J., Popa, R., and Rivest, R. (2007). “On estimating the size and confidence

of a statistical audit,” in Proceedings of the USENIX Workshop on Accurate

Electronic Voting Technology (Boston, MA: EVT’07).

Bishop, C. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ: Springer-Verlag New York, Inc.

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/

A:1010933404324

Brennan, M., Palaniswami, M., and Kamen, P. (2002). Poincar plot interpretation

using a physiological model of HRV based on a network of oscillators. Am.

Physiol. Soc. 283, 1873–1886. doi: 10.1152/ajpheart.00405.2000

Cessie, L., and van Houwelingen, J. (1992). Ridge estimators in logistic regression.

Appl. Stat. 41, 191–201. doi: 10.2307/2347628

Chang, C., and Lin, C. (2011). LIBSVM: a library for support vector machines.

Intel. Syst. Technol. ACM Trans. 2, 27:1–27:27. doi: 10.1145/1961189.1961199

Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W. (2002). Smote: Synthetic

minority over-sampling technique. J. Artif. Intel. Res. 16, 321–357.

Christoforou, C., Christou-Champi, S., Constantinidou, F., and Theodorou,

M. (2015). From the eyes and the heart: a novel eye-gaze metric that

predicts video preferences of a large audience. Front. Psychol. 6:579. doi:

10.3389/fpsyg.2015.00579

Critchley, E. (2002). Electrodermal responses: what happens in the brain.

Neuroscientist 8, 132–142. doi: 10.1177/107385840200800209

Delorme, A., and Makeig, S. (2004). Eeglab: an open source toolbox for

analysis of single-trial eeg dynamics. J. Neurosci. Methods 134, 9–21. doi:

10.1016/j.jneumeth.2003.10.009

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we

need hundreds of classifers to solve real world classifcation problems? J. Mach.

Learn. Res. 15, 3133–3181.

Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A.,

et al. (2012). A method for analyzing temporal patterns of variability of

a time series from poincare plots. J. Appl. Physiol. 29, 1290–1297. doi:

10.1152/japplphysiol.01377.2010

Frantzidis, C., Bratsas, C., Klados, M., Konstantinidis, E., Lithari, C., Vivas, A.,

et al. (2010a). On the classification of emotional biosignals evoked while

viewing affective pictures: an integrated data-mining-based approach for

healthcare applications. Inf. Technol. Biomed. IEEE Trans. 14, 309–318. doi:

10.1109/TITB.2009.2038481

Frantzidis, C., Bratsas, C., Papadelis, C., Konstantinidis, E., Pappas, C., and

Bamidis, P. (2010b). Toward emotion aware computing: an integrated

approach using multichannel neurophysiological recordings and affective

visual stimuli. Inf. Technol. Biomed. IEEE Trans. 14, 589–597. doi:

10.1109/TITB.2010.2041553

Freund, Y., and Schapire, R. (1996). “Experiments with a new boosting algorithm,”

inMachine Learning, Proceedings of the Thirteenth International Conference on

(ICML 1996), ed L. Saitta (Bari: Morgan Kaufmann), 148–156.

Guixeres, J., Redon, P., Saiz, J., Alvarez, J., Torr, M. I., Cantero, L., et al.

(2014). Cardiovascular fitness in youth: association with obesity and metabolic

abnormalities. Nutr. Hospital. 29, 1290–1297. doi: 10.3305/nh.2014.29.

6.7383

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.

(2009). The weka data mining software: an update. SIGKDD Explor. Newsl. 11,

10–18. doi: 10.1145/1656274.1656278

Hyvärinen, A., and Oja, E. (2000). Independent component analysis:

algorithms and applications. Neural Netw. 13, 411–430. doi: 10.1016/S0893-

6080(00)00026-5

Jasper, H. (1958). Report of the committee on methods of clinical examination

in electroencephalography: 1957. Electroencephalogr. Clin. Neurophysiol. 10,

370–375. doi: 10.1016/0013-4694(58)90053-1

John, G., and Langley, P. (1995). “Estimating continuous distributions in bayesian

classifiers,” in Uncertainty in Artificial Intelligence, Proceedings of the Eleventh

Conference on, UAI’95 (Pasadena, CA: Morgan Kaufmann Publishers Inc.),

338–345.

Kamath, M. V. (1991). Effects of steady state exercise on the power spectrum of

heart rate variability.Med. Sci. Sports Exe. 23, 428–434. doi: 10.1249/00005768-

199104000-00007

Kohavi, R., and John, G. (1987). An introduction to neural computing.

Wrappers Feature Subset Select. Artif. Intel. 97, 273–324. doi: 10.1016/S0004-

3702(97)00043-X

Frontiers in Computational Neuroscience | www.frontiersin.org 13 July 2016 | Volume 10 | Article 74

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Colomer Granero et al. Automatic Emotional Evaluation of Audiovisual Contents

Kohonen, T. (1988). An introduction to neural computing. Neural Netw. 1, 3–16.

doi: 10.1016/0893-6080(88)90020-2

Lang, P., Greenwald, M., Bradley, M., and Hamm, A. (1993). Looking at pictures:

affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–

273. doi: 10.1111/j.1469-8986.1993.tb03352.x

Lehmann, D., and Skrandies, W. (1980). Reference-free identification of

components of checkerboard-evoked multichannel potential fields.

Electroencephalogr. Clin. Neurophysiol. 48, 609–621. doi: 10.1016/0013-

4694(80)90419-8

Li, L., and Chen, J-h. (2006). “Emotion recognition using physiological signals

from multiple subjects,” in 2006 International Conference on Intelligent

Information Hiding and Multimedia (San Francisco, CA), 355–358. doi:

10.1109/IIH-MSP.2006.265016

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). Adjust: an automatic

eeg artifact detector based on the joint use of spatial and temporal features.

Psychophysiology 48, 229–240. doi: 10.1111/j.1469-8986.2010.01061.x

Ohme, R., Matukin, M., and Pacula-lesniak, B. (2011). Biometric

measures for interactive advertising. J. Interact. Adv. 11, 60–72. doi:

10.1080/15252019.2011.10722185

Pan, J., and Tompkins, W. J. (1985). A real-time qrs detection algorithm. IEEE

Trans. Biomed. Eng. 32, 230–236. doi: 10.1109/TBME.1985.325532

Ramshur, J. T. (2010).Design, Evaluation, and Application of Heart Rate Variability

Software (HRVAS).Master’s thesis, The University of Memphis.

Richman, J. S., and Moorman, J. R. (2011). Physiological time-series analysis using

approximate entropy and sample entropy. Cardiovasc. Res. 278, 2039–2049.

Schneider, J. (1997). Cross Validation. Available online at: http://www.cs.

cmu.edu/~schneide/tut5/node42.html. Last accessed on 21st December

2014.

Soleymani, M., Chanel, G., Kierkels, J., and Pun, T. (2008). “Affective ranking of

movie scenes using physiological signals and content analysis.” in Proceedings

of the 2nd ACM Workshop on Multimedia Semantics, Vol. 1 (New York, NY:

ACM Press), 32–39.

Teixeira, R., Yamasaki, T., and Aizawa, K. (2012). Determination of emotional

content of video clips by low-level audiovisual features. Multim. Tools Appl.

61, 21–49. doi: 10.1007/s11042-010-0702-0

Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., et

al. (2010). Changes in brain activity during the observation of tv commercials

by using eeg, gsr and hr measurements. Brain Topogr. 23, 165–179. doi:

10.1007/s10548-009-0127-0

Vecchiato, G., Astolfi, L., De Vico Fallani, F., Toppi, J., Aloise, F., Bez, F., et al.

(2011a). On the use of eeg or meg brain imaging tools in neuromarketing

research. Intell. Neurosci. 2011:643489. doi: 10.1155/2011/643489

Vecchiato, G., Babiloni, F., Astolfi, L., Toppi, J., Jounging, D., Wanzeng, K., et al.

(2011b). Enhance of theta eeg spectral activity related to the memorization of

commercial advertisings in chinese and italian subjects. Biomed. Eng. Inf. 11,

1491–1494. doi: 10.1109/bmei.2011.6098615

Vecchiato, G., Cherubino, P., Trettel, A., and Babiloni, F. (2013). Neuroelectrical

Brain Imaging Tools for the Study of the Efficacy of TV Advertising Stimuli and

Their Application to Neuromarketing, Volume 3 of Biosystems and Biorobotics.

Springer. doi: 10.1007/978-3-642-38064-8

Vecchiato, G., Flumeri, G., Maglione, A. G., Cherubino, P., Kong, W., Trettel,

A., et al. (2014). An electroencephalographic peak density function to detect

memorization during the observation of tv commercials. Conf. Proc. IEEE Eng.

Med. Biol. Soc. 969, 6969–6972. doi: 10.1109/embc.2014.6945231

Vecchiato, G., Toppi, J., Astolfi, L., Vico Fallani, F., Cincotti, F., Mattia, D., et

al. (2011c). Spectral eeg frontal asymmetries correlate with the experienced

pleasantness of tv commercial advertisements. Med. Biol. Eng. Comput. 49,

579–583. doi: 10.1007/s11517-011-0747-x

Wang, J., Pohlmeyer, E., Hanna, B., Jiang, Y.-G., Sajda, P., and Chang, S.-F.

(2009). “Brain state decoding for rapid image retrieval,” in Proceedings of ACM

International Conference on Multimedia (Beijing).

Weber, R., Schek, H., and Blott, S. (1998). “A quantitative analysis and performance

study for similarity-searchmethods in high-dimensional spaces,” in Proceedings

of the 24rd International Conference on Very Large Data Bases, VLDB ’98, (San

Francisco, CA: Morgan Kaufmann Publishers Inc.), 194–205.

Weka 3 (2009). Data Mining Software in Java. Available online at: http://www.cs.

waikato.ac.nz/ml/weka/

Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power

spectra: a method based on time averaging over short, modified periodograms.

IEEE Trans. Audio Electroacoust. 15, 70–73. doi: 10.1109/TAU.1967.

1161901

Witten, I., and Frank, E. (2005). Data Mining: Practical Machine Learning Tools

and Techniques. 2nd Edn.). San Francisco, CA: Morgan Kaufmann.

Witten, I., Frank, E., and Hall, M. (2011).Data Mining: Practical Machine Learning

Tools and Techniques. The Morgan Kaufmann Series in Data Management

Systems. Morgan Kaufmann, 3rd Edn.

Yoo, S. K., Lee, C. K., Park, Y. J., Kim, N. H., Lee, B. C., and Jeong, K. S. (2005).

“Neural network based emotion estimation using heart rate variability and skin

resistance,” in Proceedings of the First International Conference on Advances in

Natural Computation - Volume Part I (Changsha: ICNC’05), 818–824.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Colomer Granero, Fuentes-Hurtado, Naranjo Ornedo, Guixeres

Provinciale, Ausín and Alcañiz Raya. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 July 2016 | Volume 10 | Article 74

http://www.cs.cmu.edu/~schneide/tut5/node42.html
http://www.cs.cmu.edu/~schneide/tut5/node42.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents
	1. Introduction
	2. Materials and Methods
	2.1. Material
	2.2. Signal Recording
	2.2.1. Cerebral Recording
	2.2.2. Autonomic Recordings

	2.3. Signal Preprocessing
	2.3.1. Cerebral Signal
	2.3.2. Autonomic Signals

	2.4. Feature Extraction
	2.4.1. EEG
	Global Field Power
	Interest Index (II)
	Memorization Index (MI)
	Pleasantness Index (PI)
	Power Spectral Density (PSD)

	2.4.2. ECG
	2.4.3. GSR and RSP

	2.5. Classifiers

	3. Results
	3.1. Analysis of the Features Extracted from the Physiological Signals
	3.2. Comparison of Classifiers

	4. Discussion
	5. Conclusions
	Author Contributions
	Acknowledgments
	References


