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Abstract— Incoherent Optical Fourier-Domain Reflectometry 

incorporating a dispersive delay line is used for the interrogation 

of an array of three identical fiber Bragg gratings with a Bragg 

wavelength of 1552.81 nm, reflectivity of 19.3 dB and 10-cm 

separation. The dispersive delay line induces different delays in 

the wavelengths reflected by each grating, thus being sensitive to 

Bragg wavelength shifts. Compared with conventional incoherent 

Optical Fourier-Domain Reflectometry, dispersive effects 

decrease the spatial resolution, which in our experiments reached 

a value of 1.2 cm in fiber at a measurement bandwidth of 10 

GHz. As a quasi-distributed temperature sensor, the array shows 

an accuracy of ±0.5ºC for temperatures up to 100ºC, and an 

estimated total measurement range of 540ºC. Tradeoffs between 

bandwidth, scan time, dispersion-dependent spatial resolution, 

and accuracy, are also analyzed. 

Index Terms— Optical fiber sensors, OFDR, dispersive delay 

line, fiber Bragg gratings, sensor interrogation. 

 

UASI-DISTRIBUTED sensing based on arrays of low-

reflectivity, identical fiber Bragg gratings (FBGs) offers 

specific advantages in addition to the general benefits inherent 

to fiber optics. Identical FBGs can be efficiently fabricated at 

high spatial density [1], and their low reflectivity allows for 

crosstalk-free operation even in large arrays of FBGs [2]. In 

turn, specific interrogation methods are required to 

demodulate this type of arrays. Spectral analysis cannot detect 

the wavelength shifts experienced by each of the FBGs in the 

array and, in order to provide both range and spectral 

selectivity, either time-multiplexed techniques [1], [3] or 

optical Fourier-domain reflectometry (OFDR) systems [2], [4] 

have been developed for this purpose.  

More recently, an interrogation concept based on radio-

frequency (RF) measurements has been reported [5]. Range 

selectivity is provided by Fourier transforming the electrical 

RF response of the array, as in incoherent OFDR (I-OFDR) 

[6], [7], and spectral dependence is introduced by use of a 

dispersive delay line (DDL) that maps wavelengths to delays.  

This concept, which has recently been used in several FBG 

sensor interrogation systems at microwave frequencies [8]-

[11], benefits from the performance of I-OFDR in terms of 

spatial resolution, robustness and sensitivity due to the 

incoherent and electrical narrowband detection of optically-

carried microwave tones, as opposed to the wideband 

detection necessary for pulsed sources [6], [7]. The frequency 

span in [5], however, was limited to a bandwidth of 1.1 GHz, 

 
 

which lead to a spatial resolution of 10 cm much greater than 

the dimension of the FBGs. This fact precludes the use of low-

bandwidth schemes in high-density arrays. In addition, [5] is 

based on the spectral correlation between the FBG reflectivity 

and a programmable spectral filter, which results in an 

increase of loss and complexity, and also showed limitations 

of measurement linearity and range.  

 
Fig. 1. Scheme of conventional I-OFDR (without Dispersive Delay Line, 

DDL) and the proposed technique (with DDL). MZM: Mach-Zehnder 

modulator, PD: photodiode, RF: wideband amplifier.  

In this Letter, we report on the use of a simpler scheme 

where these limitations are overcome. As in [5], the method is 

a modification of step-frequency I-OFDR by the incorporation 

of a DDL, as is schematically depicted in Fig. 1. The reflectors 

are illuminated by an amplitude-modulated wave and, after 

retrieving the system’s RF transfer function HRF(f) by use of a 

Vector Network Analyzer (VNA), the impulse response is 

numerically computed by inverse Fourier transformation. In 

the impulse response of I-OFDR, all the wavelengths reflected 

by a given event contribute to a peak in a definite temporal 

position whose location is simply the time delay undergone by 

the modulating RF tone, or the group delay experienced by the 

optical wave. After the insertion of the DDL, group delays 

become a function of wavelength and the reflected spectrum is 

resolved in time. Using the same principle, changes in Bragg 

wavelengths can be detected as differential delays: if the k-th 

grating, initially at Bragg wavelength k and with delay (k), 

experiences a shift up to ´k, the resulting delay is:  

 ( ) ( ) ( )k k k k kD          , (1)  

where Dk = dk /d is the total dispersion, measured in ps/nm, 

in the k-th optical circuit. In our setup, the modulated wave is 

directly detected after dispersion and processed as in I-OFDR, 

not being used the spectral correlation stage employed in [5]. 

In a proof-of-principle experiment, we applied this method 

to the interrogation of a quasidistributed temperature sensor 

array composed of three equal FBGs mutually separated by 10 

cm. The gratings, of 2.5 mm in length, were centered at 
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1552.81 nm, had a FWHM  = 0.41 nm, and an average peak 

reflectivity of −19.3 dB, as is inferred from the reflectivity 

plot in the inset of Fig. 2. The reflectivity sideband at  > 1554 

nm is due to a fabrication error in the last grating, as will be 

elucidated below by use of the present technique. 

 
Fig. 2. I-OFDR trace of the sensor array (BW = 10 GHz, IF BW = 10 Hz, 

2001 points per trace, scan time 377 s). The peaks correspond, from left to 

right, to the input connector, to the sensor array, and to the fiber end. The 
physical distance from the input connector to the first FBG is 240 cm, and to 

the fiber end, 325 cm. The separation between gratings is 10 cm. Inset: 

reflectivity spectrum of the array.  

We first probed the FBG array with a conventional I-OFDR 

setup, using a 20-nm ASE source, a 20-GHz push-pull MZM 

and a 50-GHz photodiode. The RF level at the modulator input 

was boosted up to +11 dBm to increase the modulation index 

by use of a wideband 14-GHz RF amplifier, and the RF 

transfer function was measured in a bandwidth (BW) of 10 

GHz by use of a VNA (Keysight Fieldfox N9928). The 

impulse response was determined by its time-domain software 

after windowing the double-sided RF response with a Kaiser-

Bessel window with  = 6.5. The results are shown in Fig. 2, 

where we used the standard back-to-back reference trace [7], 

[11]. The impulse response is retrieved in a temporal range 

given by the inverse of the frequency scanning step of the 

VNA trace, TR = (f )−1, which was set to 200 ns to visualize 

all the reflective features in the array. When  = 6.5, the 

FWHM of the peaks in the impulse response is IOFDR = 

1/BW, in agreement with the measured value of 100 ps. This 

leads to a spatial resolution x of 1 cm in fiber, sufficient to 

resolve the FBGs in the array. The additional peaks in Fig. 2 

are due to the input connector and to the fiber end, which was 

intentionally broken in order to minimize end reflections. 

Next, we inserted a DDL following the scheme in Fig. 1. 

We used a dispersion-compensating, low-ripple chirped FBG 

(CFBG, Proximion) in the reflection band 1540-1560 nm. It 

has an insertion loss of 1.8 dB at 1552.81 nm, and a total 

dispersion D = 170 ps/nm. Since fiber dispersion between 

consecutive FBGs can be neglected, this is the value of 

dispersion experienced by  the reflected waves in all the FBGS 

in the array. In order to obtain an alias-free impulse response, 

and thus an ordered sequence of reflectors as in Fig. 2, and 

also to minimize the acquisition time, we used a reference 

trace that sets the temporal origin closer to the beginning of 

the array. The contribution to the response of the most distant 

reflector at delay  is of the form HRF(f) ~ exp(−j2f), and 

absence of temporal alias requires that the frequency step 

verifies f < (2−1. A reference reflector at  changes the 

transfer function to exp[−j2f(−)] and the requirement is 

relaxed to f < [2(−)]−1, allowing for wider frequency steps 

and faster acquisition times. We took the reference trace 

without the CFBG and by replacing the sensor array by a 1-m 

patchcord with a PC-polished end, thus setting the temporal 

zero at the delay corresponding to its end point. In our 

experiments, TR = 40 ns, sufficient to account for the added 

distance in the FBG array and the CFBG.  

 
Fig. 3. Impulse responses of the sensor array (single sweep, BW = 10 GHz, 

401 points per trace). Black trace, IF BW = 10 Hz, scan time 83 s. Gray trace: 

IF BW = 1 kHz, scan time 1.4 s. The gray trace is shifted 10 dB upwards.   

In Fig. 3, with a black trace, we show the three FBG peaks 

in the impulse response after the insertion of the array and the 

CFBG, retrieved in a single sweep with BW = 10 GHz. In the 

third grating we observe a sidelobe at delays ~32.75 ns. This 

temporal sidelobe is consequence of the temporal spread 

induced by dispersion of the reflection band at  > 1554 nm 

shown in the inset of Fig. 2. Dispersive effects also widen the 

peaks in the impulse response. Their FWHM  can be 

estimated as: 

 2 2 2( )I OFDR D       , (2) 

where the second term describes the FWHM of the temporal 

spread induced by the dispersion of the reflected wavelengths. 

The measured  is 120 ps, in accord with the value given by 

(2). The resulting spatial resolution in fiber is x = 1.2 cm. 

Subsequently, we explored the possibility of tracking Bragg 

wavelength shifts through the peak of the impulse response. 

The third, most distant FBG was heated, free of strain, in a 5-

cm oven, and the temperature monitored by use of a 

thermocouple placed in contact with the grating. The delay 

was measured at temperatures up to about 100 ºC. The small 

delay shifts were determined with the VNA configured with a 

display resolution of 0.5 ps. The results are plotted in the top 

row of Fig. 4, showing a high linearity with slope 1.63 ps/ºC 

or, equivalently, a sensitivity of the Bragg wavelength shift of 

9.6 pm/ºC. The same experiment was repeated in the first 

grating with similar results. The sensor accuracy, given by the 

standard deviation  of the residuals in the linear fit, reaches 

the accuracy of our thermocouple, 0.5 ºC. This amounts to a 
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delay deviation of 0.8 ps. The 2 value is of the order of the 

maximum peak-to-peak group delay ripple (~3.5 ps) shown by 

the CFBG in the band of interest, a value that can be 

considered as a worst-case estimate of the temporal accuracy 

in the wavelength-to-time mapping provided by CFBG. 

The measurement range can be estimated from the worst 

scenario where a FBG is heated whereas the adjacent is not, so 

that the peaks are resolved if they are at least separated by  

[6]. With our delay separation between FBGs t  1 ns, the 

allowed excursion in Bragg wavelengths, , is given by t 

|D| > . This yields < 5.2 nm or, equivalently, a 

temperature range T < 540 ºC. 

 
Fig. 4. Delay variation with temperature. From top to bottom: third grating 

with BW = 10 GHz and IF BW = 10 Hz, third grating with BW = 10 GHz and 

IF BW = 1 kHz, and first grating with BW = 2.5 GHz and IF BW = 10 Hz. 

Scan time can be reduced by increasing the intermediate 

frequency bandwidth (IF BW) at the expense of accuracy. To 

illustrate this tradeoff, we repeated the experiment increasing 

the IF BW from 10 Hz to 1 kHz, thus increasing the RF noise 

level by 20 dB, as is shown in Fig 3. The scan time is reduced 

to 1.4 s, and the variation of the third peak with temperature, 

plotted in the central row of Fig. 4, shows a decrease in 

accuracy to 2 ºC. This result also represents the expected 

performance when IF BW is kept at 10 Hz and the decrease in 

SNR is due to FBG peak reflectivities of −30 dB. 

Scan time can also be reduced by decreasing the acquisition 

BW at the expense of spatial resolution. The impulse response 

for BW = 2.5 GHz is plotted in Fig. 5, displaying the expected 

reduction of spatial resolution ( = 410 psWe performed a 

final test by heating the first grating. The results, in the bottom 

row of Fig. 4, indicate that the accuracy is maintained 

(0.6ºC). 

 

Fig. 5. Impulse response of the sensor array: single sweep, BW = 2.5 GHz, 

IF BW = 10 Hz, 101 point per trace, scan time 22 s. 

In summary, we have interrogated an array of identical, 

weak FBGs as a temperature sensor by use of a dispersive I-

OFDR technique, where changes in Bragg wavelengths are 

mapped into delays through the insertion of a dispersive delay 

line. The FBG reflectivity of about −20 dB and the obtained 

spatial resolution of 1.2 cm surpass by almost an order of 

magnitude the values of previously reported related methods. 

Weaker reflectivities could be probed by the additional use of 

trace averaging, optical amplification, or of sources with 

higher power.   
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