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Abstract

Visualization tools and techniques to analyze n-dimensional Pareto fronts are valuable for
designers and decision makers in order to analyze straightness and drawbacks among design
alternatives. Their usefulness is twofold: on the one hand, they provide a practical frame-
work to the decision maker in order to select the preferable solution to be implemented; on
the other hand, they may improve the decision maker’s design insight, i.e. increasing the
designer’s knowledge on the multi-objective problem at hand. In this work, an order based
asymmetric topology for finite dimensional spaces is introduced. This asymmetric topology,
associated to what we called asymmetric distance, provides a theoretical and interpretable
framework to analyze design alternatives for n-dimensional Pareto fronts. The use of this
asymmetric distance will allow a new way to gather dominance and relative distance together.
This property can be exploited inside interactive visualization tools. Additionally, a com-
posed norm based on asymmetric distance has been developed. The composed norm allows
a fast visualization of designer preferences hypercubes when Level Diagram visualization is
used for multidimensional Pareto front analysis. All these proposals are evaluated and val-
idated through different engineering benchmarks; the presented results show the usefulness
of this asymmetric topology to improve visualization interpretability.
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1. Introduction

It is common to state a design problem as an optimization statement, where a specific
cost index must be optimized. However, many real world problems require the fulfillment
of a set of requirements and specifications. In that case, it is said to have a multi-objective
problem (MOP) instead of a single-objective problem. In such statements, it is usual to find5

that some objectives are in conflict with each other, and therefore a trade-off solution must
be found (or selected).

Multi-objective optimization (MOO) can handle these issues in a simple manner, due
to its simultaneous optimization approach. In MOO, all the objectives are significant to
the designer, and as a consequence, each is optimized. In general, there is no a single10

solution because no solution is better than the others in all the objectives. Therefore, a
set of solutions, the Pareto set ΘP , is defined and its objective vector set is the Pareto
front JP . This set of solutions offers to the decision maker (DM) greater flexibility at the
multi-criteria decision-making (MCDM) stage. The role of the designer is to select the best
solution according to her/his needs and preferences for a particular situation.15

MOO techniques search for a discrete approximation Θ∗
P of the Pareto set ΘP in order

to build a useful description J∗
P of the Pareto front that is as good as possible, according to

the DM needs. In this way, the DM has a set of solutions for a given problem and a high
degree of flexibility when choosing a particular or desired solution. Classic techniques [26] for
building this Pareto front have been proposed and multi-objective evolutionary algorithms20

(MOEAs) have been recently used due to their flexibility when dealing with non-convex and
highly constrained functions [9, 8].

Once the DM has been provided with a Pareto front approximation J∗P , the DM will
need to analyze the trade-off between objectives with two aims: firstly, in order to select the
most preferable solution according to her/his preferences: secondly, in order to gain a better25

design insight of the MOP by innovization, that is innovation trough optimization [11].
Several techniques and methods have been developed to facilitate the DM’s task [12, 2,

27, 36]. It is widely accepted that visualization tools are valuable and provide to the DM
meaningful methods to analyze the Pareto front and take decisions [4, 34]. We can recall the
desirable characteristics for such visualization techniques noted in [21]: simplicity (it should30

be easy to understand); persistence (the DM should be able to retain all information in
his/her mind); and completeness (all the relevant information should be shown). Moreover,
desirable characteristics (at software level) include interactivity with the DM and an intuitive
graphical user interface.

For two-dimensional problems (and sometimes for three-dimensional problems) it is usu-35

ally straightforward to make an accurate graphical analysis of the Pareto front, but the
difficulty increases with the dimension of the problem. Common alternatives to tackle an
analysis in higher dimensions are Scatter Diagrams, Parallel Coordinates [17, 18] and Level
Diagrams (LD) [3, 30]. Recently, hybrid tools merging Parallel Coordinates, Dendrograms,
and Cluster Maps have been proposed [5]. Nevertheless, in spite of the usefulness of those40

tools in their own merits, new approaches and efforts to improve interpretability and allowing
the DM to perform an accurate analysis are valuable.
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Recently, asymmetric distances have become a useful and efficient tool for theoreticians
and engineers; their intrinsic properties, allowing to state that the distance from A to B is
not the same as the one from B to A, make them a flexible tool to handle problems in a45

wide variety of domains. They have been successfully used for computer science applications
[24], embedding techniques [16], clustering [28, 6] and visualizing asymmetric proximity in
self organizing maps and multi-dimensional scaling [22]. Their success is mainly due to their
capabilities to incorporate asymmetric relations between data, quite common characteristic
in real world applications problems. Therefore, incorporating asymmetric distances into50

visualization techniques, in order to facilitate the DM’s analysis of n-dimensional Pareto
fronts, could bring an interesting insight, closer to the point of view of the designer improving
persistency and completeness.

In this paper, a new order based asymmetric topology is introduced to carry out an
analysis between design alternatives for a given MOP. The use of this asymmetric distance55

(associated to the asymmetric topology) gives a new way to gather dominance and relative
distance together with a lower computational cost than the traditional way. This property
can be exploited inside interactive visualization tools. Used for coloring purpose it is possible
to apply it to several type of visualization, for instance, parallel coordinates, star diagrams,
level diagrams, etc. Each visualization technique has its own particular properties. In this60

article Level Diagrams is used to demonstrate the application of coloring methods based on
asymmetric distance. Additionally, a composed norm based on asymmetric distance has been
developed. The composed norm allows a fast visualization of designer preferences hypercubes
when Level Diagram visualization is used for multidimensional Pareto front analysis. This
work is developed on the following assumptions:65

• The DM has chosen to tackle a MOP by means of MOO in order to approximate a
Pareto front; therefore, this optimization process will provide a set of Pareto optimal
solutions, in order to perform a MCDM stage. That is, it is difficult to find the desirable
trade-off with other techniques.

• For such MCDM stage, the DM is willing to analyze trade-off among design alterna-70

tives, in order to select the most preferable solution according to her/his needs. That
is, any (semi)automatic selection procedure will be used.

The remainder of this paper is as follows: in Section 2 some preliminaries and background
are stated. In Section 3 the new order based asymmetric topology is defined for n-dimensional
Pareto front visualization and the coloring procedures are described. The composed norm75

for Level Diagram synchronization is presented. In Section 4, this topology is used in several
instances, in order to validate its usability for such analysis. Finally, some concluding remarks
are given.
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2. Background

2.1. Pareto Optimality80

A MOP, without loss of generality,1 can be stated as follows:

min
θ
J(θ) (1)

subject to: θ ∈ S ⊂ Rm

where θ = (θ1, . . . , θm) ∈ Rm is defined as the decision vector, J(θ) = (J1(θ), . . . , Jn(θ)) ∈
Rn as the objective vector, and S as the subspace that satisfies all the additional constraints
of the problem.

In this type of problem some of the objectives are in conflict, and therefore there is no a85

single better solution because no solution is the best in all objectives. Pareto optimality is
the base to define an optimal set.

It is said that a decision vector θ1 dominates (Pareto dominance) another vector θ2,
denoted as θ1 ≺ θ2, if J(θ1) is not worse than J(θ2) in all objectives and is better in at
least one objective.90

θ1 ≺ θ2 → ∀i ∈ A := [1, . . . , n], Ji(θ
1) ≤ Ji(θ

2) ∧ ∃i ∈ A : Ji(θ
1) < Ji(θ

2) (2)

A decision vector θ∗ is Pareto optimal if no other vector dominates it:

θ∗ is Pareto optimal ⇐⇒ @θ ∈ S : θ ≺ θ∗ (3)

Therefore the set of optimal solutions, the Pareto set ΘP (set of all the non-dominated
solutions) and its corresponding Pareto front JP , are defined as follow:

ΘP := {θ ∈ S|@θ′ ∈ S : θ′ ≺ θ} (4)

JP := {J(θ) : θ ∈ ΘP} (5)

Figure 1 shows the principal concepts and definitions involved in a MOP. To simplify the95

graphical representation a bi-dimensional problem is shown for both decision and objective
spaces. In the following, in order to simplify the notation, a particular point in the objective
space will be denoted as J(θ1) = J1 and consequently the coordinates of this point as
(J1(θ

1), . . . , Jn(θ1) = (J1
1 , . . . , J

1
n)).

2.2. Asymmetric distance on the space Rn.100

Asymmetric distances constitute a new mathematical topic that lies among the general
topology and the functional analysis. It deals with the analysis of non symmetric topologies
on linear spaces. Nowadays the fundamental results of the theory are already known, and

1A maximization problem can be converted to a minimization problem. For each of the objectives that
has to be maximized, the transformation: max Ji(θ) = −min(−Ji(θ)) could be applied.
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Figure 1: Representation of Multiobjective problem concepts (Dominance, Pareto Front and Pareto Set) for
2D decision and objective spaces.

it has been used with success in several areas, mainly in theoretical computer science. The
interested reader can find a short explanation of this topic and some useful references in the105

Appendix at the end of the paper.
Let us define the particular asymmetric distance on Rn that will be used in this paper.

Roughly speaking, an asymmetric distance is a positive function that allows to measure
distances among points of Rn but for which the distance d(J1, J2) from a given point J1 to
other point J2 does not coincide necessarily with the distance d(J2, J1) from J2 to J1. As110

in the case of Euclidean distance in Rn, an asymmetric distance can be defined on a vector
space by means of an asymmetric norm, as we do in this paper. Consider the coordinate-wise
order ≤ on Rn and consider the Euclidean norm ‖ · ‖ on it. We write (Rn)+ for the positive
cone, that is, the set of all the elements of Rn that are coordinate-wise bigger or equal than
0. Write r+ = max{r, 0} for r ∈ R. If J1 = (J1

1 , ..., J
1
n), J2 = (J2

1 , ..., J
2
n) ∈ Rn, we define115

the asymmetric Euclidean distance as

d(J1, J2) := ‖(J2 − J1) ∨ 0‖ =

√√√√ n∑
i=1

(
(J2
i − J1

i )+
)2

(6)

The same definition makes sense if we consider a different lattice norm on it instead of
Euclidean norm, for example the 1-norm or the ∞-norm.

The sets Θ0(J) of distance 0 of a given element J ∈ Rn will be often used in this paper.
They are defined as120

Θ0(J
0) := {J ∈ X : d(J0, J) = 0}. (7)

It is easy to see that
Θ0(J

0) = {J ∈ Rn : J ≤ J0}. (8)
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That is, the set Θ0(y) of asymmetric distance 0 to a given point y of the space is defined
exactly by the elements that dominate y. This geometric interpretation will be crucial for
the optimization arguments of this paper. If we are considering a pair of points or solutions
of a given optimization problem, the fact that θ1 dominates θ2 (θ1 ≺ θ2) —that is, that θ1125

is a better solution to the problem than θ2—, can be written using our new tool as follows:

• J(θ1) ∈ Θ0(J(θ2)) or J1 ∈ Θ0(J
2).

• d(J(θ2), J(θ1)) = 0 or d(J2, J1) = 0.

Moreover, as we will explain later, the numerical value of d(J2, J1) provides a metric notion
of how far is J1 of dominating J2. Note also that for every J ∈ Rn, Θ0(J) = J + Θ0, where130

Θ0 := Θ0(0). That is, the set of distance 0 of a point J is the sum of the element J plus the
“negative cone” of the lattice Rn.

2.3. Level Diagrams

The Level Diagram (LD) visualization [3, 30] 2 is useful for analyzing n-objective Pareto
fronts and their corresponding Pareto sets. Each objective Ji(θ) (i ∈ [1, . . . , n]) is normalized135

Ĵi(θ) with respect to some minimum and maximum values (by default the values of the Pareto
front approximation are used). For each normalized objective vector Ĵ(θ) a norm (‖ · ‖p) is
applied to evaluate the distance to an ideal solution J ideal. By default, the minimal values
for each objective in the Pareto front approximation could be used to build an ideal solution.
Then, the normalized value of the ideal point corresponds to the origin, Ĵ ideal = (0, . . . , 0),140

and consequently, ‖Ĵ(θ)‖p = ‖Ĵ(θ)− Ĵ ideal(θ)‖p.
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Figure 2: 3D visualization for a Pareto front and 2D visualization for Pareto set. Three objectives
([J1, J2, J3]) and two decision parameters ([θ1, θ2]).

2GUI for Matlab c© is available at: http://www.mathworks.com/matlabcentral/fileexchange/24042
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The LD tool displays a two-dimensional graph for each objective and decision variable.

The ordered pairs
(
Ji(θ), ‖Ĵ(θ)‖p

)
in each objective sub-graph and

(
θl, ‖Ĵ(θ)‖p

)
in each

decision variable sub-graph are plotted (a total of n+m plots). Therefore, a given solution
will have the same y axis value in all graphs. This correspondence will help to evaluate general145

tendencies along the Pareto front and to compare solutions according to the selected norm.
Also, with this correspondence, information from the objective space is directly embedded
in the decision space, since a decision vector inherits its y − value from its corresponding
objective vector, increasing completeness.

Level diagram visualization technique is not the only available option for Pareto front150

and set analysis, but it is recognized as easy to implement and with good properties [34].
Other classical alternatives widely used are Parallel coordinates and Scatter plot, but the
development of visualization techniques is constantly improving for n-dimensional problems,
being the recent alternatives revised at [34]. In order to compare Level diagram visualization
with probably the most widely used alternative for Pareto analysis, Parallel plots, Figures 3155

and 4 are supplied. The colors used in all these figures are only to identify the different points
of the Pareto front and set (each point of the Pareto set has the same color at every plot)
helping the interpretation and the comparison. Additionally, because the example has only
three dimension at the objective space (and 2 dimension at decision space) the 3D plot and 2D
plots are shown at Figure 2. Part of the following developments, the coloring techniques, can160

be used with differ visualization techniques, but there is a particular development (composed
norm) that is specially suited for Level diagram representation. Then Level diagrams have
been selected as the visualization technique for this article.

3. Asymmetric norms assisting multi-dimensional visualization

In this section we will develop the idea already introduced in Section 2.2 of the fact that165

the asymmetric norm allows to quantify the dominance relation of one solution to others for a
given optimization problem. Therefore, asymmetric norm provides an easy and geometrically
adapted tool for analyzing the domination relations between sets of points of Rn. Let us
show this step by step.

For a given pair of elements J1, J2 ∈ Rn, d(J2, J1) = ‖(J1 − J2) ∨ 0‖ has a direct170

geometric meaning: how much is necessary to move J1 to dominate J2. In case we have
d(J2, J1) = 0, it means that J1 already dominates J2. When d(J2, J1) 6= 0, it supplies the
distance projected into the subspace formed by the non-dominated dimensions. Figures 5
and 6, shows this basic interpretation for 2D and 3D spaces respectively. For instance, in
5(a) the point J1 has to be moved in both direction/dimension: d1 in the objective J1 and d2175

in the objective J2, but in 5(b) point J1 only requires a displacement of d2 in the objective
J2. The same interpretation could be done for 3D spaces (Figure 6) and high-dimensional
spaces.

This useful property gives the possibility to add a new way to assist the DM when using
graphical tools. Asymmetric norms could be used to color points of the Pareto front (and set)180

or to show relative displacement between points that are needed to change the dominance
relation.
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Figure 6: d(J2, J1) in a 3D space for different cases. How much is necessary to move J1 to dominate J2?
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It is important to notice that the asymmetric distance gathers the dominance property
and the Euclidean distance together. For the DM, both relations could be relevant. For
instance when the DM chooses a reference point to attain (a goal to achieve or an actual185

solution) and have to compare different alternative solutions, the asymmetric norm supplies
a valuable information about both properties (dominance and distance). In order to under-
stand this property an example in a 2D space is shown at Figure 7. Supposing point JR is the
reference point and two alternative solutions have to be compared with it. It could happen
that the nearest point (JA in Figure 7) does not dominate JR and yet a farther point (JB in190

Figure 7) dominates JR. The asymmetric distance shows to the DM that JB is dominating
JR (d(JR, JB) = 0). Besides, as d(JR, JA) = d1 it says that JA does not dominate JR and
that the Euclidean distance in the non-dominated objective is d1. This information helps the
DM to make a decision more confident about the benefits of both alternatives. Choosing JB

both criteria (J1 and J2) are better but choosing JA the DM knows this solution produces195

some degradation in one or both objectives. To obtain more details the reverse asymmetric
norms can be easily computed d(JB, JR) = d2 and d(JA, JR) = d3 showing than JR does not
dominate none of the points and the distances in the projected non-dominated objectives.

JB

J1

J2

d1

JA

JA

d3

Figure 7: An example where a point JA is nearest to reference point JR than JB , but point JB dominates
JR.

For a 2D space it is easy to see graphically when a point dominates other ones or how far
this point is to dominate other points, but it is not the case for higher dimensional spaces.200

Anyway, new computational methods to highlight dominated point and with the possibility
to color according to relative distance to domination, are welcome.

For n-dimensional spaces it is necessary to use a specific visualization tool. Several
visualization tools are available for designers to perform a multicriteria analysis [34]. The
selection of one over another will rely on designer’s preferences and willing to use a given205

tool. Here, in what it follows, we develop three applications of this asymmetric setting using
the Level Diagrams framework for n-dimensional visualization.
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The characteristics of the asymmetric norm can also be seen with the LD representation.
Figure 8 shows the same relations than figure 6 but with a Level Diagram visualization using
Euclidean norm for y-axis synchronization. Remark that the distance to dominate is easy210

to see for each dimension because the x-axis is in objective units. From one specific point,
every point at its left side dominate it in this dimension/objective (but not necessarily in all
the others).
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Figure 8: Asymmetric norm interpretation in a Level Diagram visualization. Correspond to cases in figure 6

3.1. Coloring procedure based on asymmetric norms for Pareto front and set graphical rep-
resentation215

In this section we propose an asymmetric distance based rule for helping the DM to
select one of the optimal solutions. This proposal is oriented to MOP with more than two
dimensions.

When the designer chooses a desired point, it is possible to use the asymmetric distance to
classify every point of the Pareto Front. The value of this distance shows to the designer how220

much the Pareto front point are close to her/his preferences. This classification can be used
to color the Pareto front points according to it and can help in a graphical interpretation.
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After obtaining an approximation of the Pareto set Θ∗
P (and its corresponding Pareto front

J∗P ), the DM chooses a point which summarizes what under her/his criteria is an optimal
solution J0 ∈ Rn. The DM does not know a priory if J0 ∈ J∗P (typically J0 /∈ J∗P ).225

The scheme of this procedure requires the next steps.

(1) Computing the asymmetric distance between J0 and every J ∈ J∗P ,

d(J0, J) = ‖(J − J0) ∨ 0‖. (9)

(2) Color assignation according to asymmetric distance. Let C be the set of colors,
that is parametrized as 3-coordinates positive vectors (e.g. RGB values). We define
a predetermined continuous function f : R+ → C in such a way that the value f(0)230

represents the best approximation color (in the following example this color is blue),
and the color is changing as the value of f is increasing (for example, from black to
white using the Matlab hot colormap). Consider the function g : Rn → C that is
defined by composing f and d as g(J) := f(d(J0, J)), i.e. to each element J ∈ J∗P
we assign the color of C that is given by g(J). The same colors are used for the level235

diagrams that represent the Pareto set approximation Θ∗
P .

Using level diagrams to represent the Pareto set approximation Θ∗
P and its corresponding

Pareto Front J∗P . The result is the following:

(a) All the elements of J∗P that dominate J0 appear in blue. All of them are better than the
original expectation of the DM, who can choose the better one among them following240

her/his criterion. Remark that the rest of the points are also colored according to the
colormap used.

(b) There are no elements appearing in blue; the DM must choose among those ones that
have the darkest color (closer to dominate J0).

3.2. Coloring Pareto solutions according to a preference interval criterion245

A second alternative where the asymmetric norm may be used in order to assist the
graphical interpretation in MCDM is when the DM has a clear idea of how to classify the
different solution in a scale, e.g. from “Highly Desirable” solutions to “Highly Undesir-
able” ones. A possible classification (but not the only one) could be: “Highly Desirable”
(HD),“Desirable” (D), “Tolerable” (T), “Undesirable” (U) and “Highly Undesirable”(HU).250

Suppose that the DM is able to divide the domain of each coordinate Ji (objective) in
intervals ]I0i , I

1
i ], · · · , ]Ik−1i , Iki ], i = 1, ..., n and k ∈ N (the number of intervals) corresponding

to the above scale. In such case, the DM has to fulfill the values of a table similar to the one
of Table 1. Remark that the values of this table are expressed in the objective units, where
usually the DM is more familiar with it.255

Let us write Pr for each hypercube defined in such a way that its vertex with bigger norm
of the hypercube (the one that is dominated by the rest of the hypercube) correspond to

12



Labels ← HD →← D →← T →← U →← HU →
Interval limits Ioi I1i I2i I3i I4i I5i

Objective 1 J1 - - - - - -
Objective 2 J2 - - - - - -
... ... ... ... ... ... ... ...
Objective n Jn - - - - - -

Table 1: Typical table for preference intervals in a MOP.

Ir = (Ir1 , . . . , I
r
n) (the points defined by the columns of table 1). The asymmetric distance

from any point J to a vertex Ir gives easily in which hypercubes J is located.

Pr = {J ∈ Rn : d(Ir, J) = 0} (10)

These hypercubes enclose the volume where all the objectives are limited by the values260

of Ir. Beginning from the smaller one P1, each hypercube is included inside the next ones:
P1 ⊂ P2 ⊂ · · · ⊂ Pk. For the DM it is worthwhile to quickly localize in which hypercube r a
point of the Pareto front (and set) is placed, in particular the smaller Pr.

The procedure colors according to the membership of each point to one of these hyper-
cubes is established as follows:265

(1) Computing hypercube membership. We define g : Rn → N as a function that
gives which is the smaller hypercube where a point of the objective space J is located
(according to a particular range of preferences).

g(J) := min
r
{r : d(Ir, J) = 0} = min

r
{r : J ∈ Pr}. (11)

For each solution of the Pareto front J ∈ J∗
P the hypercube is computed as g(J).

(2) Assigning color according to hypercubes. Let C be the set of colors, that is270

parametrized as 3-coordinates positive vectors (RGB values). We define a predeter-
mined continuous function f : N→ C. The color assigned to each Pareto point θ ∈ Θ∗

P

and J = J(θ) ∈ J∗
P (for both, objective space and solution space representation) is

computed as: c = f(g(J))

3.3. Composed norm based on preferences for level diagram syncrhonization275

Alternatively or additionally to the described coloring procedure based on preference
ranges, it can be useful for the DM to localize visually the points of the Pareto front and set
that are in each interval of the preference matrix. For a 2-dimensional Pareto front it is easy
to see (grayed areas in scatter plot at Figure 9), but for problems with more dimensions the
visualization technique have difficulties to reproduce the hypercubes corresponding to each280

interval of preferences. Figure 9 shows a comparison between scatter representation and level
diagram for a 2D Pareto front. For higher dimension the visualization of hypercube is not
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Figure 9: Hypercubes visualization in scatter plot and level diagram

clear because the bounds of each hypercube are hyperplanes and produce cloud of points in
level diagrams.

With the LD representation it is possible to use different norms for the synchronization285

of the y-axis. The default choice is to use the euclidean norm ‖Ĵ(θ)‖2 but a composed norm
based on asymmetric distance ‖Ĵ(θ)‖cn can layer each point according to the preference
interval and produce a way to visualize the hypercube membership corresponding to each
interval. This might improve the persistence and completeness of this visualization, concern-
ing the preferability hypercube of a given solution. Additionally a coloring procedure could290

be used to show other type of information rather than showing hypercube membership.
The proposal is to use the vertexes of each hypercube (corresponding to each preference

interval) to calculate the asymmetric norms. Beginning with the least preferred interval
(”Highly Undesirable”), the points with a non-zero value of the asymmetric norm doesn’t
dominate the vertex and consequently they are outside of the ”Highly Undesirable” hyper-295

cube. Additionally the value of its asymmetric norm shows the euclidean distance (in the
non-dominated subspace) to the hypercube; in fact it shows the distance to dominate the
vertex of the hypercube. This value could be used for the classification of each point.

The points with zero asymmetric norm pass to the next steps consisting in repeating the
process for the following hypercubes, each step with the hypercube of the next preference300

interval. At the end of this calculation procedure, each point has a value assigned that
indicates the euclidean distance (in the non-dominated subspace) to the next non-dominated
hypercube.

To represent all these distance values in the same axis, an offset value for each hypercube
is required to show the different hypercube membership. Several alternatives can be possible305

and the proposal for this offset is to use the sum of the highest asymmetric distances for
each one of the previous hypercubes.

The calculated value (composed norm) ‖J‖cn is used for y-axis synchronization among
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level diagram representation. Figure 10 shows an example of a level diagram synchronized
by the composed norm. In this example the offset applied for each hypercube is: zero for310

Desirable hypercube, d4 for Tolerable hypercube and d1 +d4 for Undesirable hypercube. The
composed norm is computed with the offset of the corresponding point plus the asymmetric
distance of the point to the next hypercube vertex.
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J cn J cn

Undesirable hypercube

Figure 10: Components of the composed norm

This procedure to obtain the composed norm can be detailed as:

(1) Assume that A is the set of points have to be represented in a level diagram, in a MOP315

this set is an approximation to the Pareto front (A = J∗P ).

(2) Let q be the total number of hypercubes characterized by the point Ix, 1 ≤ x ≤ q. For
each x, we define

Ax := {J ∈ A : d(J, Ix) = 0 and d(J, Ix−1) 6= 0}, (12)

where we assume that I0 = ∅.

(3) Define the function φ as follows: if J ∈ Ax then φ(J) := d(J, Ix−1).320

(4) Consider the constants Mx := max{φ(J) : J ∈ Ax}

(5) Finally, for each J ∈ Ax, define the composed norm ‖J‖cn as

‖J‖cn := φ(J) +
∑
x≤xo

Mx. (13)

Algorithm 1 shows a pseudocode to obtain the composed norm.
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Data: J∗p (Pareto Front approximation), I(0) · · · I(r) (Table of preferences)
Result: Jcn (Composed Norm)
for each p(i) ∈ J∗p do

x← r ; /* r: number of preference intervals */

repeat
/* Obtain hypercube membership and asymmetric distance to the

next hypercube vertex */

hypercube(i)← x;
d(i)← AsymNorm(p(i), I(x));
x← x− 1;

until d(i) = 0 or x = 1;
Assign p(i) to A(x); /* A(x): Set of points that are in hypercube r */

end
for x← 1 to r do

/* Obtain maximum distance inside each A(x) and compute offset */

dmax(x)← max(d(i),∀p(i) ∈ A(x));
if x = 1 then

offset(x)← 0
else

offset(x)← offset(x− 1) + dmax(x− 1)
end

end
for each p(i) ∈ J∗p do

/* Update asymmetric distance with corresponding offset */

Jcn(i)← d(i) + offset(hypercube(i));

end

Algorithm 1: Pseudocode for composed norm ‖J‖cn
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4. Examples

In this section, three examples are analyzed, they show analysis on 2, 5 and 6 dimensions325

for the objective vector space. The first example is used to show that no information (com-
pleteness) or clarity (simplicity) will be lost using the LD instead a 2-D graphical analysis.
The two latter case depict the visualization capacity of LD using asymmetric norms.

For all examples, the Pareto fronts are calculated using multiobjective algorithms as
spMODEII [29] or evMOGA [23]), but any other algorithm or procedure could be used since330

we are developing tools for the MCDM step.

4.1. Bi-objective truss design problem

L

F

F 1

P

Figure 11: Truss structure to optimize as a 2D MOP.

Whereas it could be easiest (from a persistence point of view) to use a straightforward
approach with the Scatter Plot visualization, this example is included and used to cover the
following topics:335

• Bring a first approach to the LD visualization colored with the use of asymmetric
distance.

• Introduce composed norm for LD visualization.

The truss design problem is a classical MOO benchmark statement to test algorithms,
as well as decision-making step procedures. The three-bar truss parameters proposed in [25]340

and [32] are used, that means the design variables correspond to the sections of the bars
θ = [θ1, θ2, θ3] see Figure 11. Two objectives are minimized: deflection or displacement of
node P, J1(θ) = 0.75δ1 +0.25δ2 (in cm), and total volume J2(θ) (in cm3). Additionally some
constraints have to be fulfilled, the stresses in each bar are limited to 200MPa.

As a first example, following the procedure described in section 3.1 it is supposed that345

the designer (DM) has an approximation to the Pareto set Θ∗
P and its corresponding Pareto

front J∗P (whatever the optimization algorithm has been used). For the example of the three
bar truss a Pareto set of 48 solutions is available. For this Pareto set a Pareto front is
associated with it and have to supply valuable information for the final choice. For the first
demonstration it is supposed that the DM knows a point that can summarize her/his criteria350

for a pretended optimal solution: J0 = [0.12cm, 400cm3].
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Figure 12: Colored Pareto front according to asymmetric distance with normalization of objectives. 2D
representation on the left and level diagram representation on the right. Blue points have a zero asymmetric
distance to the J0 point (in green), for the rest (non-zero asymmetric distance) the darker the the shorter
the distance.

Before the next step of the procedure, the Pareto front is normalized according to the
range of values of the Pareto front. That indicates that the full ranges of variation of
each objective are equally important. Of course this normalization is subjective and de-
pends on the DM preferences. In the example the available Pareto front is in ranges:355

J1 ∈ [0.0675, 0.1543]cm, J2 ∈ [287.2, 882.8]cm3. The resulting normalized objectives:

Jn1 =
J1 − 0.0675

0.1543− 0.0675
; Jn2 =

J2 − 287.2

882.8− 287.2
(14)

After this selection, the asymmetric distance between every point of J∗P and J0 is com-
puted and a color is assigned to every point of J∗P . Blue color is assigned to the points
with asymmetric distance of zero. For the points with a non-zero distance, the darker color
indicates a lower distance and the lighter color a higher distance. For comparison purpose360

figure 12 shows both the 2D classical representation and the level diagram representation
the J0 point is shown in green.

For a bi-dimensional problem Level Diagram is not as intuitive as a 2D scatter plot but
the same information is depicted. The x-axes of the level diagrams shows the objective
values, then it is easy to see that for a particular point (for instance J0) the points on its left365

have a better value. The blue points (the ones with zero asymmetric norm and then that
dominate J0) are on the left of J0 in both objectives. The darker points (lower asymmetric
distance) are closer to dominate J0 than the lighter points.

For the next demonstration a range of preferences has to be established. In [32] several
scenarios are defined by the DM, for demonstration purpose only one of them will be used.370

In particular the DM has selected 5 range of preferences see table 2 Highly Desirable (HD),
Desirable (D), Tolerable (T), Undesirable (U), Highly Undesirable (HU).
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← HD →← D →← T →← U →← HU →
Ioi I1i I2i I3i I4i I5i

Deflection (cm) J1 0.0 0.10 0.12 0.14 0.16 0.20
Volume (cm3) J2 200 300 500 600 900 1200

Table 2: Preference range for three-bars truss MOP.

According to this table, it is easy to obtain the hypercube where each point of the Pareto
front is placed following procedure of section 3.2. Remark that the vertexes correspond to
the points supplied by the DM’s table of preferences.375

For a 2D problem it is not strictly necessary coloring the Pareto point to see to which
range they belongs. It is enough to plot the area for each hypercube and inspect it visually.
The scatter plot on the left at Figure 13 shows these areas with different levels of gray.
For higher dimensional problems, the visualization techniques have difficulties to show these
areas/hypercubes. Therefore for these type of representation an alternative has to be stated.380

So far, two proposals based on asymmetric norm have been presented, the first one is based
on coloring the points of the Pareto front according the hypercube where they are placed
(Section 3.2 ). The second alternative consists on the use of a composed norm instead of
euclidean norm to synchronize Level Diagrams y-axis (Section 3.3).

In the former case, the coloring methodology based on asymmetric norm helps to localize385

visually and easily where each solution is place. This analysis is easy to perform in scatter
plot and Level diagrams. Additionally, in this example, it seems (comparing figures 13 and
14) that Level diagrams propagates better such information to the Pareto set (therefore,
improving completeness).

In the latter case, in order to represent the hypercube membership a different alternative390

is used trying to depict the hypercube space in the Level diagram representation. In the
case of level diagram (using euclidean distance on y-axis, ‖Ĵ(θ)‖2), the representation of
the grayed areas is not so easy. In a first step the coordinates of the hyperplanes that
limits these hypercubes have to be normalized according to the normalization used for the
Pareto front and later the norm used for y-axis have to be calculated (‖Ĵ(θ)‖2). See the395

representation of the ”Desirable” hypercube represented by points A, B and C in the Figure
14. Remark that the representation of each hypercube in Level diagrams for bi-objective
problems is affordable (lines in scatter plot are converted in lines in level diagram) but the
representation of hypercubes of 3 or more dimension is not so clear.

Using the proposed composed norm based on asymmetric distance for Level diagram400

synchronization, each Pareto front point is clearly positioned in one of the hypercubes and
the Pareto set representation shows clearly the membership hypercube without the needing
of any color and propagating even further this information, see Figure 15. Then, the color
can be used to show other characteristics of the points. At Figure 15 it is used to better
localize each point, a point has the same color at each diagram.405
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Figure 13: Colored Pareto front according to hypercube form preference range assisted by asymmetric
distance. 2D Pareto front representation on the left and Pareto set representation on the right. Darker color
(redder) means points on a better hypervolume. The ranges of preferences have been indicated with grayed
areas (darder grey means worst range). ”Desirable” hypercube corresponds to vertex A,B,C.
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Figure 14: Colored Pareto front according to hypercube form preference range assisted by asymmetric
distance. Level diagram with euclidean norm for y-axis synchronization. Pareto front the left and Pareto
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Figure 15: Level diagram with composed norm for y-axis synchronization. Pareto front the left and Pareto
set on the right. The ranges of preferences (hypercubes) have been indicated with grayed areas (darker grey
means worst range). Each point of the Pareto set and front have the same color at each diagram.

4.2. Parametric controller design

The next example is a parametric controller design for the control benchmark proposed
at the American Control Conference (ACC) [35]. The MOP statement described in [3, 30] is
used. The aim with this example is to demonstrate the viability of the approach with more
than two objectives. It has six objectives to minimize: robust stability (J1(θ)); maximum410

control effort (J2(θ)), worst case settling time (J3(θ)); noise sensitivity (J4(θ)); nominal
control effort (J5(θ)); and nominal settling time (J6(θ)).

Figure 16: ACC benchmark problem used to test a 6-dimensional MOP.

Only one controller structure G(s) will be evaluated:

G(s) =
θ1s

2 + θ2s+ θ3
s3 + θ4s2 + θ5s+ θ6

The limits for controller parameters are (search space): −1 ≤ θi ≤ 10. To avoid extreme
value that are not interesting for the DM the following constraints have been added to the
problem.415
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J1(θ) ≤ −0.0001; J2(θ) ≤ 2; J3(θ) ≤ 40 (15)

J4(θ) ≤ 1.5; J5(θ) ≤ 2; J6(θ) ≤ 25 (16)

An approximation of the Pareto set (and its associated Pareto front) of 1421 points
is obtained using an evolutionary multiobjective algorithm. The decision making step is
performed using LD and coloring methodologies assisted by asymmetric norms, as previously
described. The first step in the following procedures is the normalization of the Pareto front
according to the extreme values obtained in the approximated Pareto front.420

In the first demonstration, the designer (DM) supplies a target point that can summarize
her/his criteria for a pretended optimal solution: Jd = [−0.005, 0.9, 20.0, 0.9, 0.7, 11.0]. The
asymmetric distances for every point of the Pareto front and this point are easily computed.
Coloring according to these values help the designer to have an idea of the different types
of solutions that appears in the Pareto front and set (see Figures 17 and 18). The points425

that dominates Jd (the ones with zero asymmetric norm) are colored in blue, the rest of
the Pareto front is colored with darker colors for lower asymmetric distance and lighter for
higher asymmetric distance.

Figure 17 shows there is some points that dominates Jd, that means some of the solutions
improve the expected performances of the designer. These solutions (blue points) are placed430

in one of the extreme of the front because the ‖Ĵ‖2 is higher compare with the other Pareto
solution and they are clearly in the left (for J1, J2 J4 and J5) or in the right (for J3 and J6) of
the level diagrams. Consequently these two groups of objectives are clearly in contradiction.
Additionally, the points that don’t dominate Jd could be analyzed. The ones with the darker
color (less distance to dominate Jd) tend in general to be more balanced than the blue points,435

then some of these points could be interesting for the DM.
The colors also allow a global analyze of the objectives. For example, it seems that

J3 and J6 are correlated; therefore one of these objectives could be removed (reducing the
complexity of the analysis). The same happens with J2 and J5. For the other two objectives
the correlations are not clear, it seems that J4 is related with J2 and J5. But it is not possible440

to appreciate a clear correlation between J1 and the rest of objectives.
The decision parameters can also be analyze with the colored Level Diagrams (Figure

18. The DM could easily find the order of magnitude of the interesting solution (blue points
and darker points). For this problem the interesting range of values for the parameters are
roughly: θ1 ∈ [−1,−0.6], θ2 ∈ [2.3, 2.65], θ3 ∈ [0.35, 0.45], θ4 ∈ [4.55, 4.85], θ5 ∈ [5.8, 6.1] and445

θ6 ∈ [3.8, 4.2]. But the values in these ranges should be carefully selected because in these
same ranges there also exist yellow solutions (higher distance to dominate Jd).

For the second demonstration, the DM supplies the values of the table 3 that summarize
her/his ranges of preferences for each objective. Again a LD visualization technique is used
to help the DM in the interpretation of the different solution. In this example, the points are450

colored according to hypercube membership see Figure 19 for Pareto front representation
and Figure 20 for Pareto set representation using ‖Ĵ‖2 for y-axis synchronization. The
coloring methodology shows quickly the preference interval where each solution is placed in
the objective and parameter spaces.
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Ĵ
‖
2

0.3 0.32 0.34 0.36 0.38 0.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J5 (J5 units) 

12 14 16 18 20 22 24

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J6 (J6 units) 

Figure 17: Level diagram representation of the Pareto Front for ACC benchmark problem. ‖Ĵ‖2 for y-axis
synchronization Colored with asymmetrics norms for tolerable point
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Figure 18: Level diagram representation of the Pareto Set for ACC benchmark problem. ‖Ĵ‖2 for y-axis
synchronization Colored with asymmetrics norms for tolerable point
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← HD →← D →← T →← U →← HU →
Ioi I1i I2i I3i I4i I5i

Robust stability J1 -10 -0.01 -0.005 -0.001 -0.0005 -0.0001
Maximum control effort J2 0.0 0.85 0.9 1.0 1.5 2.0
Worst case settling time J3 0.0 14.0 20.0 30.0 35.0 40.0
Noise sensitivity J4 0.0 0.5 0.9 1.2 1.4 1.5
Nominal control effort J5 0.0 0.5 0.7 1.0 1.5 2.0
Nominalsettling time J6 0.0 10.0 11.0 15.0 20.0 25.0

Table 3: Preference range for three-bars ACC benchmark as a MOP.

The visualization of the hypercube can be improve using the composed norm. In both455

Pareto front (Figure 21) and set (Figure 22) the hypercube is easily located (see grayed areas).
Now the color could be used for other purpose in order to improve the interpretability. In
the example the color is used to make easier point localization, each point of the Pareto set
and its corresponding Pareto front values has the same color at all the diagrams.

24



−0.05 −0.04 −0.03 −0.02 −0.01

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J1 (J1 units) 

‖
J
‖
2

0.35 0.4 0.45 0.5 0.55

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J2 (J2 units) 

20 25 30 35

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J3 (J3 units) 

0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J4 (J4 units) 

‖
J
‖
2

0.3 0.32 0.34 0.36 0.38 0.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J5 (J5 units) 

12 14 16 18 20 22 24

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 J6 (J6 units) 

Figure 19: Level diagram representation of the Pareto front for ACC benchmark problem. ‖Ĵ‖2 for y-axis
synchronization. Colored according to preference ranges using asymmetrics norms. The grayed areas shows
the limit of the different preference intervals
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Figure 20: Level diagram representation of the Pareto set for ACC benchmark problem. ‖Ĵ‖2 for y-axis
synchronization. Colored according to preference ranges using asymmetrics norms.
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Figure 21: Level diagram representation of the Pareto front for ACC benchmark problem. ‖J‖cn for y-axis
synchronization. Each Pareto point (front and set) has the same color at each axes.The grayed areas show
the different preference intervals (hypercubes).
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Figure 22: Level diagram representation of the Pareto set for ACC benchmark problem. ‖J‖cn for y-axis
synchronization. Each Pareto point (front and set) has the same color at each axes. The grayed areas show
the different preference intervals (hypercubes).
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4.3. Pollution monitoring problem460

This last example is a multiobjective problem described in [33] and it is related to lo-
cating a pollution monitoring station in a two-dimensional decision space. The five criteria
correspond to the expected information loss as estimated by five different experts. The
formulation of the problem is based on the following expressions:

f(θ1, θ2) = −u1(θ1, θ2)− u2(θ1, θ2)− u3(θ1, θ2) + 10 (17)

u1(θ1, θ2) = 3(1− θ1)2e−θ
2
1−(θ2+1)2 (18)

u2(θ1, θ2) = −10(θ1/4− θ31 − θ52)e−θ
2
1−θ22 (19)

u3(θ1, θ2) = 1/3 · e−(θ1+1)2−θ22 (20)

The derived 5 objectives are:465

J1(θ1, θ2) = f(θ1, θ2) (21)

J2(θ1, θ2) = f(θ1 − 1.2, θ2 − 1.5) (22)

J3(θ1, θ2) = f(θ1 + 0.3, θ2 − 3.0) (23)

J4(θ1, θ2) = f(θ1 − 1.0, θ2 + 0.5) (24)

J5(θ1, θ2) = f(θ1 − 0.5, θ2 − 1.7) (25)

Decision space is constrained to: θ1 ∈ [4.9, 3.2], θ2 ∈ [3.5, 6]. An evolutionary multiobjective
optimization algorithm is executed obtaining an approximation for the Pareto set (and front)
of 790 points.

To illustrate the graphical visualization based on composed norm, the preference table is
shown at Table 4. The composed norm is computed for the approximated Pareto front and470

used to synchronize Level Diagram axis. The results are shown at Figures 23 and 24. As in
the previous example the color is used to make easier point localization, each point of the
Pareto set and its corresponding Pareto front values has the same color at all the diagrams.

It can be see that the range of preferences of each point are quickly located, each range
correspond to a grayed area. It’s easy to see that the best hypercube correspond to Tolerable475

range. Other type of data analysis can be done, for instance, it is possible to see that very
good points for J1 (some of the dark blue points) are not inside Tolerable range. These points

← HD →← D →← T →← U →← HU →
Ioi I1i I2i I3i I4i I5i

J1 1 7 9 10 11 12
J2 1 7 8 9 10 12
J3 1 7 9 10 11 12
J4 1 7 8 9 10 12
J5 1 7 9 10 11 12

Table 4: Preference range for Pollution MOP problem.
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Figure 23: Level diagram representation of the Pareto front for the pollution problem. ‖J‖cn for y-axis
synchronization. Each Pareto point (front and set) has the same color at each axes. The grayed areas show
the different preference intervals (hypercubes).
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Figure 24: Level diagram representation of the Pareto set for the pollution problem. ‖J‖cn for y-axis
synchronization. Each Pareto point (front and set) has the same color at each axes. The grayed areas show
the different preference intervals (hypercubes).
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are also in contradiction with objective J3, and have parameter values: −0.5 ≤ θ1 ≤ 0.5 and
θ1 ≤ 1.4, etc. Additionally, the hypercube membership is easily translated to the parameter
space. In this example the units of the parameters are a physical position coordinates of a480

pollution monitoring station, then the designer can easily see that the Tolerable solutions
(according to his preferences) are solutions around θ1 ≈ 0.5 and θ2 ≈ 1. Inside the Tolerable
hypercube, the yellow solutions θ1 ≈ 0.6 and θ2 ≈ 0.6 seems a good solution: J1 ≈ 8,
J2 ≈ 2.5, J3 ≈ 10, J4 ≈ 7 and J5 ≈ 4.

A detailed analyze of these type of colored Level diagrams shows that several relations485

between point can easily be extracted. The use of Level diagrams helps the analyze show-
ing clearly the values in the units of the objectives and parameters, giving the designer an
engineering point of view. Remark that the use of the composed norm for axis synchro-
nization allows coloring each point for particular purposes (in the example the colors are
used to quickly localize a single point in all the diagrams) increasing the amount of available490

information shown at the diagrams. With more information available the DM can better
compare and select the final solution.

5. Conclusions

In this work, asymmetric norm is presented as a promising framework to assist graphical
visualization Decision Making procedures for high multidimentional MOPs (mainly more495

than 2 dimensions). It has been shown that asymmetric norm includes dominance charac-
teristics as well as geometrical distance. The computation of asymmetric norm is easy and
”cheap” and then it could effectively be included in interactive visualization tools. Several
options to use this norm have been presented: coloring points of a Pareto set or defining a
composed norm for level diagram synchronization. This last possibility is used when a table500

of preferences is defined and allows a quick view of the hypervolume membership in large
set of Pareto points. It has been demonstrated that the composed norm increase the com-
pleteness and persistency of the Level Diagrams, and consequently it helps the DM to better
decide between design alternatives and to better understand the multiobjective problem he
faces.505

Additionally, as asymmetric norm has a complete theory and it is receiving constant
improvements in formalization and usability, it seems it could offer more interesting options
for multiobjective optimization and decision making.
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[20] Jonard-Pérez, N. and Sánchez-Pérez, E. A. (2014). Extreme points and geometric
aspects of compact convex sets in asymmetric normed spaces. arXiv:1404.0500 [math.FA].

[21] Lotov, A. and Miettinen, K. (2008). Visualizing the Pareto frontier. In Branke, J., Deb,560

K., Miettinen, K., and Slowinski, R., editors, Multiobjective Optimization, volume 5252 of
Lecture Notes in Computer Science, pages 213–243. Springer Berlin / Heidelberg.
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[34] Tušar, T. and Filipič, B. (2014). Visualization of pareto front approximations in evolu-
tionary multiobjective optimization: A critical review and the prosection method. IEEE
Transactions on Evolutionary Computation, 19.

[35] Wie, B. and Bernstein, D. S. (1992). Benchmark problems for robust control design.
Journal of Guidance, Control and Dynamics., 5(15):1057 – 1059.595

[36] Zhu, J. and Hipel, K. W. (2012). Multiple stages grey target decision making method
with incomplete weight based on multi-granularity linguistic label. Information Sciences,
212:15 – 32.

Appendix A. Asymmetric normed spaces

Let us explain some definitions and notations regarding topology, metric properties and600

order properties on linear spaces Rn that are used in this paper. Let X be a linear space.
We will write x and y for the elements of the space; note that in the framework of the
optimization explained in the previous subsection, these points are in the range of J , that is,
typically there are θ1 and θ2 of the domain space such that J(θ1) = x and J(θ2) = y. An
asymmetric normed space is a real vector space X endowed with a topology that is defined605

by what is called an asymmetric norm q. A function q : X → [0,∞) satisfying

1. q(tx) = tq(x) for every t ≥ 0 and x ∈ X,

2. q(x+ y) ≤ q(x) + q(y) and

3. q(x) = 0 = q(−x) if and only if x = −x = 0.

is an asymmetric norm. In particular, a standard norm in a Banach space is an asymmetric610

norm, but the asymmetric lattice norm associated to the usual order in Rn that will be used
in the present paper is not a norm (see below).

An asymmetric norm induces a non symmetric topology on X that is generated by the
quasi-metric d(x, y) = q(y − x), x, y ∈ X. That is, the asymmetric open balls Bq(x, ε) =
{y ∈ X | q(y − x) < ε} define a topology on X, and so the asymmetric normed space (X, q)615

can be considered as a topological space. This topology satisfies the separation axiom T0,
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and the vector sum of X is continuous with respect to, but in general this topology is not
Hausdorff and the multiplication by scalars on X is not continuous. Thus (X, q) fails to be
a topological vector space in the classical sense.

Any asymmetric normed space (X, q) has a (symmetric standard) norm associated. That
is the norm qs : X → [0,∞) defined by the formula

qs(x) := max{q(x), q(−x)}, x ∈ X.

In this paper we have used a particular construction for defining asymmetric norms based
in the lattice structure of Rn. Recall that a vector lattice X is a linear space with an order
≤ for which the supremum x∨ y and the infimum x∧ y are defined as elements of x for each
couple x, y ∈ X, and so also the modulus |x| of each element x ∈ X. A Banach lattice is a
vector lattice (X,≤) that is also a Banach space (X, ‖ · ‖) such that the norm is compatible
with the order ≤, that is, ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|. Consider the coordinatewise order
≤ on Rn and fix a norm ‖ · ‖ on Rn —for example the Euclidean norm, but not necessarily—
that is compatible with ≤. We write (Rn)+ for the positive cone, that is, all the elements
that are coordinatewise bigger or equal than 0. We consider the asymmetric norm that is
canonically defined by using the Banach lattice structure of Rn as

q(x) := ‖x ∨ 0‖, x ∈ Rn.

For the particular case of ‖ · ‖ being Euclidean norm, we obtain the definition used in620

the paper. General results on asymmetric normed spaces can be found in [7, 14, 13, 15,
31]. Specific results on fundamental topological properties that are necessary for obtaining
approximation tools are nowadays also known, also for the case of lattice asymmetric norms
as the ones that we have defined (see [1, 10, 19, 20]).
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