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Artificial small RNAs (sRNAs) are short ≈21-nt non-coding RNAs engineered to inactivate sequence 

complementary RNAs. In plants, they have been extensively used to silence cellular transcripts in gene function 

analyses and to target invading RNA viruses to induce resistance. Current artificial sRNA-based antiviral 

resistance in plants is mainly limited to a single virus, and is jeopardized by the emergence of mutations in the 

artificial sRNA target site or by the presence of co-infecting viruses. Hence, there is a need to further develop the 

artificial sRNA approach to generate more broad and durable antiviral resistance in plants. A recently 

developed toolbox allows for the time and cost-effective large-scale production of artificial sRNA constructs in 

plants. The toolbox includes the P-SAMS web tool for the automated design of artificial sRNAs, and a new 

generation of artificial microRNA and synthetic trans-acting small interfering RNA (syn-tasiRNA) vectors for 

direct cloning and high expression of artificial sRNAs. Here we describe how the simplicity and high-throughput 

capability of these new technologies should accelerate the study of artificial sRNA-based antiviral resistance in 

plants. In particular, we discuss the potential of the syn-tasiRNA approach as a promising strategy for 

developing more effective, durable and broad antiviral resistance in plants. 
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Plant genomes encode diverse small RNAs (sRNAs) 

functioning in multiple silencing pathways [1]. MicroRNAs 

(miRNAs) and trans-acting small interfering RNAs 

(tasiRNAs) are two distinct classes of endogenous sRNAs 

that associate with an ARGONAUTE (AGO) protein to 

target and silence transcripts with highly complementary 

sequence. Silencing of targeted transcripts occurs through 

direct AGO-mediated endonucleolytic cleavage or through 

other cleavage-independent mechanisms [2]. Despite being 

functionally similar, miRNAs and tasiRNAs differ in their 

biogenesis pathways. MiRNA precursors are transcripts with 

imperfect self-complementary foldback structures processed 

by DICER-LIKE1 (DCL1), while tasiRNAs are produced in 

a more sophisticated manner. A miRNA/AGO complex 

cleaves a TAS transcript, RNA-DEPENDENT RNA 

POLYMERASE6 converts one of the cleavage products to 
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double-stranded RNA (dsRNA), and DICER-LIKE4 (DCL4) 

sequentially processes the dsRNA into 21-nt tasiRNA 

duplexes in register with the miRNA-guided cleavage site [1, 

2]. One strand of the miRNA or tasiRNA duplex is selectively 

incorporated to an AGO protein, usually AGO1. 

Artificial miRNAs (amiRNAs) and synthetic tasiRNAs 

(syn-tasiRNAs) are designed to silence specific transcripts, 

and can be produced accurately in planta by expressing a 

functional miRNA or tasiRNA precursor with modified 

miRNA/miRNA* or tasiRNA sequences, respectively. Both 

classes of artificial sRNAs have been shown to inactivate 

selectively and effectively endogenous and reporter genes 
[3-7]. AmiRNAs have been also used to selectively confer 

antiviral resistance in transgenic plants [8]. However, this 

resistance is challenged by companion viruses in co-infected 

plants [9] and by virus sequence variants accumulating 

mutations in the amiRNA target-site [10, 11]. The 

co-expression of multiple artificial sRNAs targeting different 

target sites within a viral RNA or within multiple viral RNAs 

should result in a more effective, durable and broad antiviral 

resistance particularly in plant species infected by multiple 

related viruses. Indeed, the expression of multiple amiRNAs 

derived from different precursors or from a single 
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Figure 1. Enhanced antiviral defense against multiple viruses by syn-tasiRNAs expressed from a single construct. A, Diagram of 
the steps for the generation of effective and durable resistance against multiple viruses using new high-throughput artificial small RNA 
tools. Each step is described in light grey boxes. The product of each step is described in light blue boxes. B, TAS1c-B/c-based 
syn-tasiRNA pathway. AGO1/miR173 complex cleaves a modified TAS1c transcript including the syn-tasiRNA sequences. RDR6 

complexes produce a dsRNA from the 3´ cleavage product, and DCL4 complexes process the dsRNA in several syn-tasiRNAs, each of 
which targets a different region within a particular virus. Multiple viruses may be targeted at different regions leading to effective, broad and 
durable resistance.  
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polycistronic precursor and targeting different regions within 

a single viral RNA is effective [12-15], although the durability 

of the resistance has not been analyzed. Syn-tasiRNAs may 

also be an interesting source of antiviral resistance in plants 

as analyzed in two recent reports, although with different 

conclusions possibly due to peculiarities of the constructs 

employed [16, 17]. 

Despite the extensive use of artificial sRNAs in plants, 

methods for designing and synthesizing artificial sRNA 

constructs have not been optimized for time and 

cost-effectiveness and high-throughput applicability. A 

platform has been recently developed, which includes 

molecular and bioinformatic tools for the simple and rapid 

design and generation of artificial sRNA constructs for 

highly specific and effective gene silencing in plants. 

Efficient methods were described to synthesize amiRNA and 

syn-tasiRNA constructs by directly ligating annealed DNA 

oligonucleotides containing the desired amiRNA or 

syn-tasiRNA(s) into a new generation of plant expression 

“B/c” vectors [18, 19]. B/c amiRNA vectors were validated in 

both eudicot and monocot species, and express a single 

amiRNA targeting one or multiple sequence-related 

transcripts [18, 19]. B/c syn-tasiRNA vectors were validated in 

Arabidopsis thaliana and allow the multiplexing of several 

syn-tasiRNAs to target different sequence-unrelated 

transcripts [18]. Additionally, the Plant Small RNA Maker 

Suite (P-SAMS, http://p-sams.carringtonlab.org), a 

wizard-assisted web-based tool for the simple and automated 

design of plant amiRNAs and syn-tasiRNAs, was developed 
[20]. P-SAMS outputs a list of suggested amiRNA or 

syn-tasiRNA together with the sequence of the two 

oligonucleotides needed for cloning the artificial sRNA into 

compatible B/c vectors. Several P-SAMS-designed 

amiRNAs aimed to target Brachypodium distachyon genes 

were validated in transgenic plants [18]. 

The rational use of these new tools should facilitate the 

generation of more effective and durable resistance against 

one or multiple sequence-unrelated plant viruses (Figure 1A). 

For example, P-SAMS can be used to design multiple 

amiRNAs against a particular virus. A module in P-SAMS is 

used to reduce the chances of off-targeting after selecting the 

plant species of interest. This process should be repeated for 

each virus to be targeted. P-SAMS-designed sRNA 

sequences can be directly cloned in B/c amiRNA vectors [18, 

19]. AmiRNAs can be screened in planta to analyze their 

individual activity against their target virus. For most plant 

viruses this screening can be done quickly in agroinfiltration 

assays in Nicotiana benthamiana by co-expressing each 

amiRNA together with its target virus, and analyzing virus 

accumulation. The most effective amiRNA sequences for 

each virus can be selected and cloned in tandem in a B/c 

syn-tasiRNA vector [18]. Thus, syn-tasiRNAs targeting 

multiple sites per viral RNA can be expressed from a single 

construct in the plant species of interest to confer effective 

antiviral resistance against one or multiple viruses (Figure 

1B). By targeting multiple sites per viral RNA, the antiviral 

resistance is expected to be effective and durable, as the 

possibility that the virus mutates all target sites to break the 

resistance appears unlikely. Efforts toward applying these 

new tools for enhanced antiviral resistance in plants are 

underway.  
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