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Abstract—This paper introduces a speed-sensorless method for 
detecting rotor asymmetries in wound rotor induction machines 
working under non-stationary conditions. The method is based on 
the time-frequency analysis of rotor currents and on a subsequent 
transformation which leads to the following goals: unlike con-
ventional spectrograms, it enables to show the diagnostic results 
as a simple graph, similar to a Fourier spectrum, but where 
the fault components are placed always at the same positions, 
regardless the working conditions of the machine; moreover, it 
enables to assess the machine condition through a very small set 
of parameters. These characteristics facilitates the understanding 
and processing of the diagnostic results and thus, help to design 
improved monitoring and predictive maintenance systems. Also 
these features make the proposed method very suitable for condi-
tion monitoring of wind power generators, because it fits well with 
the usual non-stationary working conditions of wind turbines, 
and makes feasible the transmission of significant diagnostic 
information to the remote monitoring center, using standard 
data transmission systems. Simulation results and experimental 
tests, carried out on a 5kW laboratory rig, show the validity 
of the proposed method and illustrate its advantages regarding 
previously developed diagnostic methods under non-stationary 
conditions.

Index Terms—Condition monitoring, extended Park’s Vector,
fault diagnosis, Fourier transforms, Gabor transform, harmonic
order tracking analysis, motor-current signature analysis, non-
stationary working conditions, rotor asymmetries, signal pro-
cessing, time-frequency distributions, wound rotor induction
machines.

I. INTRODUCTION

R ELIABILITY is a key issue for optimal exploitation 
of industrial plants, where unscheduled interruptions of

processes can produce huge economic losses and safety issues. 
During last years, the topics related to the reliability of 
electrical machines have generated a huge research activity. 
Particularly, the research on diagnostic techniques for wound 
rotor induction machines (WRIMs) have gained relevance, 
due to the massive implantation of this kind of machines in 
wind power plants. The development of solutions for reducing 
maintenance, increasing the reliability, and extending the life-
time of offshore wind turbines was identified as a specific
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challenge inside the Horizon 2020 work programme 2016- 
2017 of the European Union [1]. Maximizing the reliability 
involves improving condition monitoring and fault detection 
systems. Wind turbines components and the wound rotor 
induction generators (WRIGs) are exposed to different sort of 
failures [2], [3]. Traditionally, wind turbine condition monitor-
ing systems have used temperature sensors, oil analysis and 
vibration analysis to detect faults in the global system [3],
[4]. Among these, vibration analysis has emerged as the main 
method to assess the condition of wind turbines components 
[5]–[7], despite of its drawbacks: several vibration sensors 
must be installed, which, besides being expensive, can affect 
the reliability of the system, due to potential malfunctions 
in the accelerometers. In fact, the ideal condition monitoring 
system is supposed to monitor all the components, using a 
minimum number of sensors and data for obtaining a reliable 
fault diagnosis [3].

Following this trend, fault diagnosis of wind turbines based 
on analysis of currents is being considered as a promising 
methodology because it would take the benefit of the expe-
rience in diagnosing electrical motors using motor current 
signature analysis (MCSA) techniques. Diagnosis through 
MCSA is a dynamic field of research, which has experienced 
a great development in recent decades, and has resulted in a 
significant variety of diagnostic techniques [8]–[18]. A general 
overview of MCSA techniques can be found in [8], [9].

Conventional MCSA techniques are based on the fast 
Fourier transform (FFT), and are only suitable for machines 
working in steady state. In this field a huge number of works 
have been developed for improving the reliability of the fault 
diagnosis, and for solving the practical issues associated with 
the industrial application of these techniques. Nevertheless 
there are still two main drawbacks unsolved, related with their 
practical implementation:

• MCSA techniques are valid only for steady state regime. 
• They require very accurate speed measurement, since the

theoretical frequencies of fault components depend on 
slip or rotor speed. In most cases this requires installing 
speed sensors, which is problematic and in some cases, 
almost impossible.

To solve these problems, recent fault diagnosis techniques 
have focused on the analysis of the stator current during the 
direct on-line start-up through time-frequency (t − f) signal 
analysis, since:
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• Time-frequency signal analysis tools allow to extract
the different frequency components along the start-up
transient [13], [14], [16].

• The start-up is an electromechanical transient in which
the slip evolution is well-known (from 1 to near 0). Hence 
the speed measurement is not needed.

In the field of diagnosis under transient conditions, a wide 
variety of techniques based on t − f domain analysis have been 
also introduced, as in [13], where the short time Fourier 
transform with an optimized Gabor windows is introduced. In 
[14]–[16] the discrete wavelet transform (DWT) and the 
continuous wavelet transform (CWT) are used, for making 
visible the characteristic patterns of the sideband components. 
In [17] the t − f analysis is performed through the Wigner-
Ville distribution, whereas [18] develops an approach based on 
The Hilbert-Huang transform (HHT)). Usually, t − f based 
techniques apply some type of demodulation to the currents 
signal, before perform the t − f analysis, what improves the 
readability of the spectrograms. Signals demodulation can be 
performed through several techniques as the extended Park’s 
vector approach (EPVA) [10] or stator-current space-vector 
magnitude spectral analysis [11], or the Hilbert transform (HT)
[12].

These significant advances in MCSA have suggested the 
feasibility to apply similar techniques to fault diagnosis in 
wind turbines [3], [19]–[23]. However, the aforementioned 
condition monitoring methods cannot be directly applied to 
wind generators. Wind turbines neither work under strictly 
steady state regime, nor are subjected to transients with large 
variations of slip, as in the case of start-up transients. Hence, 
the previous knowledge in condition monitoring through the 
currents analysis must be adapted to a new scenario, where 
the machine works under random non-stationary conditions. 
Nowadays, a new research field is emerging, focused on 
adapting the MCSA techniques to such working conditions, 
in which two trends prevail. On the one hand, as the signals 
are quasi-stationary, some researches apply the same methods 
than in steady state [3], [24], but this analysis introduces new 
errors and, therefore, decreases the reliability of the diagnosis. 
On the other hand, the second trend is to apply techniques 
specifically designed for non-stationary functioning as [20], 
which proposes an approach for diagnosing rotor faults in 
WRIM based on the use of wavelet analysis improved by 
a preprocessing of the rotor-voltage commands under time-
varying conditions or [25] which compares several time-
frequency representations for broken rotor bars fault detection 
in a squirrel-cage wind turbine generators. Also, recent works 
have proposed to analyze the rotor current instead of the stator 
current, whereby certain advantages are achieved, as in [19]–
[22], for detecting both rotor and stator asymmetries in a 
WRIM. In [21] the fault diagnosis is performed under steady-
state, through the spectral analysis of the modulus of the Park’s 
vector of the rotor current, and of the modulating signals 
generated by the drive control. In [22] a load independent 
method for detecting stator windings asymmetries based on 
rotor current measurement is introduced. In [19], [20], the 
rotor currents under non-stationary regimes involving speed

variations are analyzed by decomposing the signals in different 
frequency bands through the DWT. Nevertheless, all these 
approaches share a common drawback: They require speed 
measurement to identify the fault components in the spectrum 
or to know in which approximation and detail bands of the 
DWT decomposition the fault components should appear, or to 
forecast the fault components trajectories in the t − f plane. 
Besides, the fault components have not pre-defined pat-terns 
when load or feeding conditions vary randomly. Hence, the use 
of these techniques require additional calculations to 
characterize the fault components signatures. And this must be 
done for every test. These facts make difficult the 
implementation of these techniques in industrial applications 
(such as wind turbines condition monitoring), and also in 
automatic recognition systems and classifiers. Furthermore, the 
historical management of the condition of the machine implies 
large memory requirements, especially in transient analysis, 
because it is necessary to store the t − f distributions (three 
dimensional) or the DWT results, as in [20]. The methodology 
proposed in this paper is aimed to solving these problems. This 
paper is an enhanced version of a previous conference paper 
[23]. It is based on a new transform, the harmonic order 
tracking analysis (HOTA), which was introduced in [26]. The 
HOTA method, as was developed in [26], is a technique for 
improving the fault diagnosis reliability; it is based on the 
conventional Fourier spectrum of the stator current of induction 
machines (IMs) working in steady state regimes. Unlike this 
work, in this paper the HOTA methodology is improved to 
perform the diagnosis of faults in WRIM under non-stationary 
working conditions. The proposed approach is based on a new 
transform, which is applied to the spectrogram resulting from 
the t − f analysis of the module of the rotor currents Park’s 
vector. The achievements of the proposed method are:

• It does not requires any speed measurement.
• The results are presented using a plot similar to the

Fourier spectrum, but with the fault components located 
always at the same positions, regardless the working 
conditions and the type of non-stationary functioning.

• The machine condition can be characterized by a very
reduced set of parameters, thus reducing the memory re-
quirements to set up an historical analysis of the machine 
condition, and facilitating the data transmission to remote 
diagnostic centers. This feature makes it very suitable for 
automatic recognition systems and classifiers, and also, is 
helpful for the implementation of the method in industrial 
environments, since it enables reliable diagnostics even 
by low qualified maintenance staff.

In this paper this new methodology is theoretically demon-
strated for detecting rotor asymmetries, but it can be easily 
extended to detect other types of faults, such as stator asym-
metries, eccentricity and damaged bearings.

This paper is structured as follows: in Section II the physical 
analysis of the rotor faults and the proposed signal processing 
tool are depicted. Subsequently, in Section III the theoretical 
development of the proposed methodology as well as its 
practical implementation are explained in detail. A simulated
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case of study is also developed for illustrating the method. 
Section IV shows the experimental validation of the method. 
In Section V the results of the application of the approach to 
healthy and faulthy machines are compared in detail. Finally 
in Section VI the conclusions are summarized.

II. THEORETICAL BACKGROUND

In healthy rotating electrical machines, stator and rotor 
currents are symmetrical and generate a rotating magnetic field 
at frequency f in the stator reference frame, or sf in the rotor 
reference frame, where f is the frequency of the power supply 
as s is the slip. Nevertheless WRIMs used in wind turbines are 
subject to mechanical and electromagnetic stresses, which may 
result in the appearance of imbalances caused by faults such as 
inter-turn short circuits, eccentricities, high-contact resistance 
connections, bearing damages, etc. Besides, it is well known 
that each fault induces or increases a family of harmonic 
components in the stator and rotor currents whose frequencies 
have been theoretically deduced, as can be seen in Table I, 
where fr is the rotational speed frequency and Nb is the number 
of balls of the bearings (being these expressions only valid for 6 
≤ Nb ≤ 12).

TABLE I
FREQUENCIES OF THE HARMONIC COMPONENTS GENERATED IN THE 
STATOR AND ROTOR CURRENTS BY DIFFERENT TYPES OF FAULTS IN 

INDUCTION MACHINES

Measured
Fault Frequency Cites

Current

Stator Rotor asymmetry fbb = (1 ± 2ks)f (k = 1, 2, 3..) [27]

Stator Mixed eccentricity fecc = f ± kfr (k = 1, 2, 3..) [28], [29]

Stator Bearing inner race fin = f ± k0.4Nbfr (k = 1, 2, 3..) [30]

Stator Bearing outer race fout = f ± k0.6Nbfr (k = 1, 2, 3..) [30]

Rotor Stator asymmetry fksa = (2k ± s)f (k = 1, 2, 3..) [21]

Rotor Rotor asymmetry fkra = ±ksf (k = 1, 3, 5..) [21]

Under stationary regime, these components can be detected 
through a frequency domain analysis technique, as the FFT. 
Nevertheless, when the working conditions are non-stationary, 
these characteristic harmonics become components whose 
frequency and amplitude vary along the time. Under these 
conditions, the fault components cannot be detected through the 
conventional FFT; t − f techniques based on linear transforms, 
such as the short time Fourier transform (STFT), the CWT, and 
the Gabor transform, or quadratic transforms, such as the 
Wigner-Ville distribution (WVD), are needed for extracting the 
fault components information. Usually, the result of the t − f 
analysis is summarized as a spectrogram (that is, as a plot of the 
signal energy distribution along the t − f domain). In this 
work, the Gabor transform, as used in [13], has been selected 
for obtaining high resolution spectrograms, which clearly 
reveal the existence of the fault components. Nevertheless, 
under non-stationary conditions, where load, supply conditions 
and speed may vary randomly, there are no predefined patterns 
for the fault components, and thus, high

resolution spectrograms are not sufficient for a reliable fault 
diagnosis. This paper introduces a method for processing the t 
− f information of the rotor current given by the t − f analysis. 
As a result, the information corresponding to the machine 
condition is displayed in a simple and clear diagram where the 
failure components appear located always at the same position, 
irrespective of the working conditions.

Basically the method consist in applying changes of variable 
to the frequency scale of the spectrograms. These changes of 
variable are specific for every kind of fault and are based on the 
expressions of the frequencies of the fault components families, 
given in Table I. For the case of the diagnostic of rotor 
asymmetries through measurement of rotor currents –that will 
be developed in this paper– the variable changes are based on 
the expression of the last row of Table I. This expression, as it 
was introduced in [21] is not very suitable for being used in the 
code of the diagnostic algorithm, since every k ∈ N designates 
two different components. Thus, it is more convenient to use 
the equivalent expression (1), since for every k ∈ Z, it 
unambiguously designates a unique fault component.

fkra = (1 + 2k)sf k = 0, ±1, ±2, ±3... (k ∈ Z) (1)

III. PROPOSED METHODOLOGY

To introduce the proposed methodology of faults diagnosis 
under non-stationary conditions, it has been decomposed into 
five conceptual tasks, shown in the block diagram of Fig. 1, 
that will be explained in detail in this section.

Fig. 1. Block diagram of the proposed technique to compute the harmonic 
order tracking analysis under time-varying conditions.

Additionally, for improving the understanding of the 
method, an example of application based on Matlab simulation 
is developed at the same time that the theoretical explanation.
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The simulation has been performed using an analytical three-
phase model of WRIM implemented in Matlab−Simulink 
(from the SimPowerSystems toolbox, more precisely the pre-
set model 16). Table II shows the parameters of the sim-ulated 
machine that were used in the model. As it can be seen in Fig. 
2, for simulating the fault, a resistance Rasym = 0.09 Ω 
(equivalent rotor referred to stator resistance R′asym = 0.27 Ω) 
is connected in series with one of the rotor phases. This 
configuration simulates an high-contact resistance connection 
fault in actual machines [31], [32]. Applying a variable wind 
speed to the model, a rotor speed evolution shown in Fig. 3 is 
obtained.

Fig. 2. Rotor asymmetry simulation setup scheme.

Fig. 3. Rotor speed evolution applied to the simulated machine.

A. Signal acquisition

This step consists on acquiring the signals needed for
calculating the rotor current Park’s vector. For this purpose,
rotor currents, iar, ibr, icr, must be measured (Fig. 4).

TABLE II
PARAMETERS OF THE SIMULATED MACHINE (WRIM) USED IN THE

MODEL

Nominal Power (VA) 8800 Voltage 230 V

Stator Resistance Rotor Resistance
Rs 0.345 Ω R′

r 1.292 Ω

Stator Inductance Rotor Inductance
Lls 6.3 mH Ll′r 6.3 mH

Mutual Inductance or
Magnetizing Inductance

92.9 mH Pole Pairs 2

Inertia factor 0.2 kg · m2 R′
asym 0.27 Ω

Fig. 4. Simulated rotor currents (bottom) and one second expansion (top).

B. Signal pre-treatment: Park’s transform

The Park’s transform was introduced in 1929 [33] as a tool to 
facilitate the analysis of the three-phase machines func-tioning 
and also, the understanding of its internal phenomena. The 
application of the Park’s transform to a set of three phase 
values of a certain physical quantity (voltage, current, flux 
linkage ...) gives a vector (Park’s vector) defined in the time 
domain by its d − q components. In this work, the Park’s 
transform is applied to the rotor phase currents (iar(t) , ibr(t) , 
icr(t)) of a WRIG, obtaining the rotor current Park’s vector 
components idr(t) (2), iqr(t) (3) and finally, the rotor current 
Park’s vector (4),

idr(t) =

√
2

3
iar(t)−

1√
6
ibr(t)−

1√
6
icr(t), (2)

iqr(t) =
1√
2
ibr(t)−

1√
2
icr(t), (3)

~ir(t) = idr(t) + j · iqr(t). (4)

Usually, the WRIGs use a stator flux oriented control system 
for enabling decoupled active and reactive power control. For 
this purpose, the control system of the drive calculates the 
idr, iqr components of the current space vector (which for 
the calculations that will be performed, are equivalent to the 
Park’s vector components [33]). In these cases, if the idr, iqr 
signals are available, the Park’s vector can be built applying 
(4) and the diagnostic system do not need to sample three 
rotor phase currents.

At the beginning of the 1990s, fault diagnostic techniques 
based on representation of the evolution of the stator current
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Park’s vector over time, were developed. Conceptually, these 
techniques are based on comparing the Park’s vector trajec-
tory, obtained from the sampled phase-currents, with that of the 
ideal healthy machine, which is a circumference [34]. Later, the 
concept of Extended Park’s vector approach was introduced 
[10]. This technique is based on the analysis of the modulus of 
the Park’s vector, since as stated in [35], under fault conditions, 
“the current Park’s Vector modulus will contain a dominant DC 
level related with the fundamental component amplitude and an 
AC level, whose existence is directly related with the 
asymmetries either in the motor or in the supply voltage 
system”. The EPVA acts as a demodu-lation tool, which 
facilitates the extraction of the fault related components at their 
true frequency, instead of combined with the frequency of the 
fundamental component, as happens when the sideband 
components are extracted from the phase currents through the 
conventional FFT. Initially the EPVA was applied to steady 
state analysis, through the Fourier analysis of the current Park’s 
vector module [10], [35]; lately, it was successfully applied 
under transient conditions, combined with signal analysis 
techniques in the t − f domain as the discrete wavelet 
transform [36], [37]. In this paper the EPVA is applied to the 
rotor currents of a WRIG working under random non-stationary 
load conditions. The Gabor transform is used as t − f analysis 
technique, for extracting the faults components from the Park’s 
vector module, as it is explained in the next section.

C. Time−Frequency analysis: Gabor transform

Once the Park’s vector of the rotor currents is built, a t − f 
analysis of its amplitude is carried out. In this work, the Gabor 
transform as proposed in [13] is used for this purpose. t − f 
analysis basically consists on depict how the signal energy 
spreads among different frequencies at every time. A 
spectrogram is a plot of the signal energy spreading along time. 
Fig. 5 explains the conceptual way to build the spectrogram of a 
sampled signal.

Actually the signal energy is calculated on the nodes of a 
lattice on the t − f plane, whose reticules are sized T (s) ×Ω 
(Hz). The energy Emn at the node (tn , fm ), –where tn = nT , 
fm = mΩ, m, n ∈ N– is calculated as the squared module of 
the inner product of the analysed signal ir(t) and a t − f atom 
gmn(t), which is a function defined in C whose energy is 
concentrated in a short time interval around time tn and inside a 
narrow frequency band centred in fm, and where ir(t) is the 
amplitude of the rotor Park’s vector and (∗) denotes the 
complex conjugate,

Emn = |cmn|2 , (5)

cmn =
〈
ir, gmn

〉
=

k∑
irk · g∗mnk. (6)

If the analysed signal includes relevant harmonic compo-
nents at frequencies near to fm, at time tn , the value of the 
coefficient cmn will be high. Conversely if the signal does 
not contain components with frequency near fm at time tn 
or these component have a low value, the cmn coefficient

Fig. 5. Extraction of signal components through inner products of the signal 
with time-frequency atoms, whose energy is concentrated around the nodes of 
the lattice built in the t − f plane.

will be zero or small. Actually, the atom gmn(t) perform as a 
narrow bandpass filter with a central frequency fm [13] which 
is applied to the signal during a short time interval around time 
tn.

The atoms gmn(t) are a family of functions derived through 
translation in time and modulation in frequency from a basic 
function g(t) designated as the synthetic window and they can 
be written as:

gm,n(t) = g(t− nT )ej2πmΩt m,n ∈ N. (7)

The analysis performed in this work uses the Gaussian 
function (8) as synthetic window, since as stated [13] this 
function enables for the maximum energy concentration. The 
Gaussian function is defined by:

g(t) =
(α
π

)1/4

e−αt
2/2. (8)

For obtaining a high quality spectrogram it is crucial a 
suitable selection of the lattice parameters T and Ω as well as of 
the Gaussian function parameter α.

Regarding the lattice parameters, as [13] points out, as T, Ω 
get smaller the readability of the spectrogram improves. But 
from a practical point of view, the discretization process 
imposes minimum values for the time and frequency steps ∆t,
∆fc [13]. If the current signal ir(t) is sampled during time
TS at a frequency FS , obtaining N = TS · FS samples, then,

∆t =
TS
N

=
TS

TS · FS
=

1

FS
, (9)

∆f =
FS
N

=
FS

TS · FS
=

1

TS
. (10)

In this work all the spectrograms have been calculated by 
setting the lattice parameters to the minimum achievable val-
ues; thus taking into account the values used for the sampling 
time (TS= 100 s) and sampling frequency (FS=10,000 s−1 ), the 
calculated lattice parameters are:

T = ∆t =
1

10000
= 0.0001s, (11)
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Ω = ∆f =
1

100
= 0.01Hz. (12)

On the other hand, regarding the Gaussian function pa-
rameter α, the optimization criteria proposed in [13] will be 
adopted. There, it is justified that to achieve a good 
discernibility of the fault components in the spectrogram, the 
value of α must be set according to the slope of the fault 
component in the t − f plane and can be approximated by:

α ≈ 2π
dff
dt
≈ 2π

∆ff
∆t

= 2π
(1 + 2k)f∆s

∆t
. (13)

Considering the main fault component (k= -1) and using the 
rotor speed as variable, instead of the slip, (13) becomes:

α ≈ 2πf

ns
· ∆n

∆t
=
πp

30
· ∆n

∆t
. (14)

The ratio ∆n/∆t is estimated from Fig. 3, which plots the 
speed evolution that was imposed during the simulations:

∆n

∆t
=

1572− 1540

15− 0
= 2.1rpm/s. (15)

Substituting (15) in (14) and taking into account that number 
of pole pairs of the simulated machine is p=2 , a value α=0.44 
is obtained, and the synthetic window is finally given by

g(t) =

(
0.44

π

)1/4

e−0.44t2/2. (16)

Figs. 6(a) and 6(b) show the 3D and 2D spectrograms 
of the amplitude of the Park’s vector obtained through this 
methodology for the simulated faulty machine.

D. Re-scaling frequency axis

Figs. 6(a) and 6(b) show the time evolution of the rotor
current components. To determine if they are due to a failure, it
would be necessary, for every time, to calculate the theoretical
frequencies of the fault components. This would be carried
out by considering the equations of failure (see Table I),
the fundamental frequency and the measured speed (Fig. 3).
Later, it would be necessary to check if theoretical components
match those of the experimental distribution. Although this
process can be automatically performed, it imposes certain
computational cost. In steady state the process is identical but
only a single operating point is calculated.

The aim of this work is to obtain the evolution of the fault
related components without speed measurement. Besides, this
subsection introduces a change of variable that rescales the
frequency axis of the spectrogram, in such a way that the
fault components appear as single horizontal lines, improving
the diagnosis by offering a fast and visual tool to know
the condition of the machine. As can be seen in Table. I,
there is a common parameter in any failure equation which
is independent of the working conditions and of the type of
fault. This is the dimensionless k parameter that indicates the
harmonic order of the fault components. Hence, if the spectral
analysis is performed using a variable based on this harmonic
order, then the fault components always will appear in the

same position on the horizontal axis, regardless of the working
conditions, the frequency supply, the speed and the type of
fault, improving the evaluation of the results and achieving
a more efficient and reliable representation of the machine
condition.

In the case of rotor asymmetries, the faults generate har-
monic components in the rotor currents at frequencies given
by (1). Hence, in the t − f distribution, for every time tj , the
frequency axis is re-scaled according to

fTj =
fj − frj

2frj
, (17)

where fTj is the transformed frequency of fj and frj is the rotor
fundamental frequency at time tj (frj = sjfj). It is noticeable
that the mathematical expression of the transformed frequency
(right term of (17)) is simply obtained by solving (1) in k. It
is also remarkable that frj is obtained as the frequency of the
component of higher energy at time tj in the spectrogram, and
speed is not used for perform this selection. The interpretation
of (17) is immediate: for a given time tj a linear transform is
applied to the scale of frequencies of the Gabor spectrogram;
this transform (fTj ) consists on shifting the frequency (fj)
a frequency equal to the fundamental frequency at this time
(frj = sf ) and normalizing by (2frj = 2sjfj) obtaining
the result in p.u. of the fundamental frequency. Hence, the
transformed frequency of a fault component of order k is (18)

fTkra,j =
(1 + 2k)sjfj − sjfj

2sjfj
= k k = ±1,±2,±3 . . .

(18)
Therefore, after performing the transform, the fault compo-

nents due to rotor asymmetry appear exactly at transformed
frequencies equal to their harmonic order k. Figs. 6(c) and
6(d) show the new representation of the time−frequency dis-
tribution after performing the rescaling of the frequency axis
in accordance with (17). As expected, the mains component
appears at the transformed frequency fT = 0 and the fault
components appear at fTkra = k = ±1,±2,±3. Hence, in
a simple way, without any post-processing by maintenance
staff, without speed measurement and regardless the working
conditions, the fault components can clearly be distinguished
among other frequencies.

Finally it is worth to note that although the method has been 
developed to diagnosis of rotor asymmetries, it is immediate 
adapt it to diagnose other kind of faults included in Table I. 
This would be achieved by simply changing the definition of 
the transformed frequency fT , given by (17). For diagnosis of 
mixed eccentricity or bearing faults, the new expression of fT 

would be obtained by solving in k the expressions of Table 
I corresponding to the specific fault, without no additional 
changes in the diagnosis scheme depicted in Fig. 1. Also, 
it is remarkable that once the conventional spectrogram is 
calculated, all the kind of faults can be analyzed quickly, by 
reorganizing the spectrogram through the suitable expression 
of the transformed frequency. This fact is relevant, since the 
generation of the spectrogram is the most costly process of
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Fig. 6. Steps for HOTA of the simulated case of study. a) Time-frequency analysis of the simulated rotor current Park’s vector amplitude (3D representation).
b)Time-frequency analysis of the simulated rotor current Park’s vector amplitude (2D representation). c) 3D HOTA spectrogram of the simulated rotor current
Park’s vector amplitude, obtained by re-scaling the frequency axis of (a) in accordance with (17). d) 2D representation of (c). e) Averaged HOTA spectrum.
f) Reduced HOTA spectrum, where the t − f distribution has been downsized to fifteen points.

the diagnosis method, and only needs to be performed once 
although different kind of faults have to be diagnosed.

E. Summarizing information

As proved in the previous paragraph, the transformed-
frequency of each fault component remains constant regardless 
how operating conditions change. This fact makes possible 
to introduce a new sort of graph, shown in Fig. 6(e), simi-
lar to a steady-state spectrum, and designated as “Averaged 
HOTA Spectrum”. It is built by plotting, for each transformed 
frequency, the mean value of its energy along the time of 
acquisition TS :

Ē(fT ) =
n∑
j=1

E(fTj )

n
. (19)

It is remarkable that for the integer transformed frequencies 
these mean values exactly match the average value of the 
energy of the corresponding fault components during the 
acquisition time; this fact makes the averaged HOTA Spectrum 
much more suitable than conventional spectrograms –such as 
of Fig . 6(b)– for characterizing the severity of the faults under 
non stationary conditions. Note also that they are obtained 
by simply summing the elements of each row of the HOTA 
spectrogram and dividing the sum by the number of elements 
of the row (n). Besides, an additional benefit is achieved going 
from a 3D representation to a x-y graph, with the subsequent 
reduction of the amount of data to be stored, while keeping 
and even improving the reliability of the diagnostic. In the 
cases of simulation and experimental validation performed in 
this paper, the proposed technique has managed to reduce from
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1,500,500 to 10,000 the stored points at this step, that means
a size 150 times lower than the original file.

However, it can still go further in reducing the sample size. 
From Fig. 6(e) it is clear that only the spectrum values with 
integer transformed frequencies fT = k = ±1, ±2, ±3 . . . 
would be necessary to asses the machine condition. However, 
if only these values are stored, it could not be assured if these 
amplitudes are due to fault or are the result of leakage or 
spectral noise in the signal. Hence, it is advisable to keep 
several values of energy at intermediate positions, for enabling 
comparisons. From this reasoning, a new graph designated as 
“Reduced HOTA spectrum” (Fig. 6(f)) is introduced. It is a bar 
diagram plotting the averaged signal energy corresponding to 
the following transformed frequencies:
• At fT = k = ±1,±2,±3. These bins give the average

energy of the fault components.
• At fT = 0. This bin gives the average energy of the

fundamental component.
• At fT = ±3.5,±2.5,±1.5,±0.5. These values, located

at intermediate positions between the integer k orders
allow to know the average value of spectral noise at these
positions. These values, allow to resolve if the energy
levels of the fault components correspond or not to a
faulty condition.

This graph provides a reliable diagnosis information, which
is not only easy to understand by the maintenance staff but
also facilitates the use of automated systems of diagnosis
avoiding the process of locating the fault components, which is
extremely relevant in case of time-varying working conditions.

Besides, with only 15 points the reduced HOTA spectrum is
much easier to integrate into predictive maintenance systems
than conventional spectrograms, like that shown in Fig. 6(b)
(with 1, 500, 500 points). Hence it simplifies the decision
process while a data reduction over a ratio of 100, 000 is
achieved. It should be noted that this huge reduction is possible
thanks to the proposed transform, which enables to know
exactly the fault components locations, unlike conventional
approaches, where the location of fault components is always
undergone to uncertainty due to unavoidable errors in the
speed measurement. This reduction is very relevant in wind
turbines monitoring systems, because only the transmission
of 15 data would be required instead of the original signal,
drastically reducing the time and the bandwidth requirements.
On the other hand, the capacity needed to perform the histor-
ical record of the machine condition is reduced, making easy
the comparison of the current machine condition with previous
conditions, thus enabling for an early detection of the machine
damage.

IV. EXPERIMENTAL VALIDATION OF THE APPROACH

The experimental validation has been performed using a
5 kW commercial WRIM working as a generator connected
to the network, whose main characteristics are summarized in
Appendix A. The WRIM rotor phase-resistances are affected
by a slight constructive imbalance as shown in Table. III.
Moreover, to test the sensitivity of the method, an additional
resistance Rasym = 0.09Ω was connected in series to phase
Rk, following the scheme shown in Fig. 2

Fig. 7. Test bench used in the experimental validation.

Fig. 8. Speed variation during the experimental validation.

In order to simulate the wind turbine, the WRIM has been
directly coupled to a IM of 5kW, 2 pole pairs. The IM has
been driven by a variable speed drive (VSD), making feasible
the speed control of the group for simulating any changing
wind regime. Fig. 8 shows the rotor speed variation along
the tests in the experimental validation. Signals acquisition
has been performed using a digital oscilloscope Yokogawa
model SL100. The rotor currents have been acquired through
shunt resistors using voltage sensors connected to an analogue
input voltage module (ref. 701250, 10Ms, 12 bits) of the
oscilloscope.

The results of the test are shown in Fig. 9. Figs. 9(a) and
9(b) depict the t − f analysis of the measured Park’s vector
amplitude, in 3D and 2D respectively. These plots have been
obtained through the Gabor transform, as explained in Section
III−C. Although several components of the current can be
clearly appreciated, it is difficult to decide if they are produced
by a rotor asymmetry fault or by another cause, bearing in
mind that no speed measurement was taken. The plots of Figs.
9(c) and 9(d) show the same time frequency distributions but
after performing the rescaling procedure introduced in Section
III−D. Now, the current components are located exactly on
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Fig. 9. Steps for HOTA of the experimental validation test. a) Time-frequency analysis of the tested rotor current Park’s vector amplitude (3D representation).
b)Time-frequency analysis of the tested rotor current Park’s vector amplitude (2D representation). c) 3D HOTA spectrogram of the tested rotor current Park’s
vector amplitude, obtained by re-scaling the frequency axis of (a) in accordance with (17). d) 2D representation of (c). e) Averaged HOTA spectrum. f) Reduced 
HOTA spectrum, where the t − f distribution has been downsized to fifteen points.

TABLE III
ROTOR RESISTANCES

Phase
Rotor resistance Additional resistance Total resistance

Rk (Ω) Rasym (Ω) RkT (Ω)

a 0.365 0.09 0.455

b 0.333 0 0.333

c 0.333 0 0.333

the transformed frequency axis at positions fTkra = k =
0,±1,±2,±3, demonstrating without any doubt that they are
produced by a rotor asymmetry fault. It is remarkable that in
the HOTA spectra, the left and right sideband not exchange
their positions when the machine functions as a generator,

contrary to what happens in conventional spectra, calculated in 
the frequency domain. This fact makes the HOTA spectra 
easier to understand than the conventional spectra.Finally, Figs. 
9(e), and 9(f) summarize the information. Fig. 9(e) shows the 
averaged HOTA spectrum, that is, the plot of the averaged 
amplitudes across time for every transformed fre-quency 
(10,000 points instead of 1,500,500 points used in Figs. 9(c) 
and 9(d)). Fig. 9(f) shows the reduced HOTA spectrum, 
introduced in Section III−E, where only 15 significant points 
of Fig. 9(e) are plotted. This kind of plot enables for a reliable 
diagnostic and at the same time for a substantial reduction 
of the system requirements for transferring and/or storing the 
information regarding the machine condition.

Comparing Figs. 6 and 9 it is remarkable the good agree-
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ment between simulated and experimental results, even though 
the simulation is carried out using a rather simplified model, 
which neglects saturation, space harmonics and slotting. The 
simulated currents only include the main component and the 
fault related components, which are located at the integer 
values of the harmonic order scale. This fact explains the small 
size of the fractional harmonic order (transformed frequency) 
components in the simulated spectra, since these values cor-
respond to the floor noise of the spectrum.

V. COMPARATIVE ANALYSIS OF HEALTHY AND FAULTY 
MACHINES

Fig. 10 compares the averaged HOTA spectrum and the 
reduced HOTA spectrum of the healthy generator with those 
obtained in the test of the faulty machine, in Section IV; the 
spectra of the healthy machine was obtained through a test in 
the same conditions than the faulty machine, using the speed 
profile depicted in Fig. 8. It is noticeable that the fault 
components appear located exactly at the same position in both 
cases, which is the main goal of the proposed approach. 
Besides, it can be seen how the amplitudes of the related fault 
components (with integer harmonic order) increase in the faulty 
machine, whereas the harmonics with not integer transformed 
frequency remains practically unchanged. Further, it can be 
seen a significant growth of the amplitude of the main fault 
components (fT = 1, fT = −1) in the faulty machine, which 
increase 22 and 18 dB respectively. Finally it is worth to 
comment that in the healthy machine spectra, the small fault 
components that appear at the transformed frequencies, are 
produced by the inherent constructive asymmetry of the rotor 
windings, shown in Table III.

Fig. 10. Comparative study of differents levels of fault.

VI. CONCLUSIONS

This paper introduces a novel approach for diagnosing rotor
faults in WRIMs in stationary and non-stationary regimes. The

proposed method is based on t − f analysis and on the use of
the harmonic order for tracking the fault related components.
The proposed approach brings a triple achievement. First, no
speed measurement is required for the diagnosis, avoiding the
installation of speed sensors. Second, the method supplies the
fault information in a very simple and comprehensive way,
consisting on a plot similar to a conventional Fourier spectrum,
but where the fault components are placed at fixed integer
positions, the same for any speed or even if the machine
works in non-stationary or transient regimes. And finally, the
proposed method enables for a very compact representation of
the diagnostic information, reducing greatly the number of data
to be processed, transmitted or stored. This paper includes the
description of the proposed method, its theoretical justification,
and the simulation and experimental validation under time-
varying conditions.

APPENDIX A
WOUND ROTOR INDUCTION MACHINE

Rated characteristics: P = 5 kW, Us = 230/400 V, Ur = 233 
V, I = 21.4/12.3 A, n = 1430 rpm, cos ϕ = 0.71, f = 50 Hz, J 
= 0.2 Kgm2
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