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Abstract 

Computer vision systems are becoming a scientific but also a commercial tool for food quality assessment. In the field, 

these systems can be used to predict yield, as well as for robotic harvesting or the early detection of potentially dangerous 

diseases. In postharvest handling, it is mostly used for the automated inspection of the external quality of the fruits and for 

sorting them into commercial categories at very high speed. More recently, the use of hyperspectral imaging is allowing not 

only the detection of defects in the skin of the fruits but also their association to certain diseases of particular importance. In 

the research works that use this technology, wavelengths that play a significant role in detecting some of these dangerous 

diseases are found, leading to the development of multispectral imaging systems that can be used in industry. This article 

reviews recent works that use colour and non-standard computer vision systems for the automated inspection of citrus. It 

explains the different technologies available to acquire the images and their use for the non-destructive inspection of 

internal and external features of these fruits. Particular attention is paid to inspection for the early detection of some 

dangerous diseases like citrus canker, black spot, decay or citrus Huanglongbing. 
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1. Introduction 

According to the FAO (FAOSTAT, 2012) there are 140 citrus-producing countries. Current annual worldwide citrus 

production is estimated at over 105 million tons, with more than half of this being oranges, which makes this fruit the 

number one crop in the world. There are two clearly differentiated markets in the citrus sector: the fresh citrus fruits market 

and the processed citrus products market, mainly orange juice. About a third of citrus fruit production goes for processing 

and more than 80% of this is for the production of orange juice. 

Growers want to grow better fruit free of pests and diseases at a lower cost, which can be achieved in many ways such as by 

introducing good mechanisation practices or precision agriculture techniques. On the other hand, consumers demand 

healthy fruit at a good price, free of defects and diseases, and with a pleasant taste (Campbell, 2014), which can be 

guaranteed with adequate monitoring in the field during growing and postharvest quality inspection. Quality standards of 

citrus for fresh consumption are mainly based on the absence of bruises and decay, as well as their having an adequate 

shape, colour and size (Codex Alimentarius, 2011). Maturity of citrus fruit is defined by parameters specified for each 

species concerning minimum juice content, minimum total soluble solids content (sugar contents), sugar-to-acid ratio and 

colouring. Size is determined by the maximum diameter of the equatorial section of the fruit.  
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Major damage to citrus is caused in the field by atmospheric phenomena or insects, during harvesting due to bad practices 

or postharvest due to infection penetrating through injuries or to the evolution of previous diseases. However, they can be 

easily handled in the packinghouse due to their thick peel, which facilitates some postharvest processing tasks. One of the 

first properties to be measured is the external colour. The skin colour of fruit oranges and mandarins at commercial stage is 

normally orange and uniform. However, early varieties of citrus in many countries usually meet legal maturity standards 

before the peel attains the characteristic varietal colour and therefore require degreening. Occasionally, later-maturing 

varieties may similarly require degreening. Early season citrus fruit may reach an acceptable degree of internal maturity and 

sugar-to-acid ratio before the peel attains a marketable yellow or orange colour. The ethylene used in citrus degreening 

rooms will degrade the green-pigmented chloroplasts present in the peel. The automatic inspection of early fruit has to cope 

with the possibility of finding fruits with different levels of greens on their surface.  

One standard way to measure colour is by means of the Citrus Colour Index (CCI), defined as:     
        

     
 (Jiménez-

Cuesta et al. 1981) with L, a, b being the HunterLab colour space coordinates. A negative CCI value means dark 

green/green, values around zero mean fruit turning from green to orange, while high positive values mean mature fruit. This 

Index is used to determine the harvesting date but it also plays an important role in establishing the duration of the 

degreening treatment.  

As is the case with other commodities, citrus fruits can present bruises or diseases caused in the field or during handling and 

processing in the packinghouse. However, not all of these defects are of the same economic importance. Some kinds of 

damage do not evolve, but others do, especially those related with fungal or bacterial infections. It is extremely important to 

detect them in the earlier stages, otherwise they can spread infections to other fruits or they may be invisible during 

inspection but then appear during transport to the destination market place, thus causing the buyer to reject them. Types of 

damage that do not evolve or that only cause appearance-related problems include mechanical damage during growth or at 

harvest, wind scars, hail damage, oleocellosis, incorrect cultural practices (fertilisation, irrigation or pest control) that 

produce physiological damage such as phytotoxicity, damage caused by pests such as Citrus thrips (Scirtothrips citri) or 

scale insects such as California red scale (Aonidiella aurantii, Mask), Purple scale (Lepidosaphes beckii, Newman) or 

Glover scale (Lepidosaphes gloveri, Packard), which are small armoured insects that attach themselves to the fruit and are 

difficult to remove. Severe infestations of these pests cause damage similar to scars and lower the value of the fruit. When 

the fruit has reached its typical mature colour they can be detected because the contrast between the sound peel and the 

defect is high, but in earlier stages of maturity, when the peel is still green or is turning to orange/yellow, they are more 



 
3 

difficult to see. On the other hand, the most important damage that evolves and produces economic losses in the postharvest 

period is caused by fungi. In particular, Penicillium digitatum (green mould) and Penicillium italicum (blue mould) are the 

most deleterious fungi causing fruit decay, since a small set of infected fruits can contaminate the whole batch, especially 

during storage or transport, and they affect several cultivars around the world (Holmes and Eckert, 1999; Palou, 2014). 

Other important fungi causing the loss of all the fruit are Alternaria citri, which causes internal decay, and Anthracnose 

caused by Colletotrichum gloeosporioides, which produces rind collapses. Citrus canker is a bacterial disease affecting all 

types of citrus that causes premature leaf and fruit drop. The main symptoms are lesions on the leaves, stems and fruit of 

citrus trees. While not harmful to humans, the disease affects the health and marketability of infected fruit.  

The main drawback that appears when developing automated systems to control the quality of citrus fruits is precisely the 

high number of diverse types of defects, blemishes or diseases presenting very different external symptoms that cause 

economic losses to varying extents. Systems based only on colour information have severe limitations, since the colour of 

the defect in one fruit can be similar to the sound skin of other fruit, while the colour of the sound skins of both fruits are 

very different, as can be seen in the detailed views in Figure 1. Hence, despite the large number of recent advances in 

computer vision, in-line inspection equipment, and multispectral (MIS) or hyperspectral (HIS) imaging systems for 

inspecting fruits and vegetables (Cubero et al. 2011; Lorente et al. 2012), the challenge is still large, especially taking into 

account the fact that new and dangerous pests and diseases are still appearing. This work reviews the recent developments 

and applications to create new fast, automated and reliable inspection systems based on computer vision to monitor the 

production of citrus fruits from the trees to the packing lines. 

 

Figure 1. Comparison of the colour of the sound skin of two oranges and the colour of a defective skin. The sound skins of 

the two oranges present different colours (top) while their defective and sound skins have very similar colours and textures 

(bottom). 
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2. Inspection in the field 

2.1 Robotics for citrus harvesting 

The first applications of machine vision in the field for citrus were installed in robots for harvesting purposes. Since a 

robotic system for citrus harvesting was developed in the mid-1980s (Harrell et al. 1985), more efforts have been made to 

improve robotic citrus harvesting. Moltó et al. (1992) utilised the differences in the reflectance spectrum of the fruit and the 

leaves to locate the fruits on the trees. In the same work, they studied the reflectance of the light on the fruit surface due to 

the spherical shape of the fruits when they are illuminated using a flash. The particular pattern of the reflectance was used to 

locate the fruits. In the early 2000s, Burks et al. (2003) overviewed various aspects of successful robotic harvesting for 

citrus. They reported that field conditions, plant population and spacing, and plant shape and size were the most important 

factors for mechanical harvesting in the horticultural aspect. In the engineering aspect, factors to be considered were fruit 

detection and removal methods, and physical properties of fruit such as detachment force, damage potential, pressure 

resistance, and rind penetration force. Design of an end-effector and robotic manipulation were also crucial to decrease fruit 

damage during harvesting and increase the efficiency of the harvesting operation. To identify necessary force requirements, 

Flood et al. (2006) conducted puncture studies of oranges using an universal testing machine, and reported that the contact 

area was directly related to puncture force, which was a function of a punch diameter and the fruit’s radius of curvature. 

They identified a maximum value for an end-effector grasping force, which should not exceed the bursting or puncture 

limits. As part of the development of a robotic harvesting system, Subramanian et al. (2006) developed an autonomous 

guidance system for citrus grove navigation using machine vision and laser radar. The system was tested on straight and 

curved paths, and achieved successful guidance within 2.5-2.8 cm while travelling at 3.1 m/s. Hannan et al. (2009) also 

developed a machine vision algorithm to identify oranges for robotic harvesting. The red chromaticity coefficient was 

efficient in segmenting oranges under varying illumination conditions. They achieved 90% detection accuracy with a 4% 

false positive rate. More recently, Mehta and Burks (2014) developed a vision-based fruit depth estimation and robotic 

harvesting system using a computationally efficient method and in-depth visual servo control formulation.  

 

2.2 Inspection of fruit on the trees 

To inspect the crops in the field using computer vision is especially complex due to the changing environment, which 

requires the development of robust methods and algorithms capable of adapting to different natural conditions. Moreover, 
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the equipment normally has to be carried by agricultural vehicles or, more recently, cameras are mounted on unmanned 

aerial vehicles (UAV). Among the problems that arise in citrus crops, a new dangerous pest known as Citrus 

Huanglongbing (HLB) has recently appeared, this being one of the most destructive diseases in citrus worldwide. Currently, 

there is no treatment for this disease and efforts are being paid to the early detection of the symptoms in the trees using 

machine vision. Li et al. (2012) acquired airborne spectral images of citrus groves in 2007 and 2010, developed various 

HLB detection algorithms, and reported correct detection accuracies of 29-95% depending on ground truth accuracies, 

image spatial resolution, and methods used. Further, Li et al. (2014) developed a novel algorithm, called extended spectral 

angle mapping or ESAM, compared its performance with other commonly used methods, and reported a better detection 

accuracy of 86% with ESAM. Garcia-Ruiz et al. (2013) compared images taken from an aircraft with those acquired by a 

UAV to detect HLB, and found that UAV-based images produced better detection accuracies with lower rates of false 

negatives. Li et al. (2015) investigated the feasibility of utilising multispectral images captured by the WorldView-2 satellite 

with a 2-m spatial resolution to detect HLB-infected canopies, and compared their performance with aerial images. They 

reported that the satellite image produced the highest accuracy, although the selection of the spectral library would be the 

most important factor in achieving accurate detection.   

Other studies were conducted to develop handheld detection devices. Pourreza et al. (2015a) developed a handheld HLB 

detection system using starch accumulation in HLB symptomatic leaves, and achieved accuracies of 95.5% and 98.5% in 

lab and field tests, respectively. Furthermore, Pourreza et al. (2015b) reported that the vision sensor system developed was 

able to separate HLB infection from zinc deficient leaves, which looked similar to HLB symptoms, and that the separability 

of infected leaves was higher after the leaves were ground than in unground leaves. In a separate study related to HLB, Choi 

et al. (2015) developed a machine vision system to detect fruit that had been dropped on the ground due to HLB, which 

caused tremendous premature fruit drop before harvesting. The system developed achieved 83-88% detection accuracies 

depending on the different methods used. A geo-referenced map of dropped fruit was created to help further identify causes 

of fruit drop.  

On the other hand, one of the principal aims of detecting fruit on citrus trees by computer vision is yield prediction, the 

main problem being the similarity of the colour of the immature fruit and leaves. Various methods have been developed to 

detect immature green and mature citrus fruit for yield mapping purposes. In the early 2000s, Annamalai and Lee (2003) 

developed an image processing algorithm to detect citrus fruits in an image using hue and saturation thresholds of citrus 

fruit, leaves, and background classes. They reported an R2 of 0.76 between the number of fruit obtained by the machine 
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vision algorithm and the number counted manually. The total processing time for an image was 283 ms with a 750 MHz 

Pentium processor, excluding image acquisition. Further, Annamalai and Lee (2004) investigated spectral signatures of 

immature green citrus fruit and leaves for the purpose of developing spectral-based fruit identification and an early yield 

mapping system. Diffuse reflectance of fruit and leaf samples were measured in the range of 400-2500 nm, and two 

important wavelengths, 815 nm and 1190 nm, were identified as shown in Figure 2. A ratio of these two wavelengths was 

used to distinguish immature green fruit from leaves.  

 

Figure 2. Reflectance spectra of immature green citrus and green leaves (adapted from 

Annamalai & Lee, 2004). 

 

Employing an outdoor HIS, Ye et al. (2008) utilised two-band vegetation index (TBVI) to develop yield prediction models, 

canopy size, and both of them together. The model with both TBVI and canopy size produced a better yield prediction 

accuracy of 76%. In contrast, Okamoto and Lee (2009) developed ground-based detection algorithms to identify green 

immature citrus for three different varieties using the range of 369-1042 nm. A linear discriminant analysis for pixels was 

used to identify fruit objects and spatial image processing steps were used to detect green citrus. They reported detection 

accuracies of 70-85% depending on citrus varieties, and 80-89% accuracy for the fruit in the foreground. For a combined set 

of three varieties, a 75.8% success rate was reported for the validation set images. Young leaves were the main obstacle for 

correction identification, since they were spectrally very similar to green citrus.  

An alternative to HIS was presented by Bulanon et al. (2009) who used a combination of thermal and visible imaging to 

detect immature fruits in citrus orchards. They adopted two image fusion methods, Laplacian pyramid transform and fuzzy 

logic, discovering that image fusion performed better than any single technology. 

Since HIS or thermal systems are usually expensive, attempts were made to utilise a typical consumer grade digital camera 

to detect immature green citrus fruit. Kurtulmus et al. (2011) developed a machine vision algorithm to distinguish immature 

green citrus fruit from other objects in natural outdoor colour digital images using colour, circular Gabor texture, and a 

novel ‘eigenfruit’ method, a 75.3% rate of correct identification of immature green citrus being obtained for a validation set. 

Example results are shown in Figure 3.  
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Figure 3. Immature green citrus recognition results: (a) results with the algorithm developed, (b) detection of occluded fruit 

with a false positive, and (c) detection for a smaller partially-occluded fruit (Adapted from Kurtulmus et al. 2011). 

 

In Bansal et al. (2013), a percent leakage of Fast Fourier Transform (FFT) was used to distinguish fruit from other objects in 

natural outdoor colour digital images, and 82% of fruit was correctly identified from a set of 60 validation images. They 

suggested that the FFT leakage technique would be useful in detecting other green immature fruit. Sengupta and Lee (2014) 

also developed a method for identifying immature green citrus from digital colour images, and reported a detection accuracy 

of 80.4% in a validation set. A Hough circle detection and texture classification by a support vector machine (SVM) were 

used to find all potential citrus fruits. False positives were then removed using Canny edge detection and keypoints obtained 

by a scale invariant feature transform (SIFT). They reported that varying illumination, partial occlusion in outdoor images, 

and detecting immature green citrus in the presence of green leaves were major problems, and that an additional method 

would be needed to remove more false positives.  

 

2.3 Inspection of fruit in the field using mobile platforms 

Electronic sorters for quality and safety inspection of fruits based on machine vision have been developed to be used mostly 

in packinghouses, these being controlled environments with powerful processing units and illumination systems, thus 

enabling the development of complex image analysis algorithms capable of inspecting the products at a very high speed, but 

also with high needs in terms of electrical energy. However, the demands of markets and consumers as well as social 

concerns about good practices, sustainability and traceability all make it necessary to guarantee the quality of agricultural 

products from the earliest stages of crop production. The inspection and early detection of low quality fruits for the fresh 

fruit market in the field as they are harvested would make it possible to prevent them from reaching the packinghouse, thus 

saving in further transport or treatments of this bad fruit or preventing the possibility of spreading diseases to other healthy 

fruit during transportation or storage. The information about the quality of all the production related with the exact location 

of harvesting of each individual fruit can be the basis on which to create maps of the crop associated with the quality or 

other important parameters of the fruits. Moreover, the pre-sorting of the fruit in the field makes it possible to anticipate the 

management of the fruit when it comes into the packinghouse. Kohno et al. (2011) developed a computer vision system in 
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combination with an NIR spectrometer that, when mounted on a mobile platform, allowed both the external (colour and 

diameter) and the internal quality (sugar content and acidity) of citrus fruits to be assessed during harvesting. However, the 

large amount of time needed by the system to inspect a single fruit (between 12 and 20 s) made it impractical for a 

commercial situation. Cubero et al. (2014a) presented a more efficient computer vision system to inspect citrus fruits 

externally at harvest time mounted on an agricultural vehicle. The system had a smart camera capable of capturing the 

images and optimised the algorithms so as to be able to perform the image processing on the slow microprocessor of the 

camera. An illumination system based on pulsed LEDs ensured low energy consumption. The system was capable of 

inspecting and sorting the fruit into three categories using the standard citrus colour index (Vidal et al. 2013) and size 

properties at a rate of 8 fruits/s.  

These systems of fruit inspection in the field are even more necessary when the fruit is harvested using mechanical methods, 

such as canopy shakers (Torregrosa et al. 2014), because these devices are not selective and harvest all the fruit regardless 

of its condition (Chinchuluun et al. 2009). For these cases, it is also important to measure the amount of fruit harvested and 

obtain statistics about some quality like size or estimated weight. Shin et al. (2012a & 2012b) developed a computer vision 

system that inspected the fruit on a conveyor belt while it was transferred from a catch harvester. The system could count 

the number of harvested fruits and the size distribution but in the case of need cannot sort the fruit individually.  

Table 1 summarises the different works carried out for the application of computer vision in the citrus inspection in the field 

ordered by different topics chronologically. 

 

Table 1 

Reference Achievement 

Robotics for citrus harvesting 
Harrell et al. (1985) One of the first applications for harvesting 

Moltó et al. (1992) Utilised the differences in the reflectance spectrum and reflection patterns to locate the fruit in 

the trees 

Burks et al. (2003) Reported that field conditions, plant population and spacing, and plant shape and size were the 

most important factors for mechanical harvesting in the horticultural aspect  

Flood et al. (2006) Studied a maximum value for an end-effector grasping force for harvesting 

Subramanian et al. (2006) Developed an autonomous guidance system for citrus grove navigation using machine vision 
and laser radar 

Hannan et al. (2009) Developed a machine vision algorithm based on red chromaticity coefficient to identify oranges 

for robotic harvesting. 

Mehta and Burks (2014) Developed a vision-based fruit depth estimation and robotic harvesting system using in-depth 

visual servo control formulation. 

HLB detection 
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Li et al. (2012) Developed several HLB detection algorithms from airborne spectral images of citrus groves 

Garcia-Ruiz et al. (2013) Compared images taken from an aircraft with those acquired by a UAV to detect HLB 

Li et al. (2014) Developed a novel algorithm, called extended spectral angle mapping or ESAM to detect the 

presence of HLB 

Li et al. (2015) Compared satellite images to aerial images in order to detect HLB 

Pourreza et al. (2015a) Developed a handheld HLB detection system using starch accumulation on infected leaves 

Pourreza et al. (2015b) Reported that the vision sensor system developed was able to separate HLB infection from zinc 

deficient leaves 

Choi et al. (2015) Developed a machine vision system to detect fruit that had been dropped on the ground due to 

HLB 

Yield prediction 

Annamalai and Lee (2003) Developed an algorithm to detect citrus fruits on trees using hue and saturation thresholds of 
citrus fruit, leaves, and background classes 

Annamalai and Lee (2004) Investigated spectral signatures of immature green citrus fruits and leaves to develop spectral-

based fruit identification and an early yield mapping system 

Ye et al. (2008) Utilised two-band vegetation index to develop yield prediction models, canopy size, and both of 

them together 

Okamoto and Lee (2009) Developed ground-based detection algorithms to identify green immature citrus for three 

different varieties using the VIS/NIR range.  

Bulanon et al. (2009) Used a combination of thermal and visible imaging to detect immature fruits in citrus orchards.  

Kurtulmus et al. (2011) Developed an algorithm to distinguish immature green citrus fruits in natural outdoor on images 

using colour, circular Gabor texture, and a novel ‘eigenfruit’ method 

Bansal et al. (2013) Used Fast Fourier Transform (FFT) was to distinguish fruit from other objects in natural outdoor 
colour images 

Sengupta and Lee (2014) Identified immature green citrus from digital colour images using a Hough circle detection and 

texture classification by a support vector machine 

Mobile platforms 

Kohno et al. (2011) Developed a computer vision system in combination with an NIR spectrometer mounted on a 

mobile platform to measure both the external (colour and diameter) and the internal quality 

(sugar content and acidity) of citrus fruits with low speed. 

Shin et al. (2012a & 

2012b) 

Developed a computer vision system that inspected the number and size distribution of 

harvested fruits on a conveyor belt while transferred from a catch harvester  

Vidal et al. (2013) Developed fast algorithms to inspect colour of citrus fruits at harvest time mounted on an 

agricultural vehicle 

Cubero et al. (2014a) Developed a computer vision system energetically efficient to inspect at a high speed the colour 

and size of citrus fruits at harvest time mounted on an agricultural vehicle 

 

3. Postharvest inspection of citrus fruits using visible imaging 

After arriving at the packinghouse after harvesting, a number of postharvest handling practices are applied to the fruit, 

especially when it is destined for consumption as fresh fruit. The first inspection is usually performed on a roller elevator 

that transports the fruit to the washing machine. At this point, foreign materials as well as rotten, cut and very bad quality 

fruits are removed. Fruits are then washed and fungicide may also be applied if needed. Later, different processes that 

include rinsing, waxing and being temporarily held in cold storage are applied. However, these operations may be modified 

under certain conditions, for instance when the fruit is harvested while the skin is still green (but internally it is fully ripe) 

and a process of degreening is therefore needed. The degreening process depends on the colour at harvest and thus a sorting 

by colour is required (Ladaniya, 2010). Figure 4 shows oranges of different colours ranging from green to orange.  
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Later, when the fruit is going to be shipped to the market, the whole production is inspected and sorted into commercial 

categories to ensure that only fruit accomplishing the minimum requirements of quality reaches the consumer. Moreover, to 

maximise profits they have to be classified in commercial categories according to several parameters that have a certain 

influence on the price the consumer is willing to pay for the product such as size or colour. In the past and in less automated 

facilities, external inspection was carried out visually by trained workers and calibration was performed using a drop-roll 

sizer to sort the fruit, usually into increasing sizes, according to the equatorial diameter. Currently, to deal with the 

inspection of the huge amount of fruit handled by packinghouses, they rely on automated inspection systems. 

 

Figure 4. Colour classification of citrus fruits. 

 

3.1 Principles of electronic sorters 

Modern citrus packinghouses are equipped with electronic sorters that can capture and analyse images of fruits at a very 

high speed, by measuring external properties such as colour, size or the presence of damage or defects (Figure 5). These 

sorters use machine vision, whose application in the postharvest processing of fruits and vegetables has increased 

considerably in recent years (Blasco et al. 2016). Nevertheless, automated inspection of agricultural produce shows certain 

particularities and problems that are not present in industrial pieces due to their biological nature. While manufactured 

products often present similar colours, shapes, sizes and other external features, fruit such as citrus fruits may show very 

different characteristics from one item to another. Moreover, it is essential that the presence of stem-ends, leaves, dirt or any 

extraneous material be identified and not confused with true skin defects, which is particularly complex in the case of round 

fruits because all the surface has to be analysed. On the other hand, markets demand very fast image processing and for this 

reason a trade-off between speed and accuracy must be found. Examples of databases of images of citrus fruits showing 

different defects can be found at http:\www.cofilab.com\downloads. 

In all electronic fruit sorters that make use of machine vision, the performance not only depends on the algorithms 

developed to extract information from the samples but also on the proper design and maintenance of key elements such as 

the illuminating system or the camera. Hence, it is important to take this into account to design algorithms that are robust 

against failures or defects of these elements (Ottavian et al. 2013 & 2014). Illumination is one of the conditioning factors 

that most seriously affect performance. Indeed one of the main problems that arise when illuminating citrus fruit is that 
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bright spots appear on the peel due to the very reflective surface of the fruit, especially after the waxing and polishing 

operations. These bright spots can affect the estimation of the colour of the fruit and sometimes mask defects or blemishes 

that it is important to detect. The problem grows because of the spherical shape of the fruit. A common way to avoid 

specular reflections when illuminating any object is to use a 45º/0º geometry, where the sample is illuminated at 45° off the 

normal to the sample and the reflected light is detected at 0° (perpendicular to the sample). This method works well for flat 

objects but in the case of spherical samples like citrus fruit most of the surface is curved and hence not perpendicular to the 

camera, thus causing glares at particular angles between the surface and the camera. For these cases, it is recommendable to 

use very diffuse light or polarising filters (Morgan and Stockford, 2003). However, in some exceptional cases a particular 

reflection of the light is needed such as, for instance, to measure the texture or roughness of the surface, which was 

investigated by Jafary et al. (2014) as indirect estimation of the thickness of the peel. This work could lead to detect the 

Puffiness in mandarins which is characterized by separation of the peel from the pulp on the tree or in storage, causing the 

rejection of the fruit. This disorder is hardly detectable by typical image processing algorithms focused on estimating colour 

or detecting skin damages and need the development of particular algorithms based on texture. Unfortunately, this work did 

not include such aim but can serve as further reference. 

An additional problem comes from the fact that the top of the fruit will always appear brighter than the edges, with a 

gradient from the top to the edges that depends on the curvature of the fruit. Two approaches have been envisaged to correct 

this effect. On the one hand, the amount of light reflected by the fruit in each area can be corrected. Gomez-Sanchis et al. 

(2008) created an elevation model from the circumference of the oranges assuming them to be perfectly spherical with a 

Lambertian surface. For the case of mandarins, which are more flattened, they applied an adjustment to the total height 

depending on the cultivar. In this way, the reflection of each pixel was corrected according to the value given by the model, 

thereby achieving a similar reflection for the pixels at the top and near the edge. A similar strategy was followed by Li et al. 

(2013) under the premise that the illumination component of the oranges is generally characterised by smooth spatial 

variations, while the reflectance component tends to vary abruptly. On the other hand, the edges can be removed simply 

from the analysis using morphological operations, as did Niphadkar et al. (2013b). Probably this last approach is the worst 

from the accuracy of the analysis point of view but probably the fastest, and it is important to take into account that industry 

demands for fast methods capable of inspecting tons of fruit per hour and therefore a commitment between computing speed 

and accuracy is needed. 
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Figure 5. Electronic sorter for citrus fruits. 

 

Colour cameras are still the most widely used in the quality inspection of fruits because the external properties of the peel 

are the ones that are taken into consideration most in the quality standards. Traditionally, quality inspection has been carried 

out in the packinghouses visually by trained workers and hence methods based on colour cameras trying to mimic their 

capabilities have been largely developed. A drawback of cameras is that they only capture the partial view of the fruit that 

faces the camera, missing the information on the other side. To inspect as much of the surface as possible it is necessary to 

use several cameras with different angles and/or to rotate the fruit while passing it under the camera to acquire images with  

different views of the fruit. Two imaging techniques are normally used to achieve this and both are based on acquiring 

several images of the fruit while rotating it under the camera and hence showing different parts of the surface. The 

difference is the way in which the different images captured of the same fruit are processed. The first type of system 

processes the images separately; each image is processed in the moment it is captured and, finally, when the fruit is 

completely inspected, a decision is made based on the results of the partial images. This was the strategy followed by Vidal 

et al. (2013) and Cubero et al. (2014a). The second type extracts the central strip from every image captured. When the last 

image is captured, all these strips are joined into a single image to create a map of the fruit’s surface. The main advantage of 

this method is that only one image is processed, thus saving time. The main disadvantage is that the shape features of the 

fruit are missed and hence size cannot be estimated. This strategy was followed by Aleixos et al. (2002). Both methods are 

currently implemented in modern electronic citrus sorters based on computer vision. 

 

3.2 Estimation of external properties of the fruit 

The sound peel of commercial oranges and mandarins is expected to be orange in colour and defects and stains normally 

(but not always) have different colours. In the case of postharvest inspection of citrus fruits based on computer vision, the 

main goals is to estimate the size and colour and detect the presence of defects to sort the fruit on the quality determined by 

these properties. The first step in the image processing is the image segmentation that is the process of dividing an image 

into meaningful structures (Basavaprasad and Ravi, 2014). The goal of the image segmentation could be, for instance, to 

separate the fruit from other fruits in the image or from the background and to divide each fruit into different areas such as 

stem, defects, discolourations, etc. By segmenting the fruit from the background, the size can be estimated. In most 
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packinghouses, fruit is graded by size with the aim of maximising profits and offering the consumer packages with 

homogeneous products. Size is usually estimated as the area or diameter of the circle-shaped projection of the fruit in the 

images. However, Omid et al. (2010) estimated the volume of the citrus using two cameras and computing the volume by 

dividing the fruit in a series of discs but it is not demonstrated the advantage of this method respect to the size estimation 

using 2D projections since volume is not a required property by the industry. The estimation of the size by a computer 

vision system can be altered by the presence of long stems that may confuse the algorithms when measuring the diameter or 

the length of the fruit. Cubero et al. (2014b) developed a robust method to detect stalks in different fruits, including oranges 

and mandarins, which led to more exact estimations. 

Segmentation methods based only on colour information have been largely investigated (Iqbal et al. 2016) but most of them 

require a previous training step because the large variability in colours makes it difficult to find absolute systems capable of 

dealing with all this variability. A typical supervised method is to define particular classes like background, stem, sound 

peel, different types of defects, etc., and to assign them to particular colours. The application FoodColorInspector, that has 

been developed especially for the segmentation of colour images and can be downloaded for free from 

(http://www.cofilab.com/downloads) allows this to be performed by selecting pixels belonging to the different objects in the 

image (training set) and assigning them to different classes, while trying to cover all the variability of the colours and 

properties of the samples. The RGB (Red, Green and Blue) coordinates of the selected pixels (X) and the class they belong 

to (Y) are used as inputs to create a model based on a Bayesian approach of the Discriminant Analysis in order to later 

classify any unseen pixel as belonging to one of the predefined classes. Once the model has been created, it is possible to 

pre-classify all possible combinations of RGB and hence any possible colour in the image and store this classification in a 

table to be used during in-line real-time applications. However, the potential of supervised segmentation methods based 

only on colour information is limited because, due to the large variability that can be found in the fruits, such systems need 

frequent re-training. To solve this, Blasco et al. (2007a) exploited the contrast between sound peel and defects by means of 

an unsupervised segmentation method based on region growing, which, on the other hand, consumed a large amount of 

processing time. Another technique was used by López-García et al. (2010), who employed a multivariate image analysis 

approach consisting in introducing textural information about each pixel and its 3x3 neighbourhood and later using all the 

variables in a model based on principal component analysis (PCA) (Jackson, 1991). Several segmentation techniques 

applied on citrus fruit images were compared by Vijayarekha (2012a) to detect defects such as iterative intensity 

enhancement, contrast stretching, comparison against a reference colour of sound peel and Euclidean distance between the 
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colour of different regions of interest. They succeeded with all methods but using clearly differentiated defects. The fastest 

method was the one based on the Euclidean distance among colours, but it still took more than 1 s to segment the image, 

which makes the method incapable of being implemented on an in-line quality inspection system. The work was expanded 

to identify the defects after segmentation (Vijayarekha, 2012b). For each defect found, several features were analysed using 

linear discriminant analysis (LDA) and artificial neural networks (ANN), the results showing that LDA performed better in 

distinguishing between pitting, splitting and stem-end. However, the methods were tested on a reduced number of samples 

with very evident defects easy to discriminate.  

A serious problem arises when the appearance of other features, like the stem, is similar to a stain in the peel. Blasco et al. 

(2007b) tested different colour spaces to discriminate among eleven types of defects in the citrus peel and the stem. Using 

the HSI (Hue, Saturation, Intensity) colour space, success ranged from 43% in detecting scale infestation to 100% in the 

case of chilling and stem-end injuries. Later, they introduced morphological information about the defects into the analysis, 

thereby increasing the identification of all defects to a global average rate of success of 85% (Blasco et al. 2009). 

Sometimes it is important to differentiate those defects that only affect the appearance of the fruit from the ones that cause 

fruit decay and can spread to other fruits, hence causing great losses. Kim et al. (2009) introduced textural features in colour 

images to distinguish between some serious damage like canker and other cosmetic defects like wind scar, among others, 

thus achieving a rate of good classification of more than 96%. López et al. (2011) used colour and texture features extracted 

in the RGB and HSI colour spaces to discriminate among seven common defects of citrus fruits. Best results were achieved 

in the HSI colour space with success rates ranging from 63% in the case of scale infestation to 100% in the case of stem-end 

breakdown. A different strategy was followed by Li et al. (2013), who employed RGB image ratios to discriminate the stem 

from different defects in oranges, achieving a good score on classification of defects in images including and excluding the 

stem. However, the reduction in the prices and the popularisation of MIS and HIS, have increased research on identifying 

some particularly dangerous defects using this non-standard computer vision technology. 

 

4. Inspection of defects of special importance using non-standard computer vision 

The use of non-standard computer vision systems allows the creation of systems that are specific to detect certain important 

defects. The importance of these defects is due mostly to the economic losses they cause, the ease with which they can 

spread to other fruits in postharvest handling or because of the impossibility of detecting them using standard colour vision 
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while they can often be observed in particular regions of the spectrum or at certain specific wavelengths (Gómez-Sanchis et 

al. 2014). The studies conducted by Gaffney (1973) and Magwaza et al. (2012) determined some visible and near-infrared 

wavelengths at which more contrast between the peel and major defects could be found. Recent advances in technology 

have made new equipment for acquiring hyperspectral images accessible to researchers that combines the advantages of 

imaging and spectroscopy, resulting in many successful applications in the food industry for quality and safety evaluation 

and inspection (Moltó et al. 2010; Lorente et al. 2012). HIS are characterised by offering the possibility of acquiring a large 

number of images at different consecutive wavebands. Basically, research on citrus fruits applying MIS or HIS has been 

conducted to detect two different types of diseases: decay lesions caused by fungi, mainly by Penicillium digitatum (green 

mould), and citrus canker, but these technologies have been used for other types of defects of certain importance for the 

citrus industry.  

Many works are focused on the selection of the best wavelengths for detecting these major diseases. However, there is not 

an agreement on them. Actually, it does not really matter what particular wavelengths are selected for better detection of 

one or another defect because in most cases they are different and depend the most on the methods used for feature selection 

than on the defects themselves. Therefore, particular wavelengths found by the different works are not cited in this revision. 

 

4.1 Detection of decay lesions 

Early detection of fungal infections still remains one of the major issues in the postharvest processing of citrus fruits 

because of the great economic losses that this disease causes to the industry around the world (Zhu et al. 2013). These fungi 

reproduce very rapidly and their spores can be quickly disseminated to sound fruits (Palou et al. 2011). The symptoms these 

lesions cause in the fruit are difficult for workers to detect because the appearance of the infected skin is similar to that of 

the sound skin. In consequence, there is a need to develop new inspection methods to detect the infected fruit in the 

packinghouses as soon as possible.  

Because of the difficulties involved in detecting visually decayed fruit, the technique adopted in packing lines is the use of 

fluorescence induced by ultraviolet (UV) light. Fluorescence is produced when a molecule is excited with high energy 

(short wavelength) light and the subsequent instantaneous relaxation emits lower energy (longer wavelength) light. The use 

of such UV light allows certain types of external damage that are not visible using visible light to be observed. In the 

application to detect decay lesions in citrus, fruit is illuminated with UV sources (around 380 nm) that induce visible 
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fluorescence (around 550 nm). However, this procedure has a high risk of human error and it is potentially harmful for 

operators (Lopes et al. 2009). Therefore, various machine vision technologies are being incorporated to automatically detect 

decay in citrus fruit, such as the use of UV-induced fluorescence or the introduction of HIS equipment. Blanc et al. (2010) 

patented a commercial sorter for decay detection in citrus fruits using UV illumination (Maf Industries, 2016). Ogawa et al. 

(2011) presented a system to detect decay lesions in citrus using UV images. However, Momin et al. (2012) demonstrated 

that different cultivars have different excitation wavelengths to produce UV induced fluorescence in the rotten areas and 

therefore this information should be taken into account in any work using fluorescence to detect fruit decay in postharvest. 

For this reason, it is of special importance to detect the compounds involved in the fluorescence process as it was studied by 

Kondo et al. (2009) and Momin et al. (2013a). Another problem is related with other defects that also present some degree 

of fluorescence and hence can confuse a potential automated system (Blasco et al. 2007b; Slaughter et al. 2008; Obenland et 

al. 2010). A way to differentiate among defects presenting fluorescence is by determining the pattern in which the 

fluorescence is emitted (Momin et al. 2013b) but the problem arises when a system has to detect different types of defects, 

that is, decay lesions that present fluorescence and mild defects that only affect the appearance of the fruit. On the other 

hand, this technique presents some problems, such as the fact that visible lighting could hide the effect of fluorescence and 

therefore this inspection has to be performed in a separate chamber or using the innovative technique presented by Kurita et 

al. (2009), which alternatively switched on UV and white pulsed LED in a very short period of time, thus allowing the 

inspection of almost the same scene with both types of illumination, and hence allowed both a fluorescent and a colour 

image to be captured. Figure 6 shows a hyperspectral image in the range 510 – 990 nm of an orange with a decay lesion. 

Figure 7 shows a hyperspectral image of the same fruit acquired using UV light to produce the fluorescence in the damaged 

area. 

HIS systems are also currently being investigated with the aim of detecting decay (Gomez-Sanchis et al. 2014). Gomez et 

al. (2007) and Gómez-Sanchis et al. (2008 & 2012) developed machine learning techniques to distinguish fruit with decay 

lesions from sound fruit and fruit with other less severe external defects. A common characteristic of these systems is their 

capability of capturing a huge amount of information which, on the other hand, is also a drawback because part of this 

information is redundant and unnecessary (Liu et al. 2014). Some works have been focused on reducing the amount of 

information which is also important due the high price of the necessary equipment. These techniques transform the data in 

the high-dimensional space into a lower-dimensional space that preserves the observed properties of the data. The spectral 
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features are used as inputs of classification algorithms in order to increase the performance of the classifiers developed to 

discriminate between sound and decaying skin (Gomez-Sanchis et al. 2013; Lorente et al. 2013a & 2013b). 

Recently, laser light backscattering imaging (LBI) has also been studied as an alternative machine vision technique for 

detecting fruit quality (Mollazade et al. 2012; Adebayo et al. 2016). When a light beam interacts with a biological system 

like a fruit, reflectance, absorption and transmittance of such light take place (Birth, 1976). Particularly, light reflectance 

(scattering) appears with three different geometries: regular reflectance, which occurs when photons are reflected at the 

same angle as the incident light; external diffuse reflectance, which occurs at 45º to the incident light; and diffuse 

reflectance. In the latter case, light interacts with the internal components of the fruit and is then scattered backward to the 

exterior tissue surface, thus carrying information about the morphology and structures of the tissue in addition to the 

absorption properties. A system based on this technology was tested by Lorente et al. (2013c) using five lasers emitting light 

in different NIR wavelengths to capture backscattering images of sound and damaged skin areas of the fruit. Backscattering 

images had radial symmetry with respect to the light incident point and their intensity decreases with increasing distance 

from the incident point. Hence, the images were reduced to one-dimensional profiles after radial averaging. The radial 

intensity of the backscattering profiles was calculated by obtaining the average value of all pixels within each circular ring 

with one pixel size. This work used the Gaussian-Lorentzian (GL) cross product distribution function to describe 

backscattering profiles from backscattering images and was later enhanced in Lorente et al. (2015) to include a physical 

approach consisting in extracting optical properties of fruits by Farrell’s diffusion theory (Farrell et al. 1992). Despite the 

fact that these works have some interest because they try to develop new approaches to detect decay lesions avoiding the 

problems related with UV illumination, the practical implementation of LBI still needs research because the laser has to 

point exactly to the damage in order to be able to detect it. 

 

Figure 6. Hyperspectral image in the range 520 – 990 nm of an orange with a decay lesion with a resolution of 10 nm. The 

disease is difficult to detect in both the visible and NIR bands. 

 

 Figure 7. Hyperspectral image in the range 510 – 660 nm of an orange with a decay lesion (the same as in Fig. 6) 

with a resolution of 10 nm, illuminated with UV light. 
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4.2 Detection of citrus canker 

Citrus canker is another severe disease affecting citrus that causes a significant socioeconomic impact in Florida, and has 

implications for national and international trade. It is characterised by erumpent lesions on fruit, foliage and young stems of 

most cultivars of citrus, and infected fruit are less valuable or entirely unmarketable (Gottwald et al. 2002); hence, 

automated methods to detect such a serious disease have been studied. All efforts have been focused on the development of 

spectral based computer vision systems. Balasudaram et al. (2009) investigated reflectance properties of citrus canker 

among other types of defects and sound skin in the range 400 to 2500 nm. In the VIS/NIR range (400 to 1100 nm) they 

found up to seven wavelengths that could serve as the foundation for further developments based on computer vision.  

Qin et al. (2008) used a portable imaging spectrograph to acquire hyperspectral images of red grape fruits affected by 

canker and other defects in the range 400 to 900 nm. The spectra of the different defects obtained from the images were 

analysed using PCA and showed a good rate of detection of the most severe diseases. This work was enhanced by Qin et al. 

(2009) by introducing spectral information divergence as a classification method to increase the performance up to 97.6% 

success in canker lesion detection. Based on these works, Zhao et al. (2010) introduced the effect of the harvesting time and 

its influence in the detection of the damage. In Qin et al. (2011), the authors exploited the bands selected using PCA and 

correlation analysis to obtain a system capable of detecting the canker using ratios of two bands, which allows for the 

possibility of creating a fast detection system. Therefore, a system to detect canker lesions in-line was developed by Qin et 

al. (2012) using real-time algorithms. Moreover, PCA and band ratios were used by Li et al. (2010 & 2012) to select 

important bands in the detection of this disease among other common defects. However, to assess the practical application 

of such systems it is important to know some limitations, such as the minimum detectable size limit for canker lesions 

(Niphadkar et al. 2013a) or the influence of the distortion and reflectance problems caused by the sphericity of the citrus 

fruits (Niphadkar et al. 2013b). 

 

4.3 Detection of other skin defects 

HIS has also been used to detect other defects that commonly appear on the skin of the citrus fruits in packinghouses. 

Blasco et al. (2007b) discriminated among 11 types of external defects of oranges and mandarins using a multispectral 

system composed of a colour, a NIR and a UV camera. Using the different techniques separately the results were lower than 

when combining them, since different defects could be detected better using some of the cameras than with the others. 
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Accordingly, only damage by anthracnose and sooty mould were detected in NIR, only the stem-end injury was detected in 

UV, while thrips and wind scarring and decay lesions were the only defects that could be detected using UV-induced 

fluorescence. Jiangbo et al. (2011) used a HIS to distinguish among different types of defects, discrimination higher than 

90% being achieved for all defects using ratios between bands selected through PCA. A dangerous defect that causes the 

fruit to be rejected is the citrus black spot, as stated by Bulanon et al. (2013), who utilised hyperspectral imaging to 

determine four wavelengths capable of distinguishing citrus black spot among four other defects and good fruit with an 

overall accuracy of 92% but a black-spot discrimination rate of 100%. The wavelengths were selected using band ratios and 

differences while the classification was performed by means of ANN and Bayesian linear analysis. With the same dataset, 

Kim et al. (2014) increased the accuracy in the overall discrimination around 98% using spectral angle mapper (SAM) and 

spectral information divergence (SID). A major problem in which HIS can help arises when the goal is to discriminate 

between similar defects or when the fruit is still immature and presents green and orange colours that make inspection 

difficult. Dong et al. (2014) used PCA to select a reduced set of wavelengths to detect citrus thrips in green citrus fruits. 

 

5. ICT in the citrus inspection 

The application of information and communications technology (ICT) in agriculture is becoming increasingly more 

frequent. Very recently, smartphones are being introduced into agriculture to perform several tasks, most of them related 

with calculators or virtual advisors for different operations of crop handling (Pongnumkul et al. 2015). These applications 

are starting to use the capabilities of the sensors integrated within these smart devices, like the built-in camera. Gong et al. 

(2013) developed a citrus yield estimation algorithm utilising a modified 8-connected chain code. The algorithm was 

incorporated into an App for Android mobile devices obtaining a correct recognition accuracy of 90%. However, the 

processing time was about 3 s for one image with a 1.4 GHz CPU of the handheld device and these results cannot be 

generalised because the segmentation algorithm is based on thresholds and this technique is not robust under natural 

conditions. On the other hand, yield estimation in citrus has already been investigated using colour cameras, thermal 

cameras or hyperspectral equipment with different success due to fruit overlapping or fruit hidden by leaves; it is therefore 

doubtful that it could be achieved using a smartphone with such accuracy under real conditions. 

Another application available in Google Play® using computer vision for citrus is the ICC-Calc for citrus fruits 

(https://play.google.com/store/apps/details?id=org.ivia.icc_calc). This App estimates the Citrus Colour Index (CCI) of citrus 
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fruits in the field or in the packinghouse, which makes it a tool that can be used to decide the maturity of the fruits. The 

colour index is shown live on the screen by placing the camera in front of the fruit and allowing the phone's torch to be 

switched on to make it more robust under different lighting conditions. In addition, it shows the colour coordinates of the 

fruit in several colour spaces. The image processing is carried out in real-time using the OpenCV libraries for Android 

(http://www.opencv.org). 

Table 2 summarises the different works carried out for the application of computer vision in the citrus inspection in 

postharvest ordered by different topics chronologically. 

Table 2 

Reference Achievement 

Estimation of properties of the fruit 

Blasco et al. (2007a) Used an unsupervised segmentation method based on region growing to separate defects from 

sound skin 

Blasco et al. (2007b) Tested different colour spaces to discriminate among eleven types of defects in the citrus peel 

and the stem  

Kim et al. (2009) Introduced textural features in colour images to distinguish between some serious damages and 

other cosmetic defects 
(Blasco et al. 2009) Introduced spectral and morphological information to distinguish between some serious 

damages and other cosmetic defects 

Omid et al. (2010) Estimated the volume of the citrus using two cameras and computing the volume by dividing the 

fruit in a series of discs 

López-García et al. (2010) Used multivariate image analysis introducing textural information and PCA to separate defects 

from sound skin 

López et al. (2011) Used colour and texture features extracted in the RGB and HSI colour spaces to discriminate 

among seven common defects of citrus fruits  

Vijayarekha (2012a) Used several segmentation techniques to detect defects in citrus fruits 

Vijayarekha (2012b) Used several segmentation techniques to identify defects in citrus fruits 

Li et al. (2013) Used RGB image ratios to discriminate the stem from different defects in oranges 

Cubero et al. (2014b) Developed a robust method to detect stalks in different fruits, including oranges and mandarins 
Iqbal et al. (2016) Investigated several supervised segmentation methods based on colour information 

Detection of decay lesions 

Gomez et al. (2007)  Used a Mahalanobis kernel to classify pixels as decay or sound skin in hyperspectral images 

Gómez-Sanchis et al. 

(2008) 

Used correlation analysis, mutual information, stepwise, and genetic algorithms based on linear 

discriminant analysis (LDA) to select the most relevant bands of hyperspectral images, and 

classification and regression trees and LDA for pixels classification in decay or sound skin 

Kondo et al. (2009)  Studied the compounds involved in the fluorescence process to detect decay in oranges 

Kurita et al. (2009) Innovative technique which alternatively switched on UV and white pulsed LED, thus allowing 

the inspection with both types of illumination, and hence allowed both a fluorescent and a colour 

image to be captured 

Slaughter et al. (2008) Detect freeze-damages in the skin of trough fluorescence imaging 

Blanc et al. (2010) Patented a commercial sorter for decay detection in citrus fruits using UV illumination  
Obenland et al. 2010) Detect senescence and peel quality trough fluorescence imaging 

Ogawa et al. (2011) Presented a system to detect decay lesions in citrus using UV images 

Momin et al. (2012) Demonstrated that different cultivars have different excitation wavelengths to produce UV 

induced fluorescence in the rotten areas 

Gómez-Sanchis et al. 

(2012) 

Used Minimum Redundancy Maximal Relevance to obtain a ranking of important bands and a 

multilayer perceptron and classification and regression trees to classify the pixels into orange 

and green sound skins, decay lesion or other common defect 
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Momin et al. (2013a) Studied the compounds involved in the fluorescence process to detect decay in lemons and yuzu 

Momin et al. (2013b) Studied the pattern of the fluorescence of different defects using microscopic images 

Gomez-Sanchis et al. 

(2013) 

Used seven machine learning methods to obtain the most relevant bands on VIS/NIR 

hyperspectral images and create another method based on the combination of that seven 

methods 

Lorente et al. (2013a)  Developed a method based on the receiver operating characteristic (ROC) to select relevant 

bands capable of segment pixels of hyperspectral images into five classes of sound skin, 

common defects and decay lesions  

Lorente et al. (2013b) Compared the performance of the method based on the ROC against other seven feature 

selection methods 

Lorente et al. (2013c) A LBI system to detect decay lesions using the Gaussian-Lorentzian (GL) cross product 
distribution function to describe backscattering profiles from backscattering images  

Gomez-Sanchis et al. 

(2014) 

Combined two LCTF in the visible and NIR to detect decay lesions in citrus fruits 

 

Lorente et al. (2015) A LBI system to detect decay lesions using a physical approach consisting in extracting optical 

properties of fruits by Farrell’s diffusion theory 

Detection of citrus canker 

Qin et al. (2008) Used a portable imaging spectrograph to acquire hyperspectral images of red grape fruits 

affected by canker and other defects in the range 400 to 900 nm 

Qin et al. (2009) This work was enhanced by introducing spectral information divergence as a classification 

method 

Balasudaram et al. (2009) Investigated reflectance properties of citrus canker among other types of defects and sound skin 

in the range 400 to 2500 nm 
Zhao et al. (2010) Introduced the effect of the harvesting time and its influence in the detection of the damage 

Qin et al. (2011) Exploited the bands selected using PCA and correlation analysis to detect the canker using ratios 

of two bands 

Qin et al. (2012) Developed a system to detect canker lesions in-line by using real-time algorithms 

Li et al. (2010 & 2012) Used PCA and band ratios to select important bands in the detection of this disease among other 

common defects  

Niphadkar et al. (2013a) Studied the minimum detectable size limit for canker lesions  

Niphadkar et al. (2013b) Studied the influence of the distortion and reflectance problems caused by the sphericity of the 

citrus fruits  

Detection of other skin defects 

Blasco et al. (2007b) Discriminated among 11 types of external defects of oranges and mandarins using a 

multispectral system composed of a colour, a NIR and a UV camera 

Jiangbo et al. (2011)  
 

Used a hyperspectral system to distinguish among different types of defects using ratios between 
bands selected through PCA 

Bulanon et al. (2013)  

 

Utilised hyperspectral imaging to determine four wavelengths capable of distinguishing citrus 

black spot among four other defects and good fruit 

Kim et al. (2014) Increased the accuracy of Bulanon et al. (2013) using spectral angle mapper (SAM) and spectral 

information divergence (SID) 

Dong et al. (2014) Used PCA to select a reduced set of wavelengths to detect citrus thrips in green citrus fruits 

 

 

6. Conclusions 

Citrus fruits are the number one fruit crop in international trade in terms of value, which has led to a lot of effort being made 

to automate different inspection operations along the production chain.  
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Many studies have been conducted for on-tree fruit identification using different imaging platforms under natural outdoor 

illumination conditions. Various detection algorithms have been developed with acceptable detection accuracies; varying 

illumination and fruit occlusion are, however, still major obstacles hindering the development of a real-time in-field fruit 

detection system. For the robotic citrus harvesting system to be successful, there are various factors to be considered, such 

as population, spacing, shape and size of plant, physical properties of the fruit, and removal method. 

In postharvest, machines are only capable of sorting fruits by size and weight, but consumers appreciate more quality 

attributes, like a good appearance and the absence of defects. Furthermore, producers need innovative and non-destructive 

solutions to detect dangerous diseases like citrus decay that can be a focus of future infections causing undesired losses of 

quality. 

Research and development on machine vision for citrus fruit inspection have been focused until current on the measurement 

of external properties with great success. Today's commercial machines based on colour images are currently able to obtain 

good accuracy in the quality control process with high processing speed. This process maximises the profit of the producer 

allowing packing the fruit sorted by size, colour or appearance which makes the fruits more attractive to the consumer. 

The next step is the possibility of identifying different types of defects or dangerous diseases so as to be able to sort the 

fruits according to commercial strategies and remove undesired fruit from the line or delivering the fruit to appropriated 

markets. This objective is starting to be solved in some commercial electronic sorters aimed at the early detection of decay 

using UV but more effort is required to improve their precision. The possibility of using non-standard computer vision 

systems outside the visible spectra, like hyperspectral imaging, has offered new methods to explore other spectral ranges 

and reaches this objective. Nevertheless, the in-line assessment of internal quality in citrus is still a major challenge for 

researchers.  

Several advances have been recently achieved using non standard computer vision systems like hyperspectral imaging for 

the detection of special types of dangerous defects (i.e. decay, citrus canker, black spot, etc.) but different individual 

wavelengths are reported for the different types of defects and moreover, and even for the same type of defect. The selection 

of particular wavelengths seems that depends mostly on the particular statistical method used and hence, at the moment, 

little conclusions can be extracted on this, or maybe that many different wavelengths can be used for the same purpose. 

Therefore, to develop a system capable of detecting all of them at the same time which is what the industry would demand, 

it is still a challenge that needs more research. 



 
23 

 

Acknowledgement 

This work was supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) through 

projects RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds. The authors 

would like to thank and acknowledge the contributions that were made by all the students, postdocs, technicians, and 

visiting scholars in the Precision Agriculture Laboratory at the University of Florida and the Computer Vision Laboratory at 

the Agricultural Engineering Centre of IVIA. 

 

References 

Adebayo, S.E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging 

techniques in agricultural and food processing - A review. Journal of Food Engineering, 169, 155-164. 

Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real time using machine 

vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121-137.  

Annamalai, P., & Lee, W. S. (2003). Citrus yield mapping system using machine vision. ASAE Paper No. 031002. St. 

Joseph, Mich., ASAE. 

Annamalai, P., Lee, W. S. (2004). Identification of green citrus fruits using spectral characteristics. ASAE Paper No. FL04-

1001. St. Joseph, Mich.: ASAE. 

Balasundaram, D., Burks, T.F., Bulanon, D.M., Schubert, T., & Lee, W.S. (2009). Spectral reflectance characteristics of 

citrus canker and other peel conditions of grapefruit. Postharvest Biology and Technology, 51, 220-226. 

Bansal, R., Lee, W. S., & Satish, S. (2013). Green citrus detection using Fast Fourier Transform (FFT) leakage. Precision 

Agriculture, 14(1), 59-70.  

Basavaprasad, B., & Ravi, M. (2014). A comparative study on classification of image segmentation methods with a focus 

on graph based techniques.  International Journal of Research in Engineering and Technology, 3, 310-315. 

Birth, G.S. (1976). How light interacts with foods. In: Gafney J.Jr.(Ed.), Quality detection in foods. ASAE, St. Joseph, 

USA, pp. 6-11. 

Blanc, P.G.R., Blasco, J., Moltó, E., Gómez-Sanchis, J., & Cubero, S. (2010) System for the automatic selective separation 

of rotten citrus fruits. Patent number EP2133157 A1 CN101678405A, EP2133157A4, EP2133157B1, US20100121484 

Blasco, J., Aleixos, N., & Moltó, E. (2007a). Computer vision detection of peel defects in citrus by means of a region 

oriented segmentation algorithm. Journal of Food Engineering 81(3), 535-543. 

Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007b). Citrus sorting by identification of the most common defects using 

multispectral computer vision. Journal of Food Engineering 83(3), 384-393.  

Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damages in 

citrus fruits using multispectral data and morphological features. Biosystems Engineering 103(2), 137-145. 

Blasco, J., Cubero, S., & Moltó, E. (2016). Quality Evaluation of Citrus Fruits. In Computer Vision Technology for Food 

Quality Evaluation, 2nd Edition (Sun, D-W, ed). Academic Press, San Diego, CA, USA. 

Bulanon, D.M., Burks, T.F., & Alchanatis, V. (2009). Image fusion of visible and thermal images for fruit detection. 

Biosystems Engineering, 103, 12–22 

Bulanon, D.M., Burks, T.F., Kim, D.G., & Ritenour, M.A. (2013). Citrus black spot detection using hyperspectral image 
analysis. Agricultural Engineering International: CIGR Journal 2013. 

Burks, T.F., Villegas, F., Hannan, M.W., & Flood, S. (2003). Engineering and horticultural aspects of robotic fruit 

harvesting: opportunities and constraints. HortTechnology, 15(1), 79-87.  



 
24 

Campbell, B.L., Nelson, R.G., Ebel, R.C., Dozier, W.A., Adrian, J.L., & Hockema, B.R. (2004). Fruit quality characteristics 

that affect consumer preferences for Satsuma mandarins. Hortscience 39(7), 1664-1669. 

Chinchuluun, R., Lee, W.S., & Ehsani, R. (2009). Machine vision system for determining citrus count and size on a canopy 

shake and catch harvester  Applied Engineering in Agriculture, 25 (4), pp. 451-458. 

Choi, D., Lee, W.S., Ehsani, R., & Roka, F.M. (2015). A machine vision system for quantification of citrus fruit dropped on 

the ground under the canopy. Trans ASABE, 58(4), 933-946. 

Codex Alimentarius, (2011). Codex standard for oranges. Available at: 

http://www.codexalimentarius.org/download/standards/10372/CXS_245e.pdf. Accessed March 2016 

Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco J (2011). Advances in machine vision applications for 

automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology 4(4), 487-504.  

Cubero, S., Aleixos, N., Albert, A., Torregrosa, A., Ortiz, C., García-Navarrete, O., & Blasco, J. (2014a). Optimised 
computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision 

Agriculture, 15(1), 80-94. 

Cubero, S., Diago, M.P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos N. (2014b). A new method for pedicel/peduncle 

detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62–

72. 

Dong, C.-W., Ye, Y., Zhang, J.-Q., Zhu, H.-K., & Liu, F. (2014). Detection of thrips defect on green-peel citrus using 

hyperspectral imaging technology combining PCA and B-Spline lighting correction method. Journal of Integrative 

Agriculture 13 (10), 2229-2235.  

European and Mediterranean Plant Protection Organization (EPPO) (2004). EPPO Standards - Guidelines on good plant 

protection practice - PP2/27 Citrus. EPPO/OEPP Bulletin 34(1), 43-56. 

FAOSTAT (2012). URL: http://faostat.fao.org 
http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Citrus/Documents/CITRUS_BULLE

TIN_2012.pdf. Accessed March 2016. 

Farrell, T.J., Patterson, M.S., & Wilson, B. (1992). A diffusion-theory model of spatially resolved steady-state diffuse 

reflectance for the noninvasive determination of tissue optical-properties in vivo. Med. Phys. 19, 879–888. 

Flood, S.J., Burks, T.F., & Teixeira, A.A. (2006). Physical properties of oranges in response to applied gripping forces for 

robotic harvesting. Transactions of ASAE, 49(2), 341-346. 

Gaffney, J.J. (1973). Reflectance properties of citrus fruit. Transactions of the ASAE, 16(2), 310-314. 

Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial 

imaging platforms for identification of Huanglongbing infected citrus trees. Computers and Electronics in Agriculture, 

91, 106-115.  

Gómez, J., Blasco, J., Moltó, E., & Camps-Valls, G. (2007). Hyperspectral detection of citrus damage with a Mahalanobis 

kernel classifier. Electronics Letters 43(20), 1082-1084. 

Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., & Blasco, J. 

(2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of 

Food Engineering 89(1), 80-86. 

Gómez-Sanchis, J., Martín-Guerrero, J.D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. 

(2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems 

with Applications 39(1), 780-785. 

Gómez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martínez-Martínez, J.M., Martínez-

Sober, M., & Aleixos N (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by 

Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest 

Biology and Technology, 82, 76-86. 

Gómez-Sanchis, J., Lorente, D., Soria-Olivas, E., Aleixos, N., Cubero, S., & Blasco, J. (2014). Development of a 
hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to 

detect citrus fruits decay. Food and Bioprocess Technology, 7, 1047-1056.  



 
25 

Gong, A., Yu, J., He, Y., & Qiu, Z. (2013). Citrus yield estimation based on images processed by an Android mobile phone. 

Biosystems Engineering, 115, 162-170.  

Gottwald, T.R., Graham, J.H., & Schubert, T.S. (2002). Citrus canker: The pathogen and its impact. Plant Health Progress, 

doi: 10.1094/PHP-2002-0812-01-RV. 

Hannan, M., Burks, T. F., & Bulanon, D.M. (2009). A machine vision algorithm for orange fruit detection. The CIGR 

Ejournal. Manuscript 1281. Vol. XI. December 2009.  

Harrell, R.C., Adsit, P.D., & Slaughter, D.C. (1985). Real-time vision-servoing of a robotic tree-fruit harvester. ASAE 

Paper No. 85-3550. St. Joseph, MI: ASAE. 

Holmes, G.J., & Eckert, J.W. (1999). Sensitivity of Penicillium digitatum and P. italicum to Postharvest Citrus Fungicides 

in California. Phytopathology 89 (9) 716–721. 

Iqbal, S.M., Gopal, A., Sankaranarayanan, P.E., & Nair, A.B. (2016). Classification of selected citrus fruits based on color 
using machine vision system. International Journal of Food Properties, 19, 272-288. 

Jackson, J.E., (1991). A User’s Guide to Principal Components. Wiley, New York, USA. 

Jafari, A., Fazayeli, A., & Zarezadeh, M.R. (2014). Estimation of orange skin thickness based on visual texture coarseness.  

Biosystems Engineering, 117, 73-82. 

Jiménez-Cuesta, M.J., Cuquerella, J. & Martínez-Jávega, J.M. (1981). Determination of a color index for citrus fruit 

degreening. In Proc. of the International Society of Citriculture, Vol. 2, 750-753. 

Kim, D.G., Burks, T.F., Qin, J., & Bulanon, D.M. (2009). Classification of grapefruit peel diseases using color texture 

feature analysis. International Journal of Agricultural and Biological Engineering, 2, 41-50. 

Kim, D.G., Burks, T.F., Ritenour, M.A., & Qin, J. (2014). Citrus black spot detection using hyperspectral imaging. 

International Journal of Agricultural and Biological Engineering, 7, 20 -27. 

Kohno, Y., Kondo, N., Iida, M., Kurita, M., Shiigi, T., Ogawa, Y., Kaichi, T., & Okamoto, S. (2011). Development of a 
Mobile Grading Machine for Citrus Fruit. Engineering in Agriculture, Environment and Food, 4, 7-11. 

Kondo, N., Kuramoto, M., Shimizu, H., Ogawa, Y., Kurita, M., Nishizu, T., Chong, V.K., & Yamamoto, K. (2009). 

Identification of fluorescent substance in mandarin orange skin for machine vision system to detect rotten citrus fruits 

Engineering in Agriculture, Environment and Food, 2, 54-59. 

Kurita, M., Kondo, N., Shimizu, H., Ling, P.P., Falzea, P.D., Shiigi, T., Ninomiya, K., Nishizu, T., & Yamamoto, K. 

(2009). A double image acquisition system with visible and UV LEDs for citrus fruit, Journal of Robotics and 

Mechatronics, 21, 533-540. 

Kurtulmus, F., Lee, W.S., & Vardar, A. (2011). Green citrus detection using eigenfruit, color and circular Gabor texture 

features under natural outdoor conditions. Computers and Electronics in Agriculture, 78(2), 140-149. 

Ladaniya, M.S. (2010). Citrus Fruit: Biology, Technology and Evaluation, Academic Press, San Diego, CA, USA. 

Li, H., Lee, W.S., Wang, K., Ehsani, R., & Yang, C. (2014). Extended spectral angle mapping (ESAM) for citrus greening 

disease detection using airborne hyperspectral imaging. Precision Agriculture, 15, 162-183.  

Li, J., Rao, X., Ying, Y., & Wang, D. (2010). Detection of navel oranges canker based on hyperspectral imaging 

technology. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 26, 222-228. 

Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging.  

Computers and Electronics in Agriculture, 78, 38-48.  

Li, J., Rao, X., & Ying, Y. (2012). Development of algorithms for detecting citrus canker based on hyperspectral reflectance 

imaging. Journal of the Science of Food and Agriculture, 92, 125-134. 

Li, J., Rao, X., Wang, F., Wu, W., & Ying, Y. (2013). Automatic detection of common surface defects on oranges using 

combined lighting transform and image ratio methods. Postharvest Biology and Technology, 82, 59–69. 

Li, X., Lee, W.S., Li, M., Ehsani, R., Mishra, A., Yang, C., & Mangan, R. (2012). Spectral difference analysis and airborne 

imaging classification for citrus greening infected trees. Computers and Electronics in Agriculture, 83, 32-46.  



 
26 

Li, X., Lee, W.S., Li, M., Ehsani, R., Mishra, A.R., Yang, C., & Mangan, R.L. (2015). Feasibility study on Huanglongbing 

(citrus greening) detection based on WorldView-2 satellite imagery. Biosystems Engineering, 132, 28-38. 

Liu, D., Sun, D.-W., & Zeng, X.-A. (2013). Recent advances in wavelength selection techniques for hyperspectral image 

processing in the food industry. Food and Bioprocess Technology, 7, 307-323. 

Lopes, L.B., VanDeWall, H., Li, H. T., Venugopal, V., Li, H.K., Naydin, S., Hosmer, J., Levendusky, M., Zheng, H., 

Bentley, M. V., Levin, R., & Hass, M.A. (2010). Topical delivery of lycopene using microemulsions: enhanced skin 

penetration and tissue antioxidant activity. J. Pharm. Sci. 99, 1346-1357. 

López, J.J.,  Cobos, M.,  & Aguilera, E.  (2011). Computer-based detection and classification of flaws in citrus fruits. Neural 

Computing and Applications. 20, 975-981. 

López-García, F., Andreu, G., Blasco, J., Aleixos, N., & Valiente, J.M. (2010). Automatic detection of skin defects in citrus 

fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture 71, 189-197. 

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013a). Selection of optimal wavelength features for 

decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530-

541. 

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., & Blasco, J. (2012). Recent advances and 

applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology 5(4), 

1121-1142.  

Lorente, D., Blasco, J., Serrano, A.J., Soria-Olivas, E., Aleixos, N., & Gómez-Sanchis, J. (2013b). Comparison of ROC 

feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food and Bioprocess 

Technology, 6(12), 3613-3619. 

Lorente, D., Zude M, Regen C, Palou L, Gómez-Sanchis J, & Blasco J (2013c). Early decay detection in citrus fruit using 

laser-light backscattering imaging. Postharvest Biology and Technology, 86, 424-430.  

Lorente, D., Zude, M., Idler, C., Gómez-Sanchis, J., & Blasco, J. (2015). Laser-light backscattering imaging for early decay 

detection in citrus fruit using both a statistical and a physical model. Journal of Food Engineering, 154, 76-85. 

Lu, R., Cen, H., Huang, M., & Ariana, D.P. (2010). Spectral absorption and scattering properties of normal and bruised 

apple tissue. Trans. of the ASABE, 53, 263-269. 

Maf Industries. (2016). VIOTEC brochure. http://mafindustries.com/wp-content/uploads/2015/02/viotec3.pdf. Accessed 

March 2016. 

Magwaza, L.S., Opara, U.L., Nieuwoudt, H., Cronje, P.J.R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy 

applications for internal and external quality analysis of citrus fruit-A review.  Food and Bioprocess Technology, 5 (2), 

425-444. 

Mehta, S.S., & Burks, T.F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and 

Electronics in Agriculture, 102, 146-158.  

Mollazade, K., Omid, M., Tab, F.A., & Mohtasebi, S.S. (2012). Principles and applications of light backscattering imaging 
in quality evaluation of agro-food products: A review.  Food and Bioprocess Technology, 5, 1465-1485. 

Moltó, E., Plá, F., & Juste, F. (1992). Vision systems for the location of citrus fruit in a tree canopy. Journal of Agricultural 

Engineering Research, 52, 101-110. 

Moltó, E., Blasco, J., & Gómez-Sanchis, J. (2010). Analysis of hyperspectral images of citrus fruits. In D.-W. Sun (Ed.), 

Hyperspectral imaging for food quality analysis and control (pp. 321-348). Academic Press, California, USA.  

Momin, A., Kondo, N., Kuramoto, M., Ogawa, Y., Yamamoto, K., & Shiigi, T. (2012). Investigation of excitation 

wavelength for fluorescence emission of citrus peels based on UV-VIS spectra. Engineering in Agriculture, 

Environment and Food, 5, 126-132. 

Momin, A., Kuramoto, M., Kondo, N., Ido, K., Ogawa, Y., Shiigi, T., & Ahmad, U. (2013a). Identification of UV-

fluorescence components for detecting peel defects of lemon and yuzu using machine vision. Engineering in 

Agriculture, Environment and Food, 6, 165-171. 



 
27 

Momin, A., Kondo, N., Ogawa, Y., Ido, K., & Ninomiya, K. (2013b). Patterns of fluorescence associated with citrus peel 

defects. Engineering in Agriculture, Environment and Food, 6, 54-60. 

Morgan, S.P., & Stockford, I.M. (2003). Surface-reflection elimination in polarization imaging of superficial tissue. Optics 

letters, 28, 114-116. 

Niphadkar, N.P., Burks, T.F., Qin, J., & Ritenour, M. (2013b). Edge effect compensation for citrus canker lesion detection 

due to light source variation - A hyperspectral imaging application. Agricultural Engineering International: CIGR 

Journal, 15, 314-327. 

Niphadkar, N.P., Burks, T.F., Qin, J.W., & Ritenour, M.A. (2013a). Estimation of citrus canker lesion size using 

hyperspectral reflectance imaging. International Journal of Agricultural and Biological Engineering, 6, 41-51. 

Slaughter, D., Obenland, D., Thompson, J., Arpaia, M. L., & Margosan, D. (2008). Non-destructive freeze damage 

detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48, 341–
346 

Obenland, D., Margosan, D., Smilanick, J.L., & Mackey, B. (2010). Ultraviolet fluorescence to identify navel oranges with 

poor peel quality and decay. HortTechnology, 20, 991-995. 

Ogawa, Y., Abdul, M.M., Kuramoto, M., Kohno, Y., Shiigi, T., Yamamoto, K., Kondo, K. (2011). Rotten part detection on 

citrus fruit surfaces by use of fluorescent images. The Review of Laser Engineering, 394, 255-261. 

Okamoto, H., & Lee, W.S. (2009). Green citrus detection using hyperspectral imaging. Computers and Electronics in 

Agriculture, 66(2), 201-208. 

Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image 

processing technique. Journal of Food Engineering, 100, 315-321. 

Ottavian, M., Barolo, M., & García-Muñoz, S. (2013). Maintenance of machine vision systems for product quality 

assessment. Part I. Addressing changes in lighting conditions. Industrial & Engineering Chemistry Research, 52, 12309-
12318. 

Ottavian, M., Barolo, M., & García-Muñoz, S. (2014). Maintenance of machine vision systems for product quality 

assessment. Part II. Addressing camera replacement. Industrial & Engineering Chemistry Research, 53, 1529–1536. 

Palou, L., Smilanick, J. L., Montesinos-Herrero, C., Valencia-Chamorro, S., & Pérez-Gago, M.B. (2011). Novel approaches 

for postharvest preservation of fresh citrus fruits. In: Slaker (Ed.), Citrus Fruits: Properties, Consumption and Nutrition. 

Nova Science Publishers, Inc., New York, USA. 

Palou, L. (2014). Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). In S. Bautista-Baños (Ed.), 

Postharvest Decay. Control Strategies. Elsevier, London, UK. 

Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: A 

systematic review of research. Journal of Sensors, Open access Article ID 195308. 

Pourreza, A. Lee, W.S., Raveh, E., Ehsani, R., & Etxeberria, E. (2014). Citrus Huanglongbing detection using narrow band 

imaging and polarized illumination. Trans. ASABE, 57(1), 259-272. 

Pourreza, A., Lee, W.S., Ehsani, R., Schueller, J. K., & Raveh, E. (2015a). An optimum method for real-time in-field 

detection of Huanglongbing disease using a vision sensor. Computers and Electronics in Agriculture, 110, 221-232.  

Pourreza, A., Lee, W.S., Etxeberria, E., & Banerjee, A. (2015b). An evaluation of a vision based sensor performance in 

Huanglongbing disease identification. Biosystems Engineering, 130, 13-22. 

Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M.A. (2008). Citrus canker detection using hyperspectral 

reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and 

Safety, 2(3), 168-177. 

Qin, J., Burks, T.F., Ritenour, M.A., Gordon Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance 

imaging with spectral information divergence. Journal of Food Engineering, 93, 183-191 

Qin, J., Burks, T.F., Zhao, X., Niphadkar, N., & Ritenour, M.A. (2011). Multispectral detection of citrus canker using 

hyperspectral band selection. Transactions of the ASABE. 54, 2331-2341. 



 
28 

Qin, J., Burks, T.F., Zhao, X., Niphadkar, N., Ritenour, M.A. (2012). Development of a two-band spectral imaging system 

for real-time citrus canker detection. Journal of Food Engineering, 108, 87-93 

Sengupta, S., & Lee, W.S. (2014). Identification and determination of the number of immature green citrus fruit under 

different ambient light conditions. Biosystems Engineering, 117, 51-61.  

Shapiro, L.G., & Stockman G.C. (2001). Computer Vision. Prentice-Hall, New Jersey, USA. 

Shin, J.S., Lee, W.S., & Ehsani, R.J. (2012a). Machine vision based citrus mass estimation during post harvesting using 

supervised machine learning algorithms. Acta Horticulturae, 965, 209-216. 

Shin, J.S., Lee, W.S., & Ehsani, R. (2012b). Postharvest citrus mass and size estimation using logistic classification model 

and watershed algorithm. Biosystems Engineering, 113(1), 42-53. 

Subramanian, V., Burks, T.F., & Arroyo, A.A. (2006) Machine vision and laser radar-based vehicle guidance systems for 

citrus grove navigation. Computers and Electronics in Agriculture, 53, 130-143.  

Torregrosa, A., Albert, F., Aleixos, N., Ortiz, C., & Blasco, J. (2014). Analysis of the detachment of citrus fruits by 

vibration using artificial vision. Biosystems Engineering, 119, 1-12. 

United Nations Economic Commission for Europe (UNECE) (2010) UNECE standard FFV-14. URL: http://www.unece.org 

Accessed March 2016. 

Vidal, A., Talens, P., Prats-Montalbán, J.M., Cubero, S., Albert, F., & Blasco, J. (2013). In-line estimation of the standard 

colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess 

Technology, 6(12), 3412-3419. 

Vijayarekha, K. (2012a). Segmentation techniques applied to citrus fruit images for external defect identification. Research 

Journal of Applied Sciences, Engineering and Technology, 4, 5313-5319. 

Vijayarekha, K. (2012b), External defect classification of citrus fruit images using linear discriminant analysis clustering 

and ANN classifiers. Research Journal of Applied Sciences, Engineering and Technology, 4, 5484-5491. 

Vijayarekha, K. (2012c), Comparison of citrus fruit surface defect classification using discrete wavelet transform, stationary 

wavelet transform and wavelet packet transform based features. Research Journal of Applied Sciences, Engineering and 

Technology, 4, 5502-5509. 

Ye, X., Sakai, K., Asada, S.-i., & Sasao, A. (2008). Application of narrow-band TBVI in estimating fruit yield in citrus. 

Biosystems Engineering, 99(2), 179-189. 

Zhao, X.,  Burks, T.F.,  Qin, J.,  & Ritenour, M.A. (2009). Digital microscopic imaging for citrus peel disease classification 

using color texture features. Applied Engineering in Agriculture, 25, 769-776. 

Zhao, X., Burks, T.F., Qin, J., & Ritenour, M.A. (2010). Effect of fruit harvest time on citrus canker detection using 

hyperspectral reflectance imaging. Sensing and Instrumentation for Food Quality and Safety. 4, 126-135. 

Zhu, R., Lu, L., Guo, J., Lu, H., Abudureheman, N., Yu, T., & Zheng, X. (2012). Postharvest Control of Green Mold Decay 

of Citrus Fruit Using Combined Treatment with Sodium Bicarbonate and Rhodosporidium paludigenum. Food and 

Bioprocess Technology, 6, 2925-2930. 

  



 
29 

 

Figure 1. Comparison of the colour of the sound skin of two oranges and the colour of a defective skin. The sound skins of 

the two oranges present different colours (top) while their defective and sound skins have very similar colours and textures 

(bottom). 
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Figure 2. Reflectance spectra of immature green citrus and green leaves (adapted from 

Annamalai & Lee, 2004). 
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                            (a)                                                (b)                                                 (c)  

Figure 3. Immature green citrus recognition results: (a) results with the algorithm developed, (b) detection of occluded fruit 

with a false positive, and (c) detection for a smaller partially-occluded fruit (Adapted from Kurtulmus et al. 2011). 
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Figure 4. Colour classification of citrus fruits. 
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Figure 5. Electronic sorter for citrus fruits. 
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Figure 6. Hyperspectral image in the range 520 – 990 nm of an orange with a decay lesion with a resolution of 10 nm. The 

disease is difficult to detect in both the visible and NIR bands. 
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 Figure 7. Hyperspectral image in the range 510 – 660 nm of an orange with a decay lesion (the same as in Fig. 6) 

with a resolution of 10 nm, illuminated with UV light. 

 


