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Abstract

We study the viscous van Wijngaarden–Eringen equation:

∂2u

∂t2
− ∂2u

∂x2
= (Red)

−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2
(1)

which corresponds to the linearized version of the equation that models the acoustic planar propagation in
bubbly liquids. We show the existence of an explicit range, solely in terms of the constants a0 and Red, in
which we can ensure that this equation admits a uniformly continuous, Devaney chaotic and topologically
mixing semigroup on Herzog’s type Banach spaces.

Keywords: Acoustics, C0-semigroups, bubble liquids, Devaney chaos, hypercyclicity, van
Wijngaarden–Eringen equation, wave propagation, pressure waves.

1. Introduction

In the 1940’s and 50’s, the interest in studying the propagation of pressure waves of small amplitude in
bubbly liquids appeared. The reason was to determine whether it was possible to take advantage of these
acoustical properties to control the sound produced by propellers, both of surface ships and submerged ship.
A vast literature on the subject deals with theoretical and experimental studies of the various aspects of
propagation of pressure waves of small amplitude in bubbly liquids, see for instance [32].
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The acoustic planar propagation perpendicular to and along the x-axis (i.e., 1D flow) in bubbly liquids
is given by the following equation [19, Eq. 4.14]

∂2u

∂t2
− (1− 2ε(β − 1))

∂2u

∂x2
+ ε

∂2

∂t2

(
∂2u

∂x2

)2

= (Red)
−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2
, t ≥ 0, x ∈ R, (2)

being Red = ceL/δ a Reynolds number, where ce(> 0) is the adiabatic sound speed, δ is the diffusivity
of sound [31], and L is a characteristic (macroscopic length). The constant a0 is a Knudsen number that
corresponds to the dimensionless bubble radius. In addition, γ stands for the adiabatic index of the liquid
and β(> 1) is known as the coefficient of nonlinearity [5]. This coefficient is given by β = (γ + 1)/2 in the
case of a perfect gas.

More details on the formulation of equation (2) can be found in [19] and [18]. The linearized version,
ε = 0, of equation (2) is known as the viscous (or dissipative) van Wijngaarden–Eringen equation, see [32, 14].

∂2u

∂t2
− ∂2u

∂2x
= (Red)

−1 ∂3u

∂t∂x2
+ a20

∂4u

∂t2∂x2
, t ≥ 0, x ∈ R, (3)

Some other classical models in nonlinear acoustics are the Kuznetsov equation, the Westervelt equation,
and the Kokhlov-Zabolotskaya-Kuznetsov equation. Several initial boundary problems for these second order
in time partial differential equations have been already solved (see for instance [20], [21], [27] and [28]).

Many problems in acoustics for the sound propagation are described in terms of the linear wave equation.
The transport equation governing the propagation of second-sound in both metals and dielectric solids is the
well known damped wave equation [6, 24] (see also [17] for recent advances in the area). For these two cases,
the 1D version of this PDE coincides with the hyperbolic heat transfer equation. The chaotic behaviour of the
solutions of the abstract Cauchy problem stated with this equation was investigated in [9], see also [16]. For
high wave amplitudes and intensities, phenomena such as wave distortion and formation of shocks appear,
and then it is natural to study chaos for this type of equations. In [8] the chaotic behaviour of the one-
dimensional version of the Moore-Gibson-Thompson equation is studied. See also the seminal formulation
of this equation in [30, Eq. 7]. Moreover, the strong connection between acoustics and bioengineering and
industry of high intensity sound waves has contributed to the improvement of the research in this area (see
[10], [22], [7]).

To the best of our knowledge, no study on chaotic behavior for equation (1) has been carried on. Hence,
our aim here is to examine the van Wijngaarden-Eringen equation in the context of a dynamic, yet still
analytically tractable, setting.

In this paper, we succeed in proving the existence of a chaotic dynamics for the van Wijngaarden–Eringen
equation. More precisely, we are able to show that whenever a0 < 1 and

√
5

6
< a0 Reb <

1

2
, (4)

then equation (1) admits a uniformly continuous semigroup which is Devaney chaotic on an isomorphic copy
of the sequence space c20(N0).

The paper is organized as follows. In section 2 we introduce some basic concepts related to the study
of C0- semigroups and chaos. In Section 3, chaos is also studied for the viscous van Wijngaarden–Eringen
equation. Moreover, we provide a range for the bubble radius that ensures the existence of chaotic behaviour
for the solutions of this equation. Finally, in Section 4, we give some physical interpretation of the results
proved previously.

2. Preliminaries

Let X be a separable infinite-dimensional Banach space. We recall that {Tt}t≥0, with Tt : X → X
a continuous and linear map on X for each t ≥ 0, is a C0-semigroup if T0 = I, Tt+s = Tt ◦ Ts and
lims→t Tsx = Ttx for all x ∈ X and t ≥ 0.
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Let {Tt}t≥0 an arbitrary C0-semigroup on X. It can be shown that

Ax := lim
t→0

1

t
(Ttx− x), (5)

exists on a dense subspace of X; the set of these x, the domain of A, is denoted by D(A). Then A, or rather
(A,D(A)), is called the infinitesimal generator of the semigroup.

Conversely, the Hille-Yosida theorem states that, under suitable assumption on a densely defined operator
(A,D(A)), the solutions of the following abstract Cauchy problem on X:{

ut(t, x) = Au(t, x),

u(0, x) = ϕ(x) ϕ ∈ X,
(6)

can be represented by a C0-semigroup {Tt}t≥0 on X whose infinitesimal generator is A. If A ∈ L(X), then
the operators in the C0-semigroup can be represented as Tt = etA =

∑∞
k=0(tA)n/n! for all t ≥ 0 (see for

instance [13, Ch. I, Prop. 3.5]).
A C0-semigroup {Tt}t≥0 on X is said to be hypercyclic if there exists x ∈ X such that the set {Ttx : t ≥ 0}

is dense in X. An element x ∈ X is called a periodic point for the semigroup {Tt}t≥0 if there exists some
t > 0 such that Ttx = x. A C0-semigroup {Tt}t≥0 is topologically mixing if for any pair U, V of nonempty
open sets of X, there exists some t0 ≥ 0 such that Tt(U) ∩ V 6= ∅ for all t ≥ t0. A C0-semigroup {Tt}t≥0 is
called Devaney chaotic if it is hypercyclic and the set of periodic points is dense in X. We point out that
these two requirements also yield the sensitive dependence on the initial conditions, as it was seen by Banks
et al [1, 16]. Further information on the dynamics of C0-semigroups can be found in [16, Ch. 7]. See also
[12] for information regarding the stability properties of C0-semigroups.

Another variation of the definition of chaos is the notion of distributional chaos introduced by Schweizer
and Smı́tal [29], see also [23, 26] for its presentation in the infinite-dimensional linear setting. A C0-semigroup
{Tt}t≥0 on X is said to be distributionally chaotic if there exists an uncountable subset S ⊂ X and δ > 0 such
that, for each pair of distinct points x, y ∈ S and for every ε > 0, we have Dens({s ≥ 0; ||Tsx−Tsy|| > δ}) = 1
and Dens({s ≥ 0; ||Tsx − Tsy|| < ε}) = 1, where Dens stands for the upper density of a set of real positive
numbers. The set S is called the scrambled set and the C0-semigroup is said to be densely distributionally
chaotic if S is dense on X.

Now, we present a criterion that ensures Devaney chaos for C0-semigroups. It is a variation of the (DSW)
criterion [11] which depends on verifying that the point spectrum of the infinitesimal generator of the C0-
semigroup contains “enough” eigenvalues. A first criterion stated in these terms was given for operators by
Godefroy and Shapiro in [15]. We will use the following version of the (DSW) Criterion, see [16, Th. 7.30].
It is also well known that distributional chaos holds whenever the DSW criterion can be applied [2, 4].

Theorem 2.1. Let X be a complex separable Banach space, and {Tt}t≥0 a C0-semigroup on X with infinites-
imal generator (A,D(A)). Assume that there exists an open connected subset U and a weakly holomorphic
function f : U → X, such that

(1) U ∩ iR 6= ∅,
(2) f(λ) ∈ ker(λI −A) for every λ ∈ U ,

(3) for any x∗ ∈ X∗, if 〈f(λ), x∗〉 = 0 for all λ ∈ U , then x∗ = 0.

Then the semigroup {Tt}t≥0 is Devaney chaotic and topologically mixing.

A Borel probability measure (µ,B) is said to have full support if for all non-empty open set U ⊂ X we
have µ(U) > 0, and µ is said to be Tt-invariant if for all A ∈ B we have that µ(A) = µ(T−1t (A)) for all t ≥ 0.
A C0- semigroup {Tt}t≥0 is µ-strongly mixing if limt→∞ µ(A ∩ T−1t (B)) = µ(A)µ(B), for any A,B borelian
sets of X. The existence of these measures are ensured if hypothesis of the DSW criterion are satisfied [25].
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Finally, we recall the definition of the space of analytic functions of Herzog type. Given ρ > 0, let:

Xρ =

{
f : R→ C; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0(N0)

}

endowed with the norm ‖f‖ρ = supn≥0 |an|. This space is isometrically isomorphic to c0(N0). For examples
and references on Herzog spaces, we refer the reader to [8].

3. Existence of chaotic behavior

In this section, we will study the chaotic behavior of the viscous van Wijngaarden–Eringen equation

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = (Reb)

−1 ∂3u

∂t∂x2
u(t, x) + a20

∂4u

∂t2∂x2
(t, x), t ≥ 0, x ∈ R, (7)

in the space of analytic functions of Herzog type. We recall that a0 > 0 denotes the dimensionless bubble
radius and Reb is a Reynolds number. Since the second order differential operator ∂xx turns out to be a
bounded operator on Xρ, assuming the condition

a0 < 1, (8)

we obtain
∥∥a20∂xx∥∥ρ < 1 and, consequently, the inverse operator (1 − a20∂xx)−1 exists on Xρ. Then we can

express (7) as a first order equation on the product space X := Xρ ⊕Xρ. Setting u1 = u and u2 = ∂u
∂t we

can pose the following abstract Cauchy problem:
∂

∂t

(
u1
u2

)
=

(
0 I

(1− a20∂xx)−1∂xx (Reb)
−1(1− a20∂xx)−1∂xx

)(
u1
u2

)
;

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.

(9)

Then, the operator-valued matrix

A :=

(
0 I

−(1− a20∂xx)−1∂xx (Reb)
−1(1− a20∂xx)−1∂xx

)
(10)

defines a bounded operator on X and, consequently, we have that {etA}t≥0 is the solution C0-semigroup of
(9). See also [9, Sec. 2.2] for a similar representation of the solution in the case of the wave equation, and
[8, Sec. 3] for the case of the Moore-Gibson-Thompson equation.

The following theorem is the main result in this paper.

Theorem 3.1. Suppose that a0 < 1 and

0.3726 ≈
√

5

6
< a0 Reb <

1

2
, (11)

then for each ρ satisfying

ρ >
r0

( 1
2a20 Reb

− 3r0)a0
, (12)

where r0 := 1
2

√
1−4a20 Re2b
2a20 Reb

, the operator A generates a uniformly continuous semigroup which is Devaney

and distributionally chaotic, topologically mixing and admits a strongly mixing measure with full support on
Xρ ⊕Xρ.
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Proof. Fix an arbitrary ρ > 0 satisfying (12). Our purpose is to apply Theorem 2.1. Firstly, we define

U := {z ∈ C : |z| < r0}. (13)

Note that 1 − 4a20 Re2b > 0 due to the second inequality in (11). Hence r0 > 0 and U ∩ iR 6= ∅. This
proves condition (1) in Theorem 2.1.

Secondly, for each λ ∈ U we define

Rλ :=
λ2

1 + (Reb)−1λ+ a20λ
2
, (14)

and weakly analytic functions fz0,z1 : U → Xρ ⊕Xρ by

fz0,z1(λ) :=

(
ϕλ
λϕλ

)
, (15)

where ϕλ(x) := z0 cosh(
√
Rλx) + z1 sinh (

√
Rλx), with z0, z1 ∈ C.

It is easy to verify that

ϕ
′′

λ(x) + (Reb)
−1λϕ′′λ(x) + a20λ

2ϕ′′λ(x) = λ2ϕλ(x), x ∈ R, (16)

and therefore Afz0,z1(λ) = λfz0,z1(λ). We will show that fz0,z1(λ) ∈ Xρ⊕Xρ for all λ ∈ U. Indeed, first note
that we can rewrite ϕλ as follows:

ϕλ(x) = cosh

(
ρx

√
Rλ
ρ2

)
z0 + sinh

(
ρx

√
Rλ
ρ2

)
z1 =

∞∑
n=0

an(λ)
(ρx)n

n!
, x ∈ R, (17)

where an(λ) = z0
R
n/2
λ

ρn , n = 0, 2, 4, . . . and an(λ) = z1
√
Rλ

R
(n−1)/2
λ

ρn , n = 1, 3, 5, . . .

Therefore, by definition, it is enough to prove that |Rλρ2 | < 1. Indeed, observe that

a20λ
2 + (Reb)

−1λ+ 1 = a20

[(
λ+

1

2a20 Reb

)
+ 2r0

] [(
λ+

1

2a20 Reb

)
− 2r0

]
. (18)

Define α :=
1

2a20 Reb
+ 2r0 and β :=

1

2a20 Reb
− 2r0. Then 0 < β < α and for all λ ∈ U we have

|λ+ α| ≥ α− |λ| ≥ β − r0 and |λ+ β| ≥ β − |λ| ≥ β − r0. (19)

The hypothesis
√

5/6 < a0 Reb implies that
1

2a20 Reb
− 3r0 > 0. Therefore ρ > 0 and a calculation gives

β − r0 >
r0
ρa0

. (20)

The above considerations imply,∣∣∣Rλ
ρ2

∣∣∣ =
|λ|2

ρ2a20|λ+ α||λ+ β|
< r20

1

ρ2a20

ρ2a20
r20

= 1,

for all λ ∈ U, proving the claim. It proves condition (2) in Theorem 2.1.
It only remains to show that for any x∗ ∈ X∗ρ ⊕ X∗ρ the functions λ → 〈fz0,z1(λ), x∗〉, z0, z1 ∈ C, are

holomorphic on U , and if they all vanish on U , then x∗ = 0. Since Xρ is isometrically isomorphic to c0, in
what follows, we identify the dual space X∗ρ with `1.
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Let x∗ ∈ X∗ρ ⊕X∗ρ . It can be represented in a canonical way by x∗ = (x∗1, x
∗
2) = ((x∗1,n)n≥0, (x

∗
2,n)n≥0) ∈

`1 ⊕ `1. Then, we have
0 = 〈fz0,z1(λ), x∗〉 = 〈ϕλ, x∗1〉+ 〈λϕλ, x∗2〉, (21)

for all λ ∈ U, z0, z1 ∈ C. This last equation can be reformulated in the following way:

0 =

∞∑
n=0

an(λ)x∗1,n + λ

∞∑
n=0

an(λ)x∗2,n

= z0x
∗
1,0 + λz0x

∗
2,0 +

z1
ρ

√
Rλx

∗
1,1 +

z1
ρ
λ
√
Rλx

∗
2,1 +

z0
ρ2
Rλx

∗
1,2 +

z0
ρ2
Rλλx

∗
2,2 + . . .

(22)

Let λ0 = 0. It is clear that λ0 ∈ U and Rλ0 = 0. Evaluating (22) in λ0, we have the following equation:

z0x
∗
1,0 = 0 (23)

for all z0 ∈ C. Therefore, x∗1,0 = 0.
Now, we divide (22) by λ and we get:

0 =
1

λ

( ∞∑
n=0

an(λ)x∗1,n + λ

∞∑
n=0

an(λ)x∗2,n

)

= z0x
∗
2,0 +

z1
ρ

√
Rλ
λ

x∗1,1 +
z1
ρ

√
Rλx

∗
2,1 +

z0
ρ2
Rλ
λ
x∗1,2 +

z0
ρ2
Rλx

∗
2,2 + . . .

= z0x
∗
2,0 +

z1
ρ

1√
1 + (Reb)−1λ+ a20λ

2
x∗1,1 +

z1
ρ

√
Rλx

∗
2,1

+
z0
ρ2

λ

(1 + (Reb)−1λ+ a20λ
2)
x∗1,2 +

z0
ρ2
Rλx

∗
2,2 + . . .

(24)

As Rλ0
= 0, evaluating (24) in λ0 we obtain:

z0x
∗
2,0 +

z1
ρ
x∗1,1 = 0. (25)

for all z0, z1 ∈ C. Then, x∗2,0 = 0 and x∗1,1 = 0.

Now, we divide (22) by λ
√
Rλ and we get:

0 =
1

λ
√
Rλ

( ∞∑
n=0

an(λ)x∗1,n + λ

∞∑
n=0

an(λ)x∗2,n

)
. (26)

So that equation (26) can be reduced to:

0 =
z1
ρ
x∗2,1 +

z0
ρ2

√
Rλ
λ

x∗1,2 +
z0
ρ2

√
Rλx

∗
2,2 + . . .

=
z1
ρ
x∗2,1 +

z0
ρ2

1√
1 + (Reb)−1λ+ a20λ

2
x∗1,2 +

z0
ρ2

λ√
1 + (Reb)−1λ+ a20λ

2
x∗2,2 + . . .

(27)

Evaluating (27) in λ0, we have:

z1
ρ
x∗2,1 +

z0
ρ2
x∗1,2 = 0 (28)

for all z0, z1 ∈ C. Therefore, x∗2,1 = 0 and x∗1,2 = 0.
Proceeding inductively, we will get that x∗i,n = 0 for i = 1, 2 and n ∈ N. We finally have x∗ = 0 and we

conclude the result by applying Theorem 2.1.
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Remark 3.2. Recalling that a0 > 0 denotes the bubble radius and Reb = ceL/δ is a Reynolds number, where
L denote a characteristic length, ce the adiabatic sound speed and the positive constant δ > 0 is known as
the diffusivity of sound, we observe that the condition (11), namely

0.3726 ≈
√

5

6
< a0 Reb <

1

2
, (29)

together with the general condition a0 < 1, give an explicit range for the bubble radius in order to obtain
chaotic behavior in the given model.

This estimation can be compared with the physical one of

0.4899 ≈
√

6

5
< a0 Reb, (30)

given in [19, Eq. 4.20] that has to be satisfied by the Reynolds number.

4. Conclusions

These results can be understood in the following sense. For the hypercyclicity, given an arbitrary acoustic
planar wave close to the origin one can determine a wave far away enough in order that, as time goes by, we
can have that its propagation through a bubbly liquid gives us a wave at the origin as close as we want to
the initial one. The Devaney chaos also yields the existence of periodic waves similar as much as we want to
a prescribed one close to the origin.

These theoretical results present some limitations: The amplitudes required to resemble a prescribed
wave at the origin can be so wide that cannot even be easily generated.

Furthermore, we recall that the existence of Devaney chaos yields the sensitive dependence of the solutions
to the problem respect to the initial conditions. This affirms that given some planar wave, one can find a
small perturbation, such that after a long enough period of time the behavior of both waves is completely
different.

One last comment, the existence of distributional chaos asserts, roughly speaking, that there is an un-
countable set of initial conditions such that we can pick a pair of initial conditions from this set and, as time
goes by, there will be long time intervals in which the behaviour of the waves close to the origin are very
similar for both initial waves. On the other hand, there will be also intervals as long as the previous ones in
which the waves are quite different depending on which one of these two initial conditions we have chosen,
see [3].
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