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Abstract 

In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for 

automated heart sound segmentation and classification, has been widely studied and has been reported to 

have the potential value to detect pathology accurately in clinical applications. However, comparative 

analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, 

and standardized open databases of heart sound recordings. This paper describes a public heart sound 

database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) 

Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research 

groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy 

subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. 

The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) 

environments and equipment. The length of recording varied from several seconds to several minutes. This 

article reports detailed information about the subjects/patients including demographics (number, age, 

gender), recordings (number, location, state and time length), associated synchronously recorded signals, 

sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart 

sound segmentation and classification methods, including open source code provided concurrently for the 

Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and 

test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and 

associated open source code are provided. In addition, several potential benefits from the public heart sound 

database are discussed. 

 

1. Introduction 
Cardiovascular diseases (CVDs) continue to be the leading cause of morbidity and mortality worldwide. 

An estimated 17.5 million people died from CVDs in 2012, representing 31% of all global deaths (WHO 

2015). One of the first steps in evaluating the cardiovascular system in clinical practice is physical 

examination. Auscultation of the heart sounds is an essential part of the physical examination and may 

reveal many pathologic cardiac conditions such as arrhythmias, valve disease, heart failure, and more. Heart 

sounds provide important initial clues in disease evaluation, serve as a guide for further diagnostic 

examination, and thus play an important role in the early detection for CVDs. During the cardiac cycle, the 

heart first experiences electrical activation, which then leads to mechanical activity in the form of atrial and 

ventricular contractions. This in turn forces blood between the chambers of the heart and around the body, 

as a result of the opening and closure of the heart valves. This mechanical activity, and the sudden start or 

stop of the flow of blood within the heart, gives rise to vibrations of the entire cardiac structure (Leatham 



Author version of the paper published in Physiological Measurement 37 (2016) 2181-2213 

doi:10.1088/0967-3334/37/12/2181 

2 
 

1975). These vibrations are audible on the chest wall, and listening for specific heart sounds can give an 

indication of the health of the heart. An audio recording (or graphical) time series representation of the 

resultant sounds, transduced at the chest surface is known as a heart sound recording or phonocardiogram 

(PCG). 

 

Four locations are most often used to listen to and transduce the heart sounds, which are named according 

to the positions in which the valves can be best heard (Springer 2016): 

 

• Aortic area—centred at the second right intercostal space. 

• Pulmonic area—in the second intercostal space along the left sternal border. 

• Tricuspid area—in the fourth intercostal space along the left sternal edge. 

• Mitral area—at the cardiac apex, in the fifth intercostal space on the midclavicular line. 

 

Fundamental heart sounds (FHSs) usually include the first (S1) and second (S2) heart sounds (Leatham 

1975). S1 occurs at the beginning of isovolumetric ventricular contraction, when already closed mitral and 

tricuspid valves suddenly reach their elastic limit due to the rapid increase in pressure within the ventricles. 

S2 occurs at the beginning of diastole with the closure of the aortic and pulmonic valves (see figure 1.) 

While the FHSs are the most recognizable sounds of the heart cycle, the mechanical activity of the heart 

may also cause other audible sounds, such as the third heart sound (S3), the fourth heart sound (S4), systolic 

ejection click (EC), mid-systolic click (MC), the diastolic sound or opening snap (OS), as well as heart 

murmurs caused by turbulent, high-velocity flow of blood. 

 

The spectral properties of heart sounds and PCG recording artifacts have been well described (Leatham 

1975). The upper panel of figure 2 shows the frequency distribution examples of different components in 

heart sound (A from a normal heart sound and B from a heart sound with S3 component, both recorded at 

the tricuspid area). As shown, the S1–S4 components overlap with each other in the frequency domain. 

Similarly, murmurs and artifacts from respiration and other non-physiological events also overlap 

significantly. Arrows indicate (theoretical) typical frequency regions for each type of heart sound: S1 for 

10–140 Hz (energy concentration usually in low frequencies of 25–45 Hz), S2 for 10–200 Hz (energy 

concentration usually in low frequencies of 55–75) and S3 and S4 for 20–70 Hz. Murmurs tend to manifest 

diverse frequency ranges and depending on their nature they can be as high as 600 Hz. Respiration usually 

has a frequency range of 200–700 Hz (Tilkian and Conover 2001). This makes the 

separation of heart sounds from each other, and from abnormal sounds or artifacts, impossible in the 

frequency domain. The morphological similarity of the noise to normal and abnormal heart sounds makes 

identification of the latter also extremely difficult in the time domain. The lower panel of figure 2 shows 

the sound pressure levels for different frequency ranges. Automated analysis of the heart sound in clinical 

applications usually consists of three steps shown in figure 3; pre-processing, segmentation and 

classification. Over the past few decades, methods for automated segmentation and classification of heart 

sounds have been widely studied. Many methods have demonstrated potential to accurately detect 

pathologies in clinical applications. Unfortunately, comparisons between techniques have been hindered by 

the lack of high-quality, rigorously validated, and standardized databases of heart sound signals obtained 

from a variety of healthy and pathological conditions. In many cases, both experimental and clinical data 

are collected at considerable expense, but only analyzed once by their collectors and then filed away 

indefinitely, because funding climates change, and collaborators move on. Moreover, the activation energy 

needed to document data for external use, store and share data in a semi-permanent manner is rarely 

available at the end of a research project. 

 

The PhysioNet/Computing in Cardiology Challenge 2016 (PhysioNet/CinC Challenge 2016) attempts to 

address some of these issues by assembling the research community to contribute multiple promising 

databases (Clifford et al 2016). Prior to the PhysioNet/CinC Challenge 2016 there were only three public 

heart sound databases available: (i) The Michigan heart sound and murmur database (UMHS), (ii) The 

PASCAL database (Bentley et al 2011) and (iii) The Cardiac Auscultation of Heart Murmurs database 

(eGeneralMedical). These three databases can be summarized as follows: 

 

• The Michigan heart sound and murmur database (MHSDB) was provided by the University of 

Michigan Health System. It includes only 23 heart sound recordings with a total of time length of 

1496.8 s and is available from www.med.umich.edu/lrc/psb/heartsounds/index.htm 

 

• The PASCAL database comprises 176 recordings for heart sound segmentation and 656 recordings 

for heart sound classification. Although the number of the recordings is relatively large, the 

http://www.med.umich.edu/lrc/psb/heartsounds/index.htm
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recordings have the limited time length from 1 s to 30 s. They also have a limited frequency range 

below 195 Hz due to the applied low-pass filter, which removes many of the useful heart sound 

components for clinical diagnosis. It is available from www.peterjbentley.com/heartchallenge 

 

• The Cardiac Auscultation of Heart Murmurs database is provided by eGeneral Medical Inc., 

includes 64 recordings. It is not open and requires payment for access from: 

www.egeneralmedical.com/listohearmur.html 

 

It is important to note that these three databases are limited by the recording number, length or signal 

frequency range. In addition, two of these databases are intended to teach medical students auscultation, 

and therefore comprise high-quality recordings of very pronounced murmurs, not often seen in real-world 

recordings. In the PhysioNet/CinC Challenge 2016, a large collection of heart sound recordings was 

obtained from different real-world clinical and nonclinical environments (such as in-home visits). The data 

include not only clean heart sounds but also very noisy recordings, providing authenticity to the challenge. 

The data were recorded from both normal subjects and pathological patients, and from both children and 

adults. The data were also recorded from different locations, depending on the individual protocols used 

for each data set. However, they were generally recorded at the four common recording locations of aortic 

area, pulmonic area, tricuspid area and mitral area. Although a limited portion of the data has been held 

back for test purposes (Challenge scoring), much of the hidden test data will be released on PhysioNet after 

the conclusion of the Challenge and subsequent special issue in the Journal Physiological Measurement. 

The purpose of this paper is to provide a detailed description of the heart sound data that comprise the 

training and test sets for the PhysioNet/CinC Challenge 2016, and to help researchers improve their 

algorithms in the Official Phase of the Challenge. 

 

2. Description of the assembled heart sound databases 
 
Table 1 details the composition of the assembled heart sound database. There are a total of nine heart sound 

databases collected independently by seven different research teams from seven countries and three 

continents, over a period of more than a decade. As a result, the hardware, recording locations, data quality 

and patient types differ substantially, and the methods for identifying gold standard diagnoses also vary. A 

description of each composite database is now given. The acoustic data were saved in either the text format 

or the.wav format.  

 
2.1. MIT heart sounds database 

 

The Massachusetts Institute of Technology heart sounds database (hereafter referred to as MITHSDB) was 

contributed by Prof John Guttag, Dr Zeeshan Syed and colleagues. An extensive description of the data can 

be found in Syed (2003) and Syed et al (2007). Heart sounds were recorded simultaneously with an 

electrocardiogram (ECG) using a Welch Allyn Meditron electronic stethoscope (Skaneateles Falls, New 

York, USA), with a frequency response of 20 Hz–20 kHz. Both PCG and ECG signals were sampled at 44 

100 Hz with 16 bit quantization. A total of 409 PCG recordings were made at nine different recording 

positions and orientations from 121 subjects. Each subject contributed several recordings. The subjects 

were divided into 5 groups: (1) normal control group: 117 recordings from 38 subjects, (2) murmurs relating 

to mitral valve prolapse (MVP): 134 recordings from 37 patients, (3) innocent or benign murmurs group 

(Benign): 118 recordings from 34 patients, (4) aortic disease (AD): 17 recordings from 5 patients, and (5) 

other miscellaneous pathological conditions (MPC): 23 recordings from 7 patients. The diagnosis for each 

patient was verified through echocardiographic examination at the Massachusetts General Hospital, Boston, 

MA, USA. These recordings were either performed during in-home visits or in the hospital, and were 

performed in an uncontrolled environment, resulting in many of the recordings being corrupted by various 

sources of noise, such as talking, dogs barking and children playing. Other noise sources included 

stethoscope motion, breathing and intestinal sounds. The recording length varied from 9 s to 37 s, with 

mean and standard deviation (SD) of 33 ± 5 s. For the purposes of the competition, the ECGs were extracted 

and stored in a WFDB-compliant format. 

 
2.2. AAD heart sounds database 
 

The Aalborg University heart sounds database (AADHSDB) was contributed by Schmidt et al (2010a, 

2010b, 2015). Heart sound recordings were made from the 4th intercostal space at the left sternal border on 

the chest of subjects using a Littmann E4000 electronic stethoscope (3M, Maplewood, Minnesota). The 

frequency response of the stethoscope was 20–1000 Hz. The sample rate was 4000 Hz with 16 bit 

quantization. A total of 151 subjects were recorded from patients were referred for coronary angiography 

http://www.peterjbentley.com/heartchallenge
http://www.egeneralmedical.com/listohearmur.html
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at the Cardiology Department at Aalborg Hospital, Denmark. The aim of the study was diagnosis of 

coronary artery disease (CAD) from heart sound, however in the current database normal and abnormal are 

defined base on if the patient has a heart valve defect either identified in the patient record or identified by 

a clear systolic or diastolic murmur. A total of 30 subjects had heart valve defect and where defined as 

abnormal. Patients were asked to breathe normally during the heart sound acquisition and between one and 

six PCG recordings were collected from each subject, resulting in a total of 695 recordings. Most of the 

recordings have a fixed time length of 8 s while a few recordings have a time length less than 8 s. 

 
2.3. AUTH heart sounds database 

 

The Aristotle University of Thessaloniki heart sounds database (AUTHHSDB) was contributed by 

Papadaniil and Hadjileontiadis (2014). Heart sounds were recorded in the first Cardiac Clinic of 

Papanikolaou General Hospital in Thessaloniki, Greece, using AUDIOSCOPE, a custom-made electronic 

stethoscope that records signals amplified and unfiltered. The sample rate was 4000 Hz with 16 bit 

quantization. Forty-five subjects were enrolled within an age range of 18–90 years; in particular, 11 normal 

subjects, 17 patients with aortic stenosis (AS) and 17 patients with mitral regurgitation (MR). The diagnosis 

and the severity of the heart valve diseases were determined by the doctors, based on the echocardiogram 

of the patient. 

 

The recordings were recorded from the auscultation position of the chest where the murmur is best heard 

for each valve dysfunction, while the normal heart sounds were recorded from the apex. Each subject gave 

one PCG recording (total 45 recordings) and the recordings had varied time length from 10 s to 122 s (mean 

± SD: 50 ± 26 s). 

 
2.4. TUT heart sounds database 
 

The K N Toosi University of Technology heart sounds database (TUTHSDB) was contributed by Naseri 

and Homaeinezhad (2013) and Naseri et al (2013). It includes a total of 28 healthy volunteers and 16 

patients with different types of valve diseases. The actual diagnoses were determined by echocardiography 

prior to recording of PCG signals. PCG signals were recorded by using an electronic stethoscope (3M 

Littmanns 3200) at four different locations (not simultaneously): pulmonic, aortic, tricuspid and apex at a 

sampling rate of 4000 Hz with 16 bit amplitude resolution for exactly 15 s each. Two subjects only had 3 

PCG recordings, resulting in a total of 174 PCG recordings. 

 
2.5. UHA heart sounds database 

 

The University of Haute Alsace heart sounds database (UHAHSDB) was contributed by Moukadem et al 

(2011, 2013). Heart sound signals were recorded using prototype stethoscopes produced by Infral 

Corporation (Strasbourg, France). The sample rate was 8000 Hz with 16 bit quantization. The dataset 

contains total 79 PCG recordings, including 39 normal sounds and 40 pathological cardiac sounds. The 

normal sound recordings were separated into two sub-files: ‘NHC’ (19 recordings) and ‘MARS500’ (20 

recordings). ‘NHC’ recordings were collected from 19 normal subjects, aged from 18 to 40 years. The 

recording length varied from 7 s to 29 s (mean ± SD: 14 ± 5 s). ‘MARS500’ recordings were collected from 

6 volunteers (astronauts), dedicating to the Cardio-Psy experience as a part of the MARS500 project 

(IBMP–Russia) promoted by European Spatial Agency. The recording length varied from 7 s to 17 s (mean 

± SD: 10 ± 3 s). The pathologic recordings were from 30 patients (10 female and 20 male), who were 

recruited during hospitalization in the Hospital of Strasbourg. They were aged from 44 to 90 years. Ten of 

them were recorded twice generally before and after valvular surgery. The diagnoses of the pathologic 

patients were made by an experienced cardiologist using additional information from the ECG and 

echocardiography-Doppler. Among 30 patients, 9 patients had prosthetic valves with 1 bioprosthesis, 4 

patients had double prostheses (in aortic and mitral positions), and the other patients presented rhythm 

disturbances (ventricular extra systoles, AV block and tachyarrhythmia) in the context of ischemic 

cardiomyopathy. The recordings varied in length from 6 s to 49 s (mean ± SD: 16 ± 9 s). 

 
2.6. DLUT heart sounds database 
 

The Dalian University of Technology heart sounds database (DLUTHSDB) was contributed by Tang et al 

(2010a, 2010b, 2012) and Li et al (2011). Subjects included 174 healthy volunteers (2 female and 172 male, 

aged from 4 to 35 years, mean ± SD: 25 ± 3 years) and 335 CAD patients (227 female and 108 male, aged 

from 10 to 88 years, mean ± SD: 60 ±12 years). Heart sounds from the CAD patients were recorded in the 

Second Hospital of Dalian Medical University using an electronic stethoscope (3M Littmann). CAD 
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patients were confirmed based on the cardiologist’s diagnosis. Only PCG signals were available and all of 

them were collected from the mitral position at the chest. Data were saved in the.wav format using a 

sampling rate of 8000 Hz with 16 bit quantization. Each patient provided one PCG recording and there 

were a total of 335 recordings. The recording length varied from about 3 s to 98 s (mean ± SD: 17 ± 12 s). 

Heart sound signals from the healthy volunteers were recorded using a microphone sensor (MLT201, 

ADinstrument, Australia) or a piezoelectric sensor (Xinhangxingye Technology Co. Ltd, China) at the 

Biomedical Engineering Lab in DLUT, China. Each subject contributed one or several recordings and a 

total of 338 recordings were collected. Recordings included either a single channel (PCG) or several 

channels (PCG combined with ECG, photoplethysmogram or respiratory signals). ECG signals were the 

standard lead-II ECG. Photoplethysmogram signals were recorded from the carotid artery or finger. 

Respiratory signals were collected using a MLT1132 belt transducer (ADinstrument, Australia) to record 

chest movement. The recording lengths varied from about 27.5 s to 312.5 s (mean ± SD: 209 ± 78 s). 

Various sampling rates were used (800 Hz, 1000 Hz, 2000 Hz, 3000 Hz, 4000 Hz, 8000 Hz or 22 050 Hz) 

depending on different research aims. All 338 recordings from the healthy volunteers could be separated 

into two sub-types: recordings during rest (218 recordings) where the subjects were in peaceful calm states, 

and recordings during non-resting states (120 recordings). Non-resting recordings were collected 

immediately after step climbing (116 recordings), during cycles of breath holding (3 recordings), and after 

the bike cycling (1 recording). 

 
2.7. SUA heart sounds database 
 

The Shiraz University adult heart sounds database (SUAHSDB) was contributed by Samieinasab and 

Sameni (2015). This database was constructed using recordings made from 79 healthy subjects and 33 

patients (total 69 female and 43 male, aged from 16 to 88 years, mean ± SD: 56 ± 16 years). The JABES 

digital electronic stethoscope (GS Technology Co. Ltd, South Korea) was used, placed on the chest, 

commonly above the apex region of the heart. The Audacity cross-platform audio software was used for 

recording and editing the signals on a PC. The subjects were asked to relax and breathe normally during 

the recording session. The database consists of 114 recordings (each subject/patient had one heart sound 

signal but one healthy subject had three), resulting in 81 normal recordings and 33 pathological recordings. 

The recording length varied from approximately 30 s–60 s (mean ± SD: 33 ± 5 s). The sampling rate was 

8000 Hz with 16 bit quantization except for three recordings at 44 100 Hz and one at 384 000 Hz. The data 

were recorded in wideband mode of the digital stethoscope, with a frequency response of 20 Hz–1 kHz. 

 
2.8. SSH heart sounds database 
 

The Skejby Sygehus Hospital heart sounds database (SSHHSDB) was assembled from patients referred to 

Skejby Sygehus Hospital, Denmark. It comprises 35 recordings from 12 normal subjects and 23 

pathological patients with heart valve defect. All recordings are obtained from the 2nd intercostal room just 

right to sternum. The recording length varied from approximately 15 s–69 s (mean ± SD: 36 ± 12 s) and 

the sampling rate was 8000 Hz. 

 
2.9. SUF heart sounds database (not used for challenge) 
 

The Shiraz University fetal heart sounds database (SUFHSDB) was also contributed by Samieinasab and 

Sameni (2015). This database was constructed using recordings made from 109 pregnant women (mothers 

aged from 16 to 47 years, mean ± SD: 29 ± 6 years with BMI from 19.5 to 38.9, mean ± SD: 29.2 ± 4.0). 

The JABES digital electronic stethoscope (GS Technology Co. Ltd, South Korea) was used, and placed on 

the lower maternal abdomen as described in Samieinasab and Sameni (2015). In the case of twins (seven 

cases) the data were collected twice according to the locations advised by the expert gynecologist. The 

Audacity cross-platform audio software was used for recording and editing the signals on a PC. In total, 99 

subjects had one signal recorded, three subjects had two and seven cases of twins were recorded 

individually, resulting in 119 total recordings. The average duration of each record was about 90 s. The 

sampling rate was generally 8000 Hz with 16 bit quantization and a few recordings were sampled at 44 100 

Hz. The data were recorded in wideband mode of the digital stethoscope, with a frequency response of 20 

Hz–1 kHz. In most cases (91 subjects), the heart sounds of the mothers were also recorded before each fetal 

PCG recording session. As a result, a total number of 92 maternal heart sounds data (90 subjects had one 

heart sound signal but one had two signals recorded) are also available in the dataset. Note that since the 

PhysioNet/CinC Challenge 2016 was focused on adult heart sounds, this SUFHSDB dataset was excluded 

only from the challenge; but has been included in the online database. The inclusion of this dataset in the 

open-access database was provided to enable researchers to test single channel fetal, maternal, and 

environmental noise separation algorithms, although it is not part of the Challenge described in this article. 
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3. Brief review on heart sound segmentation methods 
 

The segmentation of the FHSs is a first step in the automatic analysis of heart sounds. The accurate 

localization of the FHSs is a prerequisite for the identification of the systolic or diastolic regions, allowing 

the subsequent classification of pathological situations in these regions (Liang et al 1997b, Springer et al 

2014, Springer 2016). S1 is initiated by the closure of the atrioventricular valves at the beginning of the 

systole and occurs immediately after the R-peak (ventricular depolarization) of the ECG. S2 is initiated by 

the closure of the semilunar valves at the beginning of the diastole and occurs approximately at the end-T-

wave of the ECG (the end of ventricular depolarization). The time order of these features in ECG and PCG 

is shown in figure 4 (Springer 2016). In clinical practice, the criteria adopted by the cardiologist to annotate 

the beginning and the ending of S1 and S2 sounds was defined as follows: the beginning of S1 is the start 

of the high frequency vibration due to mitral closure, the beginning of S2 is the start of the high frequency 

vibration due to aortic closure, and the endings of S1 and S2 are annotated by the end of the high frequency 

vibrations (Moukadem et al 2013).  

 

Many methods of heart sound segmentation have been studied over the past few decades. The typical 

methods can be classified into four types: the first type is envelope-based method, i.e. using a variety of 

techniques to construct the envelopes of heart sound and thus to perform the heart sound segmentation; the 

second one is feature-based method, i.e. by calculating the features of heart sounds to segment the signal; 

the third one is the machine learning method and the last one, also as the state-of-the-art method, is hidden 

Markov model (HMM) method. We will give a brief summary for the aforementioned four types of heart 

sound segmentation methods. The size of the database of subjects and recordings used in each study, as 

well as the numerical results, will be also presented (see table 2). 

 
3.1. Envelope-based methods 

 

Shannon energy envelope is the most used envelope for PCG envelope extraction. Liang et al proposed a 

normalized average Shannon energy envelope (Liang et al 1997a), which emphasized the medium-intensity 

sounds while attenuating the low-intensity components. The performance of this method was evaluated 

using 515 PCG cycles from 37 recordings acquired from children with murmurs and achieved 93% 

accuracy for PCG segmentation. Another study from Liang et al employed wavelet decomposition before 

estimation of the Shannon envelope and segmented heart sound into four parts: S1, systole, S2 and diastole 

(Liang et al 1997b). This method was evaluated using 1165 cardiac cycles and resulted in an improved 

accuracy from 84% (without wavelet decomposition) to 93% (with wavelet decomposition) on a set of 77 

noisy recordings including both normal and abnormal heart sounds. Moukadem et al proposed a method to 

calculate the Shannon energy envelope of the local spectrum calculated by the S-transform for each sample 

of heart sound signal. This method was evaluated on 40 normal and 40 pathological heart sound recordings. 

The sensitivity and positive predictivity were both higher than 95% for normal and pathological heart sound 

segmentation (Moukadem et al 2013). 

 

Envelope extraction based on Hilbert transform can be divided into two aspects: (1) the envelope is the 

decimated signal of the real part of a complex analytic signal, and (2) the instantaneous frequency is the 

derivative of the imaginary part of complex analytic signal. Sun et al proposed an automatic segmentation 

method based on Hilbert transform (Sun et al 2014). This method considered the characteristics of 

envelopes near the peaks of S1, the peaks of S2, the transmission points T12 from S1 to S2, and the 

transmission points T21 from S2 to S1. It was validated using 7730 s of heart sounds from pathological 

patients, 600 s from normal subjects, and 1496.8 s from Michigan MHSDB database. For the sounds where 

S1 cannot be separated from S2, an average accuracy of 96.69% was achieved. For the sounds where S1 

can be separated from S2, an average accuracy of 97.37% was achieved. 

 

Jiang and Choi proposed an envelope extraction method named cardiac sound characteristic waveform 

(CSCW) (Jiang and Choi 2006). However, they only reported the example figures without reporting any 

quantitative results. In their following study, they compared this CSCW method with other two popular 

envelope-based methods: Shannon energy and Hilbert transform envelopes, and found the CSCW method 

to be superior to both of these, concluding that their method led to more accurate segmentation results: 

100% and 88.2% on normal and pathological patients respectively, as compared to 78.2% and 89.4% for 

the Shannon energy envelope and 51.4% and 47.3% for the Hilbert transform envelope (Choi and Jiang 

2008). However, these results were only evaluated on 500 selected cardiac cycles without a split between 

their training and test sets. Yan et al also used a similar characteristic moment waveform envelope method 
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for segmenting heart sound (Yan et al 2010). This method was only evaluated on a small dataset of 9 

recordings and reported an accuracy of 99.0%, again without a train-test split. 

 

A simple squared-energy envelope was proposed by Ari et al (2008). It is primarily based on the use of 

frequency content present in the signal, calculation of energy in time windows and timing relations of signal 

components. It was shown to have a better performance than Shannon energy envelope when employing a 

threshold-based detection method. Testing on a total of 357 cycles from 71 recordings showed the 

segmentation accuracy is 97.47% (without a train-test split). 

 
3.2. Feature-based methods 
 

Naseri and Homaeinezhad used frequency- and amplitude-based features, and then employed a synthetic 

decision making algorithm for heart sound segmentation (Naseri and Homaeinezhad 2013). The proposed 

method was applied to 52 PCG signals gathered from patients with different valve diseases and achieved 

an average sensitivity of 99.00% and positive predictivity of 98.60%. Kumar et al proposed a detection 

method based on a high frequency feature, which is extracted from the heart sound using the fast wavelet 

decomposition (Kumar et al 2006). This feature is physiologically motivated by the accentuated pressure 

differences found across heart valves, both in native and prosthetic valves. The method was validated on 

patients with mechanical and bioprosthetic heart valve implants in different locations, as well as with 

patients with native valves, and achieved an averaged sensitivity of 97.95% and positive predictivity of 

98.20%. 

 

Varghees and Ramachandran used an instantaneous phase feature from the analytical signal after 

calculating the Shannon entropy (Varghees and Ramachandran 2014). This method is a quite 

straightforward approach that does not use any search-back steps. It was tested using both clean and noisy 

PCG signals with both normal and pathological heart sounds (701 cycles), and achieved an average 

sensitivity of 99.43% and positive predictivity of 93.56% without a train-test split. Pedrosa et al used 

periodic component features from the analysis signal of the autocorrelation function to segment heart sound 

signal (Pedrosa et al 2014). Their method was tested on 72 recordings and had sensitivity and positive 

predictivity of 89.2% and 98.6% respectively. 

 

Unlike using the absolute amplitude or frequency characteristics of heart sounds, Nigam and Priemer used 

complexity-based features by utilizing the underlying complexity of the dynamical heart sound for PCG 

segmentation and this method showed good performance on the synthetic data (Nigam and Priemer 2005). 

However, this study did not provide any quantitative results for evaluation. Vepa et al also used complexity-

based features for heart sound segmentation, which combined energy-based and simplicity-based features 

computed from multi-level wavelet decomposition coefficients (Vepa et al 2008). The method was 

evaluated on only 166 cycles and achieved an accuracy of 84.0%. 

 

Papadaniil and Hadjileontiadis employed kurtosis-based features alongside ensemble empirical mode 

decomposition to select non-Gaussian intrinsic mode functions (IMFs), and then detected the start and end 

positions of heart sounds within the selected IMFs (Papadaniil and Hadjileontiadis 2014). The method was 

tested on 11 normal subjects and 32 pathological patients, and achieved an accuracy of 83.05%. In addition, 

an ECG-referred pediatric heart sound segmentation method was proposed in Gharehbaghi et al (2011). 

This algorithm was applied on 120 recordings of normal and pathological children, totally containing 1976 

cardiac cycles, and achieved accuracy of 97% for S1 and 94% for S2. 

 
3.3. Machine learning methods 
 

Neural network technology is widely used as a typical machine learning method for heart sound 

segmentation. Oskiper and Watrous proposed a time-delay neural network method for detecting the S1 

sound (Oskiper and Watrous 2002). The method consists of a single hidden layer network, with time-delay 

links connecting the hidden units to the time-frequency energy coefficients of Morlet wavelet 

decomposition. The results tested on 30 healthy subjects (without a train-test split) showed an accuracy of 

96.2%. Sepehri et al used a multi-layer perceptron neural network classifier for heart sound segmentation, 

which paid special attention to the physiological effects of respiration on pediatric heart sounds (Sepehri et 

al 2010). A total of 823 cycles from 40 recordings of normal children and 80 recordings of children with 

congenital heart diseases were tested and an accuracy of 93.6% was achieved when splitting the recordings 

equally between training and test datasets. 
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K-means clustering is another widely used method. Chen et al used a K-means clustering and a threshold 

method to identify the heart sounds, achieving 92.1% sensitivity and 88.4% positive predictivity tested on 

27 recordings from healthy subjects (Chen et al 2009). Gupta et al also used K-means clustering combined 

with homomorphic filtering for segmenting heart sounds into single cardiac cycle (S1-systole-S2-diastole) 

(Gupta et al 2007). This method was tested on 340 cycles and achieved an accuracy of 90.29%. Tang et al 

employed dynamic clustering for segmenting heart sounds (Tang et al 2012). In this method, the heart 

sound signal was first separated into cardiac cycles based on the instantaneous cycle frequency and then 

was decomposed into time-frequency atoms, and finally the atoms of heart sounds were clustered in time-

frequency plane allowing the classification of S1 and S2. The results tested on 25 subjects showed an 

accuracy of 94.9% for S1 and 95.9% for S2. 

 

Rajan et al developed an unsupervised segmentation method by first using Morlet wavelet decomposition 

to obtain a time-scale representation of the heart sounds and then using an energy profile of the time-scale 

representation and a singular value decomposition technique to identify heart sound segments (Rajan et al 

2006). This method was tested on a dataset of 42 adult patients and achieved an accuracy of 90.5%. 

 
3.4. HMM methods 
 

Gamero and Watrous proposed an HMM-based methodology, which employed a probabilistic finite state-

machine to model systolic and diastolic interval duration (Gamero and Watrous 2003). The detection of S1 

and S2 was performed using a network of two HMM with grammar constraints to parse the sequence of 

systolic and diastolic intervals. Results were evaluated on 80 subjects and a sensitivity of 95% and a positive 

predictivity of 97% were achieved (without a train-test split). Ricke et al also used an HMM method for 

segmenting heart sounds into four components (S1-systole-S2-diastole), and achieved an accuracy of 98% 

when using eight-fold cross-validation (Ricke et al 2005). However, this study was only performed on a 

relative small subject size of 9. 

 

Gill et al were the first researchers to incorporate timing durations within the HMM method for heart sound 

segmentation (Gill et al 2005). In their method, homomorphic filtering was first performed and then 

sequences of features were extracted to be used as observations within the HMM. Evaluation on 44 PCG 

recordings taken from 17 subjects showed that for S1 detection, sensitivity and positive predictivity were 

98.6% and 96.9% respectively, and for S2 detection, they were 98.3% and 96.5% respectively. Sedighian 

et al (2014) also used homomorphic filtering and an HMM method on the PASCAL database (Bentley et 

al 2011) and obtained an average accuracy of 92.4% for S1 segmentation and 93.5% for S2 segmentation. 

By comparison, Castro et al (2013) used the wavelet analysis on the same database and achieved an average 

accuracy of 90.9% for S1 segmentation and 93.3% for S2 segmentation. 

 

Schmidt et al were the first researchers to explicitly model the expected duration of heart sounds within the 

HMM using a hidden semi-Markov model (HSMM) (Schmidt et al 2010a). They first hand-labelled the 

positions of the S1 and S2 sounds in 113 recordings, and then used the average duration of these sounds 

and autocorrelation analysis of systolic and diastolic durations to derive Gaussian distributions for the 

expected duration of each of the four states, i.e. S1, systole, S2 and diastole. The employed features were 

the homomorphic envelope and three frequency band features (25–50, 50–100 and 100–150 Hz). These 

features, along with the hand-labelled positions of the states, were used to derive Gaussian distribution-

based emission probabilities for the HMM. The duration distributions were then incorporated into the 

forward and backward paths of the Viterbi algorithm. The results on the separate test set were 98.8% 

sensitivity and 98.6% positive predictivity. 

 

Based on Schmidt et al’s work (Schmidt et al 2010a), Springer et al used the HSMM method and extended 

it with the use of logistic regression for emission probability estimation, to address the problem of accurate 

segmentation of noisy, real-world heart sound recordings (Springer et al 2016). Meanwhile, a modified 

Viterbi algorithm for decoding the most-likely sequence of states was also implemented. It was evaluated 

on a large dataset of 10 172 s of heart sounds recorded from 112 patients and achieved an average F1 score 

of 95.63% on a separate test dataset, significantly improving upon the highest score of 86.28% achieved by 

the other reported methods in the literature when evaluated on the same test data. Therefore, this method is 

regarded as the state-of-the-art method in heart sound segmentation studies. 

 

4. Brief review on heart sound classification methods 
 

The automated classification of pathology in heart sounds has been described in the literature for over 50 

years, but accurate diagnosis remains a significant challenge. Gerbarg et al (1963) were the first to publish 
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on the automatic classification of pathology in heart sounds, (specifically to aid the identification of children 

with rheumatic heart disease) and used a threshold-based method. The typical methods for heart sound 

classification can be grouped into four categories: (1) artificial neural network-based classification; (2) 

support vector machine-based classification; (3) HMM-based classification and (4) clustering-based 

classification. The current prominent works in this field are summarized in table 3. The important notes 

about the evaluation of the method, such as whether the data was split into training and test sets, are also 

reported. For relative brevity, only the notable studies with sizeable datasets are summarized in detail 

below. 

 
4.1. Artificial neural network-based classification 
 

The artificial neural network (ANN) is the most widely used machine learning-based approach for heart 

sound classification. Unless auto-associative in nature, ANN classifiers require discriminative signal 

features as inputs. Relatively little work has been performed on optimizing network architectures in this 

context. Typical signal features include: wavelet features, time, frequency and complexity-based features 

and time-frequency features.  

 

Wavelet-based features are most widely employed in ANN approaches to classification of heart sounds. 

Akay et al combined wavelet features with an ANN for the automatic detection of CAD patients (Akay et 

al 1994). They computed four features (mean, variance, skewness and kurtosis) of the extracted coefficients 

of wavelet transform from the diastolic period of heart cycles. These features, alongside physical 

characteristics (sex, age, weight, blood pressure), were fed into a fuzzy neural network, and a sensitivity of 

85% and a specificity of 89% on a separate test set of 82 recordings were reported. Liang and Hartimo 

(1998) employed wavelet packet decomposition with the aim of differentiating between pathological and 

innocent murmurs in children when using ANN classification. Eight nodes of the wavelet packet tree were 

selected automatically using on an information-based cost function. The cost function values then served 

as the feature vector. With a 65/20 patient train/test split they achieved 80% sensitivity and 90% specificity 

on the test data. Uguz (2012a) employed an ANN with the features from a discrete wavelet transform and 

a fuzzy logic approach to perform three-class classification: normal, pulmonary stenosis, and mitral 

stenosis. With a 50/50 train/test split of a dataset of 120 subjects, they reported 100% sensitivity, 95.24% 

specificity, and 98.33% average accuracy for the three-classes. 

 

Bhatikar et al (2005) used the fast Fourier transform (FFT) to extract the energy spectrum features in 

frequency domain, and then used these as inputs to an ANN. Using a separate test set of 53 patients they 

reported 83% sensitivity and 90% specificity when differentiating between innocent and pathological 

murmurs. Sepehri et al (2008) identified the five frequency bands that led to the greatest difference in 

spectral energy between normal and pathological recordings and used the spectral energy in these bands as 

the input features for the ANN. 

 

Reported results on 50 test records were 95% sensitivity and 93.33% specificity for a binary classification. 

Ahlstrom et al (2006) assessed a range of non-linear complexity-based features that had not previously 

been used for murmur classification. They included up to 207 features and finally selected 14 features to 

present to an ANN. They reported 86% classification accuracy for a three-class problem: normal, AS and 

MR. 

 

De Vos and Blanckenberg (2007) used time-frequency features and extracted the energy in 12 frequency 

bins at 10 equally-spaced time intervals over each heart cycle to presents to an ANN. They reported a 

sensitivity and specificity of 90% and 96.5% respectively on 163 test patients (aged between 2 months and 

16 years). Uguz (2012b) also used time-frequency as an input to an ANN. A total of 120 heart sound 

recordings, split 50/50 into train/test, and reported 90.48% sensitivity, 97.44% specificity and 95% accuracy 

for a three-class classification problem (normal, pulmonary and mitral stenosis heart valve diseases). 

 
4.2. Support vector machine-based classification 
 

A number of researchers have applied a support vector machine (SVM) approach to the heart sound 

classification in recent years. Since SVMs are another form of supervised machine learning, the features 

chosen are rather similar to those based on ANN approaches.  

 

Wavelet-based features are therefore widely employed in SVM-based methods. Ari et al (2010) used a least 

square SVM (LSSVM) method for classification of normal and abnormal heart sounds based on the wavelet 

features. The performance of the proposed method was evaluated on 64 recordings comprising of normal 
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and pathological cases. The LSSVM was trained and tested on a 50/50 split (32 patients in each set) and 

the authors reported an 86.72% accuracy on their test dataset. Zheng et al (2015) decomposed heart sounds 

using wavelet packets and then extracted the energy fraction and sample entropy as features for the SVM 

input. Tested on 40 normal and 67 pathological patients, they reported a 97.17% accuracy, 93.48% 

sensitivity and 98.55% specificity. Patidar et al (2015) investigated the use of the tunable-Q wavelet 

transform as an input to LSSVM with varying kernel functions. Testing on a dataset of 4628 cycles from 

163 heart sound recordings (and an unknown number of patients) they reported a 98.8% 

sensitivity and 99.3% specificity, but without stratifying patients (having mutually exclusive patients in 

testing and training sets), and therefore overfitting to their data. 

 

Maglogiannis et al (2009) used Shannon energy and frequency features from four frequency bands (50–
250, 100–300, 150–350, 200–400 Hz) to develop an automated diagnosis system for the identification of 

heart valve diseases based on an SVM classifier. Testing on 38 normal and 160 heart valve disease patients 

they reported an 87.5% sensitivity, 94.74% specificity and 91.43% accuracy. Gharehbaghi et al (2015) used 

frequency band power over varying length frames during systole as input features and used a growing-time 

SVM (GTSVM) to classify pathological and innocent murmurs. When using a 50/50 train/test split (from 

a total of 30 patients with AS, 26 with innocent murmurs and 30 normals), they reported 86.4% sensitivity 

and 89.3% specificity. 

 
4.3. HMM-based classification 
 

HMM methods are not only widely employed for heart sound segmentation, but are also used for pathology 

classification of heart sounds. In the case of classifying pathology, the posterior probability of the heart 

sound signal or the extracted features given a trained HMM can be used to differentiate between healthy 

and pathological recordings. 

 

Wang et al (2007) used a combination of HMM and mel-frequency cepstral coefficients (MFCCs) to 

classify heart sound signals. The feature extraction was performed using three methods: time-domain 

feature, short-time Fourier transforms (STFT) and MFCCs. Testing on 20 normal and 21 abnormal patients 

with murmurs they reported a sensitivity of 95.2% and a specificity of 95.3%. In a subsequent study, they 

also used MFCCs to extract representative features and developed a HMM-based method for heart sound 

classification (Chauhan et al 2008). The method was applied to 1381 cycles of real and simulated, normal 

and abnormal heart sounds and they reported an accuracy of 99.21%. However, both studies failed to make 

use of a separate test set when evaluating their classification methods and the methods are likely to be 

highly overtrained. Saracoglu (2012) applied a HMM in an unconventional manner, by fitting an HMM to 

the frequency spectrum extracted from entire heart cycles. The exact classification procedure of using the 

HMMs is unclear, but it is thought that they trained four HMMs, and then evaluated the posterior probability 

of the features given each model to classify the recordings. They optimized the HMM parameters and PCA-

based feature selection on a training set and reported 95% sensitivity, 98.8% specificity and 97.5% accuracy 

on a test dataset of 60 recordings. 

 

In summary, although HMM-based approaches are regarded as the state-of-the-art heart sound 

segmentation method, their potential to classify heart sounds has not yet been adequately demonstrated. 

 
4.4. Clustering-based classification 

 

A number of researchers have made use of the unsupervised k-nearest neighbours (kNN) algorithm to 

classify pathology in heart sounds. Bentley et al (1998) showed that discrete wavelet transform features 

outperformed morphological features (time and frequency features from S1 and S2) when performing heart 

sound classification using such a method. They used a binary kNN classifier and reported 100% and 87% 

accuracy when detecting pathology in patients with heart valve disease and prosthetic heart valves 

respectively on an unspecified sized database. Quiceno-Manrique et al (2010) used a simple kNN classifier 

with features from various time-frequency representations on a subset of 16 normal and 6 pathological 

patients. They reported 98% accuracy for discriminating between normal and pathologic 

beats. However, the kNN classifier parameters were optimized on the test set, indicating a likelihood of 

over-training. Avendano-Valencia et al (2010) also employed time-frequency features and kNN approach 

for classifying normal and murmur patients. In order to extract the most relevant time-frequency features, 

two specific approaches for dimensionality reduction were presented in their method: feature extraction by 

linear decomposition, and tiling partition of the time-frequency plane. The experiments were carried out 

using 26 normal and 19 pathological recordings and they reported an average accuracy of 99.0% when 

using 11-fold cross-validation with grid-based dimensionality reduction. 
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5. Description of the 2016 PhysioNet/CinC Challenge 
 
5.1. Main aim 
 

The 2016 PhysioNet/CinC Challenge aims to encourage the development of algorithms to classify heart 

sound recordings collected from a variety of clinical or nonclinical environments (such as in-home visits). 

The practical aim is to identify, from a single short recording (10–60 s) from a single precordial location, 

whether the subject of the recording should be referred on for an expert diagnosis (Clifford et al 2016). 

As pointed out in the above reviews, a number of studies have investigated the performances of different 

methods for heart sound segmentation and classification. However, many of these investigations are flawed 

because: (1) the studies were marred by poor methodology, often without the use of a separate test set or 

by allowing data from the same patient to appear in both the training and test sets, almost certainly resulting 

in over-fitting of the model and inflated statistics; (2) the studies did not clearly describe the database used 

(type of patient, size, etc) and did not report the method/location for heart sound recording; (3) the studies 

tended to use hand-picked clean data in their database, used manual labels, and excluded noisy data, which 

leads to an algorithm that is of little use in the real world; (4) failure to use enough or a variety of heart 

sound recordings; and (5) failure to post the data (and any code to process the data) publicly so others may 

compare their results directly. The latter issue is often due to lack of time and resources, and therefore this 

challenge is an attempt to address both this and the aforementioned issues. 

 

In this Challenge, we focused only on the accurate classification of normal and abnormal heart sound 

recordings, particularly in the context of real world (extremely noisy) recordings with low signal quality. 

By providing the largest public collection of heart sound recordings from a variety of clinical and 

nonclinical environments, the Challenge permits the challengers to develop accurate and robust algorithms. 

In addition, due to the uncontrolled environment of the recordings, many recordings provided in this 

Challenge are corrupted by various noise sources, such as speech, stethoscope motion, breathing and 

intestinal activity. Some recordings were difficult or even impossible to classify as normal or abnormal. 

Figure 5 shows an example of a section of a heart sound recording with good (upper plot) and poor (lower 

plot) signal quality respectively. Therefore the challengers were given the choice to classify some 

recordings as ‘unsure’ and the Challenge penalizes this in a different manner (see section 5.3: Scoring 

Mechanism). Classifications for the heart sound recordings were therefore three-level: normal (do not 

refer), abnormal (refer for further diagnostics) and unsure (too noisy to make a decision; retake the 

recording). In this way, any algorithm developed could be employed in an expert-free environment and 

used as decision support. 

 
5.2. Challenge data 
 

Heart sound recordings (from nine independent databases) sourced from seven contributing research groups 

described in section 2 (with the exception of the SUFHSDB since it was from fetal and maternal heart 

sounds), were used in the Challenge, resulting in eight independent heart sound databases. Four of the 

databases were divided into both training and test sets with a 70-30 training-test split. The other four 

databases were exclusively assigned to either training or test set with the consideration of balancing the 

data as much as possible between categories. The Challenge training set includes data from six databases 

(with file names prefixed alphabetically, a through f, training sets a through e were provided before the 

official phase and training set f was added after the beginning of the official phase) containing a total of 

3153 heart sound recordings from 764 subjects/patients, lasting from 5 s to just over 120 s. The Challenge 

test set also included data from six databases (b through e, plus g and i) containing a total of 1277 heart 

sound recordings from 308 subjects/patients, lasting from 6 s to 104 s. The total number of recordings 

created for the Challenge was 4430 and is different from the reported number of 2435 in table 1. This is 

because the 338 recordings from normal subjects in the DLUTHSDB are generally longer than 100 s and 

each recording was segmented into several relatively short recordings. All recordings were resampled to 

2000 Hz using an anti-alias filter and provided as.wav format. Each recording contains only one PCG 

lead, except for training set a, which also contains a simultaneously recorded ECG (2016). 

 

In each of the databases, each recording begins with the same letter followed by a sequential, but random 

number. Files from the same patient are unlikely to be numerically adjacent. The training and test sets have 

each been divided so that they are two sets of mutually exclusive populations (i.e. no recordings from the 

same subject/patient were in both training and test sets). Moreover, there are four collected databases that 

have been semi-randomly placed exclusively in either the training or test sets (to ensure there are ‘novel’ 
recording types and to reduce over-fitting on the recording methods). Databases a and f are found 

exclusively in the training set and g and i are exclusively found in the test set. The test set is unavailable to 
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the public and will remain private for the purpose of scoring. (In the future, as more data are added, we may 

release all the data to the public.) Participants may note the existence of a validation dataset in the data 

folder. This data is a copy of 301 recordings from the training set, and is used to validate uploaded entries 

before their evaluation on the test set.  

 

In both training and test sets, heart sound recordings were divided into two types: normal and abnormal 

recordings. The normal recordings were from healthy subjects and the abnormal ones were from patients 

with a confirmed cardiac diagnosis. The patients were noted to suffer from a variety of illnesses (which is 

not provided here on a case-by-case basis but is detailed in an online appendix 

(stacks.iop.org/PM/37/2181/mmedia) to this article for the training set data), but typically they are heart 

valve defects and CAD patients. Heart valve defects include MVP, MR, aortic regurgitation, AS and 

valvular surgery. All the recordings from the patients were generally labeled as abnormal. We do not 

provide more specific classification for these abnormal recordings. Please note that both training and test 

sets are unbalanced, i.e. the number of normal recordings does not equal that of abnormal ones. Challengers 

will have to consider this when they train and test their algorithms.  

 

In addition, to facilitate the challengers in training their algorithms to identify low signal quality recordings, 

we provided the labels for ‘unsure’ recordings with poor signal quality in all training data. We also provided 

reference annotations for the four heart sound states (S1, systole, S2 and diastole) for each beat for all 

recordings that were not belong to ‘unsure’ type. The reference annotations were obtained by using 

Springer’s segmentation algorithm (Springer et al 2016) and subsequently manually reviewing and 

correcting each beat labels, resulting in a total of 84 425 beats in training set and 32 440 beats in test set 

after hand correction. Figure 6 illustrates an example where the automatic segmentation algorithm outputs 

the wrong annotation and the corresponding correct annotation from hand-correction. Table 4 summarizes 

the number of patients and recordings, the recording percentages and time lengths, the percentages of hand 

corrected recordings and heart beats, as well as the corresponding number of hand corrected 

recordings/beats for each database, for both training and test sets. As shown in table 4, 20.7% of the 

recordings in the training set and 15.3% of the recordings in the test set required hand correction, with 

corresponding percentages of hand corrected heart beats at 11.7% and 10.9% respectively. 

 
5.3. Scoring mechanism 
 

The overall score is computed based on the number of recordings classified as normal, abnormal or unsure, 

in each of the two reference categories. Table 5 shows the rules for determining the classification result of 

current recording from Challenger’s algorithm (Clifford et al 2016). The modified sensitivity (Se) and 

specificity (Sp) are defined as: 

 

 
where wa1 and wa2 are the percentages of good signal quality and poor signal quality recordings in all 

abnormal recordings respectively, and are used as weights for calculating Se, wn1 and wn2 are the 

percentages of good signal quality and poor signal quality recordings in all normal recordings respectively, 

and are used as weights for calculating Sp. 

 

For all 3153 training set recordings, the weight parameters of wa1, wa2, wn1 and wn2 are 0.8602, 0.1398, 

0.9252 and 0.0748 respectively. For all 301 validation set recordings, the weight parameters of wa1, wa2, 

wn1 and wn2 are 0.788 81, 0.2119, 0.9467 and 0.0533 respectively. 

 

The overall Challenge ‘Score’ is then given by MAcc=(Se + Sp)/2, i.e. the average of the values of the Se 

and Sp. 

 

6. A simple benchmark classifier for the 2016 PhysioNet/CinC Challenge 
 
As a basic starting point for the Challenge we provided a benchmark classifier that relied on relatively 

obvious parameters extracted from the heart sound segmentation code. For the pending competition results 
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in the 2016 PhysioNet/CinC Challenge, challengers can refer to Clifford et al (2016). Here we briefly 

describe the approach for training and testing the code on the Challenge training data only. 

 
6.1. Selected balanced database from training set 
 

Since both training and test sets are unbalanced, first, a balanced heart sound database from training set was 

selected. (Otherwise, without prior probabilities on the illness, a prevalence bias would be created.) Table 

6 summarizes the numbers of the raw heart sound recordings in training set, and the numbers of the selected 

recordings for each training database. 

 
6.2. Definition for features 

 

Springer’s segmentation code (Springer et al 2016) was used to segment each selected heart sound recording 

to generate the time durations for the four states: S1, systole, S2 and diastole. Twenty features were 

extracted from the position information of the four states as follows: 

 

1. m_RR: mean value of RR intervals 

2. sd_RR: standard deviation (SD) of RR intervals 

3. m_IntS1: mean value of S1 intervals 

4. sd_IntS1: SD of S1 intervals 

5. m_IntS2: mean value of S2 intervals 

6. sd_IntS2: SD of S2 intervals 

7. m_IntSys: mean of systolic intervals 

8. sd_IntSys: SD of systolic intervals 

9. m_IntDia: mean of diastolic intervals 

10. sd_IntDia: SD of diastolic intervals 

11. m_Ratio_SysRR: mean of the ratio of systolic interval to RR of each heart beat 

12. sd_Ratio_SysRR: SD of the ratio of systolic interval to RR of each heart beat 

13. m_Ratio_DiaRR: mean of ratio of diastolic interval to RR of each heart beat 

14. sd_Ratio_DiaRR: SD of ratio of diastolic interval to RR of each heart beat 

15. m_Ratio_SysDia: mean of the ratio of systolic to diastolic interval of each heart beat 

16. sd_Ratio_SysDia: SD of the ratio of systolic to diastolic interval of each heart beat 

17. m_Amp_SysS1: mean of the ratio of the mean absolute amplitude during systole to that during the 

S1 period in each heart beat 

18. sd_Amp_SysS1: SD of the ratio of the mean absolute amplitude during systole to that during the S1 

period in each heart beat 

19. m_Amp_DiaS2: mean of the ratio of the mean absolute amplitude during diastole to that during the 

S2 period in each heart beat 

20. sd_Amp_DiaS2: SD of the ratio of the mean absolute amplitude during diastole to that during the 

S2 period in each heart beat 

 
6.3. Logistic regression for feature selection 
 

Logistic regression (LR) allows the identification of the impact of multiple independent variables in 

predicting the membership of one of the multiple dependent categories. Binary logistic regression (BLR) 

is an extension of linear regression, to address the fact that the latter struggles with dichotomous problems. 

This difficulty is overcome by applying a mathematical transformation of the output of the classifier, 

transforming it into a bounded value between 0 and 1 more appropriate for binary predictions. 

 

In the current study, the output variable Y is a positive (1, abnormal) or negative (−1, normal) classification 

for heart sound recording. All 20 features were tested and a forward likelihood ratio selection was used, in 

order of likelihood. If the accuracy of the model exhibited a statistical difference with the model prior to 

the addition of a feature, the newly added feature is included in the model. The forward selection is 

terminated if the newly added feature did not significantly improve the normal/ 

abnormal classification results. In this way, correlated predictors are unlikely to be included in the model, 

but it does not guarantee an optimal combination of features. Moreover, we note that the features we have 

chosen are by no means likely to include the most useful features. 
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6.4. Feature results comparison between the selected balanced data from training set 
 

Table 7 shows the average values of all 20 features for normal and abnormal heart sound recordings on  the 

selected balanced data from training set. The Kolmogorov-Smirnov test for verifying the normal 

distribution of all features was applied using the SPSS Statistics 19 software package (SPSS Inc., USA). 

The results showed that only the sd_Ratio_DiaRR feature exhibited Gaussian distributions in both normal 

and abnormal groups. Therefore, the group t test was performed for the sd_Ratio_DiaRR feature and a 

Wilcoxon rank sum test was performed for other 19 features to test the statistical differences between the 

two groups. The results showed that 13 features exhibited statistical differences between the two groups 

whereas 7 features did not exhibit statistically significant differences. 

 
6.5. Classification results using logistic regression 
 

Equation (3) shows the derived BLR prediction formula with the corresponding regression coefficients for 

normal/abnormal heart sound recordings classification on all selected balanced data from training set. Seven 

features were identified as the predictable features, including: sd_RR, sd_IntS1, m_IntS2, sd_IntS2, 

sd_IntSys, m_IntDia and sd_Ratio_SysDia. 

 

Z = wT X = 0.062-0.013  sd_RR + 0.067  sd_IntS1 - 0.032  m_IntS2 

+ 0.041  sd_IntS2 + 0.058  sd_IntSys 

 + 0.002 m_IntDia + 0.035  sd_Ratio_SysDia  (3) 

 

Table 8 provides the results of Aa, An, Na and Nn numbers and the three evaluation metrics (Se, Sp and 

Score) defined in section 5.3. Using equation (3), the normal/abnormal classification results were 0.62 for 

Se, 0.70 for Sp and a Challenge Score of 0.66 on the training data. We also use both a K = 10-fold cross 

validation, stratifying by patient, and a leave-one-out (database) cross validation, stratifying by database 

to test the performances of BLR model on all selected balanced training data. This is important to note, 

since including patients in the training data and reporting on test data that includes the same data will give 

a falsely inflated accuracy. Similarly, using a leave-one-out approach to each database, provides a deeper 

understanding of which databases can result in heavy biases, and may help provide a more accurate 

estimate of the out of sample accuracy of the algorithm. Tables 9 and 10 show the corresponding results 

from 10-fold cross validation and leave-one-out cross validation. Note that the results are subject to 

statistical variation because of the subsampling. We also note that the average running time on the 

training set used 5.26% of quota and 5.22% of quota on the hidden test set using Matlab 2016a. We note 

that this classification algorithm is not intended to provide a sensible way to classify the recordings, but 

rather to illustrate how a simple algorithm can achieve basic results, but that the results will also vary 

highly based on which databases are used to train and test the classifiers. We also note that improving the 

segmentation algorithm may be key to improving the results of any given classifier. Finally, we note that 

our classifier did not attempt to label any recordings as unknown or unreadable. Any useful algorithm 

must endeavor to do so, since the intention is for this algorithm to be used at the source of recording, 

where a re-recording can be triggered in the event that an automated algorithm is likely to fail. 

 

Differentiating abnormality from noise is often a difficult but critical issue in biomedical signal 

analysis, as we have noted in previous competitions (Clifford and Moody 2012). 

 

7. Potential benefits from the public heart sound data 
 
The public release of the heart sound database has many potential benefits to a wide range of users. First, 

those who lack access to well-characterized real clinical signals may benefit from access to these data for 

developing prototype algorithms. The availability of these data can encourage researchers from a variety 

of backgrounds to develop innovative methods to tackle problems in heart sound signal processing that they 

might not otherwise have attempted. 

 

An additional benefit is that the data can be re-evaluated with new advances in machine learning and signal 

processing as they become available. The public data are also essential resources for developers and 

evaluators who need to test their algorithms with realistic data and to perform these tests repeatedly and 

reproducibly on a public platform.  

 

In addition, these databases have value in medical and biomedical engineering education by providing well-

documented heart sound recordings from both healthy subjects and patients with a variety of clinically 

significant diseases. By making well-characterized clinical data available to educational institutions, these 
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databases will make it possible to answer numerous physiological or pathological questions without the 

need to develop a new set of reference data. 

 

The availability of open source state of the art signal processing algorithms for heart sound segmentation 

provided for the competition, and the subsequent open source classification algorithms provided by 

competitors is likely to provide an impulse into the field and raise the benchmark for FDA approval and 

diagnostic performance of industrial systems (Goldberger et al 2000). We hope that this new heart sound 

database will help realize these benefits and their often-unanticipated rewards to those with an interest in 

heart sound signal processing. 
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Tables 
 

Table 1. Detailed profiles for the assembled heart sound databases for the 2016 PhysioNet/CinC Challenge. 
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Table 2. Summary of the major heart sound segmentation works. 

 

   
 



Author version of the paper published in Physiological Measurement 37 (2016) 2181-2213 

doi:10.1088/0967-3334/37/12/2181 

21 
 

Table 3. Summary of the previous heart sound classification works. 

 

 
 

Table 4. Summary of the training and test sets used in 2016 PhysioNet/CinC Challenge. 
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Table 5. Rules for determining the classification result of current recording from Challenger’s algorithm. 

 
 

Table 6. Numbers of raw and selected recordings for each database in the training set. 

 
 

Table 7. Statistical results for comparison between normal and  

abnormal heart sound recordings on all selected balanced data from training set. 

 
 

Table 8. BLR results (equation (3)) of the Aa, An, Na and Nn numbers and the three indices (Se, Sp and Score)  

for all selected balanced training database: 472 abnormal and 472 normal recordings. 
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Table 9. K = 10-fold cross validation results for all selected balanced training database: 

472 abnormal and 472 normal recordings. 

 
 

Table 10. Balanced leave-one-out cross validation results for all training databases: 

472 abnormal and 472 normal recordings. 
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Figures 
 

 
Figure 1. Phonocardiograms (above) from normal and abnormal heart sounds with pressure diagrams (below). Red 

indicates aortic pressure, green ventricular pressure and blue atrial pressure. Reproduced under the CC BY-SA 3.0 

license and adapted from Madhero (2010). 

 

 
Figure 2. General spectral regions for different heart sounds, and other physiologicalsounds during heart sound 

recordings. Adapted from Leatham (1975) and Springer (2016). 
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Figure 3. Typical three steps for automated analysis of heart sound in clinical applications. 

 

 

 

 
Figure 4. Example of an ECG-labelled PCG, with the ECG, PCG and four states of the heart cycle (S1, systole, S2 and 

diastole) shown. The R-peak and end-T-wave are labelled as references for defining the approximate positions of S1 

and S2 respectively. Mid-systolic clicks, typical of mitral valve prolapse, can be seen in the systole states. Adapted 

from Springer (2016). 
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Figure 5. Example of a heart sound recording segment with good signal quality (A) and poor signal quality (B). 

 

 

 
Figure 6. (A) An example of the state labels of a heart sound segment with automatically generated annotations (using 

Springer’s segmentation algorithm) and (B) the same data and annotations after hand-correction. 


