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Abstract

We introduce a fast algorithm for computing volume potentials - that is, the con-
volution of a translation invariant, free-space Green’s function with a compactly sup-
ported source distribution defined on a uniform grid. The algorithm relies on regu-
larizing the Fourier transform of the Green’s function by cutting off the interaction in
physical space beyond the domain of interest. This permits the straightforward applica-
tion of trapezoidal quadrature and the standard FFT, with superalgebraic convergence
for smooth data. Moreover, the method can be interpreted as employing a Nystrom
discretization of the corresponding integral operator, with matrix entries which can be
obtained explicitly and rapidly. This is of use in the design of preconditioners or fast
direct solvers for a variety of volume integral equations. The method proposed permits
the computation of any derivative of the potential, at the cost of an additional FFT.

1 Introduction

Many problems in scientific computing require the solution of a constant coefficient elliptic
partial differential equation subject to suitable boundary or radiation conditions. In many
cases, the free-space Green’s function for the corresponding equation is known but involves
nonlocal (long-range) interactions. A typical example is the Helmholtz equation in Rd

∆φ+ k2φ = f,

where φ can be thought of as an acoustic potential and f a known distribution of acoustic
sources, which we assume to be supported in the bounded domain D = [−1

2 ,
1
2 ]d. This can

be done without loss of generality by rescaling the Helmholtz parameter k. The solution
which satisfies the Sommerfeld radiation condition is well-known to be

φ(x) =

∫

D
gk(x− y) f(y) dy. (1)
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where gk(r) = 1
4iH0(kr) for d = 2 and gk(r) = 1

4π
eikr

r for d = 3. Here, r = ‖r‖2 and H0

denotes the zeroth order Hankel function of the first kind.
Note that the interaction kernel is long-range, requiring fast algorithms to be practical,

and singular at r = 0, requiring accurate quadrature techniques. In some applications, a
third difficulty is that the source density f is highly inhomogeneous, requiring adaptive
discretization. In such settings, intrinsically adaptive, hierarchical methods are required
[1, 2, 3, 4]. When the density is smooth, however, and well-resolved by a uniform mesh, it
is more convenient (and generally more efficient) to use Fourier methods. We restrict our
attention to the latter case in the present paper.

There are two distinct ways in which Fourier methods can be applied to the compu-
tation of (1). The first is the direct discretization of the equation with a locally-corrected
trapezoidal rule. In the two-dimensional setting, for example, one can discretize D with a
uniform mesh of N2 points and use the approximation

φ(nh,mh) ≈
∑

n′,m′∈[−N
2
,N
2
]

|n−n′|,|m−m′|>k

gk((n− n′)h, (m−m′)h) f(n′h,m′h)h2 +

∑

n′,m′∈[−N
2
,N
2
]

|n−n′|,|m−m′|≤k

wn−n′,m−m′f(n′h,m′h) ,

where h = 1
N . Several groups have shown that kth order accuracy can be achieved in this

manner by a suitable choice of weights wi,j (see, for example, [5, 6, 7, 8, 9, 10]). The net
sum takes the form of a discrete (aperiodic) convolution and, hence, can be computed using
the FFT with zero-padding in O(N2 logN) operations.

Alternatively, using the convolution theorem, one can write

φ(x) = F−1
(

F (s)

|s|2 − k2
)

=

(
1

2π

)d ∫

Rd

eis·x
F (s)

|s|2 − k2 ds , (2)

where

F (s) = F (f)(s) =

∫

D
e−is·xf(x) dx . (3)

F here denotes the Fourier transform. The fact that f(x) is smooth permits us to
compute the Fourier integral in (3) with “spectral” accuracy. It also ensures that the error
in truncating the Fourier integral in the inverse transform (2) is rapidly decaying with
|s|. The principal difficulty in employing Fourier methods is the singularity 1

|s|2−k2 in the

integrand. In the case of the Poisson equation, this is simply 1
|s|2 .

It is possible to design high order rules for the inverse Fourier transform. In the case of
the Poisson equation in three dimensions, for example, switching to spherical coordinates
cancels the singularity entirely. Combining this with the nonuniform FFT yields more or
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less optimal schemes in terms of CPU time (see [11] and the references therein). This
approach becomes technically more complicated for the Helmholtz equation, where the
singularity lives on the sphere |s| = k.

It turns out that there is a simple method that works for all long-range Green’s func-
tions, independent of dimension, requires only the trapezoidal rule, achieves spectral accu-
racy, and is accelerated by the standard FFT. Moreover, the matrix entries corresponding
to this high order method are easily computed - a useful feature for either preconditioning
strategies or direct solvers when using volume integral methods to solve variable coefficient
partial differential equations.

Let us suppose, for the sake of simplicity, that we seek the restriction of the solution
φ(x) to the unit box D ⊂ Rd. Then, the maximum distance between any source and target
point in D is

√
d. We define

gLk (r) =





1

4i
H0(kr) rect

( r

2L

)
if d = 2

1

4π

eikr

r
rect

( r

2L

)
if d = 3

(4)

with rect(x) defined to be the characteristic function for the unit interval:

rect(x) =

{
1 for |x| < 1/2
0 for |x| > 1/2.

If we set L >
√
d in d dimensions, then the solution (1) is clearly indistinguishable from

φ(x) =

∫

D
gLk (x− y) f(y) dy. (5)

Since gLk is compactly supported, the Paley-Wiener theorem implies that its Fourier
transform GLk is entire (and C∞). Moreover, as we shall see below, it is straightforward
to compute. In the case of the Laplace operator in three dimensions, for example, GL0 =

2( sin(Ls/2)s )2. Thus, the Poisson equation in three dimensions has the solution

φ(x) =
2

(2π)3

∫

R3

eis·x
(

sin(L|s|/2)

|s|

)2

F (s) ds . (6)

Discretization by the trapezoidal rule on the domain [−N
2 ,

N
2 ]d permits rapid evaluation

using nothing more than the FFT. The achieved accuracy is controlled by the rate of decay
of F (s), with spectral accuracy achieved for sufficiently smooth f(x) [12].

Remark 1. The approach described here is both elementary and quite general, but seems
to have been overlooked in the numerical analysis literature. An exception is the paper
[13] by Vainikko, who used volume Helmholtz potentials for the iterative solution of the
Lippmann-Schwinger equation.
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2 Computing the Fourier transform of truncated translation-
invariant kernels

Suppose now that f(x) is a radially symmetric function: f(x) = f(r), where r = |x|. Then
its Fourier transform F (s) is also radially symmetric. For d = 3, it is easy to verify that

F (s) = 4π

∫ ∞

0

sin(sr)

sr
f(r) r2 dr (7)

where s = |s|. For d = 2,

F (s) = 2π

∫ ∞

0
J0(sr) f(r) r dr. (8)

For the Laplace equation in three dimensions, with Green’s function

gL0 (x) =
1

4π|x|rect
( |x|

2L

)
, (9)

we have

GL0 (s) := F
(
gL0 (x)

)
(s) = 4π

∫ L

0

sin(sr)

sr

1

4πr
r2 dr = 2

(sin(Ls/2)

s

)2
, (10)

an analytic function expressible as a power series in s2.
In R2, where the Green’s function for the Laplace equation is

g0(x) =
−1

2π
log |x|, (11)

we obtain the Fourier transform:

GL0 (s) := 2π

∫ +∞

0
J0(sr)g

L
0 (r)rdr =

1− J0(Ls)
s2

− L log(L)J1(Ls)

s
. (12)

We set L = 1.8 >
√

3 in three dimensions and L = 1.5 >
√

2 in two dimensions. Note that,
in the inverse Fourier transform (6), the frequency content of the integrand in the variable
of integration s is determined by the maximum magnitude of x, the magnitude of L and
F (s) itself. It is straightforward to check that the integrand is sufficiently sampled with a
mesh that is four times finer than in the original box: a factor of two from the fact that
we are carrying out an aperiodic convolution so that the frequency content of eis·xF (s) is
twice greater and a factor of two from the oscillatory behavior of the Fourier transform of
the truncated kernel. Thus, if the unit box is discretized using N points in each dimension,
we now require a grid of size 4N in each dimension. We will see in section 4 that, after a
precomputation step, this can be reduced to a factor of 2N .
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3 Truncated kernels of mathematical physics

We now apply the technique described above to a collection of Green’s functions that arise
in mathematical physics. The resulting kernels in Fourier space are always C∞, as noted
above, by the Paley-Wiener theorem [14]. The method is easily extended to the calculation
of any derivative using spectral differentiation.

Tables 1 and 2 summarize the results for various PDEs in three and two dimensions,
respectively. We omit the derivations which are straightforward.

Table 1: Spectral representations of Green’s Functions in 3D

Diff. Operator Green’s function Truncated Spectral Representation

∆ g0(r) =
1

4πr
GL0 (s) = 2

(
sin(Ls/2)

s

)2

∆ + k2 gk(r) =
eikr

4πr
GLk (s) =

−1 + eiLk(cos(Ls)− ik
s

sin(Ls))

(k − s)(k + s)

∆2 gb(r) =
r

8π
GL(s) =

(2− L2s2) cos(Ls) + 2Ls sin(Ls)− 2

2s4

∆(∆ + k2) g0k(r) =
eikr

4πr
− 1

4πr
GL0k(s) = GLk (s)−GL0 (s)

(∆ + h · ∇) gh(x) =
ei|h||x|

4π|x| e
ih·x GLh(s) = GL|h|(|s− h|)

For illustration, we plot the spectral representations of the free-space and truncated
Laplace and Helmholtz Green’s functions in Fig. 1.

4 An explicit construction of the discretized volume integral
operators

The method described above requires a grid of dimension (4N)d points in order to compute
an accurate volume integral without aliasing error. We show now that, after a precompu-
tation step, only an FFT of dimension (2N)d is required. To see this, let us consider the
three dimensional setting, with the data in the unit box denoted by ρijk = ρ(ih, jh, kh)
where h = 1/N and i, j, k ∈ {−N/2 + 1, .., N/2}. The solution must then take the form of
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Table 2: Spectral representations of Green’s Functions in 2D

Diff. Operator Green’s function Truncated Spectral Representation

∆ g0(r) =
−1

2π
log(r) GL0 (s) =

1− J0(Ls)

s2
− L log(L)J1(Ls)

s

∆ + k2 gk(r) =
i

4
H

(1)
0 (kr) GLk (s) =

1 +
iπ

2
LsJ1(Ls)H

(1)
0 (Lk)

s2 − k2

−

iπ

2
LkJ0(Ls)H

(1)
1 (Lk)

s2 − k2

∆2 gb(r) = − r
2

8π

(
log(r)− 1

)
GL(s) =

J0(Ls)− 1

s4
− L3(log(L)− 1)J1(Ls)

4s

+
(L logL)J1(Ls)

s3
− L2(2 logL− 1)J0(Ls)

4s2

∆(∆ + k2) g0k(r) = gk(r) + g0(r) GL0k(s) = GLk (s)−GL0 (s)

(∆ + h · ∇) gh(r) =
i

4
H

(1)
0 (|h||x|)eih·x GLh(s) = GL|h|(|s− h|)

a discrete convolution operator:

φi′j′k′ =
∑

i,j,k

T (i′ − i, j′ − j, k′ − k)ρijk . (13)

Thus, all entries of T can be determined by simply applying the operator to the special
right-hand side ρijk = δi0δj0δk0. Subsequent applications of T to a vector can then be
carried out using standard aperiodic convolution, which only requires zero-padding by a
factor of 2.

Remark 2. A side effect of this precomputation is that we have generated a discrete matrix
corresponding to a high order accurate Nyström discretization of the original volume integral
operator. This is useful when implementing linear algebraic tools such as hierarchical direct
solvers, incomplete LU preconditioners, etc.

It is worth plotting the resulting entries of T and comparing them to a naive trapezoidal
approximation (which blows up when i = i′, j = j′ and k = k′). As can be seen in Fig.
2, our high order rule takes the form of a mollified Green’s function - with no significant
oscillations in sign or other difficulties that plague many high order quadrature generation
techniques.
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Figure 1: (l) Spectrum of the free-space Laplace kernel and the truncated Laplace kernel.
(r) Spectrum of the free-space Helmholtz kernel for k = 4 and the truncated kernel with L =
1.8. Note that the truncated kernels are smooth but have introduced a slight oscillation.
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Figure 2: Comparing the naive trapezoidal rule on the original Green’s function and the
high order mollified Green’s function along the line y = z = 0.
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5 Numerical results

In this section, we illustrate the performance of the method described above. Our first
examples simply involve convolution of the free-space Green’s function with a Gaussian
source, since the exact solution is available analytically. We also solve a variable dielectric
Poisson-Boltzmann equation and a Lippmann-Schwinger type integral equation for variable
medium scattering problems.

5.1 Convolution with a Gaussian source

Suppose now that, in three dimensions, the source distribution is given by a simple Gaus-
sian:

ρ(r) :=
1

σ3(2π)3/2
e−

r2

2σ2 . (14)

Then, the solution to the Poisson equation is given by

[g0 ∗ ρ](x) =
1

4πr
erf
( r√

2σ

)
. (15)

For the Helmholtz equation, the solution is a little more complicated but also straightfor-
ward to compute:

[gk ∗ ρ](x) =
1

4πr
e−

σ2k2

2

[
Real

(
e−ikr erf

(
2σ2ik − 2r

2
√

2σ2

))
− i sin(kr)

]
. (16)

For the biharmonic equation, we have

[gb ∗ ρ](x) =
1

8π

[
σ

√
2

π
+ erf

( r

σ
√

2

)(σ2
r

+ r
)]

. (17)

Similarly, in two dimensions, with

ρ(r) :=
1

2πσ2
e−

r2

2σ2 , (18)

we have the following solution for the Poisson equation:

[g0 ∗ ρ](x) =
−1

4π

[
Ei
( r2

2σ2

)
+ log(r2)

]
. (19)

For the Helmholtz equation, we have

[gk ∗ ρ](x) =
H0(kr)

4σ2

∫ r

0
J0(ky) e−

y2

2σ2 ydy +
J0(kr)

4σ2

∫ +∞

r
H0(kr) e

− y2

2σ2 ydy (20)
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and for the biharmonic equation, we have

[gb ∗ ρ](x) = −σ
2

8π

[(
r2

2σ2
+ 1

)
Ẽi

(
r2

2σ2

)
− e−

r2

2σ2

]
+ c2r

2 + c1 r, (21)

where
Ẽi(x) := Ei(x) + log(x) + γ

c1 :=
σ2

8π

(
γ + log

( 1

2σ2
))

c2 :=
1

8π

(γ
2

+
1

2
log
( 1

2σ2
)

+ 1
)
.

(22)

In Fig. 3, we plot the error in each of these solutions when computed using the truncated
Green’s function Fourier method. Spectral accuracy is evident in each case.
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Laplace 2D
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Biharmonic 2D
Laplace 3D
Helmholtz 3D
Biharmonic 3D

Figure 3: Convergence of the truncated Green’s function Fourier method in solving the
Poisson, Helmholtz and biharmonic equations in two and three dimensions for a single
Gaussian source with σ = 0.05 (see eqs. (15-17), (19-21)). The Helmholtz parameter was
set to k = 2.

5.2 Non-oscillatory elliptic equations with variable coefficients

A variety of problems in computational physics require the solution of the divergence-form
elliptic partial differential equation

∇ · ε(x)∇φ− λ2φ = ρ(x) (23)
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where ε is a known, smooth perturbation of a background constant ε+ 0, and where both
ρ(x) and ε− ε0 have compact support.

In molecular electrostatics, this equation is referred to as the linearized Poisson-Boltzmann
equation. While most models make use of a sharp dielectric interface (so that ε is piecewise
constant), there is also interest in using approximations of the dielectric that vary smoothly
[15, 16]. Following these references, a formula for ε is determined by first assuming we are
given a macromolecule with M atoms, with a density

αi(x) = exp[−r2i /(µ2R2
i )]

centered on the ith atom, where ri denotes the distance of x from the atomic center, Ri
is the van der Waals radius of the atom and µ is a user-specified variance. From this, a
function

q(x) = 1−
∏

i

[1− αi(x)]

is constructed and, finally,

ε(x) = q(x) εin + (1− q(x) εout.

In our example, we let M = 1235 with, Ri = 0.022 and µ2 = 2. Figure 4 shows the
molecule represented as a union of spheres and the associated dielectric function ε(x) in
darker gray.

Restricting our attention to the case λ = 0 for the sake of simplicity, we may represent
the solution in the form

φ(x) =

∫

R3

1

4π|x− y|σ(y)dVy . (24)

This leads directly to the following second kind Fredholm equation for the unknown density
σ(x):

− ε(x)σ +∇ε(x) · ∇
∫

R3

1

|x− y|σ(y)dVy = ρ(x) . (25)

We discretize σ on a uniform mesh with N3 points and use the truncated Green’s
function Fourier method described above to convert (25) into a dense system of equations
which we solve iteratively using GMRES. Each matrix vector product requires O(N3 logN)
operations using the FFT.

Our results are summarized in Table 3. Ntot = N3 denotes the total number of un-
knowns, Niter denotes the total number of GMRES iterations, E2 denotes the relative error
with respect to the reference solution in L2 for N = 250, Einf denotes the relative error
in L∞, and Tsolve denotes the solution time in seconds required on a workstation with two
Intel Xeon E5-2450 processors with 8 cores per processor and 64 GB of memory. Tprecomp
denotes the time required for precomputation, as discussed in section 4, which requires a
single FFT of dimension (4N)3.
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Figure 4: A protein molecule and the associated smooth dielectric function.
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Table 3: Fast, iterative solution of the linearized Poisson-Boltzmann equation using the
truncated Green’s function Fourier method.

Ntot N E2 Einf Niter Tsolve (s) Tprecomp (s)

1000000 100 2.08× 10−8 2.54× 10−6 12 14.3 4.4

3375000 150 2.74× 10−10 3.97× 10−8 16 76.9 13

8000000 200 7.92× 10−12 1.06× 10−9 16 205 28.9

15625000 250 − − 16 421 75.8

5.3 Lippmann-Schwinger equation for wave scattering

In our last set of examples, we study the performance of the Lippmann-Schwinger integral
equation for solving variable coefficient scattering problems in R2 and R3. The governing
equation is a Helmholtz equation of the form

∆φscat + k2(1 + q(x))φscat = −k2q(x)φinc (26)

where φscat is assumed to satisfy the usual Sommerfeld radiation condition. We assume
q(x) has compact support. Using a volume integral representation for the solution in R2:

φscat(x) =

∫

D
H0(k|x− y|)σ(y) dVy , (27)

we obtain the second kind integral equation

− σ + k2q(x)

∫

D
H0(k|x− y|)σ(y) dVy = −k2q(x)φinc . (28)

Similarly, in R3 we get:

− σ + k2q(x)

∫

D

eik|x−y|

4π|x− y| σ(y) dVy = −k2q(x)φinc . (29)

(This is the dual of the usual Lippmann-Schwinger equation.)
We consider four cases: a smoothly filtered flat dielectric disk in 2D, the 2D “Luneburg”

lens, the 2D “Eaton” lens and a smoothed dielectric cube in 3D. The smoothly filtered disk
(Fig. 5) has a contrast function given by

q(x) = e−
1
2

(
|x|
0.25

)8
. (30)

The Luneburg lens (Fig. 6) is designed to focus an incoming wave to a single point [17],
with q given by

q(x) = 1−
( |x|

0.45

)2
. (31)
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The Eaton lens (Fig. 7) is designed to bend light through an angle [18], with q(x) =
n2(x)− 1, where the refractive index n is given by the implicit equation

n2(x) =
0.45

n(x)|x| +

√( 0.45

n(x)|x|
)2
− 1 (32)

In order to avoid the blowup in n at the origin, the refractive index is truncated at a
maximum value of nmax =

√
3, corresponding to qmax = 2. Finally, the smoothed cube has

a contrast function given by:

q(x) = e
− 1

2

((
x

0.25

)8
+
(

y
0.25

)8
+
(

z
0.25

)8)
. (33)

0 0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

r
q(
r)

Figure 5: Contrast function q(x) for the smoothly filtered disk plotted as colored contours
(left), as a surface (center), and as a function of radius (right).

We solve each Lippmann-Schwinger equation iteratively, using Bi-CGStab with a tol-
erance of 10−12 for the iteration, since it has minimal storage requirements. This requires
two matrix-vector products per iteration, each involving two applications of the FFT using
the truncated Green’s function Fourier method.

Except for the Eaton lens, the incoming wave is chosen to be a plane wave propagating
to the right. The incoming wave for the Eaton lens is given by a Gaussian beam of the
form

φinc = H0(kR)e−0.5k

where

R =
√

(x− xc0)2 + (y − yc0)2, xc0 = −0.01− 0.5i, yc0 = 0.77 .

Tables 4-7 show timings and errors for various frequencies and discretizations, while
Figs. 8-10 show the computed solution. In these tables, size denotes the dimensions of
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Figure 6: Contrast function q(x) for the Luneburg lens plotted as colored contours (left),
as a surface (center), and as a function of radius (right).
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Figure 7: Contrast function q(x) for the Eaton lens plotted as colored contours (left), as a
surface (center), and as a function of radius (right).
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the unit box in wavelengths, Ntot denotes the total number of points in the discretization,
N denotes the number of points in a linear dimension, E2 denotes the relative error with
respect to the reference solution in L2, Einf denotes the relative error in L∞, and Nmatvec

denotes the total number of matrix-vector products needed in the Bi-CGStab iteration. As
above, Tsolve denotes the solution time in seconds on a workstation with two Intel Xeon
E5-2450 processors with 8 cores per processor and 64 GB of memory, and Tprecomp denotes
the time required for precomputation, as discussed in section 4. A reference solution is
computed using 6400×6400 points in the two-dimensional examples and using 300×300×
300 points in the three-dimensional example.

Note that spectral convergence rates are evident for smooth dielectric contrast func-
tions. For the non-smooth Eaton and Luneburg lenses, the numerical convergence rate is
closer to second order accuracy but with a small constant, so that high precision is achieved
with a modest number of points per wavelength.

Figure 8: Scattering from a smoothly filtered disk with radius R = 40λ0. in a unit square
of size 80λ0×80λ0. We compute a reference solution with Ntot = 40960000 = 64002 points.
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Table 4: Data for the smoothly filtered disk in two dimensions (see text for discussion).
Timings are in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 400 20 1.4× 10−4 2.1× 10−4 17 0.382 0.222

1 2500 50 3.2× 10−8 3.2× 10−8 15 0.388 0.225

1 10000 100 8.7× 10−13 1.1× 10−12 15 0.632 0.5

1 40960000 6400 − − 15 149 152

20 6400 80 4.2× 10−5 6.7× 10−5 332 1.38 0.26

20 10000 100 4.5× 10−8 8.8× 10−8 333 1.83 0.40

20 19600 140 4.1× 10−11 6.3× 10−11 335 2.39 0.303

20 40960000 6400 − − 335 3170 143

80 62500 250 6.7× 10−5 1.0× 10−4 2938 58.5 0.503

80 72900 270 1.2× 10−7 2.2× 10−7 2990 67.1 0.518

80 102400 320 1.6× 10−10 2.8× 10−10 2906 83.1 0.61

80 40960000 6400 − − 2948 29283 150

Figure 9: (left) Scattering by the two-dimensional Luneburg Lens, (right) Bending of an
incoming beam by the two-dimensional Eaton Lens. In both cases, the lens radius is
R = 27λ0 in a unit square of size 60λ0 × 60λ0. The reference solution was computed with
Ntot = 40960000 = 64002 points.
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Table 5: Data for the two-dimensional Luneburg lens, where λ0 denotes the free-space
wavelength. A reference solution is computed using a 6400×6400 grid (except for λ0 = 60),
where a 3200× 3200 grid is used. Timings are in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 640000 800 1.26× 10−7 2.89× 10−7 17 2.41 2.09

1 2560000 1600 2.09× 10−8 5.09× 10−8 17 6.86 8.83

1 10240000 3200 2.93× 10−9 7.50× 10−9 17 40.3 34.9

20 640000 800 3.18× 10−5 4.01× 10−5 582 67.3 2.33

20 2560000 1600 5.84× 10−6 8.42× 10−6 581 243 9.02

20 10240000 3200 8.45× 10−7 1.39× 10−6 590 1190 34.3

40 640000 800 7.53× 10−5 8.59× 10−5 1415 163 2.37

40 2560000 1600 1.6× 10−5 1.88× 10−5 1393 740 9.24

40 10240000 3200 3.21× 10−6 3.89× 10−6 1321 2969 34.5

60 640000 800 1.26× 10−4 1.40× 10−4 3844 449 2.45

60 2250000 1500 3.13× 10−5 3.54× 10−5 3482 1611 8.27

60 10240000 3200 − − 5220 12322 34.5

Table 6: Data for the two-dimensional Eaton lens, where λ0 denotes the free-space wave-
length. A reference solution is computed using a 6400 × 6400 grid and timings are in
seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 640000 800 1.01× 10−7 1.62× 10−7 15 1.82 1.85

1 2560000 1600 9.36× 10−8 1.75× 10−7 15 6.63 8.74

1 10240000 3200 3.53× 10−9 6.86× 10−9 15 35.5 34.4

20 640000 800 4.96× 10−6 1.54× 10−5 388 51.1 2.49

20 2560000 1600 8.50× 10−7 2.96× 10−6 390 203 9.10

20 10240000 3200 1.25× 10−7 4.77× 10−7 386 850 34.8

40 640000 800 1.4× 10−5 3.67× 10−5 958 105 2.26

40 2560000 1600 2.34× 10−6 8.77× 10−6 956 419 10.4

40 10240000 3200 3.98× 10−7 1.55× 10−6 968 2163 40

60 640000 800 2.81× 10−5 6.90× 10−5 2064 276 2.68

60 2560000 1600 4.61× 10−6 1.45× 10−5 2038 1065 9.06

60 10240000 3200 7.46× 10−7 2.87× 10−6 2024 4550 33
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Figure 10: Three-dimensional scattering by a smoothed cube. We discretize a unit cell of
dimension 80λ0 × 80λ0 × 80λ0 and compute a reference solution with Ntot = 3003 points.

Table 7: Data for the smoothed cube in three dimensions with timings in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 125000 50 4.08× 10−8 6.09× 10−8 15 1.17 1.07

1 343000 70 1.01× 10−10 1.25× 10−10 15 2.05 2.23

1 1000000 100 6.4× 10−14 7.91× 10−14 15 5.04 6.44

20 343000 70 7.23× 10−4 9.23× 10−4 449 44.2 2.11

20 1000000 100 3.84× 10−8 5.22× 10−8 441 124 6.15

20 3375000 150 8.57× 10−13 1.64× 10−13 434 411 20.1

40 3375000 150 4.6× 10−7 4.34× 10−7 895 891 19.3

40 8000000 200 6.76× 10−12 1.15× 10−11 907 1957 43.9

40 15625000 250 3.38× 10−12 5.76× 10−12 905 3428 99.1

60 3375000 150 4.76× 10−1 4.78× 10−1 8548 8534 19.8

60 8000000 200 5.67× 10−6 4.99× 10−6 1471 3538 48.5

60 15625000 250 3.38× 10−9 5.86× 10−9 1505 5688 97.8

80 15625000 250 4.86× 10−5 4.74× 10−5 2988 11332 97.5
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6 Conclusions

We have presented a simple fast algorithm for computing volume potentials based on
translation-invariant free-space Green’s functions with compactly supported, smooth source
distributions. By truncating the range of interaction in physical space, the Fourier trans-
form of the kernel becomes an entire function, so that the trapezoidal rule yields superal-
gebraic convergence. Moreover, the transforms of the truncated kernels can be computed
analytically. The principal advantages of our approach are that the standard FFT can be
used for acceleration and that matrix entries for a high-order accurate Nyström discretiza-
tion are available “on the fly”. The latter is important in constructing hierarchical direct
solvers or incomplete LU preconditioners.

We have illustrated the performance of the scheme on a variety of problems in two
and three dimensions. For non-oscillatory problems, iterative methods are quite effective
at solving variable coefficient partial differential equations when recast as volume integral
equations. For scattering problems, it is well-known that the condition number grows with
the size of the domain (measured in wavelengths). For problems up to approximately
one hundred wavelengths in size, however, iterative schemes appear to be viable without
preconditioning.

We will explore the use of these methods for full electromagnetic scattering problems
in three dimensions in future work.
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