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Abstract. The evaluation of an ability or skill happens in some kind of
testbed, and so does with social intelligence. Of course, not all testbeds
are suitable for this matter. But, how can we be sure of their appropriate-
ness? In this paper we identify the components that should be considered
in order to measure social intelligence, and provide some instrumental
properties in order to assess the suitability of a testbed.
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1 Introduction

Evaluation tools are crucial in any discipline as a way to assess its progress and
creations. There are some tools, benchmarks and contests, aimed at the measure-
ment of humanoid intelligence or the performance in a particular set of tasks.
However, the state of the art of artificial intelligence (AI) and artificial general
intelligence is now more focussed towards social abilities, and here the measur-
ing tools are still rather incipient. In the past two decades, the notion of agent
and the area of multi-agent systems have shifted AI to problems and solutions
where ‘social’ intelligence is more relevant (e.g., [1, 2]). This shift towards a more
social-oriented AI is related to the modern view of human intelligence as highly
social, actually one of the most distinctive features of human intelligence over
other kinds of animal intelligence. Some significant questions that appear here
are then whether we are able to properly evaluate social intelligence in general
(not only in AI, but universally) and whether we can develop measurement tools
that distinguish between social intelligence and general intelligence.

In this paper, we 1) identify the components that should be considered in
order to assess social intelligence, and 2) provide some instrumental properties
to help us determine the suitability of a testbed to be used as a social test (va-
lidity, reliability, efficiency, boundedness and team symmetry), while analyzing
the influence that such components have on these properties. This helps us to
pave the way for the analysis of whether many social environments, games and
tests in the literature are useful for measuring social intelligence.

The paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 identifies the components that we should consider in order to
measure social intelligence. Section 4 presents some instrumental properties to
assess the suitability of a testbed to be used as a social intelligence test. Finally,
Sect. 5 closes the paper with some discussion and future work.



2 Background

This section gives an introduction to the concepts and terminology of multi-agent
environments and serves as a background for the following sections.

2.1 Multi-agent Environments

An environment is a world where an agent can interact through observations,
actions and rewards. This general view of the interaction between an agent and
an environment can be extended to various agents by letting them interact si-
multaneously with the environment.

A multi-agent environment is an interactive scenario with several agents.
An environment accepting n agents defines n parameters (one for each agent)
denoted as agent slots. We use i = 1, . . . , n to denote the slots. Each simultaneous
interaction of the n agents is called a time step, where the order of events is
always: observations, actions and rewards. Oi is the observation set that the
agent in slot i can perceive, Ai is the action set that the agent in slot i can
perform and Ri ⊆ Q represents the possible rewards obtained by the agent in
slot i. For each step k, the agent in slot i must perceive an observation oi,k ∈ Oi,
perform an action ai,k ∈ Ai and obtain a reward ri,k ∈ Ri. We use ok, ak and
rk respectively to denote the joint observation, joint action and joint reward
profiles of the n agents at step k (i.e., ok = (o1,k, . . . , on,k) ∈ O1 × · · · × On

represents the joint observation profile at step k, and similarly for actions and
rewards). For example, a sequence of two steps in a multi-agent environment is
then a string such as o1a1r1o2a2r2 and the string o1,1a1,1r1,1o1,2a1,2r1,2 denotes
the sequence of observations, actions and rewards for the agent in slot 1.

Both the agents and the environment are defined as probabilistic measures.
At step k, the term π(ai,k|oi,1ai,1ri,1 . . . oi,k) → [0, 1] denotes the probabil-
ity of the agent in slot i to perform action ai,k after the sequence of events
oi,1ai,1ri,1 . . . oi,k. The observation provided by the environment at step k to the
agent in slot i also has a probabilistic measure ω(oi,k|o1a1r1 . . . ok−1ak−1rk−1) →
[0, 1]. As with the observation, the reward at step k to the agent in slot i
is provided depending on observations, actions and rewards on previous steps
ρ(ri,k|o1a1r1 . . . okak) → [0, 1]. Note that the rewards obtained by each agent de-
pend on the joint observations, actions and rewards of all the agents interacting
in the environment, and not only on their own.

2.2 Teams

It is important to determine the roles that agents take in the environment.
The key issue is to establish whether the other agents goals and interests are
compatible with one’s goals. The concept is complex, as alliances can be created
and broken even if no clear teams are established from the beginning (and this is
an interesting property of social intelligence). These roles or alliances determine
two major social behaviors: cooperation and competition.



We need to decide how the environment distributes rewards among the
agents. An easy possibility would be to make each agent get its rewards with-
out further constraints over other agents’ rewards. With this configuration (e.g.,
general-sum games), both competition and cooperation may be completely use-
less for most environments, as the rewards are not limited or linked to the other
agents. In contrast, if we set that the total set of rewards is limited in some way,
we will foster competition, as happens in zero-sum games. But in any of these
two cases cooperation will hardly take place. Alliances could arise sporadically
between at least two agents in order to bother (or defend against) a third agent,
but we need a way to make it more likely before any (sophisticated) alliance can
emerge on its own. One possible answer is the use of teams, defined as follows:

Definition 1. Agent slots i and j are in the same team iff ∀k : ri,k = rj,k,
whatever the agents present in the environment.

which means that all agents in a team receive exactly the same rewards. Note that
teams are not alliances as usually understood in game theory. In fact, teams are
fixed and cannot be changed by the agents. Also, we do not use any sophisticated
mechanism to award rewards, related to the contribution of each agent in the
team, as it is done with the Shapley Value [3]. We just set rewards uniformly.

2.3 Multi-agent Environments Using Teams

At this moment, we are ready to define an environment with parametrized agents
by only specifying their slots and their team arrangement.

Definition 2. A multi-agent environment µ accepting N(µ) agents (i.e., the
number of slots in µ) is a tuple ⟨O,A,R, ω, ρ, τ⟩, where O, A, R represent the ob-
servation sets, action sets and reward sets respectively (i.e., O = (O1, . . . ,ON(µ)),
A = (A1, . . . ,AN(µ)) and R = (R1, . . . ,RN(µ))) and ω and ρ are the observation
function and reward function respectively as defined in Sect. 2.1. τ is a partition
on the set of slots {1, . . . , N(µ)}, where each set in τ represents a team.

Note that with this definition the agents are not included in the environment.
For instance, noughts and crosses could be defined as an environment µnc with
two agents, where the partition set τ is defined as {{1}, {2}}, which represents
that this game allows two teams, and one agent in each. Another example is
RoboCup Soccer, whose τ would be {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}.

We now define an instantiation for a particular agent setup. Formally, an
agent line-up l is a list of agents. For instance, if we have a set of agents Π =
{π1, π2, π3, π4}, a line-up from this set could be l1 = (π2, π3). The use of the same
agent twice is allowed, so l2 = (π1, π1) is also a line-up. We denote by µ[l] the
instantiation of an environment µ with a line-up l, provided that the length of l is
greater than or equal to the number of agents allowed by µ (if l has more agents,
the excess is ignored). The slots of the environment are then matched with the
corresponding elements of l following their order. For instance, for the noughts
and crosses, an instantiation would be µnc[l1]. Note that different instantiations



over the same environment would normally lead to different results. We use
Ln(Π) to specify the set of all the line-ups of length n with agents of Π.

We use the notation RK
i (µ[l]), which gives us the expected result of the ith

agent in line-up l for environment µ (also in slot i) during K steps. If K is
omitted, we assume K = ∞. In order to calculate an agent’s result we make use
of some kind of utility function (e.g., an average of rewards).

3 Components to Consider While Evaluating Social
Intelligence

The components that we consider to measure social intelligence are:

– Set of multi-agent environments M : The environments we use to per-
form the evaluation.

– Set of agents Π: The agents that conform the line-ups.
– Weights: We give weights (non-negative numbers) to the environments,

their slots and the line-ups. wM (µ) denotes a weight to environment µ from
a certain set M , wS(i, µ) denotes a weight to slot i of a certain environment
µ and wL(l) denotes a weight to a line-up l formed with agents from a certain
set Π, giving weights to the agents in the line-up and their positions.

– Definition of social intelligence Υ : The actual definition that measures
social intelligence. This definition should use sets M and Π and weights over
them, i.e., wM , wS and wL, in some way to measure the social intelligence.
As an example, we use the definition of social intelligence from [4, Sect. 3.3]:

Υ (Π,wL,M,wM , wS) ,
∑
µ∈M

wM (µ)

N(µ)∑
i=1

wS(i, µ)
∑

l∈LN(µ)(Π)

wL(l)Ri(µ[l]) .

(1)
– Test of social intelligence Υ̂ : The final test to measure social intelligence

following a definition of social intelligence Υ . The test should consist of a set
of exercises and some kind of procedure to sample them. As an example, we
use the definition of social intelligence test from [4, Sect. 3.4]:

Υ̂ [pΠ , pM , pS , pK , nE ](Π,wL,M,wM , wS) , ηE
∑

⟨µ,i,l⟩∈E

wM (µ)wS(i, µ)wL(l)R
K
i (µ[l]) .

(2)
where ηE normalizes the formula with ηE = 1∑

⟨µ,i,l⟩∈E wM (µ)wS(i,µ)wL(l) , K is

chosen using probability distribution pK and the exercises E are sampled as:

E ∼nE

 ⋃
µ∈M

N(µ)⋃
i=1

{
⟨µ, i, l⟩ : l ∈ LN(µ)(Π)

}
pE

.

with S ∼n [A]p being a sample S of n elements from set A using probability
distribution p, and pE being a distribution on the set of triplets ⟨µ, i, l⟩ based
on pM , pS and pΠ .



4 Properties

In order to evaluate social intelligence and distinguish it from general intelligence,
we need tests where social ability has to be used and, also, where we can perceive
its consequences. This means that not every environment is useful for measuring
social intelligence and not every subset of agents is also useful. We want tests
such that agents must use their social intelligence to understand and/or have
influence over other agents’ policies in such a way that this is useful to accomplish
their goals, but common general intelligence is not enough.

Hereafter, we investigate some instrumental properties for a testbed of multi-
agent environments and agents to measure social intelligence.

4.1 Validity

Validity is the most important property of a cognitive test in psychometrics.
In our context, the validity of a definition is that it accounts for the notion we
expect it to grasp. For instance, if we say that a given definition of Υ measures
social intelligence but it actually measures arithmetic abilities then the definition
is not valid. Ultimately, this depends on the choice of Π and M in Υ , such as
e.g., (1).

Poor validity may have two sources (or may appear in two different variants):
a definition may be too specific (it does not account for all the abilities the notion
is thought to consider) or it is too general (it includes some abilities that are
not part of the notion to be measured). In other words, the measure should
account for all, but not more, of the concept it tries to represent. We refer to
these two issues of validity as the generality and the specificity of the measure.
While validity is not usually seen as an instrumental property, we have to say
that the choices of Π and M may both have generality and specificity, which
eventually can compensate, but could lead to a test that is not very effective.
That means that we should try to find proper choices such that they fit the
concept we want to measure precisely.

Regarding generality, we should be careful about the use of very restrictive
choices for Π and M . It could be possible to find a single environment that
looks ideal to evaluate social intelligence. However, using just one environment
is prone to specialisation, as usual in many AI benchmarks. For instance, if
we use a particular maze, then we can have good scores by evaluating a very
specialized agent for this situation, which may be unable to succeed in other
mazes or problems. For instance, chess with current chess players is an example
where a specialized system (e.g., Deep Blue) is able to score well, while it is
clearly useless for other problems. A similar over-specialisation may happen if
the agent class is too small. This is usual in biology, where some species specialize
for predating (or establishing a symbiosis) with other species. Consequently, the
environment class and the agent class must be general enough to avoid that
some predefined or hardwired policies could be optimal for these classes. This
is the key issue of a (social) intelligence test; it must be as general as possible.
We need to choose a diverse environment class. One possibility is to consider



all environments (as done by [5, 6]), and another is to find an environment class
that is sufficiently representative (as attempted in [7]).

Similarly, we need to consider a class of agents that leads to a diversity in line-
up. This class should incorporate many different types of agents: random agents,
agents with some predetermined policies, agents that are able to learn, human
agents, agents with low social intelligence, agents with high social intelligence,
etc. The set of all possible agents (either artificial or biological) is known as
machine kingdom in [8] and raises many questions about the feasibility of any
test considering this astronomically large set. Also, there are doubts about what
the weight for this universal set should be when including them into line-ups
(i.e., wL). Instead, some representative kinds of agents could be chosen. In this
way, we could aim at social intelligence relative to a smaller (and well-defined)
set of agents, possibly specializing the definition by limiting the resources, the
program size or the intelligence of the agents.

Regarding specificity, it is equally important for a measurement to only in-
clude those environments and agents that really reflect what we want to measure.
For instance, it is desirable that the evaluation of an ability is done in an envi-
ronment where no other abilities are required, or in other words, we want that
the environment evaluates the ability in isolation. Otherwise, it will not be clear
which part of the result comes from the ability to be evaluated, and which part
comes from other abilities. Although it is very difficult to avoid any contamina-
tion, the idea is to ensure that the role of these other abilities are minor, or are
taken for granted for all agents. We are certainly not interested in non-social en-
vironments as this would contaminate the measure with other abilities. In fact,
one of the recurrent issues in defining and measuring social intelligence is to be
specific enough to distinguish it from general intelligence.

4.2 Reliability

Another key issue in psychometric tests is the notion of reliability, which means
that the measurement is close to the actual value. Note that this is different
to validity, which refers about the true identification or definition of the actual
value. In other words, if we assume validity, i.e., that the definition is correct,
reliability refers to the quality of the measurement with respect to the actual
value. More technically, if the actual value of π for an ability φ is v then we want
a test to give a value which is close to v. The cause of the divergence may be
systematic (bias), non-systematic (variance) or both.

First, we need to realize that reliability applies to tests, such as e.g., (2).
Reliability is then defined by considering that a test can be repeated many
times, so becoming a random variable that we can compare to the true value.
Formally:

Definition 3. Given a definition of a cognitive ability Υ and a test over it Υ̂ ,
the test error is given by:

TE(Υ̂ ) , Mean((Υ̂ − Υ )2) . (3)



where the mean is calculated over the repeated application of the test (to one
subject or more subjects).

The reason for defining test error as the mean squared error (and not an
absolute error) is a customary choice in many measures of error, as we can
decompose it into the squared bias (Mean(Υ̂ ) − Υ )2 and the variance of the
error V ar(Υ̂ − Υ ). If the bias is not zero this means that the procedure to
sample the exercises and/or the number of steps is inappropriate. If there is a
high variance, this suggests that the number of exercises is too small, or that
the exercises run for a very short time.

The reliability Rel(Υ̂ ) can be defined as a decreasing function over TE(Υ̂ ),

such as Rel(Υ̂ ) = e−TE(Υ̂ ). The estimation of TE(Υ̂ ) or Rel(Υ̂ ) depends on
knowing the true value of Υ . This is not possible in practice for most environ-
ments, so Υ will need to be estimated for large samples and compared with an
actual test (working with a small sample).

4.3 Efficiency

This property refers to how efficient a test is in terms of the (computational) time
required to get a reliable score. It is easy to see that efficiency and reliability are
opposed. If we were able to perform an infinitely number of infinite exercises,
then we would have Υ̂ = Υ , with perfect reliability, as we would exhaust Π
and M . If done properly, it is usually the variance component of the reliability
decomposition that is affected if we keep the bias close to 0 even with very low
values for the number of exercises.

Efficiency can be defined as a ratio between the reliability and the time taken
by the test.

Definition 4. Given a definition of a cognitive ability Υ and a test over it Υ̂ ,
the efficiency is given by:

Eff(Υ̂ ) , Rel(Υ̂ )/T ime(Υ̂ ) . (4)

where Time is the average time taken by test Υ̂ . Time can be measured as physical
(real) time or as computational time (steps).

The issue is how to choose environments and agents such that a high efficiency
is attained. Clearly, if the selected environments are insensitive to agents’ actions
or require too many actions to affect rewards, then this will negatively affect
efficiency. As we are interested in social abilities, interactivity and non-neutralism
between agents’ rewards must be high, as otherwise most steps will be useless to
get information about the agent to evaluate. This of course includes cases where
the agents are stuck or bored because their opponents (or teammates) are too
good or too bad, or the environment leads the agents to heaven or hell situations
where actions are almost irrelevant. A way of making tests more efficient is by
the use of adaptive tests [6], [8].



4.4 Boundedness

One desirable property is that rewards are bounded, otherwise the value of Υ
(such as e.g., (1)) could diverge. Any arbitrary choice of upper and lower bounds
can be scaled to any other choice so, without loss of generality, we can assume
that all of them are bounded between −1 and 1, i.e., ∀i, k : −1 ≤ ri,k ≤ 1.
Note that they are bounded for every step. So, if we use a bounded function to
calculate the agent’s result, then RK

i (·) is also bounded.
However, bounded expected results do not ensure that Υ is bounded. In order

to ensure a bounded measurement of social intelligence, we also need to consider
that weights are bounded, i.e., there are constants cM , cS and cL such that:

∀M :
∑
µ∈M

wM (µ) = cM . (5)

∀µ :

N(µ)∑
i=1

wS(i, µ) = cS . (6)

∀µ,Π :
∑

l∈LN(µ)(Π)

wL(l) = cL . (7)

A convenient choice is to have cM = cS = cL = 1, and these weights would
become unit measures (which should not be confused with the probabilities used
to sample elements in a test). With these conditions Υ and Υ̂ are bounded.

An optional property that might be interesting occasionally is to consider
environments whose reward sum is constant or zero, as zero-sum games in game

theory, where ∀k :
∑N(µ)

i=1 ri,k = 0.
The above definition may be too strict when we have environments with an

episode goal at the end, but we want some positive or negative rewards to be
given while agents approach the goal. A more convenient version follows:

Definition 5. An environment µ is zero-sum in the limit iff:

lim
K→∞

K∑
k=1

N(µ)∑
i=1

ri,k = 0 . (8)

With teams, the previous definition could be changed in such a way that:

lim
K→∞

K∑
k=1

∑
t∈τ

∑
i∈t

ri,k = 0 . (9)

So the sum of the agents’ rewards in a team (or team’s reward) does not need
to be zero but the sum of all teams’ rewards does. For instance, if we have a team
with agents {1, 2} and another team with agents {3, 4, 5}, then a reward (in the
limit) of 1/4 for agents 1 and 2 implies −1/6 for agents 3, 4 and 5. The zero-sum
properties are appropriate for competition. In fact, if teams have only one agent



then we have pure competition. We can have both competition and cooperation
by using teams in a zero-sum game, where agents in a team cooperate and agents
in different teams compete. If we want to evaluate pure cooperation (with one or
more teams) then zero-sum games will not be appropriate.

4.5 Team Symmetry

In game theory, a symmetric game is a game where the payoffs for playing a
particular strategy depend only on the other strategies employed by the rest of
agents, not on who is playing them. This property is very useful for evaluating
purposes, as the results would be independent of the position of the agent.

When using teams, this definition of symmetry must be reconsidered. The
previous definition means that for each pair of line-ups with the same agents
but in different order, the agents maintain their previous results. But with the
inclusion of teams this definition is not appropriate. For example, using an en-
vironment with the partition of slots on teams τ = {{1, 2}, {3, 4}} and line-up
l = (π1, π2, π3, π4), we have that agents π1 and π2 must both obtain the same
result, as π3 and π4 as well. Following the definition and switching the positions
of π2 and π3 we obtain line-up l′ = (π1, π3, π2, π4), which now means that agents
π1 and π3 must have the same results (since they are now in the same team)
while maintaining their previous results, as π2 and π4 as well. This situation can
only occur when all slots (and therefore teams) obtain equal results.

Instead, we extend this definition of symmetry to include teams. First, we
denote by σ(l) the set of line-ups permuting the agent positions of line-up l.
This set corresponds with the one used in game theory to define symmetry. To
adapt this set to include teams, we must select a subset of line-ups from σ(l)
respecting the teams defined in τ . We denote this subset with σ(l, τ), where we
only select line-ups from σ(l) if original teams are maintained. Following the
example, line-up l′ is not included in σ(l, τ) since π1 and π3 from l′ were not
in the same team in l (as π2 and π4 as well). However, l′′ = (π3, π4, π2, π1) is
included in σ(l, τ), since both pair of agents (π1, π2) and (π3, π4) are still in the
same team. From here, we define team symmetry as follows:

Definition 6. We say a multi-agent environment µ is team symmetric if and
only if every team in τ has the same number of elements and:

∀i,K,Π, l ∈ LN(µ)(Π), l′ ∈ σ(l, τ) : RK
i (µ[l]) = RK

i′ (µ[l
′]) . (10)

where i′ represents the slot of agent li:i in l′ and whatever the function used to
calculate agents’ results.

Note that we impose that every set in τ must have the same number of
elements. This is because we only consider multi-agent environments to be team
symmetric if we can evaluate an agent in every slot and obtain the same result.
Having teams with different number of elements does not allow us to do this.

This definition now fits our goal of symmetry. But too few environments will
fit this definition because it is too restrictive. We could particularize this defi-
nition of team symmetry into two parts depending on the relation between the



slots, with a version known as intra-team symmetry and inter-team symmetry
(for more details the reader is referred to [4, Sect. 4.6]).

Definition 6 corresponds with an Intra-Team and Total Inter-Team Symme-
try, where every team of agents can be located in every set of τ and in different
order, maintaining their performance expectation.

5 Conclusions

Social intelligence has been an important area of study in psychology, compar-
ative cognition and economics for more than a century, and more recently, in
artificial intelligence. In this paper we have identified the components to mea-
sure social intelligence, and analyzed how we must consider these components
in some instrumental properties (i.e., validity, reliability, efficiency, boundedness
and team symmetry) as a first insight about what we need to create social tests.

Of course, these properties are not enough to fully assess the suitability of a
testbed to measure social intelligence. Indeed, more research is needed in order
to better characterize these testbeds, such as analyzing the interaction between
the agents, or how cooperative/competitive the multi-agent environments are.
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