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Abstract

Automatic ranging and self-positioning is a very desirable property in wireless acoustic sensor

networks (WASNs) where nodes have at least one microphone and one loudspeaker. However, due

to environmental noise, interference and multipath effects, audio-based ranging is a challenging task.

This paper presents a fast ranging and positioning strategy that makes use of the correlation properties

of pseudo-noise (PN) sequences for estimating simultaneously relative time-of-arrivals (TOAs) from

multiple acoustic nodes. To this end, a proper test signal design adapted to the acoustic node transducers

is proposed. In addition, a novel self-interference reduction method and a peak matching algorithm

are introduced, allowing for increased accuracy in indoor environments. Synchronization issues are

removed by following a BeepBeep strategy, providing range estimates that are converted to absolute

node positions by means of multidimensional scaling (MDS). The proposed approach is evaluated both

with simulated and real experiments under different acoustical conditions. The results using a real network

of smartphones and laptops confirm the validity of the proposed approach, reaching an average ranging

accuracy below 1 centimeter.
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I. INTRODUCTION

The processing capabilitites of mobile computing and communication platforms such as laptops,

smartphones, small single-board computers and tablets are increasing everyday. These devices, often

equipped with powerful processors, are conceived as multimedia communication centers with microphones

and loudspeakers. An ad hoc network of such devices is here collectively referred to as a wireless acoustic

sensor network (WASN). These kind of networks are receiving the attention of the signal processing

community for the wide range of applications that are currently emerging [1], such as smart conference

rooms [2], source localization [3], speech enhancement [4] or environmental monitoring [5]. While no

dedicated resources are needed to form such a network, there are important issues that must be addressed

before applying many signal processing approaches, most of them related to the need of knowing in

advance the three dimensional positions of the devices. Therefore, automatic ranging and positioning is

considered to be a key enabling technology, since even relatively small uncertainties in the location of

the nodes affect the overall performance of these systems.

Ranging in wireless sensor networks is typically achieved through measuring the time-of-arrival (TOA)

and/or the received signal strength (RSS) of acoustic or radio signals [6], [7]. The RSS approach,

while being significantly inexpensive, incurs significant errors due to channel fading, long distances

and multipath [8], [9]. Since the ranging accuracy depends both on the signal propagation speed and

the precision of the TOA measurement, acoustic signals are usually preferred because their relative low

speed [10]–[12]. In typical WASNs, TOA measurements are often performed with pairs of nodes taking

timestamps of their respective local clock at the moment when the test signal is emitted or received

[13], [14]. Possible sources of error include clock skew/drift between devices, misalignment between

timestamps and actual signal emissions, and errors in detecting the arrival of the sound signals [3]. While

many formulations assume that all the nodes are on a synchronized setup [11], [12], [15], a typical

distributed setup must explicitly account for the errors due to lack of temporal synchronization among

the devices. Moreover, to achieve high ranging accuracy, it is critical to precisely locate the arrival of

the test signals used in the system. This is particularly challenging in WASNs using mobile devices

since the transducers typically cover a narrow band of the spectrum [16], [17]. In addition, multipath

effects in indoor environments, background noise, node interference and signal distortion are very relevant

aspects that motivate a proper signal design. In [17]–[20], closed-form solutions are provided for the self-

localization problem considering possible errors in the measured signal arrivals. Some approaches rely

on additional knowledge, given by the true emission times [19] or the existence of loudspeakers placed

July 6, 2017 DRAFT



3

at known positions [18], [21]. A recent approach employs time-difference of arrivals (TDOAs) to jointly

estimate sensor and source locations [22]. However, to the best of our knowledge, all the previous work

in the field has considered a non-simultaneous calibration process where test signals are emitted one at

a time, reducing the node interference but significantly increasing the total calibration time.

This paper proposes a complete acoustic ranging system that allows to perform the ranging process

simultaneously, with all the nodes emitting and recording at the same time. As a result, the proposed

method reduces significantly the total calibration time with respect to a pair-wise non-simultaneous

framework. Several contributions are proposed and evaluated in both simulated and real environments.

First, we propose the design of test (calibration) signals that make use of the correlation properties of

pseudo-noise (PN) sequences, which have already been shown to be especially useful in acoustic ranging

applications [23]–[25]. These sequences modulate a sine wave to produce a set of test signals that can

be adapted to the bandwidth of the transducers. The correlation properties of the resulting signals make

the system robust to background noise, multipath effects and node interference. Second, due to the close

distance between loudspeakers and sensors at each node, the own signal emitted by each node is received

at a much higher level than the ones from the other nodes. To face this problem, we propose a self-

interference reduction approach that allows to mitigate this effect and listen properly to the test signals

arriving from the rest of nodes. Third, the modulated test signal produces a filtering effect that affects

the identification of the direct-path delay corresponding to the TOA of the node signals. To this end, we

propose a peak matching method based on the local signal-to-noise ratio (SNR) that allows to identify

the real TOA in the presence of rejection noise. Finally, a BeepBeep [13] strategy and conventional

multidimensional scaling (MDS) [26] are used to derive pair-wise ranges and absolute coordinates of the

nodes up to a rotation and translation.

The paper is organized as follows. Section II presents the formulation of the problem to be addressed

by the proposed system. Section III discusses the design of the test signals to be used by the nodes in

the network by taking into account the correlation properties of PN sequences. Section IV describes the

self-interference reduction part of the method, following in Section V with the proposed peak matching

approach for TOA estimation. The set of estimated TOAs conform the required input for the ranging and

positioning strategies in Section VI. Experiments with simulated and real setups are presented in Section

VII. Finally, conclusions are summarized in Section VIII.

II. PROBLEM FORMULATION

Let us consider a network of D unsynchronized acoustic nodes such as the one shown in Fig.1, where

each node has its own microphone and loudspeaker and has been assigned a unique test signal. Once
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the calibration initialization command has been issued, each node starts the recording and playback of

its own test signal, capturing as well the test signals emitted by the rest of nodes. It is here assumed

that a small time is allowed in the system to let all the nodes start their recording before any of them

emits any sound. We use indexes (q, d) to denote a pair of nodes in the system. The example of Fig.1

represents how the node q = 1 is receiving the test signals from the rest of D nodes, including its own

one (d = 1). Similarly, the rest of nodes are simultaneously capturing all the emitted test signals. The

discrete-time signal received by the microphone of the qth node can be expressed as

xq(n) =

D∑
d=1

sd(n− tq,d) ∗ hq,d(n) + nq(n), (1)

where hq,d(n) is the impulse response from the loudspeaker at node d to the microphone at node q, sd(n)

denotes the test signal from the dth node and nq(n) is a noise term that consists of additive background

noise. The delay term tq,d arises due to the fact that nodes do not start simultaneously the recording and

playback of the involved test signals. In fact, tq,d would be zero in a synchronized setup where the nodes

start their recording and transmission at the same time. However, in practical systems, tq,d is modeled

as a non-deterministic delay given by

tq,d = t
(e)
d − t

(r)
q , (2)

where t
(e)
d denotes the emission start time at node d and t

(r)
q is the recording start time at node q,

being both discrete-time instants. The emission start time is defined as the time after which the sound is

actually emitted from the speaker once the calibration initialization instruction has been sent. Similarly,

the recording start time is the time after which the sound is actually captured by the microphone once

the calibration command has been received. Both times include network delays, the delays in setting

up the audio buffers and other physical times. These times are generally unknown and depend on the

particular audio hardware and the system state such as the processor workload, interrupts, and the

processes scheduled at the given instant. Note that additional sources of synchronization errors may

arise in practice, such as the ones due to the small differences in the sampling rate used at each node.

However, since the total calibration time is greatly reduced in a simultaneous calibration framework, the

total drift caused by the sampling frequency mismatch is here considered to be negligible [27] and below

the achieved accuracy.

The impulse response term can be further decomposed into a direct-path component and a reverberant

component as follows:

hq,d(n) = αq,dδ(n− τq,d) + hr
q,d(n), (3)
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Fig. 1. An example WASN with D = 6 nodes.

where αq,d is an attenuation factor, δ(n) is the impulse function and hr
q,d(n) is the reverberant part of

the impulse response. Early reflections are assumed to be contained in the term hr
q,d(n) and, as discussed

in Section V, the proposed peak matching method is aimed at discriminating the direct-path component

from peaks corresponding to early reflections. The term τq,d is the propagation delay, given by

τq,d =

⌊
1

c
rq,d · fs

⌉
, (4)

where rq,d is the distance between the loudspeaker at the dth node to the microphone of the qth node, c

is the speed of sound (≈ 340 m/s at sea level and 15◦C), fs is the sampling frequency and b·e denotes

the integer rounding operator. By including the delay tq,d into hq,d(n), Eq.(1) can be written as

xq(n) =
D∑
d=1

sd(n) ∗ h̃q,d(n) + nq(n), (5)

where h̃q,d(n) = hq,d(n− tq,d) is a delayed impulse response. Before approaching the ranging problem,

each sensor must obtain a timestamp corresponding to the TOA of each test signal, denoted as ζq,d. To

clarify how all these times and signals are related, Fig.2 shows schematically the times involved at two

nodes q and d of the system, giving rise to their recorded signals xq(n) and xd(n). Note that the TOA

at each sensor corresponds to the addition of the unknown non-deterministic delay and the propagation

delay, i.e.,

ζq,d = tq,d + τq,d. (6)

The self microphone-loudspeaker distance at each node (rqq) does not have to be equal for all the nodes

but it is assumed to be a known parameter. The ranging estimation problem consists in estimating the
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node-to-node distances ∆q,d for all pairs (q, d). It is assumed that the node positions pq = [xq, yq, zq]
T,

q = 1, . . . , D are at the center point between the microphone and the loudspeaker, so that ∆q,d =

‖pq − pd‖.

III. TEST SIGNAL DESIGN

This section describes the design of the test signals used in our proposed approach. On one hand,

the signals are derived from families of PN sequences in order to provide proper signal detection and

interference rejection features in the proposed positioning framework. On the other hand, the signals

must be adapted to the audio bandwidth of the node transducers. The following subsections discuss these

issues, reviewing important aspects such as the correlation, duration and bandwidth of the node test

signals.

A. Pseudo-Noise Sequence

PN sequences are very well known for their applications in spread-spectrum communications. The

selection of spreading codes is of primary importance in the proposed application. In the literature [23],

there are a significant variety of codes with well-known features applied principally in the development

of multi-access communication systems. A PN sequence comprises an ordered set of P values forming

a vector g = [g(0), g(1), . . . , g(P −1)]T. Each element in g represents a modulation chip that can only

take two values g(p) ∈ {−1,+1}. In spread-spectrum communications a data symbol is combined with

a PN sequence to generate a modulated communication signal that occupies a much wider bandwidth.

The implementation of these systems requires the codes to provide two key features. The first one is an
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autocorrelation function with a narrow peak at zero time shift to enable a good detection of the code and

to facilitate the code synchronization. The second one is a low cross-correlation between different codes,

which is especially important in multi-access systems where the receiver must reject the interference

from signals modulated with codes of other users.

Maximum length sequences (MLS or m-sequences) are a commonly used type of PN binary sequence

[23]. An m-sequence is generated using a shift register of order m and feedback taps selected according to

a primitive polynomial, which provides a code of length P = (2m−1). Main features of m-sequences are:

a) they are not orthogonal codes, i.e., the cross-correlation of two codes is not zero, b) their autocorrelation

is a delta function with a peak value P and c) the number of (1/− 1) is balanced.

Another type of well-known PN sequences are Gold codes. The combination of two m-sequences of

length P produces a Gold code of the same size. A family of different Gold codes of the same length

can be obtained using shifted versions of the original m-sequences. The main advantages of Gold codes

as compared to the original m-sequences are the increased number of family codes and slightly better

cross-correlation properties, but at the expense of having a worse autocorrelation that ceases to be a delta

function [28]. The minimum cross-correlation between the Gold codes can be achieved when the pair of

original m-sequences constitutes a preferred pair [29].

According to all these considerations, both MLS and Gold codes are suitable to be used in the system

implementation, but they present slight differences in their performance. On one hand, MLS have a

delta autocorrelation function, but their cross-correlation depends on the the two specific codes selected

from the whole family. On the other hand, Gold codes generated with a preferred pair have better and

predictable cross-correlation, but their autocorrelation is not zero at non-zero lags. In the experiments

section, both families are evaluated considering the specific conditions of the system setup. However, the

formulation followed throughout the rest of the paper considers only the use of m-sequences.

B. Test Signal Duration and Bandwidth

Due to the white-noise-like properties of PN sequences, their power spectral density (PSD) covers

the full sampled audio bandwidth (from f = 0 to f = fs/2) independently of the sampling frequency

used for audio playback/recording. Since microphones and loudspeakers of conventional devices have

usually a narrow audio bandwidth due to their small size, the PSD of PN sequences does not often match

the acoustic requirements of such devices. It is a well-known fact from digital communications that the

spread spectrum signal generated from a PN sequence of length P with a continuous-time chip period Tc

has a bandwidth given by W = 1
Tc

, which is determined by the first null in its baseband power spectrum.

In the time domain, the spread spectrum signal will have a total duration Ts = P · Tc. As it will be
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discussed later, the length of the sequence P determines the robustness and duration of the test signal,

while Tc contributes both to the duration of the test signal and to its bandwidth.

In our proposed approach, the power spectrum of the test signal is moved to a comfortable frequency

range adapted to the node transducers. To this end, the PN sequence modulates a sinusoidal carrier signal

with frequency fc. As a result, the power spectrum of the test signal is accommodated into a frequency

range [fc −W, fc + W ] by adjusting the carrier frequency and the chip duration Tc. As an example, a

test signal with bandwidth 2W = 4 kHz centered at fc = 6 kHz can be designed by selecting a chip

period of Tc = 0.5 ms. Note that this modulation can then be used to move the PSD of the test signal

to an operating region where the acoustic transfer function of the transducers is approximately flat. As

described next, a conventional Binary Phase-Shift Keying (BPSK) modulation scheme is used for this

purpose [23].

For convenience, the discrete-time signal generated from the PN sequence is designed with a chip

period corresponding to an integer number of samples. Similarly, the carrier frequency is selected so that

an integer number of cycles is contained within each chip period. As a result, the modulated chip pulse

is defined as

z(n) =

sin
(

2π
NTc

mcn
)
, n = 0, . . . , NTc

− 1

0, elsewhere

, (7)

where NTc
= bTc · fse is the number of samples corresponding to the chip period and mc = bTc · fce is

the number of carrier cycles contained within the chip period. The resulting test signal is therefore given

by a concatenation of phase-modified chip pulses as follows:

sd(n) =

P−1∑
p=0

sgn (gd(p)) z(n− pNTc
), (8)

where gd(p) is the length-P PN sequence assigned to node d and sgn(·) is the sign function. An example

test signal design is shown in Fig.3, which represents the relations among the original PN sequence (a), the

modulated pulse chip (b), the final test signal (c) and its corresponding PSD (d). The chip autocorrelation

sequence is also shown in (e) which, as described next, plays an important role in the proposed approach.

C. Correlation

An important property of PN sequences is that they can be designed to have an ideal circular autocor-

relation function. For a general PN sequence g(p), its circular autocorrelation is computed as

R̊gg(l) = F−1 {G(k) ·G∗(k)}P = Pδ(l), (9)
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Fig. 3. Example of test signal design with fs = 44100, Tc = 5 · 10−4 s, fc = 6 kHz. (a) Points of PN sequence g(p) (only

first 5 values). (b) Modulated chip pulse z(n) (NTc = 22, mc = 3). (c) Test signal s(n) (corresponding to 4 first chip pulses).

(d) Power spectral density of test signal. (e) Autocorrelation of chip pulse z(n).

where G(k) is the discrete Fourier transform (DFT) of g(p) and F {·}−1P denotes the length-P inverse

DFT operator. The index k is the discrete frequency bin index and l is the time-lag index. The symbol

(·)∗ denotes complex conjugation. Note that R̊gg(l) is only non-zero for zero time lag (l = 0). However,

the test signal generated from the PN sequence will not have an ideal autocorrelation, but will contain
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Cross-correlation R̊x1sd(l) with known test signals without any processing. (c) Cross-correlation R̃x1sd(l) after applying self-

interference reduction.

the effect of the modulated chip pulse z(n). In fact, the circular autocorrelation of any test signal s(n)

coming from an ideal length-P PN sequence is given by

R̊ss(l) = PRzz(l), (10)

where Rzz(l) is the autocorrelation function of z(n):

Rzz(l) =


NTc−|l|

2 cos
(

2π
NTc

mc|l|
)

+

1
2 cot

(
2π
NTc

mc

)
sin
(

2π
NTc

mc|l|
)
|l| < NTc

0, elsewhere.

(11)

Note that the length of Rzz(l) is determined by the chip period NTc
, which at the same time determines

the bandwidth of the test signal. As expected, a wider frequency bandwidth results in a narrower

autocorrelation function, with a maximum value of NTc
/2, as shown in the example of Fig.3(e).

On the other hand, two different PN sequences g and g′ are assumed to have a low cross-correlation

R̊g,g′(l), so that their derived test signals s and s′ retain the low cross-correlation properties: R̊ss′(l) =

Rzz(l) ∗ R̊gg′(l)� P NTc

2 ∀l.
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IV. SELF-INTERFERENCE REDUCTION

Due to the proximity between the loudspeaker and the microphone at each node, the emitted test signal

will be received with high level at the same node. This fact produces a high-power self-interference signal

that prevents the node from listening properly to the test signals coming from the rest of nodes, especially

in reverberant conditions. To illustrate this problem, Fig.4(a) shows the contributions captured by the

microphone of the first node in a network of several acoustic sensors emitting simultaneously (the one of

Fig. 1). As representative examples, we show the contributions corresponding to the nodes d = 2, 3, so

that it can be clearly observed that the power corresponding to the own test signal (d = q = 1) is greater

than the one of the test signals arriving from other distant sensors. This power difference has also an

effect in the resulting cross-correlation signals, as observed in Fig.4(b) (with an adjusted vertical scale to

observe the relative rejection noise level). While the self-interference path can be clearly observed at the

top, the impulse responses of the other sensors are barely above the noise level. This problem motivates

the use of the self-interference reduction step discussed below.

A. Circular Cross-Correlation

Each node q ∈ {1, . . . , D} computes its circular cross-correlation between its recorded signal xq(n)

and the known test signals corresponding to the rest of nodes:

R̊xqsd(l) = F−1 {Xq(k) · S∗d(k)}Lq
, d = 1, . . . , D. (12)

where Xq(k) and Sd(k) are the Lq-point DFTs of xq(n) and (zero-padded) sd(n), being Lq the length

of xq. By taking the DFT of Eq.(5) and inserting it into the above equation, we get:

R̊xqsd(l) = F−1
{(

D∑
d′=1

Sd′(k)H̃q,d′(k) +Nq(k)

)
S∗d(k)

}
Lq

=

D∑
d′=1

F−1
{
Sd′(k)S∗d(k)H̃q,d′(k)

}
Lq

+

F−1 {Nq(k)S∗d(k)}Lq
, (13)

where H̃q,d′(k) and Nq(k) are the DFTs of h̃q,d(n) and nq(n), respectively. By extracting from the

summation the target term corresponding to d′ = d:

R̊xqsd(l) = F−1
{
Sd(k)S∗d(k)H̃q,d(k)

}
Lq

+∑
d′ 6=d
F−1

{
Sd′(k)S∗d(k)H̃q,d′(k)

}
Lq

+

F−1 {Nq(k)S∗d(k)}Lq

= R̊ss(l) ∗ h̃q,d(l) + nq,I(l) + nq,d(l), (14)
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where nq,I(l) is an interference rejection noise term and nq,d(l) is another noise term arising from the

sensor background noise. This last term can be neglected, since nq(n) and sd(n) are uncorrelated. Taking

into account Eq.(10), the above equation can then be expressed as a filtered impulse response with an

interference rejection noise term:

R̊xqsd(l) = PRzz(l) ∗ h̃q,d(l) + nq,I(l). (15)

We can here define the signal-to-noise ratio (SNR) of the (q, d) sensor pair as:

SNRq,d = 10 log10

Et
{(

PRzz(l) ∗ h̃q,d(l)
)2}

Et

{
(nq,I(l))

2
}

 , (16)

where Et {·} denotes temporal averaging. The interference rejection term can be further decomposed into

an autopath (d′ = q) and cross-path interference term:

nq,I = F−1
{
Sq(k)S∗d(k)H̃q,q(k)

}
Lq

+ (17)

F−1


D∑
d′ 6=q,d

Sd′(k)S∗d(k)H̃q,d′(k)


Lq

= R̊sq,sd(l) ∗ h̃q,q(l) +
∑

d′ 6=q,d

R̊sd′ ,sd(l) ∗ h̃q,d′(l)

Given the small distance between the microphone and the loudspeaker at each sensor, the autopath

interference term clearly dominates over the cross-path term (αq,q � αq,d ∀d 6= q). Therefore, h̃q,q(n)

must be estimated in order to remove the sensor’s own contribution from the captured signal and increase

the node pair SNR.

B. Estimation of Self-Interference Acoustic Path

It can be readily observed that the self-interference acoustic path hq,q(n) is contained within the circular

cross-correlation of Eq.(15) when the own test signal is considered in its computation (d = q). In fact,

when d = q, the first term of Eq.(15) will dominate over the interference term nq,I(n) leading to:

R̊xqsq(l) ≈ Ph̃q,q(n) ∗Rzz(n). (18)

This can be clearly seen in Fig.4(b), where the rejection noise level for d = q = 1 is much lower than

the one of the impulse response, i.e. SNRq,q � SNRq,d ∀(q, d). Note, however, that the filtering effect

caused by the chip signal must be removed in order to get an accurate estimate of the self-interference

acoustic path. This filtering effect can be removed by using a properly designed inverse filter matrix. Due

to the closeness between the microphone and loudspeaker at each sensor, the direct-to-reverberant energy
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Rz =



Rzz(0) Rzz(1) · · · Rzz(NTc
− 1) 0 0 · · ·

Rzz(1) Rzz(0) · · · Rzz(NTc − 2) Rzz(NTc − 1) 0 · · ·

Rzz(2) Rzz(1) · · · Rzz(NTc
− 3) Rzz(NTc

− 2)
. . . · · ·

...
...

. . .
...

...
. . . Rzz(NTc

− 1)

Rzz(NTc − 1) Rzz(NTc − 2) · · · · · · · · ·
. . . Rzz(NTc − 2)

0 Rzz(NTc − 1) · · · · · · · · ·
. . .

...

0 0
. . . . . . . . . . . . Rzz(1)

...
...

. . . Rzz(NTc
− 1) · · · Rzz(1) Rzz(0)



. (20)

ratio of the self-interference path is very high, so that it can be well assumed that hq,q(n) is a short-length

response with duration N much shorter than Lq, i.e., N � Lq. In other words, due to the proximity

between the loudspeaker and the microphone at one node, the impulse response corresponding to the

acoustic path between them will concentrate most of its energy in the direct path peak of the response.

Consequently, peaks corresponding to room reflections will be almost negligible. Even if hq,q(n) is not

strictly zero for n > N , most of the energy will be concentrated in the direct path and the first reflections,

which will be shown to be sufficient to reduce significantly the interference.

Let us rewrite Eq.(18) in matrix form as

r̊xqsq = Rzhq,q, (19)

where r̊xqsq = [R̊xqsq(0), . . . , R̊xqsq(N − 1)]T, hq,q = [h̃q,q(0), . . . , h̃q,q(N − 1)]T and Rz is an N ×N

banded symmetric Toeplitz (non-causal) filter matrix, given by Eq.(20) (top of the next page).

The matrix Rz can be inverted [30], so that the estimated delayed impulse response is obtained as

ĥq,q = R−1z r̊xqsq , (21)

with ĥq,q = [
ˆ̃
hq,q(0), . . . ,

ˆ̃
hq,q(N − 1)]T. Note that the inverted matrix only depends on Rzz(n), thus, it

can be computed offline and stored beforehand without adding any computational load to the system.

Due to the small distance between the loudspeaker and the microphone the direct path will be dominant

over the total response, thus, the node self-timestamp can be directly obtained as the location of the

maximum:

ζ̂q,q = argmax
n

{
ˆ̃
hq,q(n)

}
. (22)
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C. Self-interference Cancellation

Once the inverse filter matrix has been applied to R̊xq,sq(l) to recover h̃q,q(n), the self-interference

contribution can be highly attenuated from xq(n), resulting in

x̃q(n) = xq(n)− sq(n) ∗ ˆ̃
hq,q(n), (23)

where x̃q(n) is the self-interference-free processed signal at node q. When all the sensors remove their

own contribution from their captured signal, the cross-correlation of the resulting x̃q(n) with the known

test signals sd(n) will reveal the impulse response structure of the different acoustic paths between each

pair of sensors with higher SNR. These are obtained as in Eq.(12), but considering the DFT of the

processed signals x̃q(n). To avoid confusion, we denote these new cross-correlation signals as R̃xqsd(l),

which are computed for all pairs (q, d) with q 6= d (the cross-correlation for the autopath impulse response

already has a high SNR, as discussed in the previous section).

Following the same example of Fig.4, it can be clearly observed in panel (c) that the structure of the

impulse response between sensors d = 2, 3 and the first node q = 1 has emerged from the rejection noise

after canceling the self-interference path. As it will be analyzed in Section VII, an average SNR gain

of more than 20 dB is achieved. Note that the cross-correlation is the same for the case d = 1, since

interference rejection is only applied for pairs where q and d are different.

V. TOA ESTIMATION

The effect of self-interference reduction has already been discussed, but there is still the need to

estimate the location of the direct path peaks from the resulting cross-correlation signals R̃xqsd(l). This

is not an easy task, since rejection noise and the filtering effect of Rzz(n) affects the detection of the

direct path delay. While this could seem a serious issue for inverting the filtering effect, the objective now

is only to detect the time delay corresponding to the TOA. In fact, detecting the TOA peak of the impulse

response will be sufficient and the need to estimate the impulse responses as in the self-interference case

is avoided. Note also that selecting the location of the cross-correlation maximum as in Eq.(22) is not

possible, since the direct path peak is not always the peak with highest amplitude in a room impulse

response. However, while not being the peak with highest amplitude, it will be one of the most prominent

peaks, so that estimating the location of the most relevant peaks will help us determine the correct one.

To this end, we propose a peak matching strategy that makes use of the known Rzz(n) to extract the

most important peaks from the node-to-node acoustic paths.
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A. Peak Matching Algorithm

The next peak matching method has been proposed as an effective way to detect the TOA of the test

signal from the computed cross-correlations. Although the TOA will be reflected in the cross-correlations

as a prominent peak, selecting the right peak is not an easy task due to multiple effects: the true impulse

responses have multiple peaks due to multipath; the true impulse responses have additional peaks due to

the rejection noise arising from the correlation of PN sequences; all the above peaks are filtered due to

the modulation of test signals, causing ripples that can be confused with the true response peaks.

The motivation behind the algorithm is to iteratively approximate the observed cross-correlation signals

as a linear combination of delayed autocorrelation pulses Rzz . Thus, the algorithm is applied to the cross-

correlation signal R̃xqsd(l) of each pair (q, d) with q 6= d, by following the next steps:

• Step 1: Normalize to unit norm Rzz(n), obtaining R̄zz(n) = Rzz(n)/‖Rzz(n)‖. Initialize a residual

signal ei(n) = R̃xqsd(l) for the first iteration i = 0.

• Step 2: Find the maximum of the residual Ei = max{ei(n)} and its location υi = argmaxn {ei(n)}.

Take the inner product of R̄zz(n) centered at the location of the maximum, i.e. ai = 〈R̄zz(n −

υi), ei(n)〉.

• Step 3: Update the residual by ei+ = ei − ai · R̄zz(n− υi).

• Step 4: Go to Step 2 and iterate until a maximum number of iterations has been reached or the value

of Ei is below a given threshold. The smallest location index υi obtained from all the iterations is

selected as the direct path peak, resulting in a stored timestamp

ζ̂q,d = min {υi} . (24)

The first step takes Rzz as a normalized basis where the residual signal will be projected throughout

the different iterations, starting from the current cross-correlation signal. The second step performs the

projection of the residual onto the basis, centered at the position of the current maximum (highest peak).

Then, the third step eliminates from the residual the contribution of the basis to the current peak. The

last step checks if a number of iterations has been reached or if the current maximum of the residual

is sufficiently small, indicating that the current peak probably belongs to the rejection noise rather than

to the impulse response. Note that the smallest location index υi corresponds to the first peak in the

response above the estimated threshold, which will likely belong to the direct-path.

B. Stop Criterion

The first stop criterion suggested in Step 4 (maximum number of iterations) can be used to specify the

number of peaks to be extracted from the cross-correlation signals, while the second one can be used
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Fig. 5. Peaks obtained from the proposed iterative matching algorithm, corresponding to the cross correlation signals d = 2, 3

of Fig.4(c). Five peaks are extracted before reaching the SNR-based threshold.

to store all the peaks above a certain SNR. In fact, the SNR of a given cross-correlation signal can be

approximated as

ˆSNRq,d = 20 log10

(
max0≤l<Lt

(R̃xqsd(l))

maxLt−ν≤l<Lt
(R̃xqsd(l))

)
, (25)

where ν is a proper number of samples obtained from the tail of the cross-correlation signal assumed

to pertain to the rejection noise. For example, in Fig.4(c), it can be clearly observed that the part of

the cross-correlation signals going from 0.08 to 0.1 seconds is clearly dominated by the rejection noise.

Samples in this range can be used to determine the rejection noise floor. Then, by using Eq.(25), the

algorithm can be stopped when Ei < 10−
ˆSNRq,d/20

The advantage of using the threshold criterion is that the stopping rule is adapted to the considered

pair of nodes as a result of the amount of rejection noise present in the signal. Following the example

discussed throughout the paper, Fig.5 shows the values ai and locations υi obtained from the cross-

correlation signals of Fig.4(c). In both cases (d = 2, 3), five peaks have been extracted before reaching

the SNR-based threshold. Note that the resulting peaks reveal the most prominent acoustic paths in the

node-to-node responses.

VI. RANGING AND POSITIONING

Once the timestamps corresponding to all the node pairs have been obtained, the system is ready to

estimate ranges and node locations. The combination of two well-known techniques are used for this
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purpose, namely BeepBeep and multidimensional scaling (MDS). For the sake of completeness, we here

briefly review their fundamentals.

A. BeepBeep

In the last years, the BeepBeep strategy has become a popular choice for estimating the range between

two devices having acoustic emitters and receivers [13], [14]. The main advantage of the BeepBeep

technique is that it does not require node synchronization. It is based on the simultaneous emission and

recording of a specially designed sound signal (“Beep”). Each recording should contain two beeps, one

coming from the speaker of the own node and one coming from the speaker of its peer node. To solve the

ranging problem, each device counts the number of samples between these two beeps and exchanges the

time duration information with its peer, deriving the two-way time of flight of the beeps with an accuracy

limited by the sampling rate of the system. We use the BeepBeep method to extract the node-to-node

ranges from the estimated TOAs. The use of modulated PN sequences as “beeps” allows to apply the

BeepBeep algorithm in a network of multiple devices with all the nodes emitting simultaneously. This

is achieved by exploiting the low cross-correlation properties of the sequences.

By using the timestamps obtained from each pair of nodes (q, d) and assuming that all the nodes use

the same sampling frequency, their distance can be straightforwardly estimated as [13]:

∆̂q,d =
c

2fs
((ζq,d − ζq,q)− (ζd,q − ζd,d)) + rq,q + rd,d. (26)

The 1/2 factor in Eq.(26) comes from the fact that the range between devices q and d is approximated

by 1
2(rq,d + rd,q). Note that the addition of these two distances is approximately two times the distance

between the center of the nodes and, therefore, must be divided by two. The key advantage of the

BeepBeep strategy is that the use of the self-timestamps ζq,q and ζd,d avoids the need for having

synchronized nodes.

B. Multidimensional Scaling

After collecting the set of ranges corresponding to the different node pairs, MDS is applied for the

final sensor positioning. The goal of MDS is to find a low dimensional representation of a group of

objects (e.g. sensor positions), such that the distances between objects fit as well as possible a given set

of measured pairwise “dissimilarities” that indicate how dissimilar objects are. In our sensor localization

context, MDS is applied to find a map of node positions, where dissimilarities are range measurements.

When the measured dissimilarities are equal to the true distances between sensors, classical MDS provides

a closed-form solution by singular value decomposition of the centered squared dissimilarity matrix. On
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the other hand, when dissimilarities are measured in noise, other techniques should be used, usually based

on iteratively minimizing a loss function between dissimilarities and distances [26]. In our work, we use

Kruskal’s raw-Stress [31], also referred to as the least-squares MDS model:

σ2(P) =
D∑
q=2

q−1∑
d=1

wqd

(
∆̂q,d − dq,d(P)

)2
, (27)

where P = [p̂1, p̂2, . . . , p̂D] is the matrix of estimated sensor coordinates and dq,d(P) = ‖p̂q− p̂d‖. The

weights wq,d are non-negative values that affect the contribution of the input dissimilarities (ranges) when

computing and minimizing the stress. We use the computed SNRs as weights, so that wq,d = ˆSNRq,d.

The minimization of the stress function is performed by iterative gradient descent, as recommended by

Kruskal [31]. Finally, it is important to note that, because Euclidean distances do not change under

rotation, translation and reflection, these operations may be freely applied to the MDS solution without

affecting the raw-Stress. Procrustes analysis provides a way to transform one set of points to make it

more comparable to another specified set [32], and this is the tool we use in our experiments to evaluate

the performance of the proposed approach. In practice, the way to solve the rotation, translation and

reflection ambiguities may be different depending on the application at hand. Geometric constraints can

be introduced in the system, such as in [17]. For example, in order to remove the rotation and translation

ambiguities, three nodes can be selected to lie on a plane, such that the first one is at [0, 0, 0]T, the second

at [x1, 0, 0]T and the third at [x2, y2, 0]T. The reflection ambiguity can be solved by specifying one more

node to lie in the positive z− axis.

VII. EXPERIMENTS

The performance of the proposed method was investigated through a series of room acoustics simu-

lations with different degrees of interference and reverberation using the image-source method [33]. A

shoe-box-shaped enclosure of dimensions 10 m× 8 m× 3 m was defined and different combinations of

number of sensors (D ∈ {2, 4, 8}) and wall reflection factors (ρ ∈ {0.0, 0.5, 0.7, 0.9}) were considered,

with average reverberation times T60 ∈ {0.00, 0.110, 0.225, 0.383} seconds.

A total of Nt = 500 random sensor setups were simulated for each combination. All the experiments

considered a sampling frequency of fs = 44100 Hz in the nodes. The parameters affecting the signal

design were the same as in the paper example (Tc = 5 · 10−4 s, fc = 6 kHz), shown in Fig.3. The non-

deterministic delays were simulated by adding random delay values uniformly distributed in the range [0,

0.015] seconds in the synthesized node-to-node impulse responses obtained by the image-source method.

To minimize Eq.(27), we used Matlab’s mdscale function.
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The different stages of the proposed approach were evaluated as follows. First, we analyzed the SNR

of different spreading codes (Gold codes and MLS of different length), with and without applying the

proposed interference reduction approach. Second, we considered a medium-length MLS to evaluate the

localization rate of the system and the proposed TOA estimation approach. Third, we evaluated how

TOA estimation errors are propagated forward to ranging errors and to node positioning errors. Finally,

the performance was compared to the ideal synchronized non-simultaneous case where node interference

does not exist, taking it as an upper performance limit of our system.

In all the above cases, the performance was evaluated by computing the mean absolute error (MAE)

between the real and estimated quantities, defined as:

MAE =
1

Nt

Nt∑
j=1

ej , (28)

where j is an index corresponding to the results from the jth simulated topology. The error ej is defined

as a function of the evaluated aspect:

eTOA
j =

1

Np

∑
(q.d)

|ζ̂q,d − ζq,d|, (29)

eRNG
j =

1

Np

∑
(q.d)

|r̂q,d − rq,d|, (30)

ePOS
j =

1

D

D∑
d=1

‖p̂d − pd‖, (31)

where Np is the total number of node pairs in the topology and superscripts TOA, RNG and POS denote

TOA, ranging and positioning, respectively. We discuss the obtained results in the next subsections.

A. Spreading Codes and Interference Reduction

This experiment analyzes the selection of appropriate spreading codes used in the design of the node

test signals. We consider different families of PN sequences with different lenghts, namely Gold codes

and MLS, with lenghts P1 = 2047, P2 = 8191 and P3 = 32767. Fig.6 shows the average SNR obtained

both from the auto-path (a) and cross-path (b) correlation signals, computed as in Eq.(16). In panel (b) we

also present the results after applying the interference reduction approach, which show a significant SNR

gain in all cases. By looking at the auto-path results in (a), it can be clearly observed that MLS outperform

Gold codes independently of the number of sensors and the sequence length. This is due to the better

autocorrelation properties of MLS with respect to Gold codes. In fact, the increased SNR in the auto-path

case results in better interference reduction in (b), since the auto-path impulse response is estimated with

higher accuracy and can be more easily removed from the node signal in the interference reduction stage.
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This is the reason why, although Gold codes perform better before interference reduction (they are known

to have better cross-correlation properties), MLS outperform Gold codes when interference reduction is

applied. As a result, the next subsections only consider MLS of length P2 = 8191.

B. Localization Rate and TOA Estimation Accuracy

Localization rate describes the capability of the system to perform successfully the node localization

task. It is defined as the ratio between successful trials and the total number of trials. A trial was

considered to be successful when the average TOA error among all the node pairs was below 15 samples

(≈ 0.3 ms). When this is not the case, the trial was considered to be unsuccessful because the TOA

estimation error leads to average location errors that are above 10 cm (as shown in the next subsection).
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TABLE I

COMPARISON WITH IDEAL NON-SIMULATENAOUS SYNCHRONIZED NETWORK

Loc. Rate TOA MAE [samples] Range MAE [cm] Loc. MAE [cm]

ρ 0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9

T60 [ms] 0 110 225 383 0 110 225 383 0 110 225 383 0 110 225 383

Sync. Non-simultaneous 1.00 1.00 1.00 0.98 0.82 1.32 2.04 3.31 0.35 0.81 1.43 2.55 0.17 0.40 0.91 1.25

Proposed (D = 4) 0.99 0.96 0.95 0.94 0.76 1.39 1.99 4.98 0.48 0.96 1.51 4.16 0.52 0.83 1.47 4.64

Note that no restrictions were considered in the simulated topologies, so that some unsuccessful trials

might be due to non-advisable sensor placements (such as too closely positioned nodes). Fig.7(a) and (b)

shows the localization rate and TOA MAE for the selected MLS-based signal as a function of the number

of sensors and the wall reflection factor/reverberation time. As expected, the localization rate degrades

significantly with reverberation and with the number of sensors, although it is above 80% even in the

worst reverberant case with 8 simultaneous sensors. Similarly, the TOA error increases with reverberation,

especially for ρ = 0.9. Nevertheless, TOA errors for 8 sensors under moderate reverberation are below

2 samples, showing the validity of the proposed peak matching algorithm.

C. Ranging and Positioning Accuracy

Obviously, TOA errors are propagated forward to ranging and positioning errors. Fig.7(c) shows the

MAE of the estimated ranges after the BeepBeep approach. The error behavior is quite similar to the TOA

error, showing a robust performance for moderate reverberation even when there are 8 emitting nodes,

with a ranging error below 2 cm. Similarly, Fig.7(d) shows the MAE of the estimated node locations

after MDS. The Procrustes method was used to align the estimated locations from MDS to the ground

truth locations, filtering out translation and rotation effects [32]. Note how positioning errors are very

similar to ranging errors, confirming that the accuracy of the final positioning is very dependent on the

TOA estimation stage.

D. Comparison

This subsection compares the performance of the proposed system with respect to the ideal case where

the nodes emit their test signals one at a time. Consequently, the rest of nodes capture all the test signals

without any interference from other nodes, avoiding also their own self-interference. Moreover, they

are assumed to be synchronized as in a wired system, so that they all know accurately the emitting
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and recording instants under a common time line. As a result, the errors in the system are only given

by the TOA estimation stage, i.e. they still need to detect the arrival time for each emitted test signal.

Table I compares our proposed approach with 4 unsynchronized simultaneous sensors with respect to this

ideal case. The results are only slightly worse for our proposed approach, being comparable in accuracy

with the evaluated non-simultaneous case. Note that our simultaneous positioning framework provides

a calibration time reduction by a factor D(D − 1). Thus, for the case D = 8, the calibration time is

reduced 56 times with respect to a pair-wise calibration (from 3.82 minutes to 4 seconds). While our

simultaneous calibration framework requires additional complexity with respect to a non-simultaneous

framework, the additional processing time is negligible with respect to the total gain in calibration time,

specially when the number of sensors is considerably high.

E. Real Deployment

The applicability of the proposed approach was evaluated in a real heterogeneous WASN comprised

of 3 smartphones (Galaxy S4, Motorola G and Sony Xperia S) and one laptop (Asus Zenbook), the last

one being the central sink node. The devices were placed on a table inside a medium-size meeting room

(6 m × 6 m), adjusting their orientation and assuring a line-of-sight condition among all of them. This

is an important issue to consider, since typical smartphone microphones exhibit considerable directional

responses at frequencies above 1 kHz [34]. The reverberation time of the room was T60 = 0.29 s.

The experiment was carried out by developing an ad hoc Android application for audio playback and

recording (fs = 44.1 kHz) that listens to a broadcast calibration command sent through the network. The

average network delay (802.11n WiFi) when transmitting the calibration command was 15.444 ms, with

a standard deviation of 2.219 ms. Regarding the initialization of the audio device, the average delay was

12.715 ms, with a standard deviation of 1.275 ms. In order to assure that all the devices start to record

before any of them emits a test signal, we used a guard interval of 50 ms before emissions. In our setup,

the smartphones sent their recordings to the laptop, which was used to process all the collected signals

and its own one in Matlab. The experiment was repeated for 10 different device placements, using the

same test signals as the ones used in the simulated experiments (P = 8191, Tc = 0.5 ms and fc = 6

kHz).

The results were very similar to the ones of the simulations: the TOA MAE was 1.1 sample, leading

to a ranging MAE of 0.86 cm and a location MAE of 0.81 cm.

Additionally, the 10 tested set-ups were also numerically simulated by tuning the wall reflection factors

with the aim of approximating the measured reverberation time. The average results were slightly worse
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than in the real case, obtaining a TOA MAE of 1.8 samples, a ranging MAE of 1.27 cm and a location

MAE of 1.10 cm.

VIII. CONCLUSION

A complete framework for node ranging and positioning in unsynchronized WASNs has been presented.

Its main advantage over other state-of-the-art approaches is that ranges and node locations are obtained

by following a simultaneous playback/recording process, significantly reducing the total calibration time.

PN sequences with good autocorrelation and cross-correlation properties are used in the design of the

node test signals with this purpose. Important aspects affecting the performance of the method in practical

situations, such as the adaptation of the node signals to the node transducers, the reduction of the node

self-interference and the selection of appropriate PN sequences, have been considered and discussed.

Moreover, a novel peak matching approach for TOA estimation has been proposed, which allows to use

BeepBeep ranging and multidimensional scaling for estimating the final node locations. Experiments in

both simulated and real environments have been conducted considering different acoustical conditions,

showing that our proposed approach is a valid alternative for high-accuracy node positioning.
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