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Valencia, June 15, 2010





ACKNOWLEDGMENTS

Quiero aprovechar estas lı́neas para mostrar mi agradecimiento a todas las personas
que de una forma o de otra han contribuido a que esta tesis se haya hecho realidad.

En primer lugar quiero agradecer sinceramente a mis directores de tesis todo
su apoyo, paciencia y dedicación. Ismael, a quién hace tiempo que no considero
simplemente mi director de tesis, sino un amigo y del que he aprendido muchas cosas,
sobre todo en cuanto a traducción autoḿatica se refiere. En cuanto a Enrique, no
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trabajo. Poŕultimo, mi más profundo agradecimiento a Sonia, por todo su apoyo y
amor durante estos años tan complicados.

Finalmente, y citando a los geniales “Monty Python”:and now, for something
completely different ...
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ABSTRACT

This thesis is about Pattern Recognition. In the last decades, huge efforts have been
made to develop automatic systems able to rival human capabilities in this field. Al-
though these systems achieve high productivity rates, they are not precise enough in
most situations. Humans, on the contrary, are very accurate but comparatively quite
slower. This poses an interesting question: the possibility of benefiting fromboth
worlds by constructing cooperative systems.

This thesis presents diverse contributions to this kind of collaborative approach.
The point is to improve the Pattern Recognition systems by properly introducinga
human operator into the system. We call thisInteractive Pattern Recognition(IPR).

Firstly, a general proposal for IPR will be stated. The aim is to develop a frame-
work to easily derive new applications in this area. Some interesting IPR issues are
also introduced. Multi-modality or adaptive learning are examples of extensions that
can naturally fit into IPR.

In the second place, we will focus on a specific application. A novel methodto
obtain high quality speech transcriptions (CAST,Computer Assisted Speech Tran-
scription). We will start by proposing a CAST formalization and, next, we will cope
with different implementation alternatives. Practical issues, as the system response
time, will be also taken into account, in order to allow for a practical implementation
of CAST. Word graphs and probabilistic error correcting parsing are tools that will
be used to reach an alternative formulation that allows for the use of CAST ina real
scenario.

Afterwards, aspecialapplication within the general IPR framework will be dis-
cussed. This is intended to test the IPR capabilities in anextremeenvironment, where
no input pattern is available and the system only has access to the user actions to pro-
duce a hypothesis. Specifically, we will focus here on providing assistance in the
problem of text generation. The use of adaptive learning in this scenariowill be em-
phasized. Besides, two derived applications will be also considered. Notably, the use
of text prediction for information retrieval systems.

In addition, we will pose an interesting question about IPR systems. The inclu-
sion of multi-modality as a natural part of IPR. The design of a speech inputinterface
for Computer Assisted Translation (CAT) will be addressed. To this end, we will de-
scribe several interaction scenarios, which facilitate the speech recognition process
by taking advantage of the CAT environment.

Finally, a set of prototypes that include the main features of the work here devel-
oped will be presented. The main motivation is to provide real examples aboutthe
feasibility of implementing the techniques here described.
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RESUMEN

El presente trabajo versa sobre Reconocimiento de Formas. En lasúltimas d́ecadas,
se han destinado numerosos esfuerzos en construir sistemas automáticos capaces de
competir con las habilidades humanas en este campo. Aunque dichos sistemas son
capaces de obtener niveles de productividad muy altos no son lo suficientemente pre-
cisos en muchos casos. Los seres humanos, por otra parte, resuelveneste problema
de forma bastante precisa, aunque no pueden competir en cuanto a velocidad. Este
hecho plantea un problema interesante: la posibilidad de combinar ambas aproxima-
ciones construyendo sistemas cooperativos.

Esta tesis se centra en presentar diferentes contribuciones a una nuevapropuesta
encuadrada dentro de este tipo de sistemas colaborativos. Para ello, se propone incluir
al usuario como parte del propio sistema. Esta aproximación se conoce con el nombre
de Reconocimiento Asistido de Formas (IPR,Interactive Pattern Recognition).

En primer lugar, se propondrá una formulacíon general para el problema del Re-
conocimiento Asistido de Formas. Se pretende, de esta manera, desarrollarun marco
formal que permita el desarrollo de nuevas aplicaciones dentro de este campo. Por
otra parte, se discutirán ciertos aspectos generales, relevantes dentro del marco de
IPR. Cuestiones como la multi-modalidad o el aprendizaje adaptativo constituyen
extensiones naturales al problema en cuestión.

En segundo lugar, se desarrollará una nueva aplicación destinada a obtener trans-
cripciones del habla de calidad. Para ello, primeramente se estudiará una forma-
lización de dicha aplicación para, ḿas adelante, proponer diferentes alternativas de
implementacíon. Se discutiŕan, adeḿas, diversos aspectos prácticos, como por ejem-
plo el tiempo de respuesta que presenta un sistema de este tipo. El uso de grafos de
palabras y las técnicas de ańalisis sint́actico corrector de errores serán incluidas en
una formulacíon alternativa encaminada a mejorar dicho tiempo de respuesta.

A continuacíon, se describiŕa un caso especial de aplicación, en la cual no se
dispone de un patrón de entrada a reconocer y el sistema sólo puede basarse en las
acciones realizadas por el usuario para generar nuevas hipótesis. Desde un punto
de vista pŕactico, este enfoque pretende facilitar la generación de texto en diferentes
situaciones. Adeḿas, se describirán dos aplicaciones derivadas de esta propuesta,
destacando el uso de sistemas de generación de texto en sistemas de recuperación de
informacíon, que se presenta como una aproximación completamente nueva en este
campo.

Por otra parte, se discutirá la inclusíon de interfaces multi-modales en un sistema
IPR. En concreto, se abordará el disẽno de un interfaz basado en reconocimiento
del habla para un sistema de traducción asistida. Se estudiarán, para ello, diferentes
escenarios de interacción.
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Porúltimo, se presentará una serie de prototipos que implementan algunas de las
técnicas aqúı desarrolladas, con el objeto de mostrar su viabilidad como aplicaciones
finales para el usuario.
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RESUM

El present treball versa sobre Reconeixement de formes. En lesúltimes d̀ecades,
s’han destinat nombrosos esforços a construir sistemes automàtics capaços de com-
petir amb les habilitats humanes en aquest camp. Encara que aquests sistemes són
capaços d’obtenir nivells de productivitat molt alts, no són prou precisos en molts ca-
sos. Elśessers humans, per altra banda, resolen aquest problema de forma prou pre-
cisa, encara que no poden competir quant a velocitat. Aquest fet plantejaun problema
interessant: la possibilitat de combinar ambdues aproximacions construint sistemes
cooperatius.

Aquesta tesi se centra a presentar diferents contribucions a una nova proposta
enquadrada dins d’aquest tipus de sistemes col·laboratius. Amb aquesta finalitat,
es proposa incloure a l’usuari com part del propi sistema. Aquesta aproximacío es
coneix amb el nom de Reconeixement Assistit de Formes (IPR,Interactive Pattern
Recognition).

En primer lloc, es proposarà una formulacío general per al problema del Re-
coneixement Assistit de Formes. Es pretén, d’aquesta manera, desenvolupar un marc
formal que permeta el desenvolupament de noves aplicacions dins d’aquest camp.
D’altra banda, es discutiran certs aspectes generals, rellevants dins del marc de IPR.
Qüestions com la multi-modalitat o l’aprenentatge adaptatiu constitueixen extensions
naturals al problema en qüestío.

En segon lloc, es desenvoluparà una nova aplicació destinada a obtenir transcrip-
cions del parla de qualitat. Amb aquesta finalitat, en primer lloc s’estudiarà una
formalitzacío d’aquesta aplicació per a, ḿes endavant, proposar diferents alternatives
d’implementacío. Es discutiran, a ḿes a ḿes, diversos aspectes pràctics, com ara
el temps de resposta que presenta un sistema d’aquest tipus. L’ús de grafs de pa-
raules i les t̀ecniques d’aǹalisi sint̀actica correctores d’errors seran incloses en una
formulacío alternativa encaminada a millorar aquest temps de resposta.

A continuacío, es descriur̀a un cas especial d’aplicació, en la qual no es disposa
d’un patŕo d’entrada a recoǹeixer i el sistema noḿes pot basar-se en les accions re-
alitzades per l’usuari per a generar noves hipòtesis. Des d’un punt de vista pràctic,
aquest enfocament pretén facilitar la generació de text en diferents situacions. A més
a més, es descriuran dues aplicacions derivades d’aquesta proposta,destacant l’́us
de sistemes de generació de text en sistemes de recuperació d’informacío, que es
presenta com una aproximació completament nova en aquest camp.

Per altra banda, es discutirà la inclusío d’interf́ıcies multi-modals en un sistema
IPR. En concret, s’abordarà el disseny d’una interfı́cie basada en reconeixement de
la parla per a un sistema de traducció assistida. S’estudiaran, amb aquesta finalitat,
diferents escenaris d’interacció .
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Finalment, es presentarà una s̀erie de prototips que implementen algunes de les
tècniques aćı desenvolupades, amb l’objecte de mostrar la seua viabilitat com aplica-
cions finals per a l’usuari.
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PREFACE

Pattern Recognition is a very natural task for us, human beings. Million years ago,
accurately recognizing faces could represent the difference between life and death.
Confusing an enemy or predator for a family member constituted a terrible and usu-
ally deadly mistake. Evolutively, we have acquired mechanisms able to extractand
identify different kind of patterns from our environment. Speech and language gave
us a considerable advantage over our competitors, since it allowed us to communicate
in a very precise and efficient way. Color and shape identification provided us with
a way to distinguish between healthy and poisonous food. These skills werefunda-
mental for our survival and, because of that, we are highly-accuratepattern decoders.

Since sufficient computation power was available, we have tried to emulate these
capabilities by constructing artificial systems. Some success have been achieved so
far but not to the extent to which we can replace a human operator in most cases. In-
stead, only in some specific and constrained situations we can fully rely on automatic
Pattern Recognition.

This problem can prevent these system from being used in real tasks unless some
human supervision is added to the process. An operator can be employed tocorrect
the mistakes produced by the system. This can make sense when the results are
precise enough, since these users only have to modify a small portion of theoutcomes
and these changes are easy to make. However, when the number of errors is too high
and/or they are difficult to be identified and corrected, a utterly manual process can
instead be more productive.

In some situations some mistakes can be assumed. This is generally the case of
applications where the result itself is not what really matters but only some informa-
tion that can be derived from it (for instance, when an automatic translatoris used to
get the gist of a text written in a foreign language). On the contrary, goingback to the
translation example, formal documents are not expected to have errors and perfect
results are required in this case. We can cite the specific example of legal docu-
ments, where the consequences of an inaccurate translation can be reallydramatic
and, therefore, considering complete automation here is not possible at all.

Focusing, however, on fully automatic systems is not the only alternative. In-
stead, devising tools that can complement the work of a human operator (or “user”)
is quite worth it. The goal here is to keep the human Pattern Recognition skills while
achieving a high productivity. Building semi-automatic, cooperative applications,
where the user is an integral part of the system, is a way to accomplish this objective.

In this thesis, we are going to study some of the possibilities that this kind of
paradigm can offer. Since Pattern Recognition is such a wide field, we aregoing
to focus on the problem of Natural Language Processing. Speech recognition, assis-
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tance in the generation of text documents or user interfaces based on natural language
are interesting problems that will be addressed in this work. Clearly, these are only
a few examples and a great number of new possibilities are ready to be explored
nowadays.

The organization of this thesis is as follows:

Chapter 1 presents an introduction to Pattern Recognition and Natural Lan-
guage Processing. In addition, the main goals of the work are discussed and
the specific tasks used in the experiments are described.

Chapter 2 introduces the concept ofInteractive Pattern Recognition (IPR),
describing in detail the fundamentals and the motivation of this proposal. Be-
sides, a formal framework to develop IPR systems is proposed. Finally, differ-
ent system architectures as well as important issues derived from this general
framework are discussed.

Chapter 3 is devoted to presenting a specific application of the IPR paradigm.
The case of Computer Assisted Speech Transcription (CAST) is addressed.
We include an extension from the well known statistical speech recognition
problem to fit this application into IPR. Experiments on several tasks are also
described.

Chapter 4 is concerned about aspecial IPR-related application, Interactive
Text Generation (ITG). In this case, no input pattern is available and the sys-
tem can only rely on the user feedback. The aim is to provide a system able
to semi-automatically generate text documents. Different theoretical and prac-
tical issues will be addressed and experiments on very different tasks will be
discussed in detail.

Chapter 5 is focused on an important IPR issue, multi-modality and how to
deal with the user feedback. Multi-modal interfaces can be naturally included
into IPR and the very nature of the IPR can facilitate their development. A
specific multi-modal computer assisted translation system will be studied in
this chapter from both theoretical and practical points of view.

Next, in Chapter 6, several conclusions about the work developed are pre-
sented. In addition, different future lines or problems suitable to be addressed
are proposed.

Finally, the bibliography used in the work is enumerated along with an ap-
pendix describing real prototypes for the applications proposed here.
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CHAPTER 1

I NTRODUCTION

1.1 Pattern Recognition

Pattern Recognition (PR) can be defined as “the act of taking in raw data and tak-
ing an action based on the category of the pattern” [16]. PR is heavily related to
perception and, therefore, the most straightforward application of PR is the design
and construction of systems able to imitate (to some extent) the human senses. The
benefits obtained by the application of such systems are clear and huge. Onthe one
hand, there are environments where using human beings is not possible orit is too
risky (the outer space, the ocean depths, the inner earth, etc.). On the other, the pro-
ductivity that can be achieved by a human operator is clearly limited. For that reason,
in these extreme environments, or when a high throughput is required, automatic sys-
tems seem to be the only solution. In addition to these examples, PR can be useful to
better understand how biological systems recognize patterns in nature.
A typical PR process usually consists of three steps:

• Preprocessing: A signal or stimulus is captured from the real world. This
stimulus can contain a set of patterns to be recognized along with some useless
data. In this step, a segmentation process is usually carried out in order to
separate the different patterns captured. In addition, the noise carriedby the
signal is removed or limited.

• Feature extraction: Once the input is segmented andclean, the relevant infor-
mation is extracted. The point here is to achieve a suitable representation for
the upcoming recognition process.

• Recognition: The final step consists in interpreting the input pattern.

From all the ways in which a pattern can be characterized (for instance, by means
of a complex linguistic description or by a set of nominal features), labeling the pat-
tern as an instance of a class is, maybe, the most convenient way for an automatic
processing. To this end, this label has to somehow summarize the relevant informa-
tion included into the pattern. This classification can be performed on a previously
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Chapter 1. Introduction

defined set of classes (supervised classification) or, alternatively, can be intended to
group the patterns into a set of unknown classes that will be discovered during the
classification task itself (unsupervised classification).

Nevertheless, regarding the recognition process as a mere classificationtask can
turn out in a very constrained point of view. In the case of Natural Language Pro-
cessing (NLP), discussed in section1.2, it is more appropriate to considerthe final PR
step as an interpretation process.

This step can be approached following different techniques. A deductive ap-
proximation could be used when the knowledge needed to perform the recognition
is available and can be, as well, properly formalized and represented. However, this
knowledge is normally not available or it is extremely vague or imprecise and, be-
cause of this, inductive techniques are often more appropriate here. These techniques
are based onlearninga model from a set of samples (training samples) that, some-
how, captures the information needed to solve the problem. This model attempts to
extract general patterns from the training samples in order to recognize future inputs.
Statistical PR is one of the most representative examples of this inductive approx-
imation. In this case, the model is actually a (or a set of) probability distribution
that relates the possible inputs to the recognition outcomes. Here, each (properly
represented) pattern can be seen as a point in ad-dimensional space which has to
be scored according to this probability distribution. In the case of NLP, a pattern is
actually defined by a set of relationships among these points.

Formally, given an input patternx and a previously trained modelM , the clas-
sifier will produce a recognition hypothesisĥ, from the setH of all the hypotheses
considered, leading to the following expressiona:

ĥ = argmax
h∈H

PrM (h | x) (1.1)

Eq. (1.1) formalizes theoptimal classification ruleand it is aimed at minimizing
the number of recognition errors produced.

Usually, some information about the prior probability of each hypothesis is avail-
able and we can benefit from including this information into our statistical model.By
applying Bayes’ theorem to Eq. (1.1), we can obtain Eq. (1.2).

ĥ = argmax
h∈H

Pr(x | h) · Pr(h) (1.2)

Now, we still have a model that connects the inputs to the classesPr(x | h) but
we have, as well, a new term for the hypotheses prior probabilityPr(h).

1.2 Natural language processing

Natural language processing (NLP) is about the human language. The rationale be-
hind NLP is to provide methods to automatically deal with this kind of language.

aUsually,M is assumed to be known and it is not included as part of the notation
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1.3. Scientific goals

Among all the problems addressed by NLP, we can cite:

• Information extraction

• Automatic summarization

• Text-to-speech conversion

• Speech recognition

• Machine translation

• Handwritten text recognition

• Dialogue systems

• etc.

In spite of the fact that human language is the most natural way for us to com-
municate, it is not clear how to represent and capture its relevant features to allow for
an utterly automatic processing. Pattern Recognition can be applied to NLP since,
on the one hand, some NLP tasks are actually about pattern decoding (forinstance,
speech recognition) and, on the other, some PR techniques are well suitedto deal
with other NLP problems (for instance, machine translation). In NLP, we cangen-
erally find an underlying structure within the set of features that describethe input
pattern (syntactic pattern recognition). This way, this pattern can be decomposed into
simpler sub-patterns and the interpretation process is usually performed byanalyzing
these sub-patterns and the relationships among them.

In order to make this decomposition, it is usually assumed the language to be a
Markovianprocess. Thus, the input is split into sequentially consecutive sub-patterns
which are interpreted according to the local structure of the global pattern. In this
sense,Hidden Markov Models, used in speech recognition to identify the phonetic
constituents of the spoken discourse, andn-gram language models, widely employed
to cope with the syntactic structure of a sentence, will be described in Chapter 3.

Finally, it is interesting to mention that most NLP problems are concerned with
transforming an input language fragment into a different representation. Speech
recognition, machine translation or automatic summarization are examples of this.
Nevertheless, NLP can be also used in generation tasks (for instance within a dia-
logue system). A particular case of this approach will be studied in this work;namely,
an application to automatically suggest portions of text.

1.3 Scientific goals

The main scientific goals of this thesis can be summarized in the following points

LRR- DSIC-UPV 3
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• Firstly, we try to develop a general framework for Interactive Pattern recogni-
tion. This framework should allow for deriving specific applications.

• Secondly, some representative IPR applications should be explored. A formal
development along with a detailed experimental work would have to be carried
out in order to assess the feasibility of the applications developed.

• Different inherent IPR issues should be studied in detail. In particular, the
opportunities arisen from aspects as multi-modality or adaptive learning are
interesting points to be considered.

1.4 Description of the Tasks used in the experiments

In order to evaluate the different approximations presented, several experiments in-
volving real tasks have been carried out. In this section we are going to give an
overview of the tasks used. More details will be given when describing thespecific
experimental framework for each application.

1.4.1 EUTRANS

EUTRANS is a corpus devised during the EUTRANS project [18]. It provides sen-
tences corresponding to the interactions performed in a hotel desk. This corpus is
a low perplexity corpus with a vocabulary of about 700 words. On the onehand,
the EUTRANS corpus has been used to easily test the different proposals and, on the
other, to test if even in tasks where the automatic systems are able to provide high
accurate results, the interactive approach can be still useful.

This corpus has been used, specifically, in CAST (Chapter 3). In this case, 335
spoken utterances were employed. Each utterance corresponds to a sentence in Span-
ish. In addition, the text part of the corpus has been also employed in experiments of
Interactive Text Generation (ITG, Chapter 4). About 3000 sentences in Spanish were
used as test set.

1.4.2 ALBAYZIN geographic corpus

Albayzin[15] is a corpus designed to facilitate the development of automatic speech
recognition systems for Spanish. Three corpora were built with different purposes
(acoustic model training, problematic environments and a real application testing).
One of these corpus consists of sentences corresponding to oral queries to a geo-
graphic database. About 1500 oral sentences were employed to test CAST (Chap-
ter 3). In addition the text transcriptions were used in ITG (Chapter 4) as an example
of a real application: accessing to a database by means of natural language.
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1.4. Description of the Tasks used in the experiments

1.4.3 XEROX corpus

The Xeroxcorpus was produced during the TransType 2 project [13], as a realistic
task to fully test the Computer Assisted Translation (CAT) proposal. This is a paral-
lel corpus about printer manuals from theXeroxcompany. This task is more difficult
than the two previously described because both the size of vocabulary and the per-
plexity are significantly higher (about ten thousand words and about six times higher,
respectively).

From this task, two corpora were derived. A corpus consisting of whole-spoken
sentences was used for testing CAST. The corresponding transcriptions were also
used in ITG as a good opportunity to compare the accuracy of ITG and CAST. The
second corpus was specifically designed to test the multi-modal interface for CAT
systems described in Chapter 5 and it is composed of sentence fragment utterances.
These fragments are aimed at selecting parts of the system predictions and/or dictat-
ing possible continuations to a previously validated prefix.

1.4.4 WSJ corpus

The Wall Street Journal speech corpus [42] is a corpus widely adopted in speech
recognition experiments. This corpus is actually split into two different task with
vocabularies of 5000 and 20000 words respectively. In this work, theWSJ corpus
was used to test the different wordgraph based approximation to CAST. (Chapter 3).

1.4.5 Other ITG tasks

ITG was also assessed on additional corpora. First, the EUROPARL Corpus, contain-
ing transcriptions of parliamentary sessions. This corpus is considered adifficult task
owing to the vocabulary size and perplexity and constitutes a good example to see
how ITG can behave in a very realistic situation. On the other hand, a very differ-
ent task was also adopted. SeveralShakespeare’splays were collected from publicly
available web sites to check ITG in an extreme environment were few samples are
available for training purposes and the test vocabulary is very different from the train-
ing one. Finally, some of the source files of theGNU Linuxoperative system were
also employed as a new task not so much related with NLP.
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CHAPTER 2

I NTERACTIVE PATTERN

RECOGNITION

2.1 Motivation

Nowadays, Pattern Recognition systems are widely used. Speech recognition, for in-
stance, is employed in very different environments. Phone customer services, desktop
dictation software, biometrics, are only a few examples. This is also true for other
tasks as machine translation, image recognition, etc. Nevertheless, these systems are
not perfect and, therefore, some amount of errors will be produced. This is accept-
able in some situations, where the benefit obtained by the use of such systemsmakes
up for imperfect results.

Conversely, in some scenarios, it may not be convenient to rely on automatic
Pattern Recognition. We can focus, for instance, on the case of machine translation.
When translating legal documents, a small change in one term could cause a com-
plete change in the global meaning with all the problems that it would entail. The
same thing happens in fields such as medicine, technical manuals for critical systems
in engineering, etc. When a perfect outcome is needed, the presence ofa human oper-
ator is required to verify and correct the system results. This human post-processing
is reasonable when the amount of mistakes is not too high and they are, as well, easy
to correct. Otherwise, a completely manual process can be more adequate.

In addition to these examples, there are environments where the complete au-
tomation does not make any sense. As an example, we can cite one of the problems
addressed in this thesis. The basic idea consists in helping a user to generate text doc-
uments by reducing typing effort. We could think how important this effort-reduction
could be for a disabled person that has to communicate with his/her environment by
typing text through specific devices. Here, a fully automatic system is not possible
since we need some user feedback (in the form of the previously produced text, as
will be discussed later) to be able to generate new responses.
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Chapter 2. Interactive Pattern Recognition

2.2 Introduction to Interactive Pattern Recognition

Usually, Pattern Recognition systems are built based only on the kind of inputsex-
pected and on the outputs to be produced. The role of the human operator (if even
considered) is rarely included into the system itself. Instead, this is merely regarded
as a minor implementation issue and, the treatment of the system outcomes is not
something to be concerned about.

In this chapter, we aim at developing a framework where the user activelytakes
part in the process. As a result, we will have a semiautomatic and interactive system.
We call this Interactive Pattern Recognition (IPR)[52].

Before continuing, the benefits that we can expect from this kind of approach
should be discussed. As the most relevant points, we can cite:

• The cooperation between an automatic Pattern Recognition system and a hu-
man user ensures the achievement of a perfect result (this is guaranteed since
the user is who actually controls all the process). On the other hand, the
throughput can be significantly increased (the automatic part of the system
provides this feature) in comparison to a whole manual process.

• The adoption of an interactive paradigm should improve the system ergonomics.
The user is now part of the system and he or she is not limited to deal with the
final (and usually imperfect) system outcomes. Besides, the system sugges-
tions can help the user to consider new solutions to the problems being solved.
For instance, in a translation task, the system could achieve alternatives that
the human translator was not thinking of at that moment.

• The system can benefit from the fact that the user is constantly providingvali-
dation and/or corrections to its outputs. This feedback can be used to improve
the accuracy in several ways (see below). Typically, a Pattern Recognition sys-
tem does not have the opportunity to check whether its responses were right
or not and, what is more, to obtain a corrected version for the wrong ones. In
IPR, on the contrary, the system is always aware of the correct answers for the
previous inputs.

In Figure 2.1 a possible architecture for an IPR system is depicted. The IPR
operation mode is summarized in the following steps:

1. Initially, when a new input pattern is available, the system proposes a initial
hypothesis for this input. In this case, it actually behaves as a typical and
automatic Pattern Recognition system.

2. The hypothesis produced is shown to the user, who starts a validation process.
If an error is found, some feedback about this error is sent to the system. Oth-
erwise, if the prediction is fully correct, the process is finished and the current
hypothesis constitutes the final result (the fact that the user completely vali-
dates an outcome can be also considered as useful feedback information).

8 LRR- DSIC-UPV



2.2. Introduction to Interactive Pattern Recognition

3. The system benefits from the previous feedback to obtain a new (and hopefully
improved) prediction.

4. Go to step 2.

As can be observed, the process is completely human-supervised. The basic goal
is to take advantage of the user interactions to produce better and better hypotheses
until a perfect one is achieved.

The previous discussion is focused on the opportunities that the available user
feedback brings in the short term (specifically, in the decoding of the current input).
Nevertheless, as will be discussed in section 2.5, we can also take advantage of this
cooperation in the long run.

PREDICTION

STATISTICAL

PREDICTION

MODEL

PATTERN RECOGNITION

SYSTEM

INTERACTIVE

FEEDBACK

USER

INPUT

Figure 2.1: Architecture of an IPR system.
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Chapter 2. Interactive Pattern Recognition

2.3 A formal framework for Interactive Pattern Recogni-
tion

In this section we present a formal framework for IPR. Letx ∈ X be an input ob-
servation or signal (i.e. the pattern to be recognized). Leth ∈ H be a hypothesis or
prediction (a recognition outcome), derived by the system fromx and letf ∈ F the
feedback coming from the user.

Whenx arrives to the system, an initial predictionh is generated (no user inter-
vention yet). In this situation, theclassicalapproach to Pattern Recognition discussed
in Chapter 1 is used to derive this first hypothesis:

ĥ = argmax
h∈H

Pr(h | x) (2.1)

Once this initial outcome is produced, the user, after analyzingx and ĥ, sends
some feedbackf to the system. From now on (i.e. in the second and successive
predictions), we will incorporate this feedback into the recognition process trying to
make the following hypotheses more accurate.

ĥ = argmax
h∈H

Pr(h | x, f) (2.2)

wheref stands for the feedback, interaction-derived informations; e.g., in the form
of partial hypothesesor constraintsonH.

Clearly, the more feedback available the greater the opportunity to obtain better
ĥ. Nevertheless, solving the maximization (2.2) may be more difficult than in the
case of our Eq (2.1). Adequate solutions will be discussed when presenting specific
applications for this framework in the next chapters.

A direct estimation of this model might not be feasible. From here, and applying
Bayes’ rule, we can write:

ĥ = argmax
h∈H

Pr(x | h, f) · Pr(f | h) · Pr(h) (2.3)

which allows us to introduce two new statistical models to deal with the problem and,
therefore, to (hopefully) perform a more reliable estimation. On the one hand,
Pr(f | h), accounts for the probability of observing a specific feedback action given
the current hypothesis and, on the other,Pr(h) models the hypothesis prior probabil-
ity.

In the case of NLP and, owing to the sequential nature of language, the following
strategy seems to be quite natural. Firstly, the system provides a whole prediction for
the input and the user reads it sequentially. When an error is found, the prefix coming
before the mistake is preserved and the rest of the sentence is removed. The current
prefix implicitly includes the sequence of the previous interactions, and, therefore,
they are not needed anymore. As a result, just the last interaction is really useful. An
example of this, borrowed from Computer Assisted Translation (CAT), canbe seen
in Figure 2.2.
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ITER-0 (tp) ( )

ITER-1

(̂ts) (Haga clic para cerrar el diálogo de impresión)

(a) (Haga clic)

(k) (en)

(tp) (Haga clic en)

ITER-2

(̂ts) (ACEPTAR para cerrar el diálogo de impresión)

(a) (ACEPTAR para cerrar el)

(k) (cuadro)

(tp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL

(̂ts) (de diálogo de impresión)

(a) (de diálogo de impresión)

(k) (#)

(tp ≡ t) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

Figure 2.2: Example of a Computer Assisted Translation Session to translate
the sentence“Click Ok to close print dialog”. In the first interaction the prefix
tp is empty (no user feedback is available yet) and the system produces a whole
translationt̂s. Next, the user set a prefix (a) of this translation. Then, he or she
adds some textk, thereby generating a new translation prefix (tp). This process
is iterated until the user validates the whole system suggestion.

Clearly, other alternatives are possible. For instance, let’s consider anapplication
to recover images from a database. The system provides the user with a set of possible
candidates and the user can label some as “appropriate” and some as “inappropriate”.
For a specific interaction, the current feedback would consist in both set of images
(the “appropriate” and the “inappropriate” ones). To take full advantage of this user
feedback, not only the last set of labeled images is useful but also the previous ones.
Because of this, the whole feedback history is actually informative and the approach
described in Eq. (2.2) would have to be strictly followed.

Although we claimed that, for NLP applications, the first order approach turns out
to be quite useful, there are, indeed, some opportunities to be explored by tracking
all the past user actions. We could, for instance, identify recurrent system mistakes
which are, usually, really annoying in order to try to prevent these errors from occur-
ring in the future.

2.4 Multi-modality in IPR

One of the consequences of the previous IPR description is that multi-modalityap-
pears in a very natural way since the system has to deal with two kind of inputs. On
the one hand, we have the input pattern (x) to be decoded and, on the other, we have
a set of user feedback actions (f ). The domains from where both inputs come are
often very different. In the CAT example, the input is a text source sentence. Re-
garding the user actions, typing text can be used to introduce new amendments (no
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interesting multi-modality yet) but we could also allow for more natural communi-
cation modalities. Speech or an e-pen are some alternatives to consider. Actually,
several interaction modalities can be allowed simultaneously, which turns out ina
multi-modal interface for an IPR.

The description above could be seen as a rough attempt to unnaturally introduce
multi-modality here. However, the very nature of IPR systems can really boost the
development of multi-modal interfaces. In CAT, we have proposed the useof speech
to dictate the corrections [51]. The point here is that we expect the user toutter words
that are translations of part of the source sentence. This way, we coulduse this knowl-
edge to improve the speech recognition accuracy. On the other hand, lettingthe user
choose among different input modalities should make the system more comfortable,
thereby increasing the final throughput.

The previous example illustrates how a multi-modal interface can be naturally de-
vised within IPR. Generally speaking, this multi-modal interface should be intended
to decode the possible user feedback actions (coming from different domains: speech,
keyboard, mouse, e-pen, gestures, etc.) into a suitable representation for the system.
This multi-modal interface can benefit from the IPR environment by taking advantage
of the available information (input pattern to be recognized, IPR current hypothesis,
etc.) in order to better interpret the different user actions. In Figure 2.3 apossible
structure for multi-modal IPR is depicted.

From a more formal point of view, we have the system hypothesish, the input
patternx and the current user action,a. The goal is to decodex into a proper feedback
informationf̂ for the IPR system:

f̂ = argmax
f

Pr(f | x, h, a) (2.4)

Now, some assumptions can be made leading to different scenarios. This general
framework for multi-modal IPR will be discussed for a specific speech andtext input
interface in Chapter 5.

2.5 Adaptive learning

Under the IPR paradigm, we are always exposed to the user feedback.So far, this
fact has been only used to improve the accuracy in the short term (for a given input
pattern) but this could be also useful to increase the system accuracy in the long term
(that is, for future inputs). Maybe, the simplest way, but not the only one, consists in
considering the (perfect) system outcomes as new training material as it is described
next.

When developing a statistical Pattern Recognition system, two well-separated
stages are usually identified. In the first place, a statistical model is learnt from a
set of samples or training set. As a result, we obtain a probabilistic model that, to
some extent, captures some general knowledge from these samples. At thispoint, the
system can begin its normal operation mode, recognizing new samples. This isusu-
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PREDICTION

STATISTICAL

PREDICTION

MODEL

PATTERN RECOGNITION

SYSTEM

INTERACTIVE

INPUT

USER

INTERFACE

MULTIMODAL

ACTION

USER FEEDBACK

Figure 2.3: Multi-modal IPR system

ally known as “batch-training”. In IPR, a similar strategy can be followed. However,
we have a user that ensures the correctness of the results produced during the opera-
tional stage and, thus, they can be used to improve the statistical prediction models.
Moreover, we can expect to find some similarities in the inputs processed in a given
moment. This way, the knowledge from the current input (and the corresponding out-
come) will be quite useful for the next ones. In other words, the opportunity of con-
tinuously adapting the system to the task being currently solved easily arises within
IPR. In Figure 2.4 a possible architecture for IPR incorporating adaptive learning is
shown.

It can be argued that a similar approach can be followed inclassicalPattern
Recognition, where the system outputs can be also used as new training material.
However, this could be a double-edge sword unless we have high confidence in our
system accuracy. Besides, we have to tackle the issue of dealing with new events not
observed before, In IPR, the user can, implicitly, introduce new elements not seen in
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the training stage. For instance, in NLP, the user can produce a so far unknown word.
Following an IPR approach, this new word can be easily incorporated into alanguage
model. In fully automated Pattern Recognition, to the best of our knowledge, this can
not be done reliably.

STATISTICAL

PREDICTION

MODEL

PATTERN RECOGNITION

SYSTEM

INTERACTIVE

USER

INPUT

DATA

TRAINING

OFF−LINE

FEEDBACK

PREDICTION

ON−LINE
LEARNING

SYSTEM

Figure 2.4: IPR system incorporating an adaptive learning module.

2.6 Evaluating an IPR System

In Pattern Recognition, performance is usually measured by considering the ratio
between the number of times that an input has been incorrectly recognized and the
overall number of inputs processed. In the specific case of NLP, more sophisticated
metrics are adopted. We can citeWord Error Rate(WER), Character Error Rate
(CER) for speech recognition orTranslation Word Error Rate(TWER) and BLEU
for machine translation. WER and TWER can be seen as an adequate estimationof
the off-line, word-level post-edition effort required to achieve a perfect result (i.e, the
number of words that have to be inserted, deleted or modified).

For IPR, a different strategy has to be followed. Perfect results are guaranteed
and, hence, it is necessary to focus on how the system can increase theuser produc-
tivity. To this end, we can consider two alternative baseline scenarios; a complete
manual process or, instead, a human post-processing the outputs of an automatic sys-
tem. We can assume the second option to be more realistic in most situations and,
from now on, we will adopt it as our baseline. Notice that using the first scenario
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would generally translate into better results for our proposals but, this couldlead us
to achieve biased and less accurate conclusions.

From this point of view, an IPR system should perform better when the human
intervention is low (the lower the user activity is, the quicker the results are obtained).
Thus, a possible way to assess the IPR performance is based on measuring the user
effort needed to carry out some predefined task. Several metrics have been developed
to this end. On the one hand,Word Stroke Ratio(WSR) estimates the average number
of word-level user interactions actually performed. On the other hand,Key Stroke
Ratio (KSR) defines an interaction as a key stroke, this way measuring the average
number of user key strokes. Despite what the previous description can suggest, real
users do not have to be involved in the experiments, since they can be simulated
by means of a suitable set of reference results (that are usually human-generated,
though). We can go now a little bit further to conclude that it is possible to estimate
the amount of effort that an IPR system can save (or, equivalently, theincrease in
productivity that can be expected) with respect to a fully automatic system plus a
post-edition process by comparing the off-line measures (WER, TWER or CER) to
the online (and interactive) ones (WSR or KSR). The difference in the figures can be
then used as an estimator for this effort reduction.

At this point, we can not elude an important issue. We really think that real
users are necessary to get a clear picture of the actual performance and, hence, they
will have to be eventually included into the experimental framework. The evaluation
method can be improved by means of other quality indicators obtained from humans
performing real sessions with the system. However, in this work we try, as much
as we can, to follow a strictly scientific point of view. Because of this, we need
some objective way to analyze the techniques that will be proposed in the following
chapters and, therefore, WSR and KSR will be employed all along this work.

Finally, we would like to introduce a final consideration. Automatic or semi-
automatic systems are not always welcome in real situations. Some people are reluc-
tant to rely on these assistance tools since they can feel they are not actually in charge
of the process. This is especially noticeable in tasks entailing some sort of creative
work. Translation is good example of it. A human translator usually likes to leave
his or her mark on the final result. IPR is not planned to interfere with the user work
but only as a tool to speed the process up. The user has always the lastword.

2.7 Summary of contributions

In this first chapter, a formal framework for developing IPR applicationshas been
described in detail. Next, different architectures for IPR systems has been also dis-
cussed. Finally, we have proposed some extensions to the initial core of IPR, based
on the inclusion of two interesting features: multi-modality and adaptive learning.
All these contributions extend the basic IPR proposal presented in [52].
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CHAPTER 3

I NTERACTIVE SPEECH

RECOGNITION

3.1 Introduction to Speech Recognition

One of the most interesting and successful applications of Pattern Recognition isAu-
tomatic Speech Recognition, (ASR). Human computer interaction, dialogue systems
or transcription of speeches, are only a few examples of the use of ASR ineveryday
life. However, ASR systems are not perfect. Some of the issues that make the ASR
problem hard to be solved are:

• Speaker variability. The speaking style is usually not uniform among people.
Features such as voice, accent, cadence, etc. are highly variable andcause
confusion to ASR systems. In addition, the language (vocabulary, grammatical
constructions, etc) is also speaker-dependent.

• Spontaneous speech. Spontaneous speech is considerably more difficult (pauses,
corrections, skipping phonemes or words, etc.) which introduces numerous er-
rors.

• Noise: The signal coming to the system not only contains the speech to be
decoded but also additional components (other speakers, environmental noise,
etc.). Separating the voice from the rest of the elements in the signal is a
challenging task (blind signal separation).

3.1.1 Automatic Speech Recognition Systems

An automatic speech recognition (ASR) system takes an input audio signal and de-
codes this signal producing a text transcription of the words uttered. We will start by
describing all the stages needed to achieve this goal.
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Speech acquisition

The human voice generates a series of variations in the air pressure that are transmit-
ted through the air. These pressure changes can be captured by usinga special type
of transducer (microphone). As a result, this transducer produces ananalog electric
signal suitable to be stored and processed. However, analog processing presents im-
portant drawbacks (noise, need of specific hardware, etc). Computers, on the other
hand, are digital systems unable to directly deal with analog inputs. Hence, thissignal
is converted into the digital domain. In this process, the analog input is periodically
sampled and a set of discrete samples is produced as a result. The sampling frequency
(that is, the number of samples taken per second) is crucial to ensure an accurate cod-
ification of the original signal. According to the Nyquist-Shannon theorem [37] the
sampling frequency must be, at least, two times the maximum frequency in the sig-
nal. Otherwise, it is not possible to obtain a perfect representation. The maximum
frequencies present in a speech signal are around 8 Khz and, therefore, a sampling
frequency of 16 Khz is typically used.

Pre-process and feature extraction

Once the signal is in the digital domain, the relevant information for speech recog-
nition has to be extracted. Different representations have been proposed for speech
signals. One of the most widely employed in ASR is based on the use of the so-called
Mel Frequency Cepstrum Coefficients(MFCCs). These coefficients are obtained as
follows. Initially, the signal is split into a sequence of overlapped fragments(“win-
dows” or “frames”) where each fragment of signal can be considered a stationary
process (each window typically has a size between 10 and 20 milliseconds).The
spectrum of every window is then computed and frequencies are grouped into a (non-
linear) series of bands (collectively known as filter bank) according to the Mel scale,
which is, approximately, linear below 1 KHz and logarithmic above. This way, each
speech window (frame) is represented as a vector storing the average of the energy
of the frame after passing through the corresponding filter (usually from20 to 40 fil-
ters are employed). Finally, the Discrete Cosine Transform (DCT) is applied to each
output vector and the first DCT components (usually from 10 to 15) are chosen. The
first and second time-derivative of each DCT vector are usually computed as well.

As a result of this process, the signal is represented as a sequence offeature
vectors of dimension between 30 and 40.

Statistical Speech Recognition

Now that we have the input signal properly pre-processed and represented as a se-
quencex (in Figure 3.1 the notation followed in this chapter is summarized) of fea-
ture vectors, we can discuss the recognition process itself. In statistical ASR, given
an input signalx, we have to obtain the optimal sequence of uttered wordsw as it is
stated in Eq. (3.1) (notice that, here,x andw representx andh in Eq. (1.1)).
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• A math font letter indicates an event (k is the observation in a Markov model,
w is a generic word, etc.). This is also used (along with greek letters) to denote
a parameter in a model.

• A boldfaced letter indicates a sequence of events (w indicates a sequence of
words).

• A subscripted boldfaced letter denotes an element of a sequence (w2 indicates
the second element of the sequencew).

• A subscripted and superscripted bolfaced letter denotes a subsequence (w3
1

denotes the first three elements inw).

• Pr( ) will be used to denote “true” probability functions, whileP ( ) will denote
model approximations.

Figure 3.1: Summary of the notation used in this and following chapters

ŵ = argmax
w

Pr(w | x) (3.1)

The first problem to be addressed here is how to estimate this posterior probabil-
ity. From a practical point of view, we have a set of training examples, where each
sample is composed of a speech signal and its corresponding transcriptionand, from
this, we have to perform a reliable estimation of the probabilityPr(w | x). Ideally,
we could assume that our set of samples is fully representative of the realprobability
distribution. However, this assumption is far from being true and, thus, trying a direct
estimation of the previous probability is not actually reasonable. As in Eq. (1.2), we
can apply Bayes’ theorem to Eq. (3.1) to achieve Eq. (3.2).

x̂ = argmax
w

Pr(x | w) Pr(w) (3.2)

In this case, we have two different models that can be estimated separately.As we
will see later on, the estimation ofPr(x | w) is easier than the estimation of the prob-
ability in Eq. (3.1) and, on the other hand, the additional term in the maximization,
Pr(w) provides additional information about the hypotheses produced. Specifically,
the first termPr(x | w) corresponds to anacoustic model, which accounts for the
distribution of the sounds present in the signal given the set of phonemesin the lan-
guage.

The second termPr(w) is calledlanguage modeland deals with the distribution
of the sentences in the language so that correct sentences in the language are (hope-
fully) scored with high probability and, consequently, incorrect sentences are scored
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with low probability.a

3.1.2 Acoustic modelling

In this section, we are going to address the problem of estimatingPr(x | w). From a
generative point of view, we need a model able to produce a speech signal for a given
sequence of words with certain probability. Speech is a process in time whichmeans
that this model has to be able to deal with temporal series. Moreover, speech can be
seen as a non-stationary process described by a set of short-time stationary events.
From this, and assuming the Markov property, we can reach a suitable formalism to
deal with the acoustic modeling problem.

3.1.3 Introduction to Hidden Markov Models

The Hidden Markov Model (HMM) is, so far, the most successful paradigm for
stochastic modeling of phonetic units. Formally, an HMM is defined by:

• A set of statesQ = 1, 2, . . . , N .

• A transition probability distribution over the states:
aqq′ = P (q|q′), whereq, q′ ∈ Q.

• A emission (observation) probability distribution in each state
bq(k) = P (k|q), wherek is an observation andq ∈ Q.

• An initial state probability distributionπq = P (q), whereq ∈ Q.

The observations can be both discrete or continuous. In the last case, acontinuous
probability density function is employed and, therefore, the observation probability
in each state is specified by the parameters of the density function. In Figure3.2 an
example of a discrete HMM is shown.

Hidden Markov Model for acoustic modelling

In speech recognition, the acoustic units usually vary from phonemes to words. As
a result, an HMM can be used to model an isolated phoneme, contextual units as
diphonemes or triphonemes or even whole words. The main features of HMMs in
ASR are:

• On the one hand, the structure of these models is usually aleft-to-right topol-
ogy. Each state has one transition to itself and another to the following state
(no skip transitions are usually used). This structure is shown in Figure 3.3.

aActually, an additional model is needed to properly deal with the probabilityPr(x | w) since the
acoustic model only copes with phonemes andw is a sequence of words. This will be discussed in
section 3.1.6.
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1           0.6
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b1(x) = 0.7
b1(y) = 0.3

b2(x) = 0.1
b2(y) = 0.9

b3(x) = 0.4
b3(y) = 0.6

Figure 3.2: Example of discrete Hidden Markov Model. This figure depictsa 3
state model where only the symbolsx andy can be generated. The probability
on the top right of each state represents the probability forthis state to be an
initial state.

1 2       3

Figure 3.3: HMM usual topology for speech recognition

• On the other hand, each observation consists in an n-dimensional vector of
continuous components obtained as explained in section 3.1.1. The observation
model in each state is a mixture ofM Gaussian distributions. Owing to this
fact, the probability of generating a vectork in the stateq is given by Eq. (3.3),
wherecqm is the weight (prior) for them-th component in the mixture.

bq(k) =
M
∑

m=1

cqm · N (k; µqm, Σqm) (3.3)

3.1.4 The estimation problem in HMMs

HMMs are quite useful in speech recognition (as well as in other fields) since the
parameters associated to the model can be automatically learned from a set ofsam-
ples. Actually, the parameters of the probability distributions for both transitions and
observations have to be learned.
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Approximations based on a Maximum Likelihood criterion have been typically
used to this end (however, alternative approaches as, for instance, one based on Max-
imum Mutual Information [36] can also be found in the literature).

In the case of Maximum Likelihood, the estimation is performed through the
Baum-Welchor Forward-Backward[43] algorithm, which it essentially an Estima-
tion Maximization (EM) algorithm. Before continuing, it is necessary to define the
concepts ofForward (α) andBackward(β) probabilities on which the algorithm re-
lies. In our speech recognition problem, letT be the length of the feature vector
sequencex, denoted asxT

1 . The Forward probability is defined as:

αt(q) = P (xt
1, q) (3.4)

and represents the probability that the HMM is in stateq at timet, having observed the
subsequencext

1. This probability can be computed by using the following recursion
formula:

αt(q) =





∑

q′∈Q

αt−1(q
′)aq′q



 bq(xt) (3.5)

whereα1(q) = πqbq(x1). In our specific ASR three-state topology, we have a single
initial state (the first one). Soπq = 1, if q = 1 andπq = 0 otherwise. Regarding the
Backward probability, it is given by:

βt(q) = P (xT
t+1, q) (3.6)

i.e, the probability of generating the sequencexT
t+1 given that the HMM is in stateq

at timet. Again, this probability can be expressed in a recursive way:

βt(q) =





∑

q′∈Q

aqq′bq′(xt+1)βt+1(q
′)



 (3.7)

where the base case is normally given byβT (q) = 1/|Q|. Again, in our specific
model, we have a single final state (the third one). SoβT (q) = 1, if q = 3 and
βT (q) = 0 otherwise.

From the Forward and Backward probabilities, we can estimate the HMM pa-
rameters. Specifically, the initial state distributionπq, the transition probabilitiesaqq′

and the emission probabilitiesbq(x) have to be defined. We employ the notation
λ = {a, b, π} to refer to a model and its current parametersb.

The algorithm starts from an initial set of parameters (this set is often obtained
randomly) to iteratively perform a parameter re-estimation to maximize the likeli-
hood of the model given the training samples observed. The re-estimation formulas

bThe topology of the model,Q, is considered previously fixed (see Figure 3.3).
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are computed as follows. In the first place, for the transition probability, wecan de-
fine the probability of being in stateq at timet and going to stateq′ given the current
model parameters as:

γt(q, q
′) = P (q, q′|xT

1 , λ) =
αt−1(q)aq,q′bq(xt)βt(q

′)
∑

s∈Q

αT (s)
(3.8)

Intuitively, we try to estimate the transition probabilityaqq′ as the expected num-
ber of transitions from stateq to stateq′ divided by the overall expected number of
transitions leaving stateq, what leads to the re-estimation formula shown in Eq 3.9.

âqq′ =

T
∑

t=1

γt(q, q
′)

T
∑

t=1

∑

s∈Q

γt(s, q)

(3.9)

Regarding the observation probability, we define the probability of being in state
q at timet as:

γt(q) = P (q|xT
1 , λ) =

αt(q)βt(q)
T

∑

j=1

αj(q)βj(q)

(3.10)

The estimation of the emission probabilities is performed by computing the ex-
pected number of times that the process is in stateq observing the symbolk, divided
by the overall expected number of times in stateq.

In our case, the observation probability is modeled as a Gaussian mixture. Hence,
we define the probability of being in stateq at timet, with them-th component of
the mixture accounting forxt as:

γt(q, m) =
αt(q)βt(q)

∑

s∈Q αt(s)βt(s)
·
cqm · N (xt; µqm, Σqm)
∑M

n=1 N (xt; µqn, Σqn)
(3.11)

From this, we can compute the mixture paramenters as:

ĉqm =

T
∑

t=1

γt(q, m)

T
∑

t=1

M
∑

n=1

γt(q, n)

(3.12)
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µ̂qm =

T
∑

t=1

γt(q, m) · xt

T
∑

t=1

γt(q, m)

(3.13)

Σ̂qm =

T
∑

t=1

γt(q, m) · (xt − µqm)(xt − µqm)tr

T
∑

t=1

γt(q, m)

(3.14)

wheretr denotes the transposed matrix. Finally, the initial probability distribution
is simply estimated according to the number of times in stateq at time 1, that is,
π̂q = γ1(q) (in our case, this probability has been previously set according to the
model topology).

3.1.5 The decoding problem in an HMM

After the training stage, the learned HMMs can be used to decode (transcribe) an
input speech signal. We can assume, for the sake of simplicity, that each HMM is
tied to a phoneme and, therefore, we have as many HMMs as different phonemes
exist in a language.

The process of decoding an input utterance consists in finding the most likely se-
quence of HMMs that can produce this input. As was described before,the forward
probability accounts for the probability of a specific model generating a sequence
of observations. Similarly, we can devise and algorithm to obtain the best paththat
reaches a state to finally obtain the best sequence of states and models for an ob-
servation sequence. Formally, we can compute the path probabilitiesV recursively
as:

V1(q) = πqbi(x1)

Vt(q) = max
q′∈Q

[

Vt−1(q
′)aq′q

]

bq(xt) (3.15)

whereVt(q) denotes the probability of the most likely sequence that generates the
observationsxt

1 and ends in stateq. Notice that the sum in the Forward probability
has been replaced here by a maximization. Algorithm 1 shows a complete definition
of theViterbi algorithm for HMMs decoding.

At this point, we have all the elements needed to decode a speech fragment. Since
we known how to obtain the optimal sequence of HMM states that generates aninput,
we can build a huge HMM , where the final state of each HMM is connected to the
initial state of others. By simply computing the most likely state sequence over this
huge HMM, the input speech is then represented as a succession of phonetic units.
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Algorithm 1 : Viterbi Algorithm for HMM decoding. Given an observation se-
quencex and a HMM(Q, a, b, π), the algorithm returns the highest probability
sequence of states with which the HMM generatesx.

input : x = x1,x2, . . . ,xT The input observation sequence
output: The optimal sequence of states for the input observationx

Algorithm:
begin

DeclareN = |Q|
DeclareV [N + 2][T + 2] and initialize to 0
Declarepaths[numStates+2][T + 2]
forall q ∈ Q do

V [q][0]=πq

t=0;
while t < T do

forall q ∈ Q do
forall transitionq → q′ do

score:= V [q][ t] · aqq′ · bq(xt)
if score> V [q′][ t + 1] then

V [q′][ t + 1] := score
paths[q′][ t + 1] := q

t := t + 1
Perform a backtrace on thepaths array starting in the element with highest
probability stored in thet column ofV and return the resulting path.

end

Nevertheless, there are two important issues to be solved. In the first place, the
phonetic units have to be transformed into words. Secondly, we have to deal with the
second term in Eq. (3.2). In the following sections, these questions will be addressed
to obtain, finally, a complete description of a speech recognizer.

3.1.6 Lexical modelling

Speech recognition is not merely decoding phonemes. Because written words are
composed of letters we need a link between the acoustic units and the letters, sylla-
bles and, in the end, words in our language. Hence, some kind of lexical model is
needed. In most cases a dictionary storing a word and the corresponding sequence
of phonemes is enough. However, more sophisticated models are also possible. For
instance, simple deterministic automata are typically employed to permit different
pronunciations for a specific word (see Figure 3.4).

Lexical models are normally constructed by following a knowledge-based ap-
proach since the information needed to build such models is easily available [55].
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house: [haUs]
cat: [kæt]
table: [teIbEl]
. . . . . .

1 2 4 5 6 7 8

3
a

d r k te

I

I

Figure 3.4: Example of lexical models. A simple phonetic dictionary canbe
used to map the words to the phonemes. An alternative is to usea finite state
automaton for modelling multiple pronunciations as it is shown for the word
“direct”

3.1.7 Language modelling

We have already described how to obtain a sequence of words from a speech signal.
In very constrained tasks, when only a few spoken commands are used to interact
with a computer or to control a robot, for instance, we do not need anythingelse.
Nonetheless, if we want to address more complex tasks, involving decodingwhole
sentences in natural language, large vocabularies, etc. something more isneeded.
Acoustic models are not precise enough. Expecting a perfect decodingof all the
acoustic units in a sentence is not realistic at all. Things are even worse since we
have to tackle situations as disfluent speakers, noisy environments, etc.

When dealing with real NLP applications, it is necessary to use a model that
allows us to know whether a specific sequence of words is likely or not to bepro-
duced. Given a sequencew = w1 . . .wn, a statistical language model provides the
probability Pr(w) = Pr(w1 . . .wn) so that a syntactically and semantically cor-
rect sequence of words (for instance, “This room is painted in white andgray”) is
scored with high probability and a bad-formed sequence is given a low probability
(for instance, “Black the house is on”).

Trying to deal with the joint probabilityPr(w1 . . .wl) directly is not feasible due
to the scarcity of samples usually available. For that reason, an approximation should
be taken here. Then-gram model is the most widely kind of language model used
in ASR (as well as in other NLP tasks). It is based on the following approximate
factorization of the joint probability:

Pr(w1 . . .wl) ≈
l

∏

i=1

P (wi|w
i−1
i−n+1) (3.16)

In ann-gram model, each word is conditioned by just then− 1 previous wordsc.

cAs in [53], we assume that for any stringz, the substringzj
i denotes the stringzj

1
if i ≤ 0 andλ if

j ≤ 0. In addition, we assume thatP (z|λ) ≡ P (z)
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In order to allow for an accurate probability estimation, long term dependences
are not included in the model. In Figure 3.5 an example of a “2-gram” (bigram)is
shown.

abeg

abcd 
acd
abef
abe
aec

Training samples (L)

a
ba

b
c c d

1

c

0.17

0.17

d

1

g

f

g

0.33

0.33

c 0.33

e

e
0.25

0.75
f

0.66

e

p(a|<s>)=1
p(b|a)=0.66
p(c|a)=0.17
p(e|a)=0.17
p(c|b)=0.25
p(e|b)=0.75

p(d|c)=1

p(f|e)=0.33
p(c|e)=0.33

p(g|e)=0.33

Bigram

Figure 3.5: Example of bigram language model. From the training sample
list the conditional probabilities are inferred. This model can also be easily
represented as an automaton as the bottom part of the figure shows.

N -gram models are estimated by following a maximum likelihood approach.
Specifically, the estimation formula is given by:

P (w|w(n))) =
C(w(n), w)

C(w(n))
(3.17)

wherew is a word,w(n) is a sequence ofn words,C(w(n)) represents the number of
times that the stringwn occurs in the training set andC(wn, w) denotes the number
of times that the wordw comes after the stringwn in the training set.

When estimating ann-gram model and, due to the scarcity of training data, many
of the conditionaln-gram probabilities are set to zero, independently whether or not
they are real strings in the language. This problem has been addressedby propos-
ing an extended version of then-gram model, in which a smoothing of the condi-
tional probability distribution is included. The basic idea is to discount some prob-
ability mass from the observed events to be assigned to non-seen events. From all
the smoothing techniques that have been proposed in the last years [9],Kneser-ney
method has been chosen in all the experiments performed in this work.
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3.2 Computer Assisted Speech Transcription

Once we have described the fundamentals of speech recognition we are going to
introduce the Computer Assisted Speech Transcription (CAST) approachd. As we
discussed in Chapter 2, Pattern Recognition systems are not perfect. In the case
of speech recognition, highly accurate results can be obtained in some situations.
However, when dealing with complex tasks (especially in the case of spontaneous
speech), a significant number of errors can arise. Because of this, when high quality
transcriptions are needed, a human transcriber is required to verify andcorrect the
(imperfect) system transcriptions.

As it was also mentioned in Chapter 2, this process is usually performedoff-line.
In the case of ASR, the system initially returns a full transcription of all the available
input audio stream. Next, a human transcriber reads it sequentially (while listening
to the original audio signal) and corrects the possible mistakes made by the system.

ASR is a good candidate to apply the IPR paradigm. By adopting an interactive
scenario, transcriptions could be generated more efficiently. Here, an ASR and a
human transcriber can cooperate to achieve a perfect final transcription. This way,
we can benefit from the strengths of both contributions (accuracy and productivity).

The CAST operation mode is similar to what was described for generic IPR. The
following steps are performed within a CAST session:

1. Initially, for a suitable fragment of the input speech signal, the system proposes
a whole initial transcription (in this case, the system behaves like an “standard”
ASR)

2. The user goes over the transcription proposed. If no mistakes were found, the
process ends with a perfect transcription of the input fragment. Otherwise, the
part of the sentence after the last correct word is removed. As a result,we have
an error-free prefix.

3. Next, the user adds some words (or characters) to the previous prefix, therefore
obtaining a new longer prefix.

4. The prefix generated in step 3 constitutes the user feedback. The system will
now complete this prefix by generating a suffix so that a full transcription hy-
pothesis is produced.

5. Go to step 2.

3.2.1 Formal framework for CAST

As we discussed in section 3.1.1, statistical speech recognition can be statedas the
problem of searching for a sequence of words,ŵ, that with maximum probability has
produced a given utterance,x (see Eq. (3.1)).

dSpeech recognition has a wide range of applications as dialogue, speechtranslation, human com-
puter interaction, etc. From all these tasks, CAST is intended to work with pre-recorded spoken docu-
ments (as parliamentary sessions, lectures, etc.) that require a very accurate transcription.
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In CAST, user feedback is available and it can be used to improve the system
predictions. In this case, the feedback consists in the prefixp (notice that herep
representsf in Eq. (2.4)) validated and corrected in the previous iteration. Conse-
quently, the ASR system should try to complete this prefix by searching for themost
likely suffixŝ as:

ŝ = argmax
s

Pr(s | x,p)

= argmax
s

Pr(x | p, s) · Pr(s | p) (3.18)

Eq. (3.18) is very similar to Eq. (3.1), wherew is the concatenation ofp ands.
The main difference is that herep is given. Therefore, the search must be performed
over all possible suffixess of p and the language model probabilityPr(s | p) must
account for the words that can be utteredafter the prefixp.

In order to solve Eq. (3.18), the signalx is considered split into two fragments,xb
1

andxT
b+1, whereT is the length in frames ofx. By further considering the boundary

point b as a hidden variable in Eq. (3.18), we can write:

ŝ = argmax
s

∑

0<b≤T

Pr(x, b |s,p) · Pr(s |p)

= argmax
s

∑

0<b≤T

Pr(xb
1,x

T
b+1|s,p) · Pr(s | p) (3.19)

Before continuing, we can make thenäıve(but realistic) assumption that the prob-
ability of the initial signal fragmentxb

1 givenp does not depend on the suffix and the
probability ofxT

b+1 givens does not depend on the prefix, to rewrite Eq. (3.19) as:

ŝ ≈ argmax
s

∑

0<b≤T

Pr(xb
1 |p) · Pr(xT

b+1 |s) · Pr(s |p) (3.20)

Finally, the sum over all the possible segmentations can be approximated by the
dominating term, leading to:

ŝ ≈ argmax
s

max
0≤b≤T

Pr(xb
1 |p) · Pr(xT

b+1 |s) · Pr(s |p) (3.21)

This optimization problem entails finding an optimal boundary point,b̂, associ-
ated with the optimal suffix decoding,ŝ. That is, the signalx is actually split into
two segments,xp = xb̂

1 andxs = xT

b̂+1
. The first one corresponds to theprefixand

the second one to thesuffix. On account of this, the search for the best suffix can be
performed just over segments of the signal corresponding to the possiblesuffixes and,
on the other hand, we can take advantage of the information coming from the prefix
to tune the language model constraints modelled byPr(s | p). This is discussed in
the next subsections.
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3.2.2 Adapting the language model

Perhaps the simplest way to deal withPr(s | p) in Eq. (3.21) is to adapt ann-gram
language model to cope with the consolidated prefix. Given that a conventional n-
gram models the probabilityPr(w) (wherew is the concatenation ofp ands, i.e
the whole sentence), it is necessary to introduce some modifications to deal with the
conditional probabilityPr(s | p).

Let p = wk
1 be a consolidated prefix ands = wl

k+1 be a possible suffix. We can
computePr(s|p) as it is shown in Eq. (3.22).

Pr(s | p) = Pr(p, s)/ Pr(p)

≈

∏l
i=1 P (wi | w

i−1
i−n+1)

∏k
i=1 P (wi | w

i−1
i−n+1)

=
l

∏

i=k+1

P (wi | w
i−1
i−n+1) (3.22)

Moreover, for the terms fromk + 1 to k + n − 1 of this factorization, we have
additional information coming from the already known wordswk

k−n+2, leading to:

Pr(s | p) ≈
k+n−1
∏

i=k+1

P (wi | w
i−1
i−n+1) ·

l
∏

i=k+n

P (wi | w
i−1
i−n+1)

=
n−1
∏

j=1

P (sj |p
k
k−n+1, s

j−1
1 ) ·

l−k
∏

j=n

P (sj |s
j−1
j−n+1) (3.23)

The first term accounts for the probability of then − 1 words of the suffix, whose
probability is conditioned by words from the validated prefix, and the second one is
the usualn-gram probability for the remaining suffix words.

3.2.3 Searching

Once we have a CAST formalization available, a possible implementation of a CATS
decoder will be described. In the initial CAST iteration,p is empty and the decoder
has to generate a full transcription ofx as in Eq. (3.1). Afterwards, the user-validated
prefixp has to be used to generate a suitable continuations in the following iterations
of the interactive process.

A simple possibility would be to perform the decoding in two steps: first, the
validated prefixp could be used to segment the signalx into xp andxs and, then,xs

could be decoded by using a “suffix language model” (SLM) as in Eq. (3.23). The
problem here is that the signal can not be optimally segmented intoxp andxs if only
the information of the prefixp is considered.
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Final combined model (LpLs)

Prefix = gb

Figure 3.6: Example of a CAST language model. Given then-gram language
model for whole sentences in the figure alinear model (Lp) which accounts
for the prefixgb is constructed. Then, these two models are combined into a
single model (LpLs) as shown.

A better approach is to explicitly rely on Eq. (3.21) to implement a decoding
process in one step, as inclassicalspeech recognition. The decoder should be forced
to matchthe previously validated prefixp and then continue searching for a suffixŝ

according to the constraints in Eq. (3.23). To this end, we can build a special language
model which can be seen as the “concatenation” of alinear model, which strictly
accounts for the successive words inp, and the SLM in Eq. (3.23). An example of
this LM is shown in Figure 3.6.

Owing to the finite-state nature of this special LM, the search involved in Eq. (3.21)
can be efficiently carried out using the sameViterbi algorithm [54] as in Eq.(3.15).
Apart from the optimal suffix decoding,̂s, a correspondingly optimal segmentation
of the speech signal is then obtained as a byproduct.
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3.3 More Efficient Search Approaches. Using Word Graphs

We have described a possible implementation of CAST that fits well with the formal
proposal. However, we have to bear in mind that our final purpose is to develop
an application to be employed in a real situation. In spite of the fact that a simple
theoretical approach can be useful as a first practical solution, we are going to be
concerned, as well, about some important practical issues.

CAST is an interactive application and, as such, some specific requirementshave
to be fulfilled. For instance, no matter how precise the ASR can be if the time needed
to obtain a hypothesis is too high. In the most extreme case, if the prediction sys-
tem is as slow as the user performing the task manually, CAST does not make any
sense. To summarize, we can claim that, in order for the user to feel comfortable with
the system, we have to ensure an appropriate time response. Although some exper-
iments in this sense will be described later, we can say, for the time being, that the
implementation scheme shown in section 3.2.3 presents a response time higher than
3 secondsin some tasks. In consequence, we need to explore an alternative CAST
implementation.

In a speech decoding, there are many computations to be performed for each
frame in the input signal. The acoustic score, for instance, requires to calculate the
probability of a Gaussian mixture for each state in all the actives HMMs. We could
save a lot computation effort if we were able to obtain, for each input to be tran-
scribed, a representation that stores a sufficient number of decoding hypotheses along
with their scores. This way, all the interactive CAST search would be performed on
this model, achieving a better time response.

The previous discussion suggests the use of a well known ASR data structure, a
word graph. A word graph is, indeed, a compact way to represent a very large set of
n-best hypotheses along with additional information about how they were produced.
Formally, a word graph can be defined as a directed acyclic graph, specified by:

A word graph is an acyclic, directed graph specified by the following parameters:

• A set of nodesQ = q1, ..., qN .

• A function t(q) that associates a state to a specific time (frame) in the input
speech signal.

• A set of arcsA, where each arc is defined by[as, at, aw, al] whereas denotes
the source node,at denotes the target node,aw denotes the word produced by
the arc andal denotes the likelihood (this likelihood represent the combination
of the acoustic and the language model probabilitiese).

Word graphs can be constructed as a byproduct of the speech decoding process by
storing the best acoustic and language model probabilities for each partialhypothesis.

eBecause acoustic and language model probabilities are expressed in different magnitude orders a
Language Model Scale Factoris usually employed here to properly combine them.
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Next, all the paths starting from initial states and reaching final states are added to
the graph [35, 41].

Once the word graph is available for a specific input, it can be used to perform
the search described in Eq. (3.21). Now, we will study how to address thissearch.
Basically, the idea consists in, when a new user prefix is available, parsingthis prefix
over the word graph. This is aimed at obtaining a set of nodes that approximates the
best signal segmentation (the first two terms in Eq. (3.21)). Moreover, theprefix-
based language model probability in Eq. (3.21) can be easily computed fromthe arcs
leaving these nodes. Once this set of nodes is available, we can producea CAST
hypothesis (suffix) by searching for the best (or the n-best) path starting from these
nodes. In the upcoming sections, different details of this process are discussed.

3.3.1 Error Correcting Prefix Parsing

In our case, we have a directed acyclic graph and have to find the best path com-
patiblewith the prefix. Ideally, this graph would contain all the possible recognition
outcomes for the input signal but, unfortunately, this is not actually true in practice.

Firstly, the stochastic model that conducts the word graph generation has been
trained from a finite set of samples (although smoothed models can be used, there is
still the problem of out-of-vocabulary words). Secondly, a pruning search is usually
applied because of computer memory constraints. As a result of this, we cannot
expect the word graph to account for every possible user prefix. For that reason, a
more sophisticated approach has to be adopted. This is the case of the Error Correct-
ing Parsing (ECP) described as follows. To start with, we can define an error model
to address the problem of generating a stringy = y1, . . . ,yn from another string
z = z1, . . . , zm. This generation is based on a well defined set of operations:

• Substitution: Consists in replacing a symbolyi in the source string with a
symbolzj in the target string (denoted asyi → zj).

• Deletion: Consists in removing a symbolyi in the source string (denoted as
yi → λ).

• Insertion: Consists in inserting a symbolzj in the target string (denoted as
λ → zj).

Each operation has an associated cost. This cost is usually chosen according to
the specific task to be solved. The overall cost of generating one string from another
is computed by summing up all the editing costs involved in transforming the source
string into the target one. For a given sequence of editing operationse = e1, . . . , en

the cost ofe is then defined as:

C(e) =
n

∑

i=1

cost(ei) (3.24)

LRR- DSIC-UPV 33



Chapter 3. Interactive Speech Recognition

wherecost(ei) denotes the cost of the editing operationei. It is easy to see that a
specific target string can be generated from a given source in very different ways.
Generally, we are only interested in the sequence of minimum cost. Thisoptimal
sequence is known as the (weighted)Levenshteindistance [46]:

d(y, z) = min
e

{cost(e) | y −→e z} (3.25)

wherey −→e z denotes a sequence of edition operations to reachz from y.
To compute theLevenshteindistance in a polynomic time, the following dynamic
programming algorithm can be followed (notice thati andj denote positions in the
source and the target sentence respectively). Given two stringsy andz, d(y, z) is
computed as:

• Recursive general term:

d(i, j) = min
{

d(i − 1, j − 1) + cost(yi → zj),

d(i − 1, j) + cost(yi → λ),

d(i, j − 1) + cost(λ → zj))
}

• Base case:

d(0, 0) = 0

∀i d(i, 0) = d(i − 1, 0) + cost(yi → λ)

∀j d(0, j) = d(0, j − 1) + cost(λ → zj)

In CAST we have a string (prefix) and a representation of many strings along
with their probabilities (word graph) and we have to parse the prefix over this graph.
This problem is similar to the problem of finding the minimum distance between a
regular language and a given string [20].

This algorithm returns theLevenshteindistance along with the graph nodes (“non-
terminals”) reached after parsing the input string. The search for the best suffix can
be then performed by applying aViterbi-like search from these nodes. In figure 3.7
an example of ECP over a word graph is shown.

3.3.2 A general model for probabilistic prefix parsing

So far, we have a tool (Error Correcting Parsing) that allows us to perform a CAST
search within word graphs. However, there are some issues to be discussed before
going on with this approach. On the one hand, it is not clear how to relate the ECP
procedure to Eq. (3.20) and Eq. (3.21). On the other, as a result of theECP, we have
a set of states with an associated cost (the ECP cost) and probability (the probability
given by the path(s) in the word graph that reaches the state). The question is how
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a
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iscomputer
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q2

q3

q4
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q6

Given the previous word graph fragment, and givenp=”the printer”, we can compute
the ECP cost to reach each state. For all the states in this model fragment, we have:
cost(q1)=2 (2 deletions); cost(q2)=2 (1 substitution and 1 deletion); cost (q3)=1 (1
deletion); cost (q4)=1 (1 deletion); cost (q5)=1 (1 substitution); cost (q6)=2 (2 substi-
tutions)

Figure 3.7: Example of error prefix correcting parsing on a word graph frag-
ment

to combine these two terms to carry out the search for the suffix as Eq. (3.21) shows.
Different heuristics can be applied here. For instance, all the states with minimum
cost can be chosen as initial states to continue the search for the optimal suffix. This
approach has been used in some word graph-based CAT approaches[11].

To overcome this problem, a new formulation can be attempted in order to prop-
erly include ECP into word graph CAST approximations. Starting from Eq. (3.18),
we can introduce a hidden variableqb to represent a possible boundary node between
the prefix and the suffix in the word graph:

ŝ = argmax
s

Pr(s | p) · Pr(x | p, s) =

= argmax
s

Pr(s | p)
∑

qb∈Q

Pr(x, qb | p, s) =

= argmax
s

Pr(s | p)
∑

qb∈Q

Pr(x | qb,p, s) · Pr(qb | p, s) (3.26)

Notice that in Eq. (3.19), Eq. (3.20) and Eq. (3.21) the boundary pointb can
be directly computed on the input signal. Here that point has to be approximated
according to the nodes in the word graphs (which are tied to a specific framein the
input signal). We can make the naive assumption thatx does not depend ofp given
qb to rewrite Eq. (3.18) as:

ŝ = argmax
s

Pr(s | p)
∑

qb∈Q

Pr(x | qb, s) · Pr(qb | p, s)
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Additionally, we can assume thatqb only depends on the prefix (this issue will be
discussed later), leading to:

ŝ = argmax
s

Pr(s | p)
∑

qb∈Q

Pr(x | qb, s) · Pr(qb | p)

Finally, the usual approximation of the sum by the dominating term can be adopted
to obtain:

ŝ ≈ argmax
s

Pr(s | p)max
qb∈Q

Pr(x | qb, s) · Pr(qb | p)

To properly deal withPr(qb | p) it is necessary to define the editing operations in
a probabilistic way. This can be easily done by constructing an stochastic automaton
representing the string to be parsed (in our case, the prefix) so that the different editing
operations can be modeled as groups of arcs in the automaton (see Figure 3.8).

a b

λ

Σ

λ

Σ − {a}
Σ

Σ − {b}

q1 q2 q3

Σ

Figure 3.8: Example of extended automaton for probabilistic ECP given the
prefix ab. From each state, we have four groups of arcs. The first one cor-
responds to the operation of replacing a symbol with itself (arcs labeled asa
form q1 to q2 andb from q2 to q3). The second group represents the substi-
tution of a symbol for another symbol. Here, we have an arc foreach symbol
in the vocabulary except the symbol represented in the previous group. The
third group models a deletion, which is represented by theλ arc to the next
state. Finally, the last group is for insertions, involvingan arc for each symbol
in the alphabetΣ from a state to itself. Notice that, in order to represent a real
probability distribution the sum of all the arcs leaving a state must be exactly
one.

In the ECP cost-based approach, all the operations are usually definedto have
a similar cost except the substitution of a symbol by itself which is usually a no-
cost operation. Directly translating these costs into probabilities is not trivialat all.
Intuitively, the case of the no-cost could be mapped to a probability of one,since the
substitution of a symbol by itself does not entail a real transformation of the string.
However, this would imply to use anull score for the remaining set of operations.
Alternatively, some uncertainty can be assigned to thisspecialoperation and, this
way, some probability mass is available to be distributed among the other ones.

To start with, we can consider any editing operation equivalent. To this end,
we can group the probability so that any insertion, deletion and real substitution are
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equally likely. This actually means that all the arcs in the ECP automaton in Fig-
ure 3.8 should be labeled with the same probability. Those arcs not involving areal
transformation of the string, however, will have a different treatment. A much higher
probability should be considered for them. By assigning, for instance, half of the
overall probability mass to these arcs and equally distributing the other half among
the other operations, we can reach the following expressions

P (yi → zj) =







































1

2
yi = zj

1

4|Σ|
yi 6= zj

1

4|Σ|
yi = λ

1

4|Σ|
zj = λ

(3.27)

Here, the score of each editing operation is set so that each arc in the ECPau-
tomaton has the same probability (except those arcs that do not transform the input
string). Σ represents the vocabulary. Notice, that in the case of substitutions and
insertions, the probability mass is grouped for all the symbols in the vocabulary (the
amount of probability assigned to these groups of arcs would be|Σ|−1

4|Σ and |Σ|
4|Σ| for

substitutions and insertions respectively) . For that reason, a specific insertion of
substitution will be scored with the same probability as a deletion.

Now, we can defineepq = epq1
. . . epqn

as a sequence ofn editing operations
that allows to reach the stateq given the current prefixp. Assuming independence
among these operations, we can compute this sequence probability as:

P (epq) =
n

∏

i=0

P (epqi
) (3.28)

From this, we can easily define the optimal sequenceêpq as:

êpq = argmax
epq

P (epq) (3.29)

To finally compute the probabilityPr(qb | p) as:

Pr(qb | p) =
P (êpqb

)
∑

q∈Q

P (êpq)
(3.30)

whereQ is the set of all states in the word graph. In Figure 3.9, an very simple
example of probabilistic error parsing based on this proposal is depicted.
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Given the previous word graph,p=”aa”, and Σ = {a, b, c, d}. We can assume, ac-
cording to Eq. (3.27), the probability for a specific substitution, insertion ordeletion
as 1

16 . In addition, the probability of substituting a symbol for itself is1
2 . Therefore,

we can compute the ECP probability for each state as:

êpq1
= a → λ, a → λ; Pr(êpq1

) = 1/16 · 1/16 = 0.0625

êpq2
= a → a, a → λ; Pr(êpq2

) = 1/2 · 1/16 = 0.0625

êpq3
= a → b, a → λ; Pr(êpq3

) = 1/16 · 1/16 = 0.0039

êpq4
= a → c, a → λ; Pr(êpq4

) = 1/16 · 1/16 = 0.0039

êpq5
= a → a, a → b; Pr(êpq5

) = 1/2 · 1/16 = 0.0625

êpq5
= a → b, a → d; Pr(êpq6

) = 1/16 · 1/16 = 0.0039

From this and normalizing on the sum of the previous probabilities (0.1992) we can
compute the probabilityP (q|p) ∀q ∈ Q as:

P (q1|p) = 0.0625
0.1992 = 0.313

P (q2|p) = 0.0625
0.1992 = 0.313

P (q3|p) = 0.0039
0.1992 = 0.020

P (q4|p) = 0.0039
0.1992 = 0.020

P (q5|p) = 0.0625
0.1992 = 0.313

P (q6|p) = 0.0039
0.1992 = 0.020

Figure 3.9: Example of computation of probabilistic error correcting parsing.
Here, due to space constraints, the vocabulary in Figure 3.7has been replaced
by other composed of symbols instead of words
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Clearly, other distributions can be considered by applying some knowledgeabout
the problem. For instance, we could define the editing operations at phoneme level.
This way, ECP parsing would be used to find the most similar phoneme sequence
given the prefix aimed at achieving a more realistic segmentation.

3.3.3 An adaptive learning approach to estimate the editionoperations
probability

Theuniformdistribution for the ECP operations proposed in section 3.3.2 is, maybe,
the most natural choice when a reliable estimation of this probability can not be car-
ried out. However, we can take advantage of the fact that in CAST, the transcriptions
obtained are completely user-validated. As a consequence, we have somedata about
the real task to attempt a better estimation of that distribution. Next, an algorithm to
estimate the editing operation probabilities in CAST will be discussed.

Firstly, we can define a setC of tuplesc = (ci, cd, cs, cwsr) where the first three
elements in each tuple represents a point in the space of the probability distribution
for the editing operations. (that is,ci, cd andcs, represent a possible value for the
insertion, deletion and substitution probabilities respectively andcwsr denotes the
WSR achieved by using this probability distribution on the current sentence). This
setC is intended to split the continuous probability space into discrete points so that
the search for the best probability distribution will be performed accordingto these
points. In order to better understand whatC actually represents, we can give a simple
example (non ECP-related). Let’s suppose that we have three possible eventsa1, a2,
anda3 for a specific stochastic variableA. From all the ways in which the proba-
bility in A can be assigned toa1, a2 anda3, we can choose some points from this
space ofPr(A). For instance, the set(0.9, 0.1, 0.0), (0.5, 0.2, 0.3), (0.3, 0.6, 0.1) can
be defined (where the elements in each tuple representsPr(A = a1), Pr(A = a2)
andPr(A = a3) respectively). The rationale behind this is to search for the optimal
distribution forA only on this set of points. In our case, each point corresponds to a
possible distribution for the editing operations. For instance, the point(0.5, 0.3, 0.2)
would denote that the insertion probability is set to 0.5 and the deletion and substitu-
tion probabilities are set to 0.3 and 0.2 respectively.

When a new fully transcribed sentence is available, we compute, for each tuple
c in C the WSR for this sentence using the distribution defined by the first three
elements inc. This WSR figure is accumulated in the fourth tuple elementcwsr

(that is, we store here the cumulativeWSR obtained for all the sentences already
transcribed). Then, for the next sentence to be transcribed, we will choose, as the
current ECP probability distribution, thatc for which thecwsr element is minimum.

3.3.4 The role of the word graph probabilities in probabilistic prefix
ECP

To conclude this section, there are some issues derived from the probabilistic prefix
ECP formulation and its corresponding application to word graphs that deserve a
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detailed explanation.
First, we can notice that in Eq. (3.27) there is no term for the prefix acoustic

probability. On the one hand, these are good news, since we can not compute this
probability from the word graphs (notice that this prefix could not be in ourgraph).
In the original CAST approach (Eq. (3.21)) we had a term for this probability. In the
word graph approximation (Eq. (3.27)) this role is somehow played byPr(x|qb, s).
This probability has to be interpreted as the acoustic probability of the graph path
reaching the stateqb and then obtaining the suffixs. The probabilityPr(qb|p) is
used, on the other hand, to find the optimal segmentation between the prefix and the
suffix in the word graph.

Regarding the language model,Pr(s | p) can not be properly modeled using
the word graph only. When searching for a suffix after the ECP, we start from the
nodes reached as result of this ECP. These nodes, however, represent paths containing
distortedversion of the prefix, as a result of the different editing operations applied.
As a consequence, the language model probabilities in those nodes, might not be the
proper ones. For that reason, they should be replaced by the realn-gram probabilities
in order to benefit from the actual prefix. Figure 3.10 shows an example of this
replacement.

3.4 Experimental results

In the following sections, our CAST experimental framework is described indetail.

3.4.1 Corpora

Two different tasks have been mainly used. The first one corresponds to the EU-
TRANS corpus [1], composed of sentences used in conversations between a tourist
and a hotel receptionist. The second one is the XEROX corpus [13], consisting of
spoken utterances from printer manuals. The initial version of this corpusconsisted
of fragment sentence utterances aimed at testing a speech interface proposal for Com-
puter Assisted Translation (CAT) systems discussed in Chapter 5. Then, itwas later
extended to be employed in CAST. The main features of both corpora are presented
in Table 3.1. In addition, the well knownWall Street Jounal(WSJ) corpus [42] was
used in the word graph CAST experiments.

Regarding the training corpora, the acoustic models, on the one hand, were es-
timated from the ALBAZYIN and WSJ corpora, as shown in Table 3.2. In the EU-
TRANS and XEROX experiments, monophone HMMs (obtained with the HTK toolkit
[55]) were employed. For WSJ, triphones were used. Speech pre-processing and fea-
ture extraction consisted in speech boundary detection, followed by the computation
of the first ten MEL cepstral coefficients plus the energy, along with the correspond-
ing first and second derivatives [30].

On the other hand, the language models for both tasks were estimated from the
corpora described in Table 3.3. The SRILM toolkit [48] was used to estimateKneser-
Ney smoothed 3-grams [9].
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Figure 3.10: Example of substituion of language model probabilities after
ECP. Given the previous word graph fragment, where only the language model
probabilities are shown (a bigram can be assumed), let’s suppose thatp=”ab”
is the current prefix. After ECP, all the states will have an ECP probability
associated and, therefore, the search for the suffix will start from any state. If
we focus, for instance, on statesq5 andq6, we can see that, in order to reach
q5, a substitution (b → d) has to be performed. The same forq6, with the
substitution (b → a). As a result, when starting the search for the suffix, we
have the arcs leavingq5 scored with the probabilitiesP (c|d) andP (e|d) where
the final word in the prefix isb and notd. The same happens withq6 (in this
case, withP (f |a)). In order to benefit from the prefix information in a better
way, the probabilities in the arcs leavingq5 should be replaced byP (c|b) and
P (e|b) respectively. The same in the case ofq6, where the arc leaving this state
should be rescored with the probabilityP (f |b)

Table 3.1: Features of the EUTRANS, XEROX and WSJ test corpora

EUTRANS XEROX WSJ 5K WSJ 20K
Test sentences 336 875 330 333
Running words 3340 8569 5683 5974

Test-set perplexity (3-grams) 7 41 60 155

3.4.2 Error Measures

The metrics used in the experiments tries to gives an estimation of the user effort
required to transcribe a set of sentences through a CAST approach. Two kind of mea-
sures have been adopted. On the one hand, thewell knownword error rate (WER)
has been used. On the other hand, the word stroke ratio (WSR) ([13], [12]), a mea-
sure borrowed from CAT has been employed. This measure is computed byusing
reference transcriptions of the speech segments considered. After a first CAST hy-
pothesis, the longest common prefix between this hypothesis and the reference sen-
tence is obtained, and the first unmatching word from the hypothesis is replaced by
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Table 3.2: Features of the Spanish ALBAYZIN and English WSJ acoustic train-
ing corpus (K= ×1, 000)

Spanish ALBAYZIN English WSJ
Speakers 164 45
Running words 42K 136K

Table 3.3: Features of the EUTRANS, XEROX and WSJ LM-training corpora

EUTRANS XEROX WSJ 5K WSJ 20K
Training sentences 10k 55k 1612k 1612k

Running words 97k 627581 38500k 38500k
Vocabulary size 684 10835 4989 19982

the corresponding reference word. This process is iterated until a fullmatch with
the reference sentence is achieved. The WSR is, therefore, the numberof required
corrections divided by the overall number of reference words.

The comparison between WER and WSR would give us an idea about the amount
of effort required by a CAST user with respect to the effort needed by using a classical
speech recognition system followed by a manual post-editing process (wewill refer
to this asEstimated effort reduction, EER, from now on).

3.4.3 Experiments

The experiments consisted in a series of block validation on the test corpora. Training
is always carried out on the whole set of acoustic and text training data summarized
in Tables 3.2 and 3.3. This way of proceeding slightly resembles the approach called
K-fold cross validation but, in this case, one block (development) was chosen for
optimizing some parameters of the search. Once these parameters have beenset on
the development block, the remaining blocks (test) were used as the propertest-set.
This framework is aimed at trying to draw more general conclusions on the sparse
test data available. In the usually employed holdout method, one single partitionof
the original test data into development and test sets is considered. In our experiments,
the original test was split into several blocks so that different development and test
sets could be derived from these blocks. Specifically, five blocks, with sizes of 67 and
175 sentences, have been considered for EUTRANS and XEROX, respectively. The
experiments were actually carried out in five trials. In trial numberi the block number
i was used as development set and the four remaining blocks were used astest (here
we are trying to follow a realistic approach, where only a small development set is
available during the system design. The real test for the system is bigger since it
consists of all the transcriptions obtained during its normal operation mode. Notice
that in K-fold cross validation only one block is used as test and the remainingones
are used for training).
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On the other hand, WSJ 5k and WSJ 20K corpora have been also used to test
the word graph based approximation, which constitutes the most feasible technique
to actually use CAST in real environments.

The development sets were specifically used to tune theLanguage Model Scale
Factor which, as was mentioned, is basically a scaling factor for the second term in
Eq. (3.1).

3.4.4 Results

In Table 3.4 the mean and the standard deviation of the results on the five test sets
obtained as described in section 3.4.3 are reported. In the first two rows,a comparison
between two estimations of the off-line (WER) and interactive (WSR) user effort
is shown. As can be observed, significant improvements are obtained when using
the CAST approach with respect to the classical ASR followed by a human post-
processing approach.

In addition, the WSR results for the word graph based techniques are alsopre-
sented (the results on the WSJ corpus are in Table 3.5. As can be noticed, the use
of the word graphs does not affect the performance significantly, whileimproving
the WER baseline. The results obtained by the initial ECP presented in section 3.3.1
and the probabilistic word ECP described in section (WECPP) 3.3.2 are quite simi-
lar. However, we have to take into consideration that the margin of improvement is
actually constrained by the WSR results on the original CAST implementation. On
the other hand, a significant number of sentences in both corpora require no inter-
actions, as it is shown in Figure 3.11, which causes that some improvements have a
small impact on the overall results. In order to clarify this a little more, the XEROX

corpus has been split into different sets based on the cumulative distribution shown
in Figure 3.11 (that is, the first set contains all the sentences that requireat least one
interaction, the second one contains the sentences that require at least two interac-
tions and so on). Table 3.6 shows the WSR results for the baseline CAST approach,
the initial ECP and the new WECPP based on this sentence distribution.

Notice that for sentences with exactly one error, the post-editing approach should
be similar to CAST in effort terms, since a properly designed user interfaceshould
permit to disable the prediction engine when only a mistake is found (for sentences
with more than one interaction an EER of 22.4% is achieved, as it is shown in Ta-
ble 3.6).

The previous results show that the use of word graphs is competitive in terms
of WSR. However,it is still necessary to check whether this new approximation can
actually improve or not the system time response. To this end, the CAST system
latency was measured in the following way. First, experiments corresponding to
the approach described in section 3.2.3 (in the first two rows of Table 3.4) were
carried out, where, for each user interaction, a complete speech recognition process
is conducted. Since an exhaustive search in speech recognition is usually prohibitive,
a pruned search approach was adopted in these experiments to achieve an appropriate
tradeoff between accuracy and time response as Tables 3.4 and 3.7 show.
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Table 3.4: Results obtained on the EUTRANS and XEROX corpus. The mean
and the standard deviation for the test sets in the 5 block validation series are
shown. The first row corresponds to the post-editing approach. The second
an the third rows show the results for the interactive baseline approach and the
ECP word graph based approach described in section 3.3.1 respectively. In the
four row, the results correspond to the Probabilistic Word ECP discussed in
section 3.3.2. Finally, the last row shows the results of theadaptive learning
technique described in section 3.3.3. We can notice an EER (Estimated Effort
Reduction) of about 39% and 19% for the two corpora respectively.

EUTRANS XEROX

mean sd mean sd

Direct
WER 7.7 1.3 22.9 2.4
WSR 4.7 1.4 18.6 2.1

Word graph
ECP WSR 4.8 1.4 19.5 2.1

PWECP WSR 4.7 1.3 19.3 2.1
ALPWECP WSR 4.6 1.2 18.8 2.0

Table 3.5: Results obtained on the WSJ corpora. The mean and the standard
deviation for the test sets in the 5 block validation series are shown. The first
row corresponds to the post-editing approach. The second anthe third rows
show the results for ECP word graph described in section 3.3.1 AND to the
Probabilistic Word ECP discussed in section 3.3.2. Finally, the last row shows
the results of the adaptive learning technique described insection 3.3.3. The
EER achieved is about 12%

WSJ 5K WSJ 20K
mean sd mean sd

WER 6.2 1.5 10.6 1.7
ECP WSR 5.9 1.3 9.9 1.6

PWECP WSR 5.6 1.4 9.5 2.0
ALPWECP WSR 5.5 1.3 9.3 2.1

Table 3.6: Results (WER and WSR) on XEROX corpus for different CAST
techniques based on the distribution of the sentences shownin Figure 3.11.
The baseline column shows the results obtained by the original CAST approach
without using word graphs

WER WSR
Baseline ECP WECPP

1 interaction or more 39.6 33.1 35.1 34.3
2 interactions or more 50.9 40.1 44.3 43.2
3 interactions or more 54.6 45.6 51.0 49.8
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In the case of the word graph approaches, we have to take into accounttwo dif-
ferent kinds of computations. Firstly, we have to generate the word graphfrom the
input signal. This process entails a standard speech decoding plus some additional
work necessary to obtain the word graph. Nevertheless, it is reasonable to assume
that we can generate the word graphs “in advance” before starting a CAST session
(or as a look-ahead background computation). This assumption is based on the fact
that, in our case, speech transcription is carried out from recorded signals. Therefore,
we can consider the construction of the word graphs as a batch and separate process
from the interactive transcription task itself. In any case, this word graphgenera-
tion time is included in the third row in Table 3.7 for informative purposes. In the
case of the direct approach, it is not possible to perform any off-line work apart from
the usual signal pre-processing and feature extraction. To summarize,the interactive
word graph time response is exclusively given by the cost of the searchfor the suffix
on the word graphs.

As expected, theword graphapproach notably outperforms the baseline. Espe-
cially, in the case of XEROX, where the baseline technique seems to be too slow to
be even considered and the word graph approach proves to be the best solution to
implement CAST in a real environment

In addition to this, we can expect a diminishing time response when using word
graphs as the number of interactions grows for a sentence. Whereas theinitial system
hypothesis is actually a whole sentence prediction, following predictions tendto be
shorter as the prefix length increases. Since the computational cost of theprefix pars-
ing is significantly lower than the search for the suffix, the time response goes down.
To quantify this fact, Figure 3.12 shows the average response (XEROX CORPUS) time
based on the specific number of interaction performed (that is, the first point in the
graph is for the initial system prediction, the second one for the prediction after one
user interaction and so on). The cumulative distribution histogram shown in Fig-
ure 3.11 for the XEROX may help to better understand the previous results.

In order to give a reference point for the different time results, we canmention
that all the experiments were performed on a 3.2 Ghz Intel Xeon CPU.

Table 3.7: Average interaction time response. The first row shows the time
response of the baseline approach to CAST. The second row reports the inter-
active time response of the word graph approximation. Finally, in the third row
the average time needed to generate the word graphs is shown.All the times
are in seconds

Approach EUTRANS XEROX

Baseline CAST 0.9 3.3
word graph CAST 0.4 0.5

Including word graph generation time 1.7 1.9
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Figure 3.11: Cumulative sentence distribution based on the number of user
interactions needed to obtain a perfect transcription. Thefirst bar shows the
percentage of sentences that are perfectly transcribed with zero o more interac-
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3.5 Summary of contributions

A new approach to the production of perfect speech transcriptions hasbeen presented.
This approach combines the efficiency of an automatic speech recognition system
with the accuracy of a human transcriber. Firstly, a direct implementation of this
system has been described and some experiments have been carried outto assess the
improvements that these techniques can achieve.

Next, an alternative proposal aimed at improving the system efficiency hasbeen
presented. In the first place the use of word graphs along with error correcting parsing
has been tested to, posteriorly, propose a formulation to properly integrateboth tech-
niques. Finally, an adaptive learning method has been proposed aimed at learning the
ECP probabilities for each specific task by using the information obtained from the
user feedback.
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CHAPTER 4

I NTERACTIVE TEXT

GENERATION

4.1 Introduction

Since the adoption of the written language by the ancient human societies, writing
texts has become a very common task. The discovering of electronic computers has
significantly facilitated this process. Computers allow us to generate text faster and
more comfortably than before. However, so far, the approach adoptedwhen using a
computer is basically the same as centuries ago. Computers are, essentially, much
more sophisticated replacements of paper, pencil and eraser, but typingtext is still a
manual process and the incredible computational power that computers provide are
barely used here. Only tools like orthographic and grammatical checkers along with
thesaurus are generally employed.

Developing automatic assistance system in this field can be completely worth it
since the time spent in typing (or in thinking about what it is going to be typed) is
quite high in many environments. A system able to predict (with, of course, some
degree of accuracy) what someone is going to type and thereby saving considerable
amounts of effort could be utterly helpful.

In some situations, on the other hand, typing becomes a too slow and uncomfort-
able task. In some devices, such as mobile phones, no suitable input interfaces have
been developed. Besides, some disabled people are not able to achieve asufficient
typing speed and, unfortunately, this can be the only way for them to communicate.

Different approaches to this topic can be found in the literature. Most of them
only attempt to predict the next single word [50] and/or they are concerned about
measuring the accuracy of off-line text predictions [2]. Here, we consider a more
general setting where not only single words but multi-word fragments or full sen-
tences are predicted under an interactive paradigm.
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4.1.1 Interactive Text Generation and Interactive PatternRecognition

Providing assistance in text typing is a task that can be easily included in our Inter-
active Pattern Recognition approach. The basic process would consistsin predicting
(completing) some portion of text based on the text previously typed. Using the ter-
minology adopted in this approach, we would have to find a suitable continuation
(suffix) for a given prefix. However there is a big difference in this case that should
be discussed before going further.

In the general IPR framework, the goal is to decode some input signal ordata. In
our proposal for text prediction, no input is available and the system justhas to find
the most suitable text according to the prefix. In other words, the user feedback is
the only thing we can use to produce an outcome (actually, this formulation can be
interpreted in a different way by considering the prefix as the input pattern leading to
aclassicalPattern Recognition problem). This fact makes this task much harder since
the system hypotheses can not be derived and constrained by an inputpattern. For
that reason, the possible set of suitable system outputs is much bigger and,therefore,
we can expect a considerable drop in the system accuracy.

We can formalize this process as the search for the most likely continuation (suf-
fix) s given the text typed so far (prefix)p,

ŝ = argmax
s

Pr(s|p) (4.1)

This is similar to what was described for CAST. Initially, no prefix (feedback) is
available, and the system makes an initial prediction. The user validates the predic-
tion, selects an error-free prefix and adds some text to this prefix. Then, the system
will complete this user-validated and corrected text until the whole prediction isac-
cepted.

It could be interesting to discuss some practical aspects that arise in this newtask.
On the one hand, the initial prediction (when no prefix is available) will be always
identical since the conditional probability in Eq. (4.1) only depends on the prefix and
it is empty. Because of this, an initial prediction can be useless (or, in other words,
very inaccurate) and a better approximation is to wait for the user to type something
before starting predicting. Nonetheless, there can be some scenarios where a initial
prediction could be justified (for instance, documents starting with a fixed sequence
of words). This can be merely regarded as an implementation issue and the use of
prediction models for this case is not even worth mentioning.

In addition to this, in CAST, we have an input that somehow help us to determine
the prediction length. On the contrary, in text generation, a new strategy has to be
developed in order to know when to stop generating words. Predicting justone word
after the prefix seems to be the easiest thing to do but we could reach more benefit by
predicting multi-word fragments.

Predicting whole sentences, on the other hand, could be a good choice but a full-
sentence language model is needed and this kind of models has not been proved to be
actually useful in language modelling. Letting the user set the length of predictions
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is, maybe, a good alternative but letting the system itself deal with this problem could
be worth it. This issue will also be discussed later.

4.2 Developing an interactive text generation system

Once the problem has been introduced, we are going to address the design and im-
plementation of an Interactive Text Generation (ITG). We will begin by describing
the models involved in ITG.

4.2.1 Language modelling. Usingn-grams

As was discussed in the previous chapter,n-grams [21] are the most widely used
language models in NLP applications. Our approach to text generation also lies onn-
grams but taking into account some considerations that are discussed in thefollowing
paragraphs. Basically, the idea when adopting this kind of models is to take advantage
of then − 1 last words in the prefix to suggest an appropriate continuation. Clearly,
these models fail in benefiting from the whole information available and just a small
portion of it is actually considered.

As was described in section 4.1.1 the process consists in, given a user prefix
p = wk

1 , finding the optimal completion̂s to this prefix. Lets = wl
k+1 be a possible

suffix hypothesis of arbitrary lengthl− k. The language model used here is identical
to the one specified for CAST. Nevertheless we can write, as a remainder:

Pr(s | p) ≈
k+n−1
∏

i=k+1

P (wi | w
i−1
i−n+1) ·

l
∏

i=k+n

P (wi | w
i−1
i−n+1)

=
n−1
∏

j=1

P (sj |p
k
k−n+1, s

j−1
1 ) ·

l−k
∏

j=n

P (sj |s
j−1
j−n+1) (4.2)

4.2.2 Searching for a suffix

Next, we are going to focus on the search problem for ITG. By strictly following
Eq. (4.1), where a conditional probability has to be maximized, we could applythe
usual Dynamic Programming based approach [54]. Notice however that, because
only a language model is used, the decoding process is easier than in CASTand only
consists in constructing suffixes according to this LM. At this point, we can anticipate
a problem that will be discussed later. In a usual Pattern Recognition task,we have an
input pattern to decode and the algorithm can be stopped when the end of thepattern
is reached. In this task, we do not have an input and, therefore, we donot have
any clue to stop predicting words. Moreover, we have to cope with anotherproblem
related to the nature of then-gram model since longer predictions can be penalized
over shorter ones. For the time being, we will define a generic function,Flength(.),
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which, given a prediction hypothesis, returns a score for this hypothesis according to
its length.

Surprisingly enough, the maximization of the posterior probability and the en-
tailedViterbi search is not necesarily the best search strategy in this case. Recently,a
better and simpler approach has been proposed [40].

4.2.3 A greedy algorithm to predict suffixes

We have just claimed that the usual search strategy in Pattern Recognition is not the
best thing we can do here. We will call this strategyMaxPostfrom now on. Let’s see
why it is not optimal in this case.

MaxPostis actually aimed at minimizing the decoding errors. In NLP, this crite-
rion optimizes the number of sentences correctly predicted (here, we are considering
that each input pattern is decoded as a sentencea). In other words, the well-known
Sentence Error Rate (SER) metric is the optimization goal forMaxPost.

In an interactive task like ITG, the real goal is to save user interactions and not
necessarily maximizing the number of correct sentences for the general case. Ac-
cording to this, in [40] an optimal strategy to predict suffixes in an interactive envi-
ronment is achieved. This strategy turns out to be a greedy-like search (denoted as
Greedyfrom now on) and it is based on constructing the final hypothesis by taking
just optimum local decisions.

The superiority of theGreedyapproach could be alternatively derived by applying
the optimal classification rule properly. Let’s see how. If we consider a scenario
where exactly one word is predicted after the prefix, only two possibilities arisen. If
the prediction was correct, the word is added to the prefix (thereby generating a new
prefix) and the process is iterated again. If the word was not correctly predicted, a
word stroke is computed and the correct word is added, again, to form a new prefix.
It is easy to see that this scenario is completely equivalent to the more general one
with respect to the number of word strokes needed to produce a sentence. Therefore,
the conclusions reached here can be applied, as well, to our multi-word prediction
case.

By taking this new point of view, we can consider that we are addressing an
iterative classification problem where, in each iteration, we have a prefix and we
obtain a label class (the word predicted) for this prefix. By making the reasonable
assumption that each classification step is independent from the previous one, we can
directly apply the optimal decision rule. This rule tells us that we have to maximize
the posterior probability of the class (word) given the pattern (prefix). This way, we
should choose, in each iteration, the most probable word given the prefix, which turns
out to be, indeed, a greedy prediction algorithm.

Anyway, it is interesting to deeply analyze the behavior of bothMaxPostand
Greedyin the interactive scenario. To this end, we are going to rely on the simple
model shown in Figure 4.1.

aIn most cases, this approach is followed since working with too long inputs isnot practical and,
hence, the input is previously segmented into sentences

52 LRR- DSIC-UPV



4.2. Developing an interactive text generation system

Algorithm 2 : Viterbi-based algorithm to search for the best continuation to a
prefix. n-gram states are identified as substrings of lengthn − 1. Therefore,
if (for example)n = 3, q = wi

i−n+2 denotes a state identified as the 2-gram

wi−1wi. It is assumed that, ifj < i, wj
i is the empty string (λ). The function

Flength(i, g) provides the length-conditioned score for ani-words sentence with
likelihoodg. Different implementations of this function are discussed in section
4.2.4.

input : user validated prefix (p), vocabulary (V ), maximum prediction length
(maxLen), n-gram size (n), length score function (Flength)

output: whole sentence prediction
begin

i = |p| + 1; q = pi−1
i−n+1;

Q = {q}; // States
G[q] = 0; // Likelihoods;
W [q] = p; // Word sequences
gbest = 0; wbest = λ
while i < maxLen do

Q′ = Q; G′ = G;
W ′ = W ; Q = ∅;
forall q′ ∈ Q′ do

forall v ∈ V do
q = q′ n−1

2 · v // concatenatev to wi−1
i−n+2

if q 6∈ Q then
Q = Q ∪ {q};
G[q] = G′[q] P (v|q′);
W [q] = W ′[q′] · v;

else ifG[q] < G′[q] P (v|q′) then
G[q] = G′[q] P (v|q′);
W [q] = W ′[q′] · v;

g∗ = 0; w∗ = λ;
forall q ∈ Q do

if G[q] > g∗ then
g∗ = G[q];
w∗=W [q]; //best result for lengthi

if gbest < Flength(i, g∗) then
gbest = Flength(i, g∗);
wbest = w∗; // best result so far

i = i + 1;
return wbest;

end
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Figure 4.1: Simple stochastic language model

Let’s suppose that we generate the set of strings modeled by this example. This
set is composed of the stringsaa, ba andbb. Now, we can compute the expected
number of interactions (I) required to generate these strings when usingMaxPost:

EMaxPost(I) = 0 · 0.4 + 1 · 0.24 + 2 · 0.36 = 0.96 (4.3)

That is, the stringaa is generated with probability of 0.4 and does not need any
interaction (notice thataa represents the most probable path in the automaton). In
the case of the stringba, it is generated with probability of 0.24 and it needs one
interaction (in the first one, with no prefix,MaxPost predicts the stringaa and
after settingb as a prefix, the stringba is finally achieved). Finally, the stringba is
generated with probability of 0.36 and two interactions are needed in this case.
In the case ofGreedy, this expected value is given by:

EGreedy(I) = 1 · 0.4 + 1 · 0.24 + 0 · 0.34 = 0.64 (4.4)

Here,Greedystarts by predictingbb when no prefix is available (as the third term
in the equation above shows) and two and one interactions are needed forthe strings
aa andba respectively (as the first and second term indicates).

Therefore, theGreedyapproach is expected to require less overall interaction
effort. But what can be expected about the prediction errors?. We can notice that
the (expected) number of prediction errors corresponds to the (expected) number of
interactions. When the system fails to generate a perfect suffix a user interaction is
required. Therefore, we can conclude that, in this case, the number of prediction
errors is minimized byGreedyand not byMaxPost. proved to be optimal.

From the above example, an apparent paradox about the optimality of theMax-
Postapproach is reached. The previous reasoning does not try to disprove the well
known optimal classification rule. Thiscontradictionis solved when properly con-
sidering the real context of this rule. We can, in the previous example, compute the
expected full-length prediction errors for the general case (not interactivity here) con-
sidering all the possible situations. Specifically, we have three different classification
problems given by the three different prefixes that the strings in the modelcan have.
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These prefixes areλ, a andb. In this simple model, when generating all the possible
strings, these prefixes occur with probabilities1, 0.4 and0.6 respectively. Thus, the
expected value forMaxPostin the general case can be expressed as:

E(C)MaxPost = 1 · 0.6 + 0.4 · 0 + 0.6 · 0.4 = 0.84 (4.5)

while for Greedy, we have:

E(C)Greedy = 1 · 0.64 + 0.4 · 0 + 0.6 · 0.4 = 0.88 (4.6)

This result actually shows that the interactive scenario is quite different and the
conclusions reached for the general case do not directly apply in this kind of tasks.

Now, we only have to formalize this greedy approach for the case ofn-grams
based ITG. This is described in detail in Algorithm 3.

Algorithm 3 : Greedy strategy to complete a user-validated prefix. Note that
the greedy solutions shorter thanmaxLenare just the prefixes of the resulting
w.

input : user validated prefix (p), vocabulary (V ), maximum prediction length
(maxLen), n-gram size (n)

output: whole sentence prediction (w)
begin

w = p; i = |p| + 1;
while i < maxLen do

v∗ = λ; g∗ = 0;
forall v ∈ V do

if g∗ < P (v|wi−1
i−n+1) then

g∗ = P (v|wi−1
i−n+1);

v∗ = v;

w = w · v∗;
i = i + 1;

return w;
end

4.2.4 Dealing with sentence length

We have already introduced one of the problems arisen in ITG related to obtain a
suitable strategy to stop generating words. This problem, as was mentioned, could be
regarded (for simplicity) as one of the practical issues of the system. This way, simple
solutions such as letting the user set a maximum prediction length could be adopted.
Nevertheless, there is also an important problem related to the nature of the models
used in predictions that can not be overlooked. When using a dynamic programming
approach, a trellis containing all the explored hypotheses is constructed.Each stage
of the trellis contains same-length hypotheses. Initially, the 1-word hypotheses are
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considered. Next, 2-word hypotheses are generated and evaluated and so on. On the
other hand, ann-gram language model scores a sentence by computing the product
of the probabilities of all then-grams present in the sentence (see Eq (4.2) for the
ITG case). Since all these probabilities are numbers between 0 and 1, we can say
that, in general, the fewer amount ofn-grams in the hypothesis the higher the score
is or, in other words, shorter predictions would have (in average) a better score than
longer ones (in the most extreme case, our system would always producea 1-word
word prediction).

We are going to propose two different alternatives to approach this problem. The
first one is based on normalizing each hypothesis by its length. This normalization
can be better expressed by following the usual log-prob computation:

score(s|p) =

l
∑

i=k+1

logP (wi | w
i−1
i−n+1)

l
(4.7)

According to this formula, the best hypotheses are those whose individual n-gram
probabilities are higher on average. This approach, however, presents an important
drawback that should be taken into account: because of the normalization,this model
is not a probabilistic model anymore and some of the desirable properties thatchar-
acterizes this kind of models are now missing.

We propose, in addition, a different approach. We can rely on a separate model to
account for the length (denoted asPlen). For instance, a Gaussian can be chosen as
a distribution over all the possible lengths. This Gaussian distribution is trainedby a
maximum likelihood criterion on the training samples. Once a explicit length model
is available, a linear interpolation is performed between then-gram model and this
new length model as it is shown in Eq. (4.8).

P (s|p) = α · Plen(|p| + |s|) + (1 − α) ·
l

∏

i=k+1

P (wi | w
i−1
i−n+1) (4.8)

In the case of theGreedyapproach, this is not actually an issue. InMaxPost,
multiple partial hypotheses are considered in parallel. InGreedy, however, a single
prediction is constructed by inserting words at the end of the hypotheses.That means
that the length of the prediction does not significantly modify the content of thepre-
diction itself (but only the number of words). In other words, the best prediction of
lengthm will be identical to the best prediction of lengthm + 1 except that, in this
last case, we have an additional final word.

4.3 Experiments

The evaluation method proposed in section 2.6 will be followed here. We will use,
for the time being. the already defined Word Stroke Ratio (WSR). In Figure 4.2 an
example of an ITG session and the corresponding WSR computation is shown.
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Iteration 1
Prediction: Check the printer before sending jobs
Prefix: Check the
Amendment: Check the following
Iteration 2
Prediction: Check the followingconditions before continuing
Prefix: Check the following conditions
Amendment: Check the following conditionsto
Iteration 3
Prediction: Check the following conditions toensure an optimum work
Prefix: Check the following conditions to ensure an optimum
Amendment: Check the following conditions to ensure an optimumperformance.

RESULT:Check thefollowingconditions to ensure an optimumperformance.

WSR =
3

9
= 0.33 → 33%

Figure 4.2: Example of editing session and the corresponding WSR compu-
tation. The system generates an initial prediction. Then, the user validates a
correct prefix (boldfaced) and introduces a word amendment (shown in italics).
The system, taking into account this information, generates a new prediction.
The process is iterated until a correct, full sentence is achieved. In the final
result, the user only had to type the two words shown in italics. The WSR
is obtained by dividing the number of user word strokes between the overall
number of words.

4.3.1 Corpora

Three different tasks are considered. The first two were already used in CAST, EU-
TRANS and XEROX. The third one, ALBAYZIN , consists on a set of natural language
based queries to a geographic database. In Table 4.1 the main features ofthese cor-
pora are shown.

4.3.2 Results

The experiments performed in this section are aimed at evaluating two different
things. On the one hand, the accuracy of the ITG proposal has to be measured. On
the other, a comparison between the two techniquesMaxPostandGreedyis needed to
validate the optimality of the last one. In Table 4.2 the main results of the experiments
are shown. In this table, theLength Modelcolumn refers to the linear interpolation
showed in Eq. (4.8). The final column corresponds to apply a length normalization
Eq. (4.7) in the case of the Viterbi algorithm, and to generate predictions of adefined
length in the case of theGreedy. The best result for each corpus is shown in boldface.

We can see thatGreedysignificantly outperformsMaxPostin all the tasks. It is
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Table 4.1: Features of the corpora used

EUTRANS ALBAYZIN XEROX

Test sentences 2996 1440 875
Running words 35023 13566 8257
Running characters 188707 81246 53337
Training vocabulary 688 1271 10913
Training sentences 10000 9893 53740
Test-set perplexity (3-grams) 4.9 6.6 41

Table 4.2: WSR results on different corpora. A comparison between the
two search algorithm proposed is shown for the three corpus considered. The
columns underLength modelshow the result of interpolating then-gram with
a probabilistic length model under different values for theα parameter in
Eq. (4.8). The column underLength normalizationshows the result of ap-
plying a length normalization on this algorithm. The final column reports the
results achieved by the greedy approach.

MaxPost
Greedy

Length model (α)
Length norm.

Corpus 0.1 0.3 0.5 0.7 0.9
EUTRANS 57.6 57.6 60.4 62.7 62.7 62.5 50.9
ALBAYZIN 62.5 62.5 62.5 62.5 62.8 60.4 53.6
XEROX 79.6 79.6 79.7 80.0 80.0 77.3 66.3

noticeable, as well, that in simple tasks the system can accurately predict about half of
the overall words in the reference sets. It is also worth mentioning that theXeroxtest
is the same used in CAST. By comparing both results (a WSR of 18.6 was achieved
in CAST) we can get a picture about the difference in accuracy betweena strict IPR
application. Additionally, the full-length prediction errors achieved by both methods
(see section 4.2.3) are reported in Table 4.3.

Table 4.3: Prediction (classification) errors on different corpora. Aclassifica-
tion is considered correct when a full error-free suffix is predicted. Notice that
the number of classification performed is different for eachalgorithm since
this figure corresponds to the number of interactions neededto generate the
reference set.

Corpus
Approach EUTRANS ALBAYZIN XEROX

MaxPost 19973 (95.8%) 8754 (96.1 %) 6567 (97.8 %)
Greedy 17844 (93.0%) 7269 (95.4 %) 5485 (94.7 %)
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Once that an initial ITG proposal has been addressed and several experiments
have been reported, we are going to devote the rest of the chapter to study different
extensions to this ITG core.

4.4 Predicting at character-level

The results shown in the previous section were obtained by considering each user
interaction as a word correction (WSR). However, an alternative arisesif we consider
a character-based approach, that is, a system able to respond to singlekeystrokes
rather than whole words. It is, in principle, clear whether the typing effort should
be measured in terms of word or key strokes. For constrained interfaces, where the
bottleneck is given by the typing mechanism, computing keystrokes seems to be rea-
sonable, since a significant amount of time is spent in introducing the information
instead of thinking about what it is going to be typed.

In this case, as soon as the user types a single character, the system provides a
continuation without waiting for a full word correction. The process is essentially the
same as described for our ITG initial approach but, taking into account that, when
searching for the suffix, we have to deal with incomplete words (that is, thefinal
characters of the suffix can be a word-prefix and not necessarily a whole word). Un-
der this premise, we firstly have to complete the final characters in the prefix (that
will be, usually, an incomplete word). Formally, letcwk

be the sequence ofcharac-
ters that comes after the last blank in the prefix. We have to search for a wordv̂ for
which cwk

is a prefix. In the case of ann-gram language model, this amounts to the
following optimization equation:

v̂ = argmax
v∈V :cwk

∈ pref(v)

P (v|wk−1
k−n+1) (4.9)

wherepref(v) denotes the set of all the prefixes of the wordv.
Now we have a way to deal with incomplete words in the prefix and, therefore,

we know how to construct a system able to react to single key strokes. Theonly thing
we need is a new way to measure the system performance in this prediction modality.
We can accomplish this goal by means of an adequate extension of the WSR metric.
This extension is called Key Stroke Ratio (KSR) and it is defined as the numberof
key strokes needed to achieve the reference tesx divided by running characters in this
text. In Figure 4.3 an example of interaction with a character-ITG system is shown
along with an example of KSR computation.

In Table 4.4, the results of this new interaction modality on the corpora described
in section 4.3.1 are shown.

At this point, it can be interesting to thoroughly discuss the measure (WSR or
KSR) to adopt to better estimate the effort reduction achieved. In a normal situation
where a user generates a whole text document in a desktop computer, it is not clear
which estimation is more reliable. If the system is planned to help a user about how
to write a document (that is, to suggest grammatical constructions, specific words,
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Iteration 1
Prediction: Check the printer before sending jobs
Prefix: Check the
Amendment: Check the f
Iteration 2
Prediction: Check the final configuration before continuing
Prefix: Check the f
Amendment: Check the fo
Iteration 3
Prediction: Check the following conditions to ensure an optimum work
Prefix: Check the following conditions to ensure an optimum
Amendment: Check the following conditions to ensure an optimump
Iteration 4
Prediction: Check the following conditions to ensure an optimum performance .

RESULT:Check thefollowing conditions to ensure an optimumperformance .

KSR =
4

65
= 0.06 → 6%

Figure 4.3: Example of an editing session and the corresponding KSR com-
putation. The system generates an initial prediction. Then, the user validates
a correct prefix (boldfaced) and introduces an amendment (shown in italics).
The system, taking into account this information, generates a new prediction.
The process is iterated until a correct, full sentence is achieved. In the final
result, the user only had to type the three characters shown in italics. An fi-
nal acceptation keystroke is also assumed. The KSR measure is obtained by
dividing the number of user strokes between the overall number of characters.

Table 4.4: Results of predicting at character level . These KSR resultscorre-
spond to theGreedyapproach. The WSR results are also added for informative
purposes

Corpus KSR WSR
EUTRANS 14.1 50.9
ALBAYZIN 13.3 53.6
XEROX 19.5 66.3

etc.), WSR seems quite adequate since words can be considered as the minimum
meaningful units in human language and, therefore, the effort should beexpressed in
these terms.

On the other hand, if ITG is to be used as an assistance tool in problematic envi-
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Table 4.5: Features of the SHAKESPEAREand EUROPARL corpora

SHAKESPEARE EUROPARL

Training Set
sentences 4377 133772

running words 103937 3884947
running characters 481088 22414616

vocabulary size 8462 60688

Test Set
sentences 1211 2195

running words 26134 62017
perplexity 211 (3-grams) 109.1 (3-grams)

Table 4.6: Results at word and character level . These results correspond with
the greedy approach and predicting sentences of defined length. The prediction
length was set as the mean plus the variance of the sentence-length distribution
in the training set.

Corpus WSR KSR
SHAKESPEARE 86.9 43.6
EUROPARL 77.4 28.0

ronments, where the effort needed to merely typing is significant, then KSR isclearly
the metric to be adopted. The results obtained so far (oneasytasks) seem to suggest
that, for the time being, ITG is only of moderate help to solve the first situation. On
the contrary, the KSR results indicate that ITG turns out to be an interesting tool in a
constrained-typing situation. To corroborate this fact, additional experiments on new
(and considerably) more difficult and realistic tasks will be conducted.

First, we are going to use part of the EUROPARL corpus [25], which is composed
of different transcriptions of the European Parliament sessions. The second task is
based on a corpus obtained from William Shakespeare plays (four playswere used
as training material and one play was used as test set). In Table 4.5 the features of
both corpora are shown. The results obtained (both WSR and KSR) are presented in
Table 4.6.

We can see how the WSR figures are far from being satisfactory. On the contrary,
promising results are achieved when trying to save key stroke effort even in these
hard tasks. Next, we are going to discuss additional proposals aimed at improving
the KSR results achieved in this section.

4.4.1 Predicting at character level using character LMs

Very often, in NLP applications, word-based language models are used for several
reasons. On the one hand, words are the minimal syntactic and semantic units in
the human language. On the other hand, the use of word-based models (rather than
sub-words units) prevent the system from generating incorrect lexical components in
the final result.
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Table 4.7: KSR Results on the different corpora using character LMs fordif-
ferentn-gram order. The missing results in the table are due to the excessive
amount of memory required to train the models. The best result for each corpus
is boldfaced. In the final row, as a recordatory, the word-based lm results are
reported.

order EUTRANS ALBAYZIN XEROX SHAKESPEARE EUROPARL

5 18.9 20.4 30.1 44.7 38.9
6 15.8 17.5 27.0 43.5 34.5
7 14.3 15.8 25.1 43.5 32.1
8 13.9 14.8 23.3 43.6 30.7
9 12.9 14.0 22.0 44.1 29.6
10 13.6 12.4 20.8 50.6 30.5
11 13.5 11.9 19.9 52.6 31.6
12 13.5 11.1 19.5 54.0 –
13 13.8 10.7 19.3 54.7 –
14 14.1 10.5 19.2 55.0 –
15 14.4 10.8 19.3 55.2 –
word LM 13.1 13.3 19.5 43.6 27.7

In the case of character-ITG, the use of units apart from words can be more jus-
tified since the system has to deal with prefixes that can contain incomplete words.
In the approach described before, the word completion was carried outby selecting
all the words in the vocabulary which are “compatible” with the final characters in
the prefix and then choosing the one maximizing the probability of a word-based lan-
guage model. This, however, poses some problems. For instance, the lackof suitable
words in the system vocabulary to perform this completion.

As an alternative, a character-based language model could be employedto di-
rectly deal with this situation. Besides, theGreedyalgorithm can be properly applied
by using this kind of model in a character-level prediction (notice that the formula
in Eq. 4.9 is not exactly a greedy approach when considering individualcharacters).
The actual algorithm for predicting the suffix in this situation is quite similar to the
one in Figure 3 and, for that reason, it is omited here.

Regarding then-gram model, it is clear that the order of thisnewmodel should
be (considerably) higher than the previous word models. Instead of using 3-gram or
4-gram we will considern-grams with n between 5 and 15. In Table 4.7 the results
of the experiments conducted with these character models are shown. In general, the
use of character language models outperfoms the previous approach although this
improvement is quite slight in most cases.
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4.4.2 Predicting at character level using both word and character LMs

Since the character language models have proven to be competitive for ITG, it seems
reasonable to discuss a possible use of both kind of models to improve the prediction
quality. The most straightforward approach is, perhaps, to perform a linear interpola-
tion between the two models so that both character and word histories are considered
for each hypothesis. Nevertheless, the word models are not able to directly deal with
hypotheses that consist of incomplete words (in this case, these model will not be
used to complete a partial word hypothesis, as in Eq. (4.9) but rather to score a partial
word hypothesis). On account of this, it is mandatory to somehow allow thesemodels
to cope with this situation. A possible solution consists in scoring a the word-prefixes
(cwk

) as:

P (cv|w
k−1
k−n+1) =

∑

cwk
∈ pref(v)

P (v|wk−1
k−n+1) (4.10)

wherepref(v) denotes the set of all the prefixes (from length 1 to|v|) of the wordv.
This way, all the possible whole-word alternatives are considered for the current

incomplete word.

Table 4.8: Results (KSR) of predicting with character and word models .The
last column show the best results achieved so far for each corpus

Corpus
Interp weight

0.1 0.3 0.5 base
EUTRANS 12.8 13.1 15.7 12.9
ALBAYZIN 10.5 10.9 14.6 10.5
XEROX 18.0 18.3 19.8 19.5
SHAKESPEARE 43.1 42.5 42.3 43.6
EUROPARL 28.2 27.7 27.9 28.0

As can be seen in Table 4.8 the combination of character and word language
model achieves the best results for all the task considered. These improvements can
be based, in part, on the fact that a character LM can generate sequence of letters that
are not real words in the language. The use of a word LM here can prevent this from
happening since these incorrect sequences will be given a low probability.

4.4.3 Using n-best lists in very constrained scenarios

So far, we have focused on generating text with standard input interfaces (i.e., basi-
cally typing on a keyboard). Word or character based approaches have been devised
and discussed. However, in some situations, no real typing can be performed and,
therefore, different alternatives have to be explored in order to build asuitable inter-
face to introduce text. In general, human evaluation is crucial in this kind of tasks
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Table 4.9: Probability of occurrence of letters in English. From: Fletcher Pratt,
Secret and Urgent:The Story of Codes and Ciphers Blue Ribbon Books, 1939,
p. 252.

A 0.08151 J 0.00132 S 0.06101
B 0.0144 K 0.0042 T 0.10468
C 0.02758 L 0.03389 U 0.02459
D 0.03788 M 0.02536 V 0.00919
E 0.13105 N 0.07098 W 0.01539
F 0.02924 O 0.07995 X 0.00166
G 0.01994 P 0.01982 Y 0.01982
H 0.05259 Q 0.00121 Z 0.00077
I 0.06345 R 0.06832

since we aim dealing with a very special case [31],[19]. Anyway, some experiments
can be conducted in “laboratory” conditions.

Let’s suppose an extreme situation (but realistic for some disabled people) in
which only a binary input mechanism can be used (for instance a left or right head
or eye movement). For simplicity, we can consider the input interface consisting of
two keys. One that allows the user to move within a list of characters and a another
one to confirm a selection. Words can be constructed by presenting the user a list
containing the alphabet (and, maybe, some punctuation marks) and he or she can
choose the desired character by using these keys. From this, we could compute the
expected number of movements needed to type each character. This expected value
is given by:

E(movements) =
∑

c

Pr(c) · N(c) (4.11)

wherePr(c) is the probability of the character c andN(c) is the number of move-
ments that the user has to perform to achieve the characterc in the list. In Table 4.9
the probability of the English letters is shown.

If the list is alphabetically sorted, the expected value in Eq. (4.11) is 12.74.
Clearly, this can be improved by sorting the list according to the letter probabilities
obtaining, this way, an expected value of 8.25 for English texts.

The ITG approach can be easily applied here. Initially, we can rely on the char-
acter language models described in section 4.4.1 so that we can use this information
to properly sort the list, trying to find the optimal order to minimize the number of
movements. To summarize, given a contextp, the probabilityPr(c|p) will be com-
puted for each symbol (letter)c and the list will be sorted based on this probability.
We can now compute the average number of movements expected in three different
situations.

• An alphabetically sorted list.
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Table 4.10: Results based on characters list. The size column refers to the
number of different characters in each corpora. The resultsmeasure the average
of the number of movements needed to type a correct character

Corpus Size
Movements/Character

Alphab. order Freq. order ITG order
EUTRANS 33 16.45 6.45 1.29
XEROX 55 19.28 7.16 2.03
SHAKESPEARE 38 17.38 6.72 3.48

• A list sorted based on the individual probabilities of the different characters in
the alphabet (similar to what it is shown in Table 4.9).

• A dynamic sorted list using the information from the character language mod-
els.

These experiments were performed by generating the test sets for several corpora
according to each one of these three modalities. As can be observed in Table 4.10,
the use of context information derived from the language models can notably improve
the performance which entails a very significant reduction of the effort needed to type
text in this special scenario.

4.5 Adaptive learning

As we discussed in Chapter 2, one of the advantages of the IPR proposal is that during
the normal system operation mode, new and completely reliable training material is
being produced, which can be used for improving the system performance.

In addition, this new material may not be seen as simple new data but as data
heavily related to the task being currently solved. As an specific ITG example, we
could develop a system to be used as an e-mail assistant tool and this systemcould
be trained from e-mail samples from different users. However, we canexpect more
benefit if the system is mainly based on the current user emails. Under an adap-
tive learning framework, we have at our disposal all the data that the current user is
producing. Why do not take advantage of this?

4.5.1 Some strategies for adaptive learning

Within ITG, some alternatives to apply an adaptive learning approach can be pro-
posed. Before describing them, we have to say that we will use, in these experi-
ments, only the SHAKESPEARE and EUROPARL corpora since they constitute real,
long texts. The others are mere sequences of isolated sentences and, for that reason,
are not adequate to be test under an adaptive learning paradigm.
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Cache models

Cache models [28] are well-known models used in speech recognition. Therationale
behind these models is the fact that a word seen in a document is likely to occuragain
in a near future. From this, the cache model increases the probabilities of the words
seen in a recent past.

In the adaptive learning approach considered here, a cache model can be useful
since the lastM validated words in the current task will be probably chosen by the
user later on.

Formally, the cache model can be defined as:

Pcache(v|w
n−1
n−M ) =

1

M

M
∑

m=1

δ(v,wn−m) (4.12)

whereδ(v,wn−m) = 1 if wn−m = v and δ(wn−m, v) = 0 otherwise. To
combine the Cache and then-gram models, we will use linear interpolation as in
[49]:

P (s|p) = Pn−gram(s|p) · (1 − α) + Pcache(s|p) · α (4.13)

In Table 4.11 the results using different interpolation weights are shown.

Table 4.11: KSR Results of applying cache on different corpora. A value of
100 has been used for theM parameter. In the final column the baseline results
are presented

Corpus
Factor

0.1 0.3 0.5 0.7 0.9 base
SHAKESPEARE 42.9 42.8 43.1 44.2 46.7 43.6
EUROPARL 27.9 27.9 28.0 28.6 30.1 28.0

With this simple model, only a slight improvement is achieved.

Interpolating with a unigram model estimated from the test

The second proposal consists in learning a new model from the test data already
generated.. Because of the small amount of test sentences, we can not expect to have
enough data to properly estimate a complex model. On account of this, a simple
unigram distribution has been chosen to summarize the information coming from the
test portion already validated.

To combine the new model with the originaln-gram model, a linear interpolation
is proposed again. LetPtraining be the model off-line estimated from the original
training samples and letPtest unigram be a unigram model estimated from the test
samples predicted so far. The probabilityP (s|p) is computed as:
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P (s|p) = Ptraining(s|p) · (1 − α) + Ptest unigram(s) · α (4.14)

The modelPtest unigram is updated when a new sentence in the test set has been
completely predicted. In Table 4.12 the results of this adaptation technique are sum-
marized.

Table 4.12: KSR results of interpolating with a unigram estimated from the
test. In the final column the baseline results are presented

Corpus
α

0.9 0.7 0.5 0.3 0.1 base
SHAKESPEARE 45.1 43.6 42.5 42.2 42.0 43.6
EUROPARL 32.4 29.5 28.6 28.1 27.8 28.0

In the case of SHAKESPEAREmore than one point and a half of improvement has
been achieved. For EUROPARL, the results are not really significant.

Feeding the original models with test data

As a final proposal, we are going to consider one of the most direct solutions when
dealing with the problem of adaptive learning. The idea is to completely rely on the
original models but including into them some information about the domain being
solved. To this end, an incremental version ofn-gram models can be implemented so
that only the counts (sufficient statistic) are actually stored in the model. As soon as
new material is validated, these counts are updated and, when a prediction isneeded,
the corresponding probabilities are then computed.

One of the problems arisen in this scenario is caused by the scarce amount of data
coming from the task being solved in comparison to the initial training data. Because
of this, the impact of the new material is barely significant. In order to solve this
problem, a learning factor parameter can be used. This parameter over-scale the test
samples seen so far to increase the final contribution of these samples. In Table 4.13
and, due to the fact that no formal methods can be used to determine the over-scaling
factors, several values for this parameter have been considered.

Table 4.13: KSR Results retraining the models based on a learning factorpa-
rameter . In the final column the baseline results are presented

Corpus
KSR

lf = 1 lf = 2 lf = 5 lf = 10 lf = 20 base
SHAKESPEARE 42.1 41.9 42.0 42.1 42.4 43.6
EUROPARL 27.3 27.3 27.1 27.0 27.1 28.0
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This approximation achieves a better result for EUROPARL. In the case of SHAKE-
SPEARE, the results are similar to those obtained in section 4.5.1.

As a conclusion, the improvements achieved by these adaptive learning tech-
niques are not as high as expected. Nevertheless, this evaluation method may be
somewhat unfair and even misleading. In any case, we think this topic deserves a
deeper analysis and discussion. Next, these results will be put in contextand we will
try, as well, to discover the real potential of adaptive learning within ITG.

4.5.2 Deeper study of an adaptive learning scenario

In order for the adaptation paradigm to be actually useful, we can (generally) ex-
pect an improvement in the models as the amount of adaptation data grows. We are
claiming that we can adapt the models to a specific task and, as a result, the user
should perceive an increase in the system performance as he or she moves forward
in the task. In our experimental framework, this is somehow equivalent to consider
the test data as a set of consecutive blocks of sentences and focusingon comparing
the evolution of the model performance (with and without adaptation) as we generate
these blocks. In other words, we are trying to study how the adapted modelsevolve
when more and more test data is processed. From this, we could achieve reasonable
conclusions about whether the user will perceive the system as being more and more
accurate or not.

To draw more general conclusions, a new task will be included in the experi-
ments. As was mentioned before, the XEROX corpus consists on sentences from
printer manuals. However the sentences in the test set are not completely related to
each other. For that reason, a different XEROX test (called XEROX HUMAN-EVAL )
will be adopted. This corpus is interesting because it is actually a whole printer
manual (and not a mere collection of sentences) and, therefore, constitutes a real sce-
nario to evaluate the adaptive learning approach. The main features of thiscorpus are
shown in Table 4.17.

In Table 4.15 the KSR numbers for this corpus are reported. From this results,
we can notice a much better behavior of the adaptation technique in comparison with
the other corpora. This can be explained by the fact that XEROX HUMAN-EVAL , is a
more constrained task (although completely realistic).

Table 4.14:Features of the XEROX HUMAN-EVAL corpus

XEROX HUMAN-EVAL partition
Training sentences 51577

Test sentences 4380
Train vocabulary 15231

Test running words 117456
Test running characters 641721

Test-set perplexity (3-grams) 60.8
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Table 4.15: Results on theXerox human -evalcorpus. The first row shows
the results by computing the KSR using only the off-line trained model. In
the second row, the results of adapting this trained model with the test material
predicted is reported

KSR
Trained model 25.1

Off-line Trained model + adaptation 17.3

Before presenting the results we have to take into account an important detail.
The way of splitting the whole tests set is crucial to allow for a fair comparison
between the two models (the original and the adapted one). The point here isthat
a bad block-division can introduce some noise since choosing blocks of different
difficulty can hide the real evolution of the results. As an example, by considering
each block as a single sentence, we could not expect a realistic estimation ofthe
evolution of the adapted models since a high variation in the prediction accuracy can
be expected from one sentence to the next one.

To deal with this situation, we propose the following solution. Every possible
block partition (with some limitations that will be discussed later) will be considered
for each test set. These partitions will be scored with some measure that shows the
expecteddegree of difficultyof each block. Finally, the partition that proves to be
more uniform according to this metric will be chosen. Perplexity is the usual way
to measure thedifficulty of an NLP task. Therefore, the uniformity of a partition is
estimated as the variance of the block perplexities. This way, the partition minimizing
this variance will be finally chosen.

In Table 4.16 an empirical study about this variance is shown. It is necessary
to remark that all the possible partitions have been considered but constraining the
block size to be greater than one hundred sentences. Smaller blocks do not deserve
to be even considered.

In Figure 4.4 the evolution of the difference between the KSR achieved with
the original trained model and with the adaptation technique proposed in section
4.5.1 is represented. As can be observed, these results clearly show that the system
performance is constantly increasing as new test data is processed. From this we
could infer, to some extent, that adaptive learning is really useful to improvean ITG
performance in the medium and long term.

Learning from scratch

As a final experiment, it could be really interesting to explore a pure adaptation ap-
proach. Starting from zero, we can build the statistical prediction model as the test
samples are generated (the procedure is identical to what was explained insection
4.5.1, the only difference is that here we start from an empty model). Notice the
interest of this approximation since neither model nor training samples are required
to build a functional ITG application. At first, the system will be really uselessbut,
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Table 4.16:Variance in perplexity based on the number of blocks for XEROX,
SHAKESPEARE, EUROPARL and XEROX HUMAN-EVAL corpora. The number
represent the variance of the perplexity in the partition asthe set is split in
different number of blocks

# blocks in the set
Corpus

XEROX SHAKESPEARE EUROPARL XEROX-HE

2 1.54 29.2 1.7 10.2
3 82.2 14.5 1.1 43.4
4 129.9 10.5 2.3 21.7
5 21.9 28.4 1.9 3.1
6 25.9 70.8 5.1 8.9
7 45.0 80.2 11.4 10.3
8 130.1 62.5 35.3 20.4
9 124.3 160.9 29.0 44.9
10 203.4 87.6 30.9 70.8

as the user types more and more text, the accuracy is expected to be significantly
improved. In order to check the performance of this technique, the XEROX HUMAN-
EVAL task used in section 4.5.2 has been tested with this new methodology. In addi-
tion, the well known Spanish classical novel “Don Quijote de La Mancha” has been
used as an example of a large test set suitable to be used in this kind of experiment.

Table 4.17:Features of the DON QUIJOTE corpus

DON QUIJOTE

Sentences 36266
Vocabulary 29227

Running words 431098
Running characters 2163177

In the case of XEROX HUMAN-EVAL , as can be seen in Table 4.18, the results
are worse than those achieved by using a previously trained model plus adaptive
learning but better than those obtained using only the initial trained model. For the
DON QUIJOTEnovel, we can say that, despite being a really difficult task, the KSR
figures are very satisfactory. Finally, in Figure 4.5 the evolution of the KSRfor this
last corpus shown (the whole test has been split into 10 blocks of 3000 sentences
and the KSR of each block represents a point in the graph). It is worth noticing
how the models can reach a good performance by only processing a small amount of
sentences.
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Figure 4.4: Evolution of the difference (in KSR) between the adapted model
and the original trained model on the four corpora. 2 blocks were considered
fox XEROX, 4 blocks for SHAKESPEARE according to Table 4.16, 3 blocks
were considered for EUROPARL and 5 blocks for XEROX HUMAN-EVAL ac-
cording to Table 4.16

Table 4.18: Results of a pure adaptive learning approach. The prediction
model is constructedon-the-flyfrom the sentences already validated

KSR
XEROX HUMAN EVAL 23.8

QUIJOTE 32.9

4.6 ITG applications

So far, ITG has been evaluated as a tool to generate documents in naturallanguage.
However, this is not the only situation that can be derived from ITG. In thissection,
a couple of different ITG applications will be described.
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Figure 4.5: Evolution of the KSR in the prediction of the novel “Don Quijote
de La Mancha” based on the number of test block processed.

4.6.1 ITG as a computer-programming assistance tool

Since high-level programming languages were developed, a lot of different tools have
been constructed to facilitate the programmer’s work. Complex environments for de-
veloping software have been devised in the last years and they have become very
popular within the software community. Some of these tools present simple ITG fea-
tures. For instance, automatic completion of types, variables or classes aregenerally
implemented.

The generation of computer programs seems to be a good opportunity to take ad-
vantage of the ITG framework. Here, however, automatically generated text portions
could be also useful in learning environments, where the user is not reallyfluent with
the language lexicon and syntax. Nevertheless, this claim has to be supported by
experiments with real users which is something out of the scope of this work.For
that reason, we are going to focus only on the effort reduction in KSR terms that can
be achieved. In case that these figures prove a significant prediction accuracy, these
human-oriented experiments could be justified.

In this environment, ITG will be assessed by using part of theLinuxKernel source
code, developed in C language. The Linux kernel consists of different source files
grouped into different directories according to the functionality provided. From all
these directories, four of them (ARCH, KERNEL, FS and MM ) have been chosen so
that all their ’C’ files will be used as training/test material. In Table 4.19, the main
features of the LINUX corpus are presented.

In the experiments, all the source files in thearch directory were used as train-
ing set and the remaining files were used as test. The KSR results are shownin
Table 4.20.

In the first place, we can observe, a worse performance compared to most of
the pure natural language tasks. This can be somehow surprising since we could
expect this task to be easier (notice, however, than no preprocessing techniques were
applied here, and the raw files were directly used). On the other hand,n-grams could
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Table 4.19:Features of the LINUX corpus

ARCH KERNEL FS MM

Number of source files 316 123 545 55
Running words 1137470 420356 2385975 239233

Running characters 6625582 2500552 14425573 1385875
Vocabulary 43406 31403 108013 17321

Number of lines 164340 61358 326582 33640

Table 4.20: Results on the LINUX corpus. The first row shows the results by
computing the KSR using only the off-line trained model (trained fromARCH).
In the second row, the results of adapting this model with thetest material val-
idated so far is reported. Finally, results using the a complete adaptive learning
approach as described in the previous sections are also shown

FS KERNEL MM

Trained model 56.2 53.4 53.0
Trained model + adaptation40.4 41.5 43.1

Adaptive learning only 30.6 31.3 30.7

not be the best models to be considered here. More surprisingly, the application of a
full adaptive learning approach achieves the best results, making previously trained
models completely useless.

4.6.2 ITG and information retrieval

As a final application of ITG, we will consider an interactive information retrieval
scenario. In this case, this is not only the application of ITG to a different task, but
also a new way of using a text prediction system.

Information Retrieval (IR) systems have gained a lot of importance in daily life.
Querying databases is now a usual task and, therefore, appropriate interfaces are
crucial to guarantee a real benefit from the huge amount of data currently available.
In this sense, interfaces based on natural language have drawn a lot of attention in
the last years since they constitute the most natural way for a user to communicate.
In the case of accessing to a database this is even more important since the way
in which the information is structured can be so complex that other communication
alternatives are often useless. Nevertheless, these interfaces are far from being perfect
and they present some drawbacks. On the one hand, in spite of allowing theuse of
natural language, they are usually constrained to a specific vocabularyor grammatical
structure. When the input is not constructed following these restrictions (and usually
the typical user is not aware of them) the system response is useless and the user
normally feels frustrated. On the other hand, typing text can be complicated insome
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situations (mobile devices, disabled people, etc.) and this fact can weaken the benefit
that a natural language based communication can achieve. This issue is becoming
more and more important since nowadays a lot of information is worldwide available
and portable devices are becoming the main tool for a significant amount of people.

To overcome these two problems, ITG can be really useful. In the first place,
regarding the second drawback, ITG can significantly reduce the effort in terms of
interactions (that is key strokes) to generate text in very different tasks. In the second
place, concerning the first question, ITG can boost the correct use of an interface
based on natural language since ITG can be seen as an interactive user guide to the
IR system. This way, ITG can be employed to lead the user to type the input text
with the kind of constructions expected by the system and therefore to improve the
final results obtained. The point here is that the ITG system could help the user, in
the short term, by providing a quick way to obtain an acceptable result for the query
currently carried out and, on the other hand, in the long term by showing the kind of
queries that the system is more likely to accept. The aim of this section is to roughly
explore the possibilities that this proposal could offer on a simple system as well as
to discuss an initial experimental framework for this novel application. To thisend, a
database containing information about train routes will be used in the experiments.

Integrating ITG into a natural language based information retrieval system

Different approaches can be taken when including an ITG system into aninforma-
tion retrieval application. Perhaps, the most simple one is based on a completely
decoupled architecture where the ITG is used basically as a tool to construct a query
hypothesis. In this case, the user interacts with the ITG system as it is shownin Fig-
ure 4.2, that is, typing text that is simply auto-completed by the ITG engine. Once the
user validates the whole sentence, it is used to query the database. A second alterna-
tive arises when considering a loosely-coupled approach. In this case, an ITG system
is used as in the previous case but, instead of waiting for the user validation of the
whole natural language query, the different text predictions will be used to retrieve
information from the database. As a consequence, what the user obtainsin each inter-
action is not merely a text completion but an answer to the query being constructed.
Other (and more complex) alternatives can be also explored. For instance, a strongly
coupled approach, where the ITG system could be fed with some feedback from the
IR process in order to decide which prediction is more convenient.

4.6.3 Brief description of the AMSABEL system

In order to assess this initial proposal, a simple information retrieval system called
AMSABEL[45] will be employed. AMSABEL is based on the use of statistical ma-
chine translation (SMT) techniques to translate from a natural language intoa struc-
tured query language (SQL). Currently, AMSABEL is able to accept queries both
in Spanish and English. The resulting SQL sentences are used to access arailway
database where information about train routes is stored (specifically a user can ob-
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tain information about departure and arrival cities, starting and ending dates, starting
and arrival times, ticket prices, etc.). The translation of the Spanish or English input
into SQL is performed by using phrase-based models[27]. These models perform the
translation in three steps. Firstly, the input sentence is segmented into phrases (which
are sequences of consecutive words). Then, each segment is translated into the corre-
sponding segments in the target language and, finally, the target phrasesare properly
ordered to achieve the final translation. Formally, in statistical machine translation
we are given a source sentencef , and we try to find the optimal target sentencee as:

ê = argmax
e

Pr(e|f) = argmax
e

Pr(f |e) · Pr(e) (4.15)

wherePr(e) is the language model probability andPr(f |e) is the translation model
probability. In the case of phrase models, this probability is expressed as itis stated
in Eq. 4.16:

Pr(f |e) = Pr(f̄ I
1 |ē

I
1)

≈
I

∏

i=1

φ(f̄i|ēi)d(ai − bi−1) (4.16)

wheref̄i is thei-th phrase inf , ēi is thei-th phrase ine, φ(f̄i|ēi) is the probability of
beingf̄i a translation of̄ei andd(ai−bi−1) is the distortion model used for reordering
target phrases. The order of a target phrasef̄i depends on a probability distribution
based on its start position (ai) and the end position of̄fi−1 (bi−1).

Phrase models are obtained from word to word alignments ([5]). The search for
the most likely translation is performed by using theMosesbeam-search decoder
[26].

A set of semi-automatically generated input queries was in the experiments (752
English and 748 Spanish sentences were employed) along with the informationthat
the user expects to obtain for each query (see Table 4.21). We think that the use of
this synthetic corpus can be justified in this first evaluation stage, since the produced
sentences can be, in our opinion, considered as plausible queries for auser interacting
with a natural language based IR system. In Figure 4.6 some examples of these test
queries are shown.

The evaluation procedure was aimed at directly testing the system usefulness
from a potential user point of view. Thus, the results of the input naturallanguage
queries were classified based on the outcome obtained (the point here is to measure
the system accuracy according to the correctness of the information retrieved). The
following query categories were established:

Q1 Exact information: The system provides the user with the exact information re-
quired.

Q2 More fields: The system returns the information required but more fields are also
provided.
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please , I would like to know which destinations are there from Guadalajara.

are the classes of train 1047 ?

what times can you go from Toledo to Alicante the 2011-06-03 ?

which days of the week can you go to Guadalajara from Ciudad Real ?

from which cities can you go to Alicante ?

I want to know which destinations there are from Valencia.

Figure 4.6: Examples of semi-automatically generated test sentences

Q3 More rows: The system provides the information required but more rows from
the database tables are also shown.

Q4 Incorrect: The query does not include the expected information.

Categories 1 and 2 are completely useful they the user obtain the information
that he or she requested (adding in the case of Q2 type more fields). Q3 type can
be also considered useful since the information requested is provided although some
useless additional information is also included in the result (causing, maybe,some
annoyance). In the case of the Spanish test corpus, about 81% of system results were
classified as type Q1, less than 0.3% as type 2, about 1.3% as type 3 and, finally,
about 17% as type 4 (that is, quite useless).

4.6.4 ITG experiments

Once the IR system has been described, a framework to study the possibleusefulness
of the ITG proposal will be discussed.

Initially, the KSR of a pure ITG approach on the AMSABEL query text corpus
was computed and it is shown in the first row of Table 4.22. The idea is to measure
the effort required to generate the exact text queries (without actually accesing the
database) in the test set. This can be seen, to some extent, as the effort ofusing a
completely decoupled approach in which the system waits for a completely validated
text construction and, based on this, a final single access to the databaseis performed
for each query.

However, ITG can be incorporated into an IR system in very different ways (see
section 4.6.2). In this work, we will focus on a loosely-coupled architecture. The
idea is that, each time the ITG system makes a text prediction, this prediction will
become into a query to the database. Once the query has been performed the user will
directly validate the database response in the case it is correct or, otherwise, the part
of the text prediction that he or she considers error-free (as it is shown in Figure 4.7).
Then, a simple correction will be made on this text prediction and the process will
be repeated until the user considers the information retrieved as satisfactory. In the
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experiments performed here, the user was simulated by the test sets shown inTable
4.21. The effort will be measured in KSR terms.

Table 4.21:Test sets used in ITG for information retrieval

Spanish English
Number of sentences 748 752
Running words 9413 9763
Vocabulary size 447 484
Perplexity (3-grams) 5.2 4.9

In the first row of Table 4.22 the results of using ITG on the whole AMSABEL
system are shown. These experiments are aimed at measuring the KSR required to
obtain one of the three useful query types described in section 4.6.3. Thisway, the
KSR needed to obtain all the queries classified as type Q1 was computed and the same
procedure was used for Q2 and Q3 queries (Q4 queries were not considered since
they are useless). As can be observed, the Q1 figures show that it is not necessary to
generate the exact query to get a perfect result and that some effortcan be saved with
respect to replicate the input sentence with ITG (as numbers in Table 4.22 shown)
and, what is more important, with a small effort in terms of key strokes, useful Q3
queries can be achieved.

Table 4.22: ITG and information retrieval results on the AMSABEL corpus

Spanish English
Query type KSR improvement KSR improvement
Pure ITG 15.6 – 14.7 –
Perfect queries (Q1) 14.2 16 % 13.0 11%
More columns (Q2) 14.2 16 % 12.9 12%
More rows (Q3) 10.7 36 % 9.5 35%

4.7 Summary of contributions

In this chapter, a new application of the IPR paradigm have been explored.Here,
only the user feedback can be used since there is no input pattern to decoded. Dif-
ferent strategies and models have been proposed and evaluated along with several
interaction modalities.

A thorough comparison between the traditional maximization of the posterior
probability and a new optimal search strategy has been performed. In addition, we
have carried out an analysis of the classification errors produced by both modalities
in order to show that the interactive scenario can be very different from the general
case.
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Iteration 1
Prediction: which days can you go to Madrid from Toledo
SQL: SELECT DISTINCT Dias FROM Tren JOIN Viaje ON

Viaje.Tren=Tren.Idtren WHERE Destino=‘madrid’ AND Origen=‘toledo’

Data: Train 1012→ Monday, Tuesday, Friday

Prefix: which
Amendment: which c

Iteration 2
Prediction: which classes can you buy for train number 1040 ?
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Idtren WHERE Ntren = ‘1040’

Data: Train 1040→ Tourist, First class
Prefix: which classes can you buy for train number 10
Amendment: which classes can you buy for train number 102

Iteration 3
Prediction: which classes can you buy for train number 1028
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Idtren WHERE Ntren = ‘1028’

Data: Train 1028→ Tourist
Prefix: which classes can you buy for train number 102
Amendment: which classes can you buy for train number 1029

Iteration 4
Prediction: which classes can you buy for train number 1029 ?
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Idtren WHERE Ntren = ‘1029’

Data: Train 1029→ Business, First class

KSR =
3

49
= 0.061 → 6.1%

Figure 4.7: Example of information retrieval using ITG. In this example, the
user tries to obtain information about the different ticketclasses for train num-
ber 1029. Each time the user makes a key stroke, the system provides a text
completion (Prediction) which is translated intoSQLand the corresponding
information retrieved is shown (Data). In the first three iterations, the infor-
mation retrieved is not correct and, therefore, the user interacts with the ITG
engine correcting the text prediction mistakes. Finally, at iteration 4, the infor-
mation provided is fully correct and the process ends successfully.

Some adaptive learning techniques have been also proposed. A detailed study
of the behavior of adaptive learning within ITG has been also conducted,clearly
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supporting the application of these techniques in this specific problem.
Finally, two applications of ITG different from generating pure text documents

have been introduced. The use of ITG as a tool to improve the natural language based
information retrieval seems to be very promising and, to the best of our knowledge,
a completely new approach to this problem.
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CHAPTER 5

M ULTI -MODAL I NTERACTIVE

PATTERN RECOGNITION . A
SPEECH INTERFACE FOR

COMPUTER ASSISTED

TRANSLATION

5.1 Multi-modality in IPR systems

As was introduced in chapter 2, the nature of the IPR systems promotes the devel-
opment of multi-modality as an integral part of the system. This is mainly due to
the fact that IPR systems have to deal with two different kind of inputs. On the one
hand, we have the input patterns to be recognized and, on the other, the feedback
coming from the user. We can cite the example of CAST, where the input patternis
a sequence of spoken words (audio) and the user feedback corresponds to a series of
keystrokes and mouse actions. According to this description, multi-modality seems
to be only accidental but a multi-modal scenario can be really useful and practical
within an IPR system.

The difference in nature between the input pattern and the user feedback men-
tioned before is only one of the features that boost multi-modality and, indeed, is not
the most important one. Actually, there is a crucial aspect in IPR is that the input pat-
tern and the user feedback are somehow related. As we will argue later onwe can, to
some extent, anticipate the content of a specific user action and, thus, improve the ac-
curacy of the IPR feedback channel with respect to a completely decoupled interface,
where the feedback decoder is implemented just using of the self-components.
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A speech and text interface for a Computer Assisted Translation System

Within the IPR paradigm, one of the most explored tasks is Computer Assisted Trans-
lation (CAT). Translation is nowadays an important activity in many official institu-
tions (EU parliament, the Canadian Parliament, UN sessions, Catalan and Basque
parliaments in Spain, etc.) and private companies (user’s manuals, newspapers, etc.).
The idea behind those CAT systems is to use a Machine Translation (MT) system to
produce portions of the target sentence that can be accepted or amended by a human
translator. These correct portions are then used by the MT system to produce further,
hopefully improved suggestions.

In the interactive systems described in this work, the user usually relies on tra-
ditional input methods (keyboard, mouse, etc.) to send the feedback to the system.
We present in this chapter an alternative to this idea within the CAT framework.In
this proposal, the human translator determines acceptable prefixes of the suggestions
made by the system by reading (with possible modifications) parts of these sugges-
tions. With respect to using a general purpose ASR, the IPR framework allows for
a much lowwer freedom degree. As we will see, the corresponding lower perplexity
would allow for sufficiently high recognition accuracy. Moreover, as thisis fully in-
tegrated within the CAT paradigm, the user can make use of the conventional means
(keyboard and/or mouse) to guarantee that the produced text exhibits anadequate
level of quality. Preliminary empirical results, presented in this chapter, support the
potential usefulness of using speech within the CAT paradigm.

A significant part of the work presented in this chapter can be found in [51],
where the speech interface for CAT is discussed within the context of Speech-to-
Speech machine translation.

5.2 Introduction to machine translation

The statistical framework for MT can be stated as follows: Given a sentence f from
a source language, search for a sentence from a target languageê for which the
posterior probability is maximum, that is:

ê = argmax
e

Pr(e | f) . (5.1)

As in the general Pattern Recognition case, it is commonly accepted that a con-
venient way to deal with Eq. (5.1) is to transform it by using the Bayes’ theorem:

ê = argmax
e

Pr(e) · Pr(f | e) . (5.2)

important role in T2TT. On the one hand,Pr(e) is modeled by alanguage model
which gives high probability to well formed target sentences. Smoothedn-grams [9]
are often used for these language models. On the other hand, models forPr(f | e)
should give high probability for those sentences from the source language which
are good translations for a given target sentence. These models generally consist
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of stochastic dictionaries, along with adequate models to account forword align-
ments[5, 6, 34] (the concept of word alignment will be described later). An alterna-
tive to Eq. (5.2) is to transform Eq. (5.1) as:

ê = argmax
e

Pr(f , e) . (5.3)

In this case, the joint probability distribution can be adequately modeled by means of
stochastic finite-state transducers (SFST)[7, 8] among other possible models.

5.3 Computer-Assisted Translation

As in CAST we can take advantage of the IPR framework described in Chapter 1
to increase the productivity of the whole translation process (MT plus humanwork)
by incorporating the human correction activities within the translation processitself
[29]. The idea is to use a MT system to produce portions of the target sentence that
can be accepted or amended by a human translator and these correct portions are then
used by MT system as additional information to achieve further, hopefully improved
suggestions. This approach is followed in the CAT systems presented in [12, 10, 14,
13]. Formally, we have the source sentencef and a prefix of the translationep and
we have to find an optimal suffix according to Eq (5.4)

ês = argmax
es

Pr(es | f , ep) . (5.4)

Alternatively, we can rely on the joint probability of the source and target sentence
which leads to Eq (5.5):

ês = argmax
es

Pr(ep, es, f) . (5.5)

5.3.1 Speech Recognition for Computer-Assisted Translation

As was commented in section 5.1, IPR systems provide an adequate scenario tode-
velop multi-modality. In the case of a CAT system, the translation productivity could
be further increased if speech is used as part of a multi-modal interface.There are
several ways to use target-language speech recognition in a CAT system.From free
dictation decoding to a very constrained speech recognition.

Free target language dictation

As it was already explored in [17, 3, 4] and more recently in [22, 23, 44], the idea is
that a human translatordictatesthe translation of a given source text. Consequently,
we have a speech decoding process for thetarget languagein which knowledge about
the source text can be used to attempt reducing recognition errors. Formally, if f is the
given source text andx is the acoustic sequence corresponding to a target-language
utterance produced by a human translator, the search problem becomes:
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ê = argmax
e

Pr(e | f , x) , (5.6)

and, assuming thatPr(x | f , e) does not depend onf ,

ê = argmax
e

Pr(e | f) · Pr(x | e) (5.7)

= argmax
t

Pr(f | e) · Pr(e) · Pr(x | e) . (5.8)

In both equations,Pr(x | e) can be approached by means of(target) acoustic models
such as HMMs as in conventional ASR. In addition, to make use of the first equation,
Pr(e | f) can be implemented as aspecial (target) language modelthat takes into
account restrictions derived from the fact thate has to be a translation off . The
second equation, on the other hand, requires atranslation modelto approachPr(f |
e) and aconventional target language modelto approachPr(e).

While this is certainly an interesting framework, perfect recognition does not
seem possible, even using the information from the source-language sentences (as it is
corroborated in the results presented in [17, 3, 4, 22, 23, 44] and ourresults of section
5.4.6 suggest). Therefore a significant human error-correcting effort would still be
required. Moreover, human translators can also make errors themselves, specially
when the translation is dictated rather than typed.

5.3.2 Speech decoding framework in the CAT paradigm

As an alternative to pure dictated translation we propose a framework that, on the
one hand fits well within the CAT paradigm (human correction activities embedded
into the process) and, on the other, allows for higher speech recognitionaccuracy by
using lower-perplexity models in the speech recognition process.

Under the CAT framework, a user-validated prefix and a system hypothesis to
complete this prefix are available at each stage of the human-system interaction pro-
cess. When a certain level of accuracy is achieved, this hypothesis is often acceptable
or close to it. Therefore, rather than allowing quasi-free dictation (only constrained
by the source-text), it is expected that the user dictates text which is an adequate
continuation of the preceding prefix and is restricted to be (very) close to the given
completion hypothesis. Of course, by sticking to the CAT paradigm, system hypothe-
ses should always be human-amendable. An important difference with respect to the
text-only version of CAT discussed in section 5.3, is that now the human can both
type and/or speak. The key point is that speech should be encouragedonly if low-
perplexity recognition is possible, while typing should be preferred when the results
of speech recognition are expected to be poor.

As in section 5.3, letf be the source text andep a validated prefix of the target
sentence. The user is then allowed to utter some words (x) generally related to the
suffix suggested by the system in the previous iteration, aimed at accepting or correct-
ing parts of this suffix and/or adding some text. Moreover, the user may typesome
keystrokes (k) in order to correct (other) parts of this suffix and/or to add more text.
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ITER-0 (ep) ( )

ITER-1

(ês) (Haga clic para cerrar el diálogo de impresión)
(x)
(d̂) (Haga clic a)
(k) (en ACEPTAR)
(ep) (Haga clic en ACEPTAR)

ITER-2

(ês) (para cerrar el diálogo de impresión)
(x)
(d̂) (cerrar el cuadro)
(k) ( )
(ep) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL
(ês) (de diálogo de impresión)
(k) (#)

(ep ≡ e) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

Figure 5.1: Example of typewriter and speech interaction with a CAT system,
to translate the English sentence“Click OK to close the print dialog”. Each
iteration starts with a target language prefixep that has been fixed in the pre-
vious iteration. First, the system suggests a suffixês and then, the user speaks
(x) and/or types some key-strokes (k), possibly aimed to amend̂es (and maybe
d̂). A new prefix,ep, is built from the previous prefix, along with (parts of) the
system suggestion,̂es, the decoded speech,d̂, and the typed text ink. The pro-
cess ends when the user types the special keystroke “#”. System suggestions
are printed in cursive, text decoded from user speech in boldface and typed
text in boldface typewriter font. In the final translation,e, text obtained from
speech decoding is marked in boldface, while typed text is underlined.

Using these informations, the system has to suggest a new suffixês as a continuation
of the previous prefix, the decoded speech and the typed text. That is, the problem
would be to find̂es givenf , ep, x andk, considering all possible decodings ofx (i.e.,
letting the decoding ofx be a hidden variable).

According to this very general discussion, it might be assumed that the user can
type with independence of the result of the speech decoding process. However, it
can be argued that this generality is not realistically useful in practical situations.
Instead, it is much more natural that the user waits for a system outcome (d̂) from the
spoken utterance, prior to start typing amendments (k) to the (remaining part of the
previous) system hypothesis. Furthermore, this allows the user to fix possible speech
recognition errors in̂d.

In this more realistic and simpler scenario, an alternative problem can be formu-
lated in two steps, as illustrated in Figure 5.1. The first step is to rely on the source
text f and the previous target prefixep, in order to search for a target suffixês:

ês = argmax
es

Pr(es | f , ep) . (5.9)

This equation exactly corresponds to the CAT scenario discussed in section 5.3
and it can be approached using the same techniques already mentioned in that section
(see, e.g., [39, 12]).

Onceês is available, the user can produce some speech,x, and the system has to
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decodex into a target sequence of words,d̂:

d̂ = argmax
d

Pr(d | f , ep, ês, x) . (5.10)

Finally, the user can enter adequate amendment keystrokesk, if necessary, and
produce a new consolidated prefix,ep, based on the previousep, d̂, k and parts of̂es.

We focus now on different manners to approach Eq. (5.10). To start with, we can
write:

argmax
d

Pr(d | f , ep, ês, x) = argmax
d

Pr(d | f , ep, ês) · Pr(x | f , ep, ês, d) . (5.11)

and, by making the reasonable assumption thatPr(x | f , ep, ês, d) only depends on
d:

d̂ = argmax
d

Pr(d | f , ep, ês) · Pr(x | d) . (5.12)

Pr(x | d) can be modeled by the acoustic models of the words ind and Pr(d |
f , ep, ês) can be provided by a target language model constrained by the previous
prefixep, by the source sentencef and by the suffix̂es produced at the beginning of
the current iteration.

As will be discussed in section 5.4.6, Eq. (5.12) does not lend itself for simple
experimentation under laboratory conditions. Therefore, we consider two simplifica-
tions that allow for adequate experimentation and are useful in practice too.

First, aless restrictedscenario arises if only the prefixep is available (̂es is not
used). That is, the previous system prediction is ignored and the user is assumed to
produce free target speech, only constrained to be a translation of the source text and
a continuation of the given prefix:

d̂ = argmax
d

Pr(d | f , ep) · Pr(x | d) . (5.13)

As compared with Eq. (5.7) of the dictated-translation framework, Eq. (5.13)
adds the constraint provided by the target text prefix,ep, thereby allowing for higher
speech decoding accuracy. Along with Eq. (5.13), this alternative can be considered
as a combination of the text-only CAT systems of [39] or [12] and the target language
dictation systems introduced in [17, 3, 4].

On the other hand, in amost restrictedscenario for Eq. (5.12), the decoding of
x is constrained to beexactlya prefix of the suffix suggested by the system,ês. The
idea is that the uttered prefix would help the user determine an accepted partof the
system suggestion. In this case,Pr(d | f , ep, ês) = Pr(d | ês) and Eq. (5.12) can be
written as:

d̂ = argmax
d

Pr(d | ês) · Pr(x | d) . (5.14)

As compared with all the previous scenarios involving speech, herePr(d | ês)
can be modeled by a very low perplexity language model, which should allow for
much higher speech decoding accuracy.
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5.4 Implementing speech decoding in a CAT system

Preliminary versions of CAT systems using target-language speech have been imple-
mented for the two last scenarios described in section 5.3.1. In addition, two extra
“baseline”, purespeech recognitionscenarios have been considered, where the infor-
mation provided by the source-language text is ignored. The goal of these scenarios
is to study how speech decoding performance within CAT can be improved byintro-
ducing translation constraints.

5.4.1 DEC scenario

The least constrained setting is referred to as DEC. It involves just conventional
speech decoding of utterances (x) of fragmentsof the target sentence:

d̂ = argmax
d

Pr(d) · Pr(x | d) . (5.15)

The language model forPr(d) is implemented as a (smoothed)n-gram, estimated
from the same target sentences used to estimate the translation models for othersce-
narios. Since then-gram is estimated from complete target sentences, butx is typi-
cally an utterance of a sentence fragment, this language model has to be adapted to
properly accept any possible subsequence of words.

DEC is more difficult than the translation dictation setting discussed in sec-
tion 5.3.1, not only because DEC does not take advantage of the informationprovided
by the source-language text, but also because it deals with the decoding of fragments
of the target sentence, rather than whole sentences as in [17, 3, 4].

Regarding the changes needed to implement the DEC scenario, it is necessary to
remark that ann-gram model is intended to score full sentences in a language. In our
case, we have a text prefix and a speech utterance that is a partial continuation to this
prefix (that is, the prefix and the speech utterance does not form a whole sentence but
a longer prefix of a whole sentence). This fact poses two different problems to be
solved. The first one is related to the end-of-sentence probabilities. In atraditionaln-
gram, a special token is used to denote an end-of-sentence event so that the recognizer
is typically forced to consider as final hypothesis only those ones containing this
special event. From a statistical point of view, this entails that those words placed
at the end of the training sentences are more likely to be ending words. This is
perfectly reasonable when decoding full sentences but not when the utterances are
sentence fragments. An easy and effective solution for this problem canbe reached
by removing these end-of-sentence events from the training set. As a result, all the
words are equally likely to be final words in the hypothesis.

5.4.2 DEC-PREF scenario

The second pure speech-decoding scenario is referred to as DEC-PREF. Now the
available prefixep is introduced as an additional constraint; but, again, no information
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about the source text is used. In this case,

d̂ = argmax
d

Pr(d | ep) · Pr(x | d) . (5.16)

To implement DEC-PREF, the same approach described above for DEC have to
be followed in order to properly deal with the end-of-sentence problem. On the other
hand, we have to address the adaptation of the language model to take advantage
of the text prefix. This problem is was already addressed in CAST (Chapter 3).
As a quick reminder, we have to decode a partial sentence that is a continuation of
this prefix and, therefore, the search should start as if the language model were just
observed the prefix.

5.4.3 CAT-PREF scenario

The least constrained CAT scenario is called CAT-PREF. It corresponds to a real-
ization of Eq. (5.13), where the source sentence,f , the previous prefix,ep, and a
human-translator utterance,x, are available. The goal of the CAT system is to decode
x into an optimald̂ and to produce a suggested suffixês as a continuation of this
decoding.

The combination of CAT-PREF and the CAT-SEL scenario described in sec-
tion 5.4.4 would allow for pure-speech interactions within a CAT system. CAT-SEL,
as will be described, can be successfully solved by using a special andvery con-
strained language model.

On the contrary, CAT-PREF is, maybe, the most interesting scenario, sincethe
baseline results (DEC and DEC-PREF) leave sufficient margin to improve thespeech
recognition accuracy. Moreover, including the information coming from thesource
sentence into the speech recognition process constitutes a really challenging scientific
problem.

We can see Eq. (5.13) as a ASR problem, where we have an acoustic model,
Pr(x | d), and a language model,Pr(d | f , ep). The only difference is that this
language model is conditioned to the prefixep and to the source sentencef . We have
already described how to cope with the prefix. Regarding the source sentence we
can adapt the model probabilities so that the weight of eachn-gram,P (ei | e

i−1
i−n+1)

is multiplied by the largest probability of translatingen from any source word inf ;
i.e.,max1≤j≤|fj | P (fj | ei), where|f | is the number of words inf . This can be seen
as a simple interpretation of the inverted alignments model described in [34]. The
lexical translation probabilitiesP (fj | en) are obtained from a stochastic dictionary
estimated using a parallel corpus and the GIZA++ toolkit [38].

Since we are dealing with a smoothedn-gram, in order for the resulting re-scored
model to be a real probability distribution we could, initially, act only on the unigram
party to posteriorly normalize the results. Although better alternatives are described
below, we will include this scenario (called UCAT-PREF) in the results for informa-
tive purposes.

As a second alternative, all then-grams in the model can be properly considered
by paying careful attention to the underlying smoothing in then-gram model. This
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smoothing entails discounting some probability mass from eachn order distribution
to be transfered to lower order distributions. In order to preserve the discount coeffi-
cients computed during then-gram training process we will carry out the following
normalization method. Leth1 . . . hn−1 be the history for then-grams to be cur-
rently rescored. We can then compute the cumulative probability for thesen-grams
asacum(h1 . . . hn−1) =

∑

h

P (h|h1 . . . hn−1) and use this as a normalization factor

after re-scoring with a statistical dictionary. As a result, the only effect ofthis process
is to differently distribute this mass according to a statistical dictionary. An example
is depicted in Figure 5.2

SOURCE SENTENCE: ”The printer is off”

impresora / 0.3

palanca / 0.3

...

...

...

computadora / 0.3la / 1.0
Rescoring

la / 1.0

impresora / 0.74 ...

...

...

computadora / 0.08

palanca / 0.08

λ / 0.1 λ / 0.1

acum(la) = 0.9

...

...
Statistical Dictionary

= 0.3 · 0.9 = 0.27
= 0.3 · 0.1 = 0.03
= 0.3 · 0.1 = 0.03

acum rescore(la)

norm factor = 0.33 / 0.9 = 0.367

= 0.33

t(impresora| printer) = 0.9
t(computadora| printer) = 0.05
t(computadora| is) = 0.1
t(palanca| is) = 0.1

rescore (impresora| la)
rescore (computadora| la)
rescore (palanca| la)

P (impresora| la) = 0.27 / 0.367 = 0.74
P (computadora| la) = 0.03 / 0.367 = 0.08
P (palanca| la) = 0.03 / 0.367 = 0.08

Fragment of ngram model.P ( ... | la )

Figure 5.2: Example ofn-gram rescoring. A fragment of a smoothed bigram
model is represented as a finite state grammar (λ denotes the mass probabil-
ity discounted from this bigram). Initially, the cumulative probability for all
the events is computed (0.9). Then each bigram probability is recomputed
according to the statistical dictionary and the source sentence (the maximum
probability for each pair source/target word is used). Finally, the new probabil-
ity distribution is obtained by normalizing on the previousand new cumulative
probabilities.

A second alternative arises by rewriting Eq. (5.13) as it is shown in Eq. (5.17).
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d̂ = argmax
d

Pr(d | f , ep) · Pr(x | d)

= argmax
d

Pr(f | ep, d) · Pr(d |ep) · Pr(x | d) . (5.17)

As a result we have, on the one hand the previously described acoustic model
Pr(x | d), a prefix-conditioned language modelPr(d | ep) and a whole translation
modelPr(f | ep).

Directly approaching the maximization in Eq. (5.17) using the usual dynamic
programming techniques seems to be not feasible. However, word graphsor n-best
list from speech decoding allows for a straightforward implementation of Eq.(5.17).
A statistical translation model can be here applied to score a set of ASR hypotheses
This approach to CAT-SEL scenario is called IBMCAT-PREF.

Five different models (called IBM 1,2,3,4 and 5 models) have been devisedso far
and they are based on the concept of word alignment, which represents amapping
between the words in the source sentence and their corresponding translations in the
target sentence. Models IBM 3, IBM 4 and IBM 5 are considerably more complex
than 1 and 2 and, therefore, finding an optimal alignment becomes an NP-complete
problem [24] where only approximate solutions can be followed. We we aregoing to
rely, in this case, on the IBM model 1, which computes the probability of havingthe
source sentencef , given the targete sentence and a word-to-word alignmenta as it
is defined in Eq (5.18):

p(f |a, e) =
ǫ

(|e| + 1)|f |

|f |
∏

j=1

t(fj |eaj
) (5.18)

wheret denotes a statistical dictionary anda is a vector of size|f | representing the
word alignments (eaj

represents the word in the target sentence that is aligned with
thej-th word in the source sentence). Finally,ǫ represents the probabilityPr(|f | | e)
(that is, a uniform distribution for the source length).

Usually, from all the possible alignments , only the most likely one (calledViterbi
alignment) is considered and, hence,Pr(f |e) is approximated byPr(f |â, e). The
Viterbi alignment can be efficiently computed in Model 1 by aligning each word in
the source sentence to the word in the target sentence that maximizes the score for
the partial alignment constructed so far (IBM models constrained the alignments so
that each word in the source sentence can be aligned as most to one word inthe target
sentence). In Figure 5.3 an example of the computation of this optimal alignment is
shown.

IBM models, however, are trained to cope with full sentences and, in this sce-
nario, we have a full source sentence and a fragment of a target sentence. As a result,
the model can produce someartificial alignments in order to deal with this unex-
pected situation an this could result in the achievement of unreliable scores.Different
possibilities arise to address this problem. Initially, we could take advantage ofthe
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t(The | La) = 0.40
t(The | impresora) = 0.02

t(printer | La) = 0.001
t(printer | impresora) = 0.92

t(is | La) = 0.00000001
t(is | impresora) = 0.0000001

t(off−line | La) = 0
t(off−line | impresora) = 0.13

STEP 1

STEP 2

STEP 3

STEP 4

The printer is off-line

La impresora está fuera de ĺınea

The printer is off-line

La impresora está fuera de ĺınea

The printer is off-line

La impresora está fuera de ĺınea

t(The — est́a) = 0.001
t(The — fuera ) = 0

t(The — de) = 0.0000006

t(The — ĺınea) = 0

t(printer — est́a) = 0
t(printer — fuera) = 0

t(printer — de) = 0.0000001

t(printer — ĺınea) = 0.0002

The printer is off-line

La impresora está fuera de ĺınea

t(is — est́a) = 0.21
t(is — fuera) = 0

t(is — de) = 0

t(is — lı́nea) = 0

t(off-line — est́a) = 0
t(off-line — fuera) = 0.4

t(off-line — de) = 0

t(off-line — lı́nea) = 0.34

Figure 5.3: Example of IBM model 1 alignment computation. Each word
in the source sentence (The printer is off-line) is aligned to the optimal word
in the target sentence (La impresora est́a fuera de ĺınea). The boldfaced lines
represent the optimal alignment for the current source wordchosen at each step
whereas the dotted lines represent the rest of alignments considered and finally
discarded.

CAT scenario in which the system is embedded so that the CAT engine could provide
the best possible completion for the each utterance hypothesis. However this can be
clearly prohibitive, since the number of the hypotheses to be completed will be, in
general, too high.

On the other hand, as was mentioned before, the IBM model alignments are con-
strained so that a word in the source sentence can be aligned to as most to one word
in the target sentence. When having a full source sentence and a targetfragment, the
model can try to align every word in the source sentence to a word in the fragment
(even when some source words may not be related to any fragment word). We can
see that, here, this alignment structure is working against us. Indeed, thekind of
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constraints that could help us to overcome this problem are provided by the model
trained in the opposite direction, that is,P (et, d | f). From this model point of view,
each word in the target fragment would be aligned to the best word in the source sen-
tence and, consequently, those source words that are not real translations of the words
in the fragment (that is, words not translated yet) can be discarded. In Figure 5.4, an
example of this is shown.

NULL La impresora

The printer is printing 

IBM logprob = −9.5

La impresora

NULL The printer is printing
IBM logprob = −0.99

NULL La imprimiendo
IBM logprob = −9.7

The printer is printing 

NULL The printer is printing

La imprimiendo

IBM logprob = −4.3

IBM model Pr(f|e) IBM inverse model Pr(e|f)

Figure 5.4: Example of forced alignment solved by using the inverse model.
The real utterance was “La impresora”. However, the modelP (f |e) forces an
alignment between the words “impresora” and “printing”. Asa consequence
a wrong translation “La imprimiendo” is scored with higher probability than
the correct translation fragment. The use of theP (e|f) model can contribute
to solve this problem.

We can benefit from the fact that state-of-the-art statistical machine translation
relies on log-linear models to approach the translation probability. The main motiva-
tion is to properly combine different information sources (models), as it is shown in
Eq (5.19):

P (f | et, d) ∝ exp

[

∑

i

λifi(f , et, d)

]

(5.19)

wherefi are the functions to be combined in the model andλi are the weights. In our
case, can use two different functions, the originalP (f | et, d) used in Eq.(5.17) and
theP (et, d | f) aimed at improving the alignment quality. Theλi weights will be
optimized according to a minimum error rate training criterion on a development set.
This approach to CAT-PREF scenario is called IBMLLCAT-PREF.
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5.4.4 CAT-SEL scenario

Finally, the most constrained scenario, called CAT-SEL, corresponds toa realization
of Eq. (5.14). It is similar to CAT-PREF but here the human translator can only utter
exact prefixes of the suggestion made by the CAT system (ŵs). These utterances are
aimed atselectingacceptable prefixes of the system suggestions (hence the name,
CAT-SEL). The possible amendments of the remaining parts of the suggestions can
only be made by typing (or by applying CAT-PREF). In practice, Eq. (5.14) can be
implemented as a search ford̂ in the (small) set of possible prefixes of the target suffix
ês; that is,Pr(d | ês) is estimated by a special finite-state language model in which
only thosed that are prefixes of̂es have non-null probability. The acoustic models
for estimatingPr(x | d) in Eq. (5.14) are the same HMMs as in all the previous cases.

The computation of̂es in Eq. (5.9) for CAT-PREF and CAT-SEL is the conven-
tional optimization of text-only CAT, which can be solved by Eq. (5.4) or Eq. (5.5)
(see [39, 12]). In CAT-PREF, the prefixep is the concatenation of the oldep andd̂
(andk if the user typed some text). In CAT-SEL, new text can be typed to be ap-
pended to the previous concatenation before starting a new CAT cycle. For the sake
of experimental simplicity, in the experiments described below the CAT optimization
in Eq. (5.9) was simulated, rather than actually computed.

5.4.5 Corpora and evaluation

The ideas and techniques proposed here have been assessed through some experi-
ments in the framework of the TT2 project [47]. One of the tasks considered in this
project is the translation of XEROX technical manuals written in English into Span-
ish, French and German. Only the translation from English into Spanish is considered
here. Consequently, the target spoken language is Spanish.

Corpus features

We use three data sets in our experiments. The first one is the standard English-
Spanish XEROX benchmark parallel text used in the TT2 project. The training part of
this corpus is used here mainly to estimate the translation model parameters needed
MT and CAT. The target (Spanish) part of this training set is further used to train
most of the language models required in the speech decoding and speech-enabled
CAT experiments.

The second data set is the relatively large speech corpus, containing phonetically
balanced spoken sentences in Spanish[33]. This corpus was alreadyemployed in
Chapter 3. It is used here only to train the acoustic HMMs needed in all the speech-
related experiments.

The last data set consists of utterances of fragments of target-language(Spanish)
sentences, extracted from the test part of the original parallel TT2 corpus. These
utterances are used as a test-set to simulate real interactions of the CAT system with
human translators.
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Table 5.1: Features of the text English-Spanish translation XEROX Corpus
(K= ×1, 000)

English Spanish
Training-set Running words 572K 657K

Vocabulary 26K 30K
Test-set Running words 7.6K 9.4K

Running characters 47K 59K
Perplexity (3-gram) 103 61

All the speech data was acquired using high quality microphones and 16 KHz
sampling frequency. A summary of relevant features of these corpora isshown in
Tables 5.1, 5.2 and 5.3.

Table 5.2: Features of the Spanish speech acoustic training corpus (K=
×1, 000)

Speakers 164
Running words (4 hours) 42K

Table 5.3: Spanish speech test utterances (from the XEROX-corpus)

Text Number of original complete sentences 128
Number of different sentence fragments uttered 485
Average uttered fragment length and range (words) 2.4 [1,13]
Average prefix length and range (words) 4.5 [0,23]
Running words 1,138
Running characters 7,320

Speech Number of speakers 10
Number of utterances 5,796
Running words 13,998

The set of test utterances described in Table 5.3 was obtained as follows. First a
subset of 128 sentence pairs was selected from the text partition of the XEROX text
corpus. For the target (Spanish) sentence of each of these pairs, several segmentations
into prefixes and suffixes were randomly performed and, for each generated suffix,
a set of prefixes was randomly derived. All the prefixes of suffixes generated in
this way constitute the set of sentence fragments uttered by several speakers. In
order to approach real CAT user interactions as much as possible, this generation
process was performed in such a way that the lengths of the generated fragments
were similar to the lengths of accepted parts of system suggestions observed in text-
only experiments with a real CAT system applied to the original set of 128 sentence
pairs (see next section for details). An example of prefixes/suffixes derived from
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the sentence“adici ón de fuentes a la lista de recursos”, along with the resulting
fragments produced for speech acquisition, is shown in Table 5.4.

Each of the utterances obtained in this way is the acoustic signal denoted byx
in the previous sections. In the experiments described in the next section, the corre-
sponding text fragment will constitute the reference transcription againstwhich the
decoded result,̂d, will be compared. On the other hand, for the experiments related
to scenarios DEC-PREF, CAT-PREF and CAT-SEL, the prefix corresponding to each
fragment will constitute thefixed target prefix, denoted byep in the previous sections.
Finally, for the experiments with CAT-SEL the suffix corresponding to eachfragment
will be used to simulate the suggestion made by the CAT system, denoted asês in
the previous sections.

Table 5.4: Examples of some prefixes, suffixes and prefixes of suffixes ran-
domly derived for the sentence“adición de fuentes a la lista de recursos”

Prefix Suffix Prefixes of the suffix
adición de fuentes a la lista de recursos a la lista de

adición de fuentes a la lista de recursos la, la lista de
adición de fuentes a la lista de recursos de recursos

adición de fuentes a la lista de recursos recursos

Quality evaluation

Different evaluation measures are needed to assess the quality of speech decoding and
CAT operation. Speech decoding accuracy is assessed in terms of conventional mea-
sures (where by “sentences” we mean the word sequences described above). Specifi-
cally the Word Error Rate (WER) and Sentence Error Rate (SER) metrics previously
described have been used.

Before presenting the figures employed to assess CAT performance, letus briefly
recall the way in which the human translator would interact with this system. When
the system provides its best translation suffix suggestion, the human translator will
accept a (possibly void) prefix of this suffix. This text fragment is selected by ade-
quately positioning the cursor by means of mouse (or equivalent keyboard) actions.
After this point, raw text is typed. Obviously in a laboratory experiment users are
not available, but the reference target text can be used to simulate user operation and
to measure the following relevant figures to assess the translation/predictionperfor-
mance of a CAT system:

• Mouse Action Ratio(MAR): Number of mouse (or equivalent keyboard) ac-
tions needed to position the cursor at the end of the acceptable part of the sys-
tem suggestion, divided by the total number of running characters. A mouse
action is assumed to span at least one word (i.e. 5.4 characters on average).
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• Key Stroke Ratio(KSR): Number of key strokes plus the final acceptance key-
stroke needed to type the text necessary to correct the remaining parts ofsys-
tem suggestions in order to produce a target text which exactly matches the
reference translation, divided by the number of running characters [13].

• Accepted Suggestion Fragment Length(ASFL): Average length of number of
words of accepted suggestion fragments.

In addition to these translation error measures, another common (non CAT) trans-
lation quality metric is also used:

• Translation Word Error Rate(TWER): Minimum number of word substitution,
deletion and insertion operations needed to convert a full target sentence pro-
vided by a MT system into the corresponding reference translation, divided by
the total number of words in the reference translation [1, 7].

5.4.6 Experimental results

Different experiments have been carried out to assess the feasibility andpotential of
the ideas and techniques proposed. Some of the results are text-only experiments
aimed at providing performance figures relative to the MT models and CAT system,
in the framework of which the speech-related experiments have been performed. The
other results are directly devoted to assess the accuracy of speech decoding under
increasingly constrained speech-enabled CAT scenarios.

MT and CAT text-only experiments

These experiments were conducted by training MT and CAT systems with the train-
ing part of the English-Spanish XEROX corpus (Table 5.1) and testing the perfor-
mance on both the (FULL) test set from Table 5.1 and the (SMALL ) subset of 128
selected complete sentences used to generate the sentence-fragments testset of Ta-
ble 5.3. The MT and CAT systems were based on stochastic finite-state transducers,
trained with the GIATI approach [12, 10, 14, 13]. Results are summarizedin Ta-
ble 5.5.

Table 5.5: MT and CAT performance on the English-Spanish full test set of
Table 5.1 and the small complete-sentences subset of Table 5.3

MT CAT
TWER(%) KSR(%) MAR(%) ASFL(Words)

FULL 42.7 17.6 2.0 2.6
SMALL 57.4 24.6 3.2 2.3

As it can be observed, the (randomly selected)SMALL test set turned out to be
a particularly difficult subset of theFULL benchmark test set of the English-Spanish
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XEROX corpus [12]. According to the KSR and MAR figures, this CAT system
could save about 80% of human effort for theFULL test set and 72% for theSMALL

one (the joint contribution of KSR and MAR is a rough estimation of the overall
translation burden). In contrast with the relatively poor accuracy obtained for MT,
these CAT performance figures are quite adequate. Such an improved behavior is
clearly achieved thanks to the information extracted from the user feedback in the
interaction process.

The low KSR is consistent with the relatively large lengths of the suggested frag-
ments accepted as such (ASFL); on average, in each interaction cycle, the user could
accept 2.3 correct words. This ASFL figure was used in section 5.4.5 to guide the
generation of target text fragments summarized in Table 5.3, leading to an average
generated fragment length of 2.4 words.

These laboratory results correlate reasonably well with real tests with human
translators [32], where this CAT system allowed to double human translator pro-
ductivity in some cases.

Also worth noting in Table 5.5 is the distribution of predicted interaction effort
in terms of KSR and MAR. While KSR predicts raw human typing effort (to amend
inadequate parts of the system suggestions), MAR accounts for cursor-positioning
effort, typically using the mouse. For a skilled typist, these positioning actions tend
to be rather “distracting” so that, according to the real human tests, each positioning
action tends to be more human-time demanding than raw typing. For instance, in the
real tests described in [32], some human translators spent as much as about 15 sec-
onds in many of their cursor-positioning actions (this elapsed time includes reading
the system suggestions and deciding the correct follow-up translation/correction).

As a consequence, unless the suggestions are sufficiently good and long, users
tend to prefer typing by their own than accepting text suggested by the system. This
is exactly the trend we aim to counter with speech-enabled CAT. Using speech for
positioning and accepting suggestions, the user would just have to keep reading the
suggested text as long as it is acceptable. Clearly, this seems much more natural and
less distracting than having to keep switching all the time between raw typing, (men-
tally) reading the suggestions and positioning the cursor. Of course, speech-driven
actions are only expected to be acceptable by users if a sufficiently high recognition
accuracy can be achieved, which lead us to the experiments described in the next
subsection.

Speech-enabled CAT experiments

The aim of these experiments is to assess the feasibility of speech-enabled CAT
systems such as those corresponding to the CAT-PREF and CAT-SEL scenarios de-
scribed in section 5.4.

In order to provide reasonable baselines for these experiments, two additional
non CAT-related, speech-decoding experiments were performed in which the source
text is not taken into account. These experiments correspond to the settingsDEC
and DEC-PREF described in section 5.4. DEC corresponds to conventional speech
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decoding (of sentence fragments), while in DEC-PREF the search spaceis more con-
strained by taking into account the given target sentence prefixes. Theexperiments
will be presented following a least-to-most constrained order; that is, DEC, DEC-
PREF, CAT-PREF and CAT-SEL.

Regarding the experiment conditions, they are basically the same as were de-
scribed in section 3.4. Monophone HMMs trained from MFCCs coefficients. Lexi-
cal models represented as finite state automata. Finally, smoothed3-gram language
models were used in all the scenarios (except CAT-SEL, which requiresa special
language model. See section 5.4).

For the first experiment, DEC, the3-gram was trained on complete sentences
from the (30 Kword vocabulary) Spanish part of the XEROX corpus (Table 5.1), using
the SRILM toolkit [48]. Since the test set (Table 5.3) consists of sentencefragments,
rather than complete sentences, search was allowed both to start and to endin any
3-gram state.

In the second experiment, DEC-PREF, the information provided by the prefix ep

is incorporated by considering as initial states in the language model automatononly
those which are compatible with this prefix.

In addition to the constraints applied in previous speech-recognition-only experi-
ments, in the third experiment, CAT-PREF, the speech recognizer is furtherrestricted
to generate sentences that contain possible translations of words which appear in the
source sentence. The required stochastic dictionary was trained using the whole XE-
ROX bilingual training corpus (Table 5.1).

The last experiment corresponds to the most constrained scenario, CAT-SEL.
Here the human translator is assumed to justread alouda prefix of the target text
suggested by the system. Therefore, in each interaction, a much more constrained
LM is built, which only accounts for all the possible prefixes of the system-suggested
text.

Results are shown in Table 5.6a. In addition, in Table 5.7, the results correspond-
ing to the different approaches for CAT-PREF scenario (described insection 5.4.3)
are also reported.

Table 5.6: Speech decoding results (in %) for different scenarios. Theaverage
sentence decoding time is also shown

DEC DEC-PREF NCAT-PREF CAT-SEL
WER 26.8 24.6 20.9 1.8
SER 48.3 39.0 33.9 3.7
Av. Time (s) 29 25 1.3 0.2

As expected, speech recognition accuracy increases as the LMs become more
constrained. If only prefix-derived constraints are added to DEC, animprovement

aNotice that these results do not directly correspond to those presented in [51]. On the one hand,
the WER results there presented are actually CER (Character Error Rate)results. On the other, CAT-
PREF and DEC-PREF scenarios have been re-implemented by using smoothedn-gram models instead
of finite state grammars.
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Table 5.7: Speech decoding results (in %) for different approaches to CAT-
PREF scenario. As it is described in section 5.4.3, UCAT-PREF and NCAT-
PREF are implemented by re-scoring the unigram part and a whole n-gram
model respectively with a statistical dictionary. IBMCAT-PREF is based on
re-scoring a list of ASRn-best with an IBM 1 translation model. Finally
IBMLLCAT-PREF is similar to IBMCAT-PREF. The only difference is that
a log-linear translation model, including the direct and inverse IBM 1 model,
was used here

UCAT-PREF NCAT-PREF IBMCAT-PREF IBMLLCAT-PREF
WER 23.2 20.9 20.1 19.8
SER 34.5 33.9 32.3 31.8

of 2.2 points of WER and 9.3 points of SER is obtained in DEC-PREF. By further
including constraints derived from the source text, a new improvement is achieved
in CAT-PREF: 3.7 points of WER and 5.1 points of SER (or 5.9 points of WER and
14.4 points of SER with respect to the least constrained baseline). In addition to these
accuracy improvements, the use of source sentence derived constraints causes a sig-
nificant decreasing in the system response time, making possible the use of this kind
of speech interfaces in real situations. On the other hand, the results forthe different
approaches to CAT-PREF reported in Table 5.7 do not show a significantdifference
in performance. The simple NCAT-PREF approach turns out to be very competitive
while the use of a whole log-linear translation model (IBMLL-CAT-PREF) translates
into a modest improvement of one point in WER and two points in SER.

The constraints added in the last scenario, CAT-SEL, are derived from the (sim-
ulated) suggestions of the CAT system. In this case, the improvement is very impor-
tant: 19.1 points of WER and 30.2 points of SER with respect to the last scenario (or
25 points of WER and 44.6 points of SER with respect to the baseline).

All these results clearly suggest that using knowledge about the sourcesentence
is more important than using only user-validated prefixes. Moreover, if thetranslation
difficulty of the test-set is taken into account (which according to Table 5.5 isquite
large), the impact of using the translation information is remarkable. Therefore, better
results are expected for CAT-PREF with less problematic texts and/or better (use of)
translation models.

The decoding computational demands of the different systems are also worth
mentioning. With respect tomemory requirements, the size (number of3-grams or
edges) of the LMs required by DEC and DEC-PREF are similar, close to 300K. This
is about one order of magnitude larger than the size of the LM for CAT-PREF and
more than four orders of magnitude larger than the average CAT-SEL LM size. This
abrupt complexity drop appears reflected in the accuracy figures shown in Table 5.6.
On the other hand, with respect to thecompeting time, a notable reduction is observed
from DEC to DEC-PREF and the response time is about twenty times faster from
DEC-PREF to CAT-PREF, allowing the implementation of this interface in a real
application. Finally CAT-SEL only requires very light computing, which wouldmake
it easy to implement this kind of speech-enabled CAT systems on low-end desktop
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computers or low-cost dedicated devices. Using the adequate unexpensive hardware,
real-time operation can be easily achieved in both CAT scenarios.

The important performance gap observed from CAT-PREF to CAT-SEL isclearly
consistent with the much harder constraints of CAT-SEL. As discussed in section 5.3.1,
in between these two scenarios, an intermediate setting can be considered, corre-
sponding to Eq. (5.12), which is expected to lead to performance figures falling be-
tween those of CAT-PREF and CAT-SEL. However, as this setting requires some
speech data (fragments) different from those we have used here, wehave left its im-
plementation for future work.

The relative accuracy that can be achieved in the different scenarioshas been
assessed in terms of WER and SER. However, at least for the CAT-SEL setting,
only the SER figure really matters, since it directly estimates the voice-driven cursor-
positioning accuracy. The 3.7% SER achieved means that a manual (mouse or key-
board) correction of cursor position is required every 28 voice-driven successful ac-
tions, on average. We think this figure can be easily improved by using betteracoustic
modeling for speech decoding.

As a final remark about the experiments reported in this section, we would like
to recall that they can only be considered as simulated scenarios. This is not only be-
cause the speech data have not been acquired through real human-CAT interactions,
but also because reference target text fragments are used in place ofreal CAT system
suggestions. As discussed along this work, a real setting would involve true human
translator interactions and this is not considered adequate at these early stages. Note
also, however, that the simulation is very close to the real experiment. In the real case,
the user is expected to utter only correct fragments of target text and this isexactly
what we do here. Moreover, in order to better approach the real situation, the text
fragments to be uttered were generated under the constraint that their average length
was as close as possible to that observed in the suggestions made by the system in
our text-only CAT experiments (cf. Tables 5.3 and 5.5). Therefore, we think that
the obtained results constitute a reasonable starting point in this speech-enabled CAT
framework to be further developed in the future.

5.5 Adaptive learning

In the different instantiations of IPR addressed in this work, adaptive learning has
been considered in one way or another. Although in this chapter we are not concerned
about a specific IPR application but about a multi-modal IPR interface, we still have
an opportunity to benefit from this of learning approaches.

In the CAT-PREF scenario, Eq (5.17) is maximized to decode the input speech.
Here, the three models involved in the maximization are different both structurally
and from the point of view of the training data. For that reason, the log-linear model
based approximation, previously described in section 5.4.3 can be followedto better
benefit from the models involved. This way, instead of using Eq (5.17), a different
score function is actually used:
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d̂ ≈ argmax
d

exp [λ1logP (f | ep, d) + λ2logP (d |ep) + λ3logP (x | d)]

= argmax
d

λ1logP (f |ep, d) + λ2logP (d |ep) + λ3logP (x|d) (5.20)

Going further, we can include the model defined in Eq. 5.19, which, according
to the results, performs better than using the single translation model in Eq (5.17) to
achieve the expression in Eq. 5.21:

d̂ ≈ argmax
d

λ1logP (f | ep, d) + λ2logP (ep, d | f) +

λ3logP (d |ep) + λ4logP (x | d) (5.21)

Notice that this oprimization does not deal with a true probability distribution,
since the usual normalization factor required in log-linear models is missing. This
factor can be really hard to compute (e.g., the sum over all possible speechsignals
xis required), but it is not actually necessary since we only try to find a decoding
with the best value for the score function, which is the same with or without the
normalization factor.

From this, in order to improve the interface accuracy, we can perform an esti-
mation of the values of theλi parameters based on the sentences already decoded.
Because of the application considered, we can expect that, after a speech recognition,
the user will correct all the mistakes made by the interface so that the real transcrip-
tion of the speech input will be available. This information can be used to attempt
an estimation of theseλi parameters for each speaker in the test set (we can expect
different optimal parameters for different speakers).

After decoding a speech utterance, we have an set of hypotheses scored with
both speech and translation models. In addition, we can find out what hypothesis
was the correct one according to the user reaction to the recognition result. This
way, it would be possible to readjust theλi parameters in order to improve the score
of the correct transcription. The exact procedure consists in firstly computing a set
of possibleλi values to posteriorly keep the one making the reference transcription
occupy the highest position within then-best list. This way, we have the optimal
value for the sentence just recognized (and user validated and/or corrected). Based
on the values obtained from all the previous sentences, we can compute theλi values
for the sentence to be decoded as the arithmetic mean of the values already obtained.
As can be observed in Table 5.8, this technique achieves an improvement oftwo
points in SER. Notice here, that the number of sentences available for eachspeaker
is about 530 and, therefore, a better estimation could be expected in a realscenario
where more interactions are performed by a single user.
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Table 5.8: Word and Sentence Error Rate using adaptive learning .

ADAPTIVE IBMLLCAT-PREF BASELINE IBMLLCAT-PREF
WER,SER 19.1, 29.9 19.8, 31.8

5.6 Improving the accuracy of CAT-PREF by imposing sim-
ple user constraints

According to the results presented, the accuracy of the CAT-PREF scenario should be
improved to be really useful in real tasks. One of the main problems in this scenario
is that we are dealing with sentence fragments and, therefore, the language model can
not properly model the end of sentence event (every word has the sameprobability
of being an end-of-sentence word). If compare the perplexity of the DEC-PREF
“baseline” scenario (71) with this same task but based on whole sentences(40) we
can see a significant increment in the task difficulty. As a consequence, asignificant
amount of errors in this scenario are caused by wrong insertions (as well as deletions)
at the end of the partial sentence decoded.

As a possible solution, we can constrain the user inputs, so that the number of
words uttered is known in advance. CAT-PREF scenario is aimed at introducing
amendments at some CAT hypotheses. In IPR, we expect simple and short correc-
tions since we are trying to minimize the user effort. Hence, it is realistic to assume
that we can constrain the utterances in this scenario to have exactly one or two words.
Regarding the implementation of this new scenario, a simple solution relies on using
then-best list from the ASR in order to filter all the hypotheses that do not havethe
prefixed length. A better solution is to modify theViterbi search so that all the hy-
potheses exceeding the length considered in each case are removed from the decoding
search space.

As it can be seen in Table 5.9, the performance can be drastically improved by
imposing this kind of constraints (in the case of the 1-word constraint, the SERis
reduced in 50%).

Table 5.9: Word and Sentence Error Rate for two constrained scenarios where
the user is required to utter exactly 1 or 2 words

WER, SER
DEC-PREF CAT-PREF

1-WORD 20.6, 20.6 15.1, 15.1
2-WORD 19.5, 32.4 14.9, 26.1
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5.7 Summary of contributions

In this chapter, we have introduced multi-modality within an IPR system. Specifi-
cally, a speech interface for a CAT has been discussed.

After formalizing a general case, several interaction scenarios have been derived.
These scenarios represent different theoretical and practical possibilities.

In addition, we have proposed different techniques to take advantage of the envi-
ronment provided by a CAT system, in order to improve the performance of aspeech
recognizer. As a result, significant accuracy improvements have been obtained as
well as a much better recognition response time. Sufficiently good speech decoding
performance has been achieved at least in one scenario, which entails significant po-
tential savings of human effort with respect to typing the whole target text or having
to use non-speech cursor-positioning actions. Good performance (both speed and
accuracy) is achieved thanks to search constraints derived from boththe source sen-
tence (through a translation model) and the successively consolidated prefixes of the
target text.

A simple adaptive learning procedure has been described in order to adapt the
speech interface to a specific user without requiring any kind of extra user effort.

Finally a simple method to constrain the kind of inputs allowed has been proposed
aimed at significantly improving the interface performance.
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CHAPTER 6

CONCLUSIONS

In this final chapter, a summary of the main work developed will be presentedas well
as some ideas to continue the different lines proposed.

6.1 Main contributions

The main goal of this work has been to explore the application of the Interactive
Pattern Recognition (IPR) paradigm to several natural language applications.

In the first place, a formalization of IPR has been proposed in order to establish a
general framework not only for the applications being developed but also for the new
lines of work that can be followed in the future. To this end, the user activityhas been
included into the statistical formulation of the pattern recognition approach. Inthe
case of NLP a first order process has been considered to model the user actions. The
point is that the last user action can reflect the whole history of the process, which
can be seen as reasonable taking into account the sequential nature of the human
language. As a result, a general scenario can be stated for all the applications that can
be derived from this.

In addition, some interesting issues, heavily related to IPR, have been discussed.
Multi-modality, on the one hand, as an interesting way to deal with the user actions.
Multi-modality does not arise in IPR by accident. On the contrary, the IPR nature
itself intrinsecally entails and promotes the inclusion of multi-modality. On the other
hand, IPR constitutes a good opportunity to apply adaptive learning approaches. The
system is always being supervised during its normal operation mode and wecan ben-
efit from the outcomes produced to improve the models involved in the recognition
process. Simple approximations to including adaptive learning have been proposed
for the different applications considered and, in all the cases, significant improve-
ments have been achieved.

The first IPR application proposed (CAST) allows to generate perfect speech
transcription by developing an interactive system that cooperates with a human tran-
scriber. The system is able to provide transcriptions of an input speech fragment
and, at the same time, to adapt the results obtained to the user feedback. Thisway,
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we can reduce the effort required to perform the transcription. Several experiments
have been presented in order to support the CAST approach. The results obtained
show that a significant amount of user effort can be saved following thisproposal.
Nevertheless, the initial approximation to CAST proved to be inefficient (andpossi-
bly useless for the time being), due to the excessive system response time. To solve
the problem, an alternative based on the use of word graphs has been considered.
At the expense of a minimum performance degradation, this alternative has proven
to be able to dramatically decrease the system latency, making CAST usable as an
interactive tool.

Taking the IPR approach to an extreme environment, where no input patternis
really available and only the user feedback is present, a new application (Interactive
Text Generation, ITG) has been proposed. The point here is to provide assistance
in situations where typing becomes difficult. In the first place, different experiments
have been carried out to confirm the optimality of a greedy approach to this prob-
lem when compared with the traditional maximization of the posterior probability
by means of a dynamic programming algorithm. Next, a new prediction modality,
based on responding to each user key stroke was addressed. Different models were
proposed to deal with this situation.

In addition adaptive learning was thoroughly studied for this application. Some
alternatives were proposed and we also attempted to study the behavior of adaptive
learning from the user point of view. Finally, two applications of the ITG approach,
apart from merely generating text documents were discussed. It is worthto emphasize
the possibilities of using ITG in information retrieval and the initial and promising
results achieved.

Finally, multi-modality in IPR was addressed. Specifically, the case of a multi-
modal speech and text interface for Computer Assisted Translation (CAT)was dis-
cussed. To this end, a formalization of the inclusion of speech in CAT was developed
and different scenarios for this multi-modal interface were considered.

6.2 Selected derived publications

A selection of the publications derived from this work are brieftly commented.

The general IPR framework (Chapter 2) is described in:

Enrique Vidal, Luis Rodŕıguez, Francisco Casacuberta, Ismael Garcı́a Varea.
Computer Assisted Pattern Recognition. 4th Joint Workshop on Multimodal
Interaction and Related Machine Learning Algorithms. Brno (Czech Republic)
LNCS.

Regarding CAST (Chapter 3), the initial proposal along with several experiments
can be found in:
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Luis Rodŕıguez, Francisco Casacuberta, Enrique Vidal.Computer Assisted
Transcription Of Speech. III Iberian Conference on Pattern Recognition and
Image Analysis. Girona (Spain). LNCS.

A directly derived application of the CAST proposal for Interactively transcribing
handwritten documents is described in:

Verónica Romero, Alejandro H. Toselli, Luis Rodrı́guez, Enrique Vidal.Com-
puter Assisted Transcription for Ancient Text Images. International Conference
on Image Analysis and Recognition. Montreal (Canada) LNCS.

Verónica Romero, Alejandro H. Toselli, Enrique Vidal, Luis Rodrı́guez.Com-
puter Assisted Transcription of Handwritten Text Images.9th International Con-
ference on Document Analysis and Recognition. Curitiba (Brazil)

A description of the application of ITG to information retrieval (Chapter 4) can
be found in:

Luis Rodŕıguez, Alejandro Revuelta, Ismael Garcı́a-Varea, Enrique Vidal.In-
teractive text generation for information retrieval. 10th International Work-
shop on Pattern Recognition in Information Systems. Pending to be published

Finally, the inclusion of multi-modality into a CAT system (Chapter 5) is dis-
cussed in the following publications:

Enrique Vidal, Francisco Casacuberta, Luis Rodrı́guez, Jorge Civera, Carlos
Mart́ınez. Computer Assisted Translation Using Speech Recognition. IEEE
Transactions on Audio, Speech and Language Processing. 2006. 14(3):941-
951.

Luis Rodŕıguez, Enrique Vidal, Francisco Casacuberta, Jorge Civera, Carlos
Mart́ınez. On the use of speech recognition in computer assisted translation.
Interspeech 2005. Lisbon (portugal)

In addition, in Chapter 5 , the problem of aligning a source sentence and a frag-
ment of a target sentence was posed. To solve this problem, a series of algorithms
were proposed in:

Luis Rodŕıguez, Ismael Garcı́a Varea, Jośe Antonio Ǵamez. On the applica-
tion of different evolutionary algorithms to the alignment problem in statistical
machine translation Neurocomputing. Volume 71 , Issue 4-6 (January 2008)
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6.3 Future work

This work is only a starting point in the exploration of the IPR paradigm and the
applications that can be derived from it. There is a great amount of open fields to be
explored. We will only give some examples of possible general lines of work to be
followed.

• The IPR framework can be extended and adapted to other kind of pattern recog-
nition tasks. For instance, multimedia information recovering seems to be a
really good scenario to develop IPR.

• In the case of CAST, there are two general lines that can be proposed.On the
one hand, the inclusion of a multi-modal speech interface, as was developed for
CAT, can be adequate since speech recognition is included into the application
itself. On the other hand, the combination of CAST+CAT can be more than
justified in order to address the problem of high quality speech translation.

• Regarding ITG, the use of long-dependency language models should bead-
dressed to improve the prediction accuracy. Some experiments were developed
in this sense, but the modest improvements achieved did not justify the inclu-
sion of such results in this thesis. In addition, the use of ITG as a human learn-
ing tool is worth to be mentioned. In the case of the two application proposed
(computer programming and information retrieval) experiments involving real
users are needed to prove the usefulness of this proposal.
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APPENDIX A

APPENDIX . PROTOTYPES

From the IPR applications described in Chapters 3, 4 and 5 a set of prototypes have
been developed. The main goal is to show that the theoretical approachesand labora-
tory experiments can become into a real application that allows a user to experiment
the different IPR proposals.

A.1 Computer assisted speech transcription prototype

The CAST prototype was developed to strength the CAST approach by constructing
a user-testable application that reflects and allows a realistic testing of the operation
mode of this application. In addition, new approaches related to different interac-
tion aspects could be obtained from the feedback coming from the users testing the
prototype.

A.1.1 Objectives

The main goals of this prototype can be summarized as:

• Constructing a full functional and user-testable version of a tool implementing
the CATS approach

• Performing usability test for this tool.

• Including some new ideas about functionality that can improve the system us-
ability and performance. This proposals will be obtained from the usability
tests previously mentioned.

• Extending the initial CAST theoretical framework based on the experience
achieved from this prototype
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A.1.2 Functional Requirements

Since the main task to be solved by the prototype is the achievement of high qual-
ity transcription, by means of a cooperation process between a human userand an
automatic speech transcription system, we can define the following functionalre-
quirements.

• The system has to be able to provide transcriptions from files containing spo-
ken utterances. This can be accomplished by including an automatic speech
recognizer into the prototype.

• The user can interact with the system and this interaction has to be sent to a
speech recognizer in order to use this information for future predictions.

• The user has to be able to define work sessions where parameters as: files to be
transcribed, files already transcribed, configuration parameters, etc.are saved.

• The prototype must be able to collect different statistics about the CAST pro-
cess that will be used to improve the prototype itself as well as the CAST
theoretical proposal.

A.1.3 Architecture

The prototype is composed of three different subsystems:

Prediction Engine

The prediction engine is a general-purpose, speaker-independent, continuous speech
recognizer (ATROS). This engine is a stand-alone application capable ofrecognizing
speech in real time from a microphone input or from a wavefile.

Given an input utterance, the recognizer initially pre-process the signalby per-
forming a border detection algorithm and a pre-emphasis filter to increase themagni-
tude of the high frecuencies present in the speech signal. Next, a feature extraction is
performed to obtain a MFCC (Mel Frequency Cepstral Coefficients) vector for each
frame in the input signal. Then, the energy along with the first and second derivatives
are added to build the final feature vector for the current frame.

Once the feature extraction has been performed, the recognition process is carried
out. The recognizer uses three-state, left-to-right Hidden Markov Models as acoustic
models. Finite-state automatons are used as Lexical entries and, finally, language
models are implemented as finite-state networks. The Viterbi algorithm is used to
find the most probable path on the integrated network (acoustic+lexical+language
models). Finally, the utterance represented by this optimal path is returned asthe
result of the recognition.
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A.2. Interactive text generation prototype

Graphical User Interface

This interface provides all the interaction mechanisms to allow an efficient commu-
nication between the user and the prototype. The interface has been implemented in
Java.

Initially, the interface request the user to create a new transcription project or to
use a previously created one. A project is a set of input wavefiles to be transcribed.
Along with these files a project stores the transcriptions already obtained.

The main screen shows, on the one hand, the list of files in the current project so
that the user can choose the file to be transcribed currently. On the other hand, the
waveform of the current file is shown in a graphic panel and a text field isused to show
the current system suggestion along with the different user interactions performed as
it is shown in Figure A.2. The user can interact with this text field by using the
mouse (or the keyboard) to select the current prefix. In addition, the keyboard is used
to amend the system suggestions.

Communication module

Since the prediction engine and the user interface have been developed indifferent
languages, a communication module is needed to send the user feedback from the
interface to the engine and to collect the different predictions.

This module is currently implemented by adding a communication API to the
recognizer. This API is implemented by using the Java Native Interface (JNI) that
allows a java program to call C/C++ functions. This way, this API is included intothe
recognizer building process so that the interface can make the proper calls in runtime.
Three main functions are defined in the API, used for initializing the recognizer,
setting a new user prefix and requesting a new prediction from the engine.

A.2 Interactive text generation prototype

The ITG prototype is intended to test the theoretical proposal with real users and to
explore different possibilities for a collaborative user-computer environment in the
generation of different text documents, queries, etc.

A.2.1 Objectives

The main goals of this prototype can be summarized as:

• Constructing a full functional and user-testable version of a tool implementing
the ITG approach

• Performing usability tests for this tool.

• Including some proposals about functionality that can improve the system us-
ability and performance. This proposals will be obtained from the usability test
previously mentioned.
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Figure A.1: CAST prototype

• Explore new scenarios for ITP (constrained interfaces, generation of docu-
ments in a foreign language, etc.)

• Extending the initial ITP theoretical framework based on the experience achieved
from this prototype

A.2.2 Functional requirements

Since the main task to be solved by the prototype is the semi-automatic generation of
text documents, we can define the following functional requirements.

• The system has to be able to provide completions to the user typed text. This
can be accomplished by including an automatic text prediction engine into the
prototype.

• The user can interact with the system and this interaction has to be sent to the
text prediction system in order to include this information for future predictions

• The user has to be able to define work sessions where parameters as filesto be
generated, documents already transcribed, etc. are defined.

• The prototype must be able to collect different statistics about the ITP process
that will be used to improve the prototype itself as well as the ITP theoretical
proposal.

A.3 Architecture

The prototype is composed of three different subsystems:
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Figure A.2: ITG Initial prototype

• An automatic text predictor. Based onn-gram language models and imple-
mented in C++. It is able to perform adaptive learning on the test being pro-
cessed.

• A Graphical User Interface. This interface provides all the interaction engine
to allow an efficient communication between the user and the prototype. The
interface has been implemented in Java.

• A communication module between the text predictor and the graphical inter-
face that sends the information derived from the user interaction to the predic-
tor. This module is implemented by following a server-client approach and it
is based on the use of network sockets.

A.4 Multi-modal Computer assisted translation prototype

A multi-modal Computer assisted translation (CAT) prototype was built to include a
speech and keyboard interface into a CAT application. This prototype is not aimed at
testing the CAT approach since other prototypes have been developed to this end but,
rather, at experimenting with a multi-modal interface.

A.4.1 Objectives

The main goals of this prototype can be summarized as:
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• Constructing a completely user-testable of a multi-modal CAT interface.

• Performing usability tests for this interface

• Extending the initial multi-modal CAT theoretical scenarios proposed from the
results obtained with the use of this prototype

A.4.2 Functional Requirements

The following functional requirements were established for this prototype:

• The system has to be able to provide initial translations for a source sentence
and interactively complete user validated translation prefixes.

• The user can interact with the system by using two different modalities: mouse+keyboard
and speech.

• The use of the speech is planned according to the scenarios CAT-PREF and
CAT-SEL proposed in Chapter 5.

A.4.3 Architecture

The prototype is composed of four different subsystems:

Speech recognizer

The prediction engine is the general-purpose, speaker-independent,continuous speech
recognizer (ATROS) already described in section A.1.3.

Translation engine

The translation engine used in the CAT process consisted in a “C” applicationable
to deal with translation models in the form of finite state transducers. The differ-
ent translation suffixes are obtained by performing an adaptedViterbi search on the
transducer.

Graphical User Interface

This interface provides all the interaction mechanism between the user and the pro-
totype.

Initially, the user can select a list of files containing source sentences to betrans-
lated. Next the user can proceed by selecting a specific sentence and theinteractive
process start. Initially, the system provides an initial full translation for the source
sentence. Then, the user can validate part of the translation proposed and introduce
some amendments. Taking into account this user feedback the system will provide a
new translation suffix.
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A.4. Multi-modal Computer assisted translation prototype

Figure A.3: Multi-modal CAT prototype

The user feedback can be performed by either keyboard or speech.In the case of
the speech, two different scenarios are considered. When a new system translation
suggestion is available, an error-free prefix can be selected by utteringthe final word
(or words) in this prefix. This corresponds to the CAT-SEL scenario. Once the prefix
has been set, the user can dictate a suitable continuation for this prefix (CAT-PREF
scenario) and after transcribing the user utterance, the translation prediction engine
will suggest a new suffix. This way, the whole CAT process can be performed by
using the voice only. Alternatively, the user can employ the keyboard and/or the
mouse to correct the speech recognition mistakes or to simply interact with the CAT
system in the traditional way.

The main interface screen shows, on the one hand, the source sentenceto be cur-
rently translated and, on the other, the CAT interactive process. In addition the wave
file resulting of a user utterance is also shown. Finally some additional information
about the prototype is also presented. In Figure A.3 a snapshot of the application is
shown.

Communication module

The user interface has been developed in Java and the speech recognizer and the trans-
lation engine were both developed in C. As a result, the same communication method
described in section A.1.3 and based on the Java Native Interface was employed.
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