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THE CONE OF CURVES AND THE COX RING OF RATIONAL

SURFACES GIVEN BY DIVISORIAL VALUATIONS

C. GALINDO AND F. MONSERRAT

Abstract. We consider surfaces X defined by plane divisorial valuations ν of the quo-
tient field of the local ring R at a closed point p of the projective plane P2 over an
arbitrary algebraically closed field k and centered at R. We prove that the regularity of
the cone of curves of X is equivalent to the fact that ν is non positive on OP2(P

2 \ L),
where L is a certain line containing p. Under these conditions, we characterize when
the characteristic cone of X is closed and its Cox ring finitely generated. Equivalent
conditions to the fact that ν is negative on OP2(P

2 \ L) \ k are also given.

1. Introduction

In this paper we consider rational surfaces X defined by simple finite sequences of point
blowing-ups starting with a blow-up at a closed point of the projective plane over an
arbitrary algebraically closed field. We characterize those surfaces X whose cone of curves
is regular and determine which ones of these are Mori dream spaces. Our surfaces are
intimately related with algebraic objects, plane divisorial valuations, which will be useful
in our study.

Ideas by Hensel gave rise to the concept of valuation, established in 1912 by Kürschák.
This concept is an important tool in several areas of mathematics. One of the fields where
valuations are very useful is that of resolution of singularities. Between 1940 and 1960,
Zariski and Abhyankar put the foundations of the valuation theory applied to resolution
of singularities of algebraic varieties [52, 53, 54, 1, 2]. It is well-known that resolution in
characteristic zero was proved by Hironaka without using valuations, however many of the
attempts and known results involving resolution in positive characteristic use valuation
theory (see [48] as a sample).

Generally speaking, valuations are not well-known objects although some families of
them have been rather studied. This is the case of valuations of quotient fields of regular
two-dimensional local rings (R,m) centered at R (plane valuations). Zariski gave a clas-
sification for them and a refinement in terms of dual graphs can be found in [46] (see also
[25]). Plane valuations are in one to one correspondence with simple sequences of point
blowing-ups starting with the blowing-up of SpecR at m. Here, simple means that the
center of each blow-up is in the exceptional divisor produced by the previous one. Proba-
bly, and from the geometric point of view, the so-called divisorial valuations are the most
interesting ones; in the case of plane valuations, they correspond with finite sequences
as above and are defined by the last created exceptional divisor. Within the problem of
resolution of singularities, valuations are considered as a local object and, mostly, used to
treat the local uniformization problem. However, as we will see, useful global geometrical
properties arise associated with certain classes of plane divisorial valuations.

Along this paper, k will denote an algebraically closed field of arbitrary characteristic,
P2 := P2

k the projective plane over k and our valuations will be of the quotient field of the
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2 C. GALINDO AND F. MONSERRAT

local ring R := OP2,p, where p is a fixed point in P2. To fix notation, we set (X : Y : Z)

projective coordinates in P2, consider the line L with equation Z = 0, that will be called
the line at infinity, and the point p with projective coordinates (1 : 0 : 0). In addition,
pick affine coordinates x = X/Z; y = Y/Z in the chart of P2 given by Z 6= 0 and consider
a divisorial valuation ν of the quotient field of the local ring R and centered at R. A goal
of this paper is either to characterize, or to provide geometrical properties of, the fact that
the valuation ν is non positive or negative on all polynomials p(x, y) in the set k[x, y] \ k.

As mentioned above, some of our characterizations or properties involve a good be-
haviour of interesting global objects as the cone of curves, the characteristic cone or the
Cox ring attached to the surface that the sequence of point blowing ups determined by ν
defines.

An interesting class of valuations satisfying one of the facts we characterize, ν(p) ≤ 0 for
every p ∈ k[x, y], is studied in [9]. There, the authors deduce good properties concerning
curves and line bundles on the surface that certain valuations define. These valuations
are those attached with pencils defined by the line at infinity L and curves with only one
place at infinity. The study of these curves was started by Abhyankar and Moh [3, 4]
and we recall that a projective curve C ⊂ P2 has only one place at infinity when C ∩ L
is a unique point p and C is reduced and unibranched at p. The mentioned valuations
are those defined by the sequence of point blowing-ups eliminating the base points of the
mentioned pencil. A close class of valuations, also centered at R but non-necessarily of
divisorial type, are those whose centers (maybe infinitely many) are given by some curve,
or family of curves, with only one place at infinity. These valuations have been studied in
[22, 24] because they are useful in coding theory. These valuations satisfy an important
property, an Abhyankar-Moh semigroup type theorem, that is a result giving a minimal
set of generators for the semigroup −ν(k[x, y]), whenever one considers suitable values of
the characteristic of the field k [23]. It is also worth to mention the existence of a family
of valuations, satisfying the mentioned property on their signs, which plays an important
role for the dynamics of polynomial mappings of the affine plane [17, 18].

Returning to general divisorial valuations ν, we will prove in Theorem 1 that the fact
ν(p) ≤ 0 for all p ∈ k[x, y] is equivalent to the one that the cone of curves NE(X) of
the surface X defined by ν is regular, a stronger property that being rational polyhedral.
Two more equivalent conditions, (a) and (c), are also stated in the mentioned theorem.
Condition (a) is a very simple to check local property, while Condition (c) is global, the
nefness of a certain divisor derived from ν. As a consequence, it is easy to check whether
a valuation satisfies the conditions in Theorem 1 and it is clear that these valuations are
a natural extension of those in [9] and they keep good global properties (see also Remark
2).

Recall that cones associated with varieties have been used in the last decades to approach
the theory of minimal models. Kawamata’s cone theorem [30], which generalizes a result by
Mori [36] and implies that the closure of the cone of curves of a variety is rational polyhedral
if its anticanonical bundle is ample, is an important ingredient in the model minimal
program. For Calabi-Yau varieties, a substitute of the cone theorem is the Morrison-
Kawamata conjecture, related with the nef cone, [37, 38, 31, 51], which is a theorem in
dimension 2 [47, 40, 31]. With respect to the cone of curves, even for the simplest case of
surfaces, there is no general result that allows us to decide when it is rational polyhedral.
Some other reasons explaining the interest of satisfying this property can be seen in [8, 41].
It is worthwhile to add that, for surfaces, apart from Kawamata’s result, there exists a
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number of results guarantying good properties of the cone of curves (see [9, 19, 21, 33] for
instance).

Two equivalent conditions to the fact ν(p) < 0 for all p ∈ k[x, y] \ k are also given in
Theorem 2. They are of either of global type or a mix of global and local data.

The characteristic cone is other interesting cone which can be attached with a variety. It
was introduced by Hironaka, Mumford and Kleiman and, for instance, its relative version
is useful in the study of projective birational morphisms π : Z → Y of normal algebraic
varieties which are an isomorphism outside π−1(O), for a closed point O ∈ Y [13]. Our
Theorem 3 gives an equivalent statement to the fact that the characteristic cone of the
surface attached to a valuation which is non positive on polynomials of k[x, y] (valuations
previously characterized in Theorem 1) is closed. Using [27, 20], we prove in Corollary
4 that the same statement characterizes those surfaces given by valuations as mentioned
whose Cox rings are finitely generated.

Cox rings were introduced by Cox in [12] for toric varieties to show that they behave
like a projective space in many ways. This definition was extended to varieties with free,
finitely generated Picard group [27] and, roughly speaking, this ring is the graded one
of the section of line bundles on the variety. Finite generation of Cox rings achieves
great importance in the minimal model program, since for varieties with this property the
mentioned program can be carried out for any divisor. Note that recently has been proved
[7] the existence of minimal models for complex varieties of log general type and that the
Cox ring of a Fano complex variety is finitely generated. With respect to surfaces, the
fact that the Cox ring is finitely generated is related to invariant theory and the Hilbert’s
fourteen problem as one can see in [39, 11, 50]. The recent literature contains a number of
papers concerning this issue [20, 49, 15, 5, 43, 28] and confirms that the classification of
rational surfaces (and, of course, of varieties) with finitely generated Cox ring is a difficult
problem.

Before explaining how this paper is organized, we notice that our results happen for a
field k of any characteristic. For the field of complex numbers, in item a) of [34, Theorem
1.4] the author gives a characterization of non positive valuations in terms of what he calls
key forms. We show in Corollary 2 that his characterization is equivalent to that of item
(a) of our Theorem 1. A similar situation holds for item b) of [34, Theorem 1.4] and our
characterization in item (a) of Theorem 2 (see Corollary 3).

Apart from the introduction, this paper has two more sections. Section 2 is devoted
to give the mentioned conditions characterizing when the valuation ν is non positive or
negative on k[x, y] \ k. Proof of Theorem 1 requires two previous lemmas, where contact
maximal values of the valuation are involved. This section also contains the above ex-
plained relation with recent results in the case of the complex field. Section 3 contains
Theorem 3 and Corollary 4 on the characteristic cone and Cox ring of X. This last result
gives a large class of Mori dream surfaces with arbitrarily large Picard number. These
include infinite families of surfaces whose anticanonical Iitaka dimension is equal to −∞
(see Example 1).

2. Characterization of non-positive and negative divisorial valuations

2.1. Plane divisorial valuations. A valuation of a field F is a surjective map ν : F ∗(:=
F \ {0}) → G, where G is a totally ordered commutative group, such that ν(f + g) ≥
min{ν(f), ν(g)} and ν(fg) = ν(f) + ν(g), for f, g ∈ F . If F is the quotient field of a local
regular ring (R,m), ν is said to be centered at R whenever R∩mν = m, where mν = {f ∈
F |ν(f) > 0}∪{0} is the maximal ideal of the valuation ring Rν = {f ∈ F |ν(f) ≥ 0}∪{0}.
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Set P2 := P2
k the projective plane over an arbitrary algebraically closed field k and p a

closed point in P2 as we said in the introduction. In this paper, R will be the local ring
OP2,p at the point p. Valuations centered at R will be called plane valuations and they are

in 1-to-1 correspondence with simple sequences π of point blowing-ups over P2 [46]. This
means that we start by blowing-up P2 at p and, afterwards, each blowing-up has center
in the last created exceptional divisor. Plane valuations can be classified in five types
depending on the relative position of the obtained exceptional divisors [46]. Sequences
π need not to be finite and finite ones correspond with the so-called (plane) divisorial
valuations. This designation comes from the fact that they are defined by the last created
exceptional divisor in its attached sequence π. The value group of a divisorial valuation is
that of integer numbers and this type of plane valuations constitute the only one satisfying
that the transcendence degree of the field Rν/mν over k is 1.

We will consider local coordinates {u, v}, u = Y/X and v = Z/X, around the point
p = p1 = (1 : 0 : 0) of P2. Set ν a divisorial valuation of the quotient field of R centered
at R and

(1) π : X = Xm
πm−→ Xm−1 −→ · · · −→ X1

π1−→ X0 = P2
k

the simple sequence of point blowing-ups that ν defines. Here π1 is the blowing-up of P2
k at

p1 and πi+1, 1 ≤ i ≤ m−1, the blowing-up of Xi at the unique point pi+1 of the exceptional
divisor defined by πi, Ei, such that ν is centered at the local ring OXi,pi+1

. Denote by
Cν := {pi}

m
i=1 the sequence (or configuration) of infinitely near points above defined; pi is

named to be proximate to pj (pi → pj) whenever i > j and pi belongs either to Ej or to
the strict transform of Ej on Xi−1. A point pi is satellite whenever there exists j < i− 1
satisfying pi → pj; otherwise, it is called free. The above mentioned relative position
among (strict transforms on X of) divisors given by π is usually represented by the dual
graph of ν. This is a tree where each vertex represents a divisor and two vertices are joined
whenever their corresponding divisors meet. The dual graph is an equivalent datum to the
structure of the Hamburger-Noether expansion of the valuation which provides parametric
equations for it [14]. Both of them determine, and can be determined by, a finite sequence

of positive rational numbers {β′
j}

g+1
j=0 , usually called the Puiseux exponents of the valuation

[14, (1.5.2)]. In this paper, we will use this sequence and also another family of integer

numbers {βj}
g+1
j=0 , the so-called sequence of maximal contact values [14, (1.5.3)] (see [14,

Lemma 1.8]). This last sequence spans the semigroup of values of ν, S(R) := ν(R \ {0}).
In fact {βj}

g
j=0 is a minimal set of generators of S(R) and βg+1 detects the number of

free points after the last satellite one of π and it will be an important value for us. We
conclude by noticing that Puiseux exponents, contact maximal values and dual graph are
data that can be obtained one from each one of the others [14, Theorem 1.11].

2.2. Cones and Cox ring. This brief section will be devoted to introduce some objects
that will appear in our results. Although they can be defined in general varieties, we
will suppose that X is a rational surface defined by the sequence π given by a divisorial
plane valuation ν as above. For a start, set Pic(X) the Picard group of the surface X and
PicQ(X) = Pic(X)⊗ZQ the corresponding vector space over the field of rational numbers.
It is well-known that the intersection form extends to a bilinear pairing over PicQ(X) which
will be denoted by ·. Denote by E0 a line in P2 that does not pass through the point p and
set {Ei}

m
i=0 (respectively, {E

∗
i }

m
i=0) the strict (respectively, total) transforms of the line E0

and the exceptional divisors (also denoted {Ei}
m
i=1) on the surface X through π. Denote

[Ei] (respectively, [E
∗
i ]), 0 ≤ i ≤ m, the class modulo linear (or numerical) equivalence on

PicQ(X) of the mentioned divisors. Then {[Ei]}
m
i=0 and {[E∗

i ]}
m
i=0 are bases of the vector
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space PicQ(X) and Ei = E∗
i −

∑

pj→pi
E∗

j gives a change of basis in the Q-vector space of

divisors with exceptional support.
For us, the cone of curves of X, NE(X), is defined as the convex cone of PicQ(X)

generated by the classes in PicQ(X) of effective divisors on X. When one changes the
sentence “effective divisors” by “nef divisors” (respectively, “divisors defining base point
free linear systems”) one gets the concept of nef cone P(X) (respectively, characteristic

cone P̃(X)). Recall that P̃(X) is included in P(X), both cones have the same topological
interior [32] and P(X) is the dual cone of NE(X). Also notice that these cones are called
to be regular if they are generated by some elements forming a basis of the Z-module
Pic(X).

Denote s = (s0, s1, . . . , sm) ∈ Zm+1, Ds :=
∑m

i=0 siEi and regard the vector spaces

H0 (X,OX(Ds)) = {f ∈ k(X) \ {0} | divX(f) +Ds ≥ 0} ∪ {0}

as k-vector subspaces of the function field k(X) of X. Then the Cox ring of X is defined
as the graded k-subalgebra of k(X)

Cox(X) :=
⊕

s∈Zm+1

H0 (X,OX (Ds)) ,

where we must notice that different bases of Pic(X) give isomorphic (as k-algebra) Cox
rings.

We conclude this section by recalling a concept which we will also use. This is that of
Iitaka dimension, κ(D), of a divisor D on X:

κ(D) := max{dimϕ|nD|(X) | n ∈ N(D)},

whereN(D) = {m ∈ Z>0 | H
0(X,OX (mD)) 6= 0}, Z>0 denotes the set of positive integers,

dim projective dimension and, for each n ∈ N(D), ϕ|nD|(X) is the closure of the image of

the rational map ϕ|nD| : X · · · → PH0(X,OX (nD)) defined by the complete linear system
|nD|. By convention, κ(D) = −∞ whenever |nD| = ∅ for all n > 0.

2.3. The characterization. Throughout this section, ν will be a (plane) divisorial val-
uation such that its corresponding blowing-up sequence is π (see (1)). For each index
i ∈ {1, 2, . . . ,m}, let ϕi be an analytically irreducible germ of curve at p whose strict
transform on Xi is transversal to Ei at a non-singular point of the exceptional locus.
Consider the family of divisors on X:

(2) Di := diE
∗
0 −

m
∑

j=1

multpj(ϕi)E
∗
j ,

1 ≤ i ≤ m, where di denotes the intersection multiplicity at p of the germ of the line L at
p and the germ ϕi, and multpj(ϕi) the multiplicity at pj of the strict transform of ϕi at pj.
Set D0 := E0; by Noether’s formula it holds that {[Di]}

m
i=0 is the dual basis, with respect

to the above defined bilinear pairing, of the basis of PicQ(X) given by {[L̃]} ∪ {[Ei]}
m
i=1,

where L̃ denotes the strict transform of L on X.
Fix an ample divisor H on X and define

Q(X) := {x ∈ PicQ(X) | x2 ≥ 0 and [H] · x ≥ 0}.

Then, the following result happens:

Lemma 1. Let D = dE∗
0 −

∑m
i=1 riE

∗
i be a divisor on X, with d, ri ∈ N for all i =

1, 2, . . . ,m, N being the nonnegative integer numbers, and such that d 6= 0. Then, the
following conditions are equivalent:
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(a) [D] · x ≥ 0 for all x ∈ Q(X).
(b) D2 ≥ 0.

Proof. Notice that [D] · x ≥ 0 for all x ∈ Q(X) if and only if
∑m

i=1 rixi ≤ d for all
(x1, x2, . . . , xm) ∈ Qm such that

∑m
i=1 x

2
i ≤ 1. Consider the map f : Rm → R given by

f(x1, x2, . . . , xm) :=
∑m

i=1 rixi; applying the Lagrange multipliers method it is straight-

forward to check that
√

∑m
i=1 r

2
i is the maximum value that f takes in the set

{

(x1, . . . , xm) ∈ Rm |
m
∑

i=1

x2i ≤ 1

}

.

As a consequence, [D] · x ≥ 0 for all x ∈ Q(X) if, and only if,
√

∑m
i=1 r

2
i ≤ d, that is, if

and only if D2 ≥ 0.
�

Let {β̄i}
g+1
i=0 be the sequence of maximal contact values of ν, notice that g is the number

of characteristic pairs of a general element of ν. This sequence will be useful in the proof
of the following result.

Lemma 2. Let ν be a plane (divisorial) valuation of the quotient field of R (:= OP2,p)
centered at R and X the surface that it defines through π. Consider the family of divisors
on X given in (2). Then D2

0 = 1, D2
1 = 0 and, for any index i ∈ {2, 3, . . . ,m} such that

D2
i ≥ 0, the following properties are satisfied:

(a) If pi is a satellite point of the configuration Cν that defines π, it holds D2
i > 0.

(b) D2
i−1 ≥ 0 and, moreover, if D2

i−1 = 0 then either i = 2, or pi is satellite and pi−1

is free.

Proof. The equalities D2
0 = 1 and D2

1 = 0 are straightforward and, without loosing gen-
erality, we can assume that i = m ≥ 2. Define the sequence of positive integer numbers
{ej}

g
j=0, where ej := gcd(β̄0, β̄1, . . . , β̄j) (notice that eg = 1).

First, we are going to prove item (a). Reasoning by contradiction, assume that D2
m = 0.

Since the point pm is satellite, β̄g+1 = eg−1β̄g and one gets

0 = D2
m = d2m − eg−1β̄g = eg−1

[

dm
eg−1

dm − β̄g

]

.

Taking into account that gcd(β̄0, β̄1, . . . , β̄g) = 1, the above equality leads to a contradic-
tion because eg−1 divides dm and gcd(eg−1, β̄g) = 1.

To prove item (b), notice that, when pm is a free point and m ≥ 3, then D2
m−1 > 0

by Noether’s formula. Therefore we will assume that the point pm is satellite. Denote

by ν̂ the divisorial valuation defined by the divisor Em−1. Let { ˆ̄βj}
ĝ+1
j=0 be the sequence

of maximal contact values of ν̂ and set êj := gcd( ˆ̄β0, . . . ,
ˆ̄βj) for all j ∈ {0, 1, . . . , ĝ} and

e := êĝ−1/eĝ−1. Notice that g ≥ 1 (because pm is a satellite point) and either g = ĝ or
ĝ = g − 1.

First assume that g = ĝ (which means that pm−1 is also a satellite point). The following
equality we are going to prove will be useful.

(3) | ˆ̄βg − eβ̄g| =
1

eg−1
.

Indeed, consider the sequences of Puiseux exponents {β′
j}

g+1
j=0 and {β̂′

j}
g+1
j=0 corresponding

with ν and ν̂, respectively. Notice that these exponents can be obtained from continued
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fractions determined by the dual graphs (or the structures of the Hamburger-Noether
expansions) of the valuations ν and ν̂. By [14, Lemma 1.8], it holds that

β′
g =

β̄g −Ng−1β̄g−1

eg−1
and β̂′

g =
ˆ̄βg − N̂g−1

ˆ̄βg−1

êg−1
,

where N0 := 0 (respectively, N̂0 := 0) and Nj :=
ej−1

ej
(respectively, N̂j :=

êj−1

êj
) for

j ∈ {1, . . . , g}. Since Ng−1β̄g−1/eg−1 = N̂g−1
ˆ̄βg−1/êg−1, it happens that

ˆ̄βg − eβ̄g
êg−1

= β̂′
g − β′

g.

The values êg−1 and eg−1 are reduced denominators for β̂′
g and β′

g and, moreover, if

〈a0; a1, . . . , ar〉 = 〈a0; a1, . . . , ar−1, 1〉 are the two equivalent expressions of β′
g as continued

fractions (following the notation of [42, Section 7.2]), it holds that β̂′
g = 〈a0; a1, . . . , ar−1〉

and then

|β̂′
g − β′

g| =
1

êg−1eg−1

by [42, Theorem 7.5], which proves (3).
Now,

D2
m = d2m − eg−1β̄g ≥ 0 and D2

m−1 = e2d2m − êg−1
ˆ̄βg

because β̄g+1 = eg−1β̄g,
ˆ̄βg+1 = êg−1

ˆ̄βg, since ν and ν̂ are defined by satellite points, and
dm−1 = e dm. Then

D2
m−1 = e2

[

d2m −
eg−1

ˆ̄βg
e

]

≥ e2
[

d2m − eg−1β̄g −
1

e

]

= e2
[

D2
m −

1

e

]

> 0,

where the first inequality is a consequence of (3) and the last one holds because D2
m is the

product of eg−1 by an integer (that must be positive by item (a)) and 1/e < eg−1.
Finally, assume that ĝ = g − 1. This case occurs if and only if Pm−1 is free. Therefore

eg−1 = 2, and, using Noether’s formula, it is easy to deduce that dm−1 = dm/2 and

ˆ̄βĝ+1 =
β̄g+1 + 2

4
.

Using this equality, we have that

D2
m−1 =

1

4

[

d2m − β̄g+1 − 2
]

=
1

4
D2

m −
1

2
.

Taking into account that D2
m must be greater than or equal to 2 because D2

m−1 is an

integer, we conclude D2
m−1 ≥ 0 and the result is proved.

�

Remark 1. Lemma 2 shows that, under the assumption D2
m ≥ 0, it holds that D2

i ≥ 0
for all i ∈ {0, . . . ,m− 1} and moreover the divisors Di whose self-intersection is equal to
zero are among those such that pi is a free point.

Now we are ready to state and prove our first theorem, which provides equivalent
statements to the fact that the cone of curves of the rational surface X defined by a
valuation ν as above is regular. Recall that P2 is the projective plane over an algebraically
closed field k, p = p1 = (1 : 0 : 0), R the local ring OP2,p, L is the line at infinity (defined
by the equation Z = 0) and {x, y} affine coordinates in the chart Z 6= 0.
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Theorem 1. Let ν be a plane divisorial valuation of the quotient field of R centered at
R. Set X the surface that it defines via its attached sequence of point blowing-ups π (1).
Consider the divisor Dm defined in (2) and β̄g+1 the last maximal contact value of ν.
Then, the following conditions are equivalent:

(a) d2m ≥ β̄g+1.
(b) The cone NE(X) is regular.
(c) Dm is a nef divisor.
(d) ν(f) ≤ 0 for all f ∈ k[x, y].

Proof. Let S1 be the convex cone of PicQ(X) spanned by the classes [L̃], [E1], [E2], . . . , [Em]
and recall that its dual cone S∨

1 is spanned by [D0], [D1], . . . , [Dm], where Di are the
divisors defined in (2). Statement (a) is equivalent to say that the divisor Dm has non-
negative self-intersection. Assume that it holds and let us prove Statement (b). By Lemma
2, Di ∈ Q(X) for all i ∈ {0, 1, . . . ,m}, Q(X) being the set defined before Lemma 1. Then,
setting NE(X) the topological closure of the cone NE(X), it holds, on the one hand, that
S∨
1 ⊆ NE(X) because Q(X) ⊆ NE(X). On the other hand, any class of an irreducible

curve on X different from [L̃], [E1], [E2], . . . , [Em] must belong to S∨
1 . Thus, one gets

NE(X) ⊆ S1 + S∨
1 ⊆ NE(X),

where + means Minkowski sum. Taking topological closures, the equality NE(X) =
S1 + S∨

1 is obtained. Lemma 1 implies that Q(X) ⊆ (S∨
1 )

∨ = S1, since D2
i ≥ 0 for all

i = 0, 1, . . . ,m. Therefore, S∨
1 ⊂ S1 because Di ∈ Q(X) for all i and, hence, NE(X) = S1.

Since S1 is finitely generated by effective classes we conclude that NE(X) = S1, that is a
regular cone.

Now, we are going to show that Statement (b) implies Statement (c). If the cone

NE(X) is regular, it is clear that it must be generated by the classes of L̃ and the strict

transforms of the exceptional divisors. Then Dm is nef because Dm · L̃ = 0, Dm · Ei = 0
for i = 1, 2, . . . ,m− 1 and Dm ·Em = 1.

Next, let us show that statements (c) and (d) are equivalent. Firstly notice that ν takes
negative values for all powers of x with positive exponent. If f(x, y) ∈ k[x, y] \ k and x
does not divide f , one has that

(4) f(x, y) = f(1/v, u/v) =
hf (u, v)

vdeg (hf )
,

for some polynomial hf (u, v) ∈ k[u, v] which corresponds with f . Consider f ∈ k[x, y] an
denote by Φ(f) the projective plane curve of degree deg (hf ) defined by the homogeneous

polynomial Xdeg (hf )hf (Y/X,Z/X). Set W the projective line of P2 with equation X = 0,
then Φ defines a one-to-one correspondence between the set Γ of non-constant polynomials
in k[x, y] (modulo multiplication by a nonzero element of k) such that x does not divide
them and the set of projective curves of P2 which have neither the line L nor the line W
as components. Then, using Equality (4) and Noether formula, we get that for all f ∈ Γ,

−ν(f) = Dm · Φ̃(f),

Φ̃(f) being the strict transform of the curve Φ(f) on X. Now, taking also into account
that

Dm · L̃ = 0, Dm · W̃ = dm > 0

and Dm ·Ei ≥ 0 for all i ∈ {1, 2, . . . ,m}, it happens that ν(f) ≤ 0 for all f ∈ k[x, y] if and
only if the divisor Dm is nef.
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The above reasoning finishes the proof because the fact that Statement (c) implies (a)
is straightforward.

�

Lemma 2 and the equivalence between statements (a) and (d) of Theorem 1 prove the
following result.

Corollary 1. With the same notations as in Theorem 1, assume that ν(f) ≤ 0 for all
f ∈ k[x, y] and set νi the divisorial valuation defined by the divisor Ei, i ∈ {1, 2, . . . ,m−1}.
Then νi(f) ≤ 0 for all f ∈ k[x, y].

Remark 2. Statement (b) of Theorem 1 is equivalent to the fact that the semigroup of

effective classes in Pic(X) is spanned by the classes of L̃, E1, E2, . . . , Em.

Remark 3. Taking into account the above corollary, it holds that any of the statements
in Theorem 1 implies that the divisor Dj is effective for all j ∈ {1, 2, . . . ,m}. Indeed, one
can write Dj in the form

Dj = (Dj ·D0)L̃+
m
∑

i=1

(Dj ·Di)Ei,

and Dj · Di ≥ 0 for all 0 ≤ i ≤ m because Dj is nef and Di belongs to NE(X) for all
i ∈ {0, 1, . . . ,m} (it suffices to consider items (b) and (c) of Theorem 1 and the inclusion
Q(X) ⊆ NE(X)).

Moreover, and as a consequence of what we have said, it holds that the Iitaka dimension,
κ(Dj), of the divisor Dj satisfies κ(Dj) ∈ {0, 1, 2}. Furthermore, κ(Dj) = 2 if and only if
Dj is big, that is, if and only if D2

j > 0.

Remark 4. The equivalence between items (a) and (c) of Theorem 1 has been proved
in [29, Proposition 9.10]. Assume now that k = C the field of complex numbers. A
characterization of the fact ν(f) ≤ 0 for all f ∈ C[x, y] is given in [34] in terms of what
the author calls key forms of ν. These are sequences {gj}

n+1
j=0 of elements in C[x, x−1, y]

that allows us to compute −ν(g), g ∈ C[x, x−1, y], as the minimum of certain weighted
degrees of polynomials in n+2 variables G such that G(g0, g1, . . . , gn+1) = g. Fixed {x, y},
−ν admits a unique sequence of key forms. The mentioned characterization states that
ν(f) ≤ 0 for all f ∈ C[x, y] if, and only if, −ν(gn+1) ≥ 0 [34, Theorem 1.7, item 1]. Next
result shows that for the field k = C that characterization is equivalent to the one we state
in item (a) of our Theorem 1.

Corollary 2. Set k = C and ν a plane divisorial valuation as above. With the same
notation as in Theorem 1 and in the previous remark: −ν(gn+1) ≥ 0 if and only if d2m ≥
β̄g+1.

Proof. We start by noting that, if we consider the system of generators {v, u} of the max-
imal ideal of R (see Section 2.1) and compute sequence of key polynomials {hj(v, u)}

n+1
j=0

corresponding to ν and the mentioned system (see, for instance, [16] for the definition), it
holds that

gn+1(x, y) = xdegu(hn+1)hn+1(1/x, y/x)

[34, Remark 2.6]. Now, bearing in mind that hn+1 is a general element element of the
valuation ν and [16, Remark 2.4], it holds that −ν(gn+1) = d2m − β̄g+1, which concludes
the proof. �
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Recall that, for a curve C on P2, C̃ means strict transform on X and, for a divisor D
on X, κ(D) denotes its Iitaka dimension.

Lemma 3. Assume that the characteristic of the field k is zero, D2
m = 0 and κ(Dm) > 0.

Then, there exists a homogeneous polynomial F ∈ k[X,Y,Z] of degree dm such that the
equation F (X,Y,Z) = 0 defines a curve on P2 having only one place at infinity, the
complete linear system |Dm| is base-point-free and the morphism ϕ|Dm| : X → P1 that it

determines eliminates the indeterminacies of the rational map P2 · · · → P1 induced by the
pencil 〈F,Zdm〉 ⊆ H0(P2,OP2(dm)).

Proof. We assert that the linear system |ℓDm| has no fixed component for some ℓ ∈ Z>0.
Indeed, since κ(Dm) > 0 it holds that dim |nDm| > 0 for some positive integer n. If
|nDm| has a fixed part B 6= 0 then, by Remark 3 and the equality D2

m = 0, the integral

components of B are among {L̃, E1, E2, . . . , Em−1} and, therefore, Dm · B = 0. Then
Dm · (nDm−B) = 0 and, hence, nDm−B is linearly equivalent to ℓDm for some ℓ ∈ Z>0.
The assertion follows because |nDm −B| has no fixed component.

The above reasoning shows that |αℓDm| has no fixed part for all α ∈ Z>0 and this implies

that there exists a curve C on P2 such that its strict transform C̃ is linearly equivalent to
βDm for some β ∈ Z>0. According with Definition 8 in [10], C̃ is a numerical m-curvette

and, since C̃2 = 0, Theorem 1 in the same paper proves that C has only one place at
infinity and C̃ is linearly equivalent to Dm.

Finally, it holds that the degree of C is dm and d2m =
∑m

i=1multpi(C)2, where multpi(C)
denotes the multiplicity at pi of the strict transform of C at that point, because D2

m = 0.
This concludes our result by [9, Section 4].

�

Theorem 1 characterizes the case when ν(f) ≤ 0 for all polynomials in k[x, y] \ k,
k being an algebraically closed field of arbitrary characteristic. Next, we provide two
characterizations for the case when the inequality is strict.

Theorem 2. Keep the same assumptions and notations as in Theorem 1. Then, the
following conditions are equivalent:

(a) Either d2m > β̄g+1, or d2m = β̄g+1 and κ(Dm) = 0.

(b) Dm · C̃ > 0 for any integral curve C on P2 different from L, C̃ being the strict
transform on X of the curve C.

(c) ν(f) < 0 for all f ∈ k[x, y] \ k.

Moreover, when the characteristic of k is zero, Condition (a) can be replaced by

(a’) Either d2m > β̄g+1, or d2m = β̄g+1 and dim |Dm| = 0.

Proof. Assume that item (a) holds and let us prove item (b). Reasoning by contradiction,

let C be an integral curve on P2 different from L and such that Dm · C̃ ≤ 0. By Theorem
1, Dm is a nef divisor and so Dm · C̃ = 0. This implies that the class [C̃] belongs to
the face of the cone of curves NE(X) given by [Dm]⊥ ∩NE(X), where [Dm]⊥ means the
orthogonal space to the vector [Dm] (with respect to the intersection product). With the

previous notations, let us notice that this face, F , is spanned by [L̃], [E1], [E2], . . . , [Em−1].
Since these last classes are the unique on F given by curves with negative self-intersection
(by the proof of Theorem 1), one has that C̃2 = 0. This implies that D2

m = 0 and C̃ is
linearly equivalent to a multiple of Dm. Therefore D2

m = 0 and κ(Dm) 6= 0 (taking into
account Remark 3), which is a contradiction because our Statement (a) is equivalent to
say that either D2

m > 0, or D2
m = 0 and κ(Dm) = 0.
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A similar reasoning as that of the proof of (c) implies (d) in Theorem 1 allows us to
show that item (b) in this theorem implies item (c).

Next we prove, also by contradiction, that item (c) implies item (a). We will use the
notation of the proof of Theorem 1. By that theorem, we have that d2m ≥ β̄g+1. If
D2

m = 0 (i.e., d2m = β̄g+1) and κ(Dm) > 0, then there exists a positive integer n such that

nDm − R̃ gives an effective class, R being an irreducible curve of P2 different from L and
W . Therefore Dm · R̃ ≤ 0 and this implies that ν(f) ≥ 0, where f ∈ Γ and R̃ = Φ̃(f),
which gives the desired contradiction.

We conclude by proving that, assuming that the characteristic of k is zero, items (a)
and (a’) are equivalent. Indeed, the fact that (a) implies (a’) is clear and the converse
implication holds by Lemma 3.

�

Remark 5. An equivalent condition to the fact that ν(f) < 0 for all polynomials f ∈
C[x, y] \C, given in terms of the above mentioned sequence of key forms {gj}

n+1
j=0 of ν, has

been given in [34, Theorem 1.4, item 2]. The condition is that either −ν(gn+1) > 0 or
ν(gn+1) = 0 and gn+1 6∈ C[x, y]. The following result proves that, when k = C, the above
condition and item (a) in Theorem 2 are equivalent.

Corollary 3. Let ν be a divisorial valuation as in Theorem 2. Assume that k is the field of
complex numbers. Consider the above defined divisor Dm on X and the sequence {gj}

n+1
j=0

of key forms of ν. Then the following conditions are equivalent:

(a) ν(gn+1) = 0 and gn+1 6∈ C[x, y].
(b) D2

m = 0 and κ(Dm) = 0.

Proof. By [34, Remark 2.6], we have that

gn+1(x, y) = xdegu(hn+1)hn+1(1/x, y/x),

where hn+1(v, u) is the last key polynomial attached with the valuation ν (it is a general
element element of ν). It is clear from this equality that gn+1(x, y) 6∈ C[x, y] if and only if
deg(hn+1) 6= degu(hn+1). This happens if and only if deg(hn+1) > dm. Indeed, it suffices
to apply Bézout’s Theorem to the line at infinity L and the projective closure H of the
affine curve defined by hn+1(v, u) = 0 and take into account that, by [16, Remark 2.4],
dm = degu(hn+1).

Now, Lemma 3 and [35, Proposition 3.8] show that the inequality κ(Dm) > 0 implies
that gn+1 ∈ C[x, y]. Therefore (b) can be deduced from (a) since ν(gn+1) = 0 is an
equivalent fact to D2

m = 0.
The converse implication follows from the fact that if gn+1 ∈ C[x, y], then deg(hn+1) =

dm. Thus, the strict transform on X of the above curve H is linearly equivalent to Dm

and this implies that κ(Dm) > 0.
�

3. Characteristic cone and Cox ring for non-positive valuations

In this section, we consider rational surfaces X given by plane divisorial valuations of
the quotient field of R with good behaviour al infinity, that is satisfying the equivalent
statements given in Theorem 1. We will characterize when the characteristic cone P̃ (X) of
these surfaces is closed and, as a consequence, its Cox ring, Cox(X), is a finitely generated
k-algebra.
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Theorem 3. Let X be a surface defined by a plane divisorial valuation ν as in Theorem
1. Assume that the equivalent statements given in that theorem happen. Consider the
sequence of divisors on X given in (2). Then, the characteristic cone P̃ (X) is closed
if and only if, for all i ∈ {2, . . . ,m}, either D2

i > 0, or D2
i = 0 and κ(Di) > 0. If the

characteristic of the field k is zero, the condition κ(Di) > 0 can be replaced by dim |Di| > 0.

Proof. For a start, let us see that any of the facts D2
i > 0, or D2

i = 0 and κ(Di) 6= 0 for all

index i ≥ 2 imply that P̃ (X) is closed. To do it, we will prove that, for all i ∈ {1, 2, . . . ,m},
the complete linear system |nDi| is base-point-free for n large enough. We use complete
induction on i. For i = 1 our assertion is clear, so suppose that it is true for 1, 2, . . . , i− 1
and let us show it for i.

Along this proof we will use the concept of contractible curve C on X, which means that
C ⊂ X can be contracted to another algebraic k-scheme. We will also use the concept of
negative definite curve on X, that is, a curve whose intersection matrix for its irreducible
components is negative definite.

Without loss of generality, we can assume that i = m.
Firstly, suppose D2

m > 0. Consider the reduced curve

F := L̃+

m−1
∑

i=1

Ei.

Assume that L̃ meets the divisor Er. If m = r then, applying Artin’s contractibility
criterion, F is contractible because it is a Hirzebruch-Jung string (see [6, Sections III.2
and III.3], for instance). Let f : X → Y be such a contraction. Using Stein factorization
[26, III, Corollary 11.5] we can assume that f∗OX = OY .

Now, consider, on the one hand, the set of Stein factors of the structural morphism
h : X → Spec(k) of X as k-scheme ordered by the domination relation and, on the other

hand, the set of topological cells of the characteristic cone P̃ (X) ordered by inclusion. The
first set is that of factorizations h = q ◦ p where p : X → Y is surjective, q : Y → Spec(k)
is projective and p∗OX = OY . By a result of Kleiman [32, page 340], there exists an order
isomorphism between the above mentioned sets.

Let g : Y → Spec(k) be the structural morphism of Y as k-scheme; clearly h = g ◦ f is
a Stein factor of h. We claim that its image by the mentioned isomorphism is the cell of
P̃ (X) defined by the ray Q+[Dm]. Indeed, the multiples of Dm are the unique divisors D
on X such that D · M = 0 for every irreducible component M of F ; so any contraction
of F must be defined by global sections of a sheaf OX(αDm) for some positive integer α.

Therefore [Dm] ∈ P̃ (X).
Hence we suppose from now on that m > r and divide this part of the proof in two

cases depending on whether pm is, or not, a satellite point.
Assume that pm is a satellite point. In this case F has two connected components

and there are two exceptional divisors Ea and Eb meeting Em which belong to dif-
ferent connected components of F . By induction hypothesis we know that, for each
i ∈ {0, 1, . . . ,m − 1}, there exists a positive integer ni such that |niDi| is base-point-

free and, therefore, there exists a curve Ci 6= L on P2 such that its strict transform C̃i is
linearly equivalent to niDi (where n0 := 1 and C0 = E0). We can assume, moreover, that
na > −E2

a and nb > −E2
b .

Let F ′ be a connected component of F and we are going to prove that F ′ is contractible.
To do it, we will use [45, Theorem 3.3], which asserts that it suffices to check that F ′ is
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definite negative and there exists a curve ∆ ⊂ X disjoint to F ′ with ∆ · R > 0 for every
curve R ⊂ X not supported by F ′.

Without loss of generality, suppose that Eb is not supported by F ′ and consider the
effective divisor

∆ := Eb +
∑

i∈J (F ′)

C̃i,

where J (F ′) is the set of indices 1 ≤ i ≤ m− 1 corresponding with divisors Ei which are

not in F ′, except when L̃ is not a component of F ′; in this last case, to get J (F ′), one
must add the index i = 0 to the above ones. Clearly, b ∈ J (F ′) and ∆ is disjoint to F ′.

Let us show that ∆ ·R > 0 for every curve R ⊆ X not supported by F ′. To see this, it
suffices to consider three types of curves R.

For a start, let R be the strict transform of a curve on P2 such that L̃ is not supported
by it. It is clear that Eb · R ≥ 0; moreover, Di · R ≥ 0 for all 1 ≤ i ≤ m− 1 by Corollary
1 and Theorem 1. If there exists some i ∈ J (F ′) such that D2

i > 0 then, by Theorem 2,
it holds that Di · R > 0 and we conclude the desired inequality: ∆ · R > 0. Otherwise,
Lemma 2 implies that J (F ′) = {b} and D2

b = 0. In addition, this last equality and the
nefness of the divisor Db show that Db ·Di > 0 for all i ∈ {1, 2, . . . ,m} \ {b}; notice that
this happens because D2

i ≥ 0 and the class [Di] is not a multiple of [Db]. Also, Remark 3
proves that

Db = (Db ·D0)L̃+
∑

(Db ·Di)Ei,

where the sum is taken over the set i ∈ {1, 2, . . . ,m} \ {b}. Then either Db · R > 0, or

L̃ · R = 0 and Ei · R = 0 for all i ∈ {1, 2, . . . ,m} \ {b} (what implies that Eb · R > 0).
Hence we also conclude that ∆ · R > 0.

Now we consider our second type of curves R, which are the exceptional ones. First,
let us show that ∆ · Ei > 0 for i ∈ J (F ′). In fact, if δij denotes the Kronecker’s delta, it
holds Dj ·Ei = δij for all j ∈ J (F ′), Eb ·Ei ≥ 0 if i 6= b and (nbDb +Eb) ·Eb > 0. Finally,
∆ · Em > 0 because Eb ·Em = 1 and Di ·Em = 0 for all i ∈ J (F ′).

To finish we have to consider curves R such that L̃ is supported by them and not
supported by F ′. Then it suffices to note that ∆ · L̃ ≥ E0 · L̃ > 0, which concludes the
reasoning for our third type of curves and this part of the proof.

To finish of checking the hypotheses of Theorem 3.3 in [45], it remains to show that the
curve F ′ is negative definite. This is true because the class in PicQ(X) of any effective
divisor whose components are integral components of F ′ belongs to the face of the cone
of curves NE(X) given by NE(X) ∩ [Dm]⊥, which is contained in the complementary of
the set Q(X) defined before Lemma 1 (since D2

m > 0).
As a consequence of the above paragraphs, we conclude that F is contractible because

every connected component is [45, Lemma 3.1]. Finally, reasoning as above, a contraction
of F must be defined by sections of OX(αDm) for some positive integer α and, therefore,

[Dm] ∈ P̃ (X).
Suppose now that pm is a free point. We will prove, reasoning by contradiction, that

|nDm| is base point free for some positive integer n, which will conclude the proof in the
case D2

m > 0. By [55, Theorem 6.1], it is enough to assume that |nDm| has a fixed part
for all n and lead to a contradiction. Assuming this and n large enough, it holds that
only L̃, E1, E2, . . . , Em−1 can be fixed components of |nDm|. In fact, it suffices to apply
[55, Theorem 9.1] and take into account Remark 3 and the equalities Dm · Ei = 0 for

i ∈ {1, 2, . . . ,m− 1}, Dm · Em = 1 and Dm · L̃ = 0.



14 C. GALINDO AND F. MONSERRAT

Now, pick n ≫ 0 such that the last condition holds and the linear system |nDm−1|
is base-point-free. We can do this by using the induction hypotheses. Since pm is a free
point, the local equations at it of the curves in πm∗|nDm| coincide with those of the curves
in πm∗|nDm−1|. Also πm∗|nDm−1| is base-point-free because of the natural isomorphism
with |nDm−1|. The above facts and the shape of the local equations at pm of the curves
in πm∗|nDm−1| allows us to deduce that Em−1 is not a component of some curve in the
complete linear system |nDm|. Therefore the integral fixed components of |nDm| must

belong to the set S := {L̃, E1, E2, . . . , Em−2}. If R is one of them and R′ is some other
curve in S∪{Em−1} that meets R, then (nDm−R) ·R′ = −R ·R′ = −1. This and the fact
that the above introduced curve F is connected show that F is in the fixed part of |nDm|
and, in particular, Em−1 is a fixed component, which provides the desired contradiction.

To complete the proof of this implication, we have to assume that D2
m = 0 and κ(Dm) >

0. These conditions imply that, for some positive integer n, nDm is effective and linearly
equivalent to a divisor H + T , where T is the fixed part of |nDm| and H an effective
divisor such that the complete linear system |H| has no fixed part. Since 0 = n2D2

m =
nDm ·H + nDm · T and Dm is nef, it holds that Dm ·H = 0 and, hence, the class [H] is
a multiple of [Dm]. Therefore, again by [55, Theorem 6.1], |nDm| has no base point for n
large enough.

The converse of our first statement follows straightforward from the fact that P̃ (X) is
not closed if κ(Di) = 0 for some i ∈ {1, 2, . . . ,m}.

Finally, it is also straightforward that our last statement holds by Lemma 3 which
finishes the proof.

�

As a consequence of the above theorem, [23, Corollary 3] and [27], we get the following
result that gives conditions for the ring Cox(X) of our rational surfaces X is a finitely
generated k-algebra.

Corollary 4. Keep the assumptions and notations of Theorem 3. Then the Cox ring,
Cox(X), is a finitely generated k-algebra if and only if, for all i ∈ {2, . . . ,m}, either
D2

i > 0, or D2
i = 0 and κ(Di) > 0. If the characteristic of the field k is zero, the condition

κ(Di) > 0 can be replaced by dim |Di| > 0.

The above result provides a wide range of rational surfaces with finitely generated Cox
ring. Moreover their anticanonical Iitaka dimension can be −∞, as the next example
shows. It gives a new infinite family of surfaces with both conditions and with arbitrarily
large Picard number.

Example 1. Assume that the characteristic of the field k is zero. Fix two positive integers
a and r such that r ≥ a ≥ 4 and gcd(a, r + 1) = 1. Let X be a surface obtained by a
sequence of blow ups as in (1) coming from a divisorial valuation ν with 3 maximal contact
values, β̄0 := a, β̄1 := ar2 − r − 1 and β̄2 := β̄0β̄1 + 1, and such that the strict transforms
of the line at infinity L pass exactly through the first r blown-up points. Notice that
gcd(β̄0, β̄1) = 1 and r ≤ ⌊β̄1/β̄0⌋; therefore such a valuation exists.

Let pm be the last blown-up point, that is, ν is the divisorial valuation defined by the
exceptional divisor Em. Then dm = ra and, therefore, d2m > β̄2, that is, D2

m > 0. By
Lemma 2, D2

i ≥ 0, 2 ≤ i ≤ m, and, moreover, the equality D2
i = 0 only can occur when

i = i1 := ⌊β̄1/β̄0⌋ + 1 (that is, the index i1 is the only one where pi1 is a free point and
Pi1+1 a satellite one). Now, D2

i1
= r2−i1 > 0, hence ν satisfies the hypotheses of Corollary

4 and, as a consequence, the Cox ring, Cox(X), is finitely generated.
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If KX denotes a canonical divisor of X we have that Di1 ·KX = −3r+ i1 > 0. Since Di1

is nef we deduce that [−KX ] 6∈ NE(X) and, as a consequence, the anticanonical Iitaka
dimension of X is −∞.

Notice that X cannot be obtained with the procedure described in [9, 10] to get surfaces
with finitely generated Cox ring. Indeed, if this happened, by the Abhyankar-Moh Theo-
rem [3, 44], there would exist a curve C on P2 with only one place at infinity such that the
morphism π given by ν is a resolution of its singularity at infinity and whose semigroup at
infinity −ν(k[x, y]) is spanned by δ0 := −ν(x) = rβ̄0, δ1 := −ν(y) = rβ̄0 − β̄0 = (r − 1)β̄0
and δ2 := −ν(G(x, y, 1)), where G(X,Y,Z) is a homogeneous polynomial of degree r defin-
ing a curve whose local equation at p defines an analytically irreducible germ whose strict
transform on X meets Ei1 transversally at a non-singular point of the exceptional locus
of π. Moreover, the condition that gcd(δ0, δ1)δ2 = β̄0δ2 belongs to the semigroup spanned
by δ0 and δ1 must be satisfied. Using (4) we get

δ2 = rν(v)− β̄1 = r2β̄0 − β̄1 = r + 1.

As a consequence, r+1 must belong to the semigroup spanned by r and r− 1, which is a
contradiction.
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