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1. Introduction 

Microwave photonics (MWP) [1,2], is expected to extend its use in the next years to novel 

emerging information technology scenarios, such as in mobile communications [3,4], data 

transmission [5] and sensing [6], which require technical approaches capable of smoothly 

interfacing the wireless and fibre network segments. MWP is the best positioned technology 

to achieve this target provided that it can enable agile and reconfigurable subsystems, 

featuring broadband operation and low space, weight and power (SWaP) metrics. Resorting to 

integrated microwave photonics [7,8], where complex MWP systems are integrated on a 

single chip [9,10], is the most promising approach to achieve the former targets. Furthermore, 
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it is highly desirable to evolve from pure intensity modulated and direct detection 

configurations to self-coherent detection schemes [11] allowing for advanced modulation 

formats.   

Together with radiofrequency Gain and Noise Figure, one of the main factors that must be 

addressed by these systems is their linearity [12]. This is especially important in wireless 

communication technologies where the proliferation of carriers in the available spectrum, 

together with an increase in modulation bandwidths, exacerbate the presence and strength of 

these unwanted terms falling within allocated frequency bands, reducing the receiver carrier-

to-noise ratio and the spurious free dynamic range. In most MWP systems, the main source of 

intermodulation and harmonic distortion is due to the nonlinear modulation characteristic of 

Mach-Zehnder modulators (MZM). This topic has been well studied and various electronic 

and optical techniques have been proposed over the years [12]. A technique that is 

particularly interesting for integrated configurations is based on a combination of MZM 

devices in parallel [13], where the modulator internal parameters are carefully designed so a 

destructive interference photocurrent is obtained for a target intermodulation order, improving 

the system linearity as compared to the configuration using a single modulator. These 

techniques, however, were proposed for direct detection and, therefore, there is no evidence 

reported so far on whether they can be appropriate for self-beating coherent systems. As 

recently outlined [14], this remains still an open question.  

In this paper, we propose the use of a Dual Parallel Mach-Zehnder Modulator (DPMZM) 

for the linearization of self-beating coherent MWP systems. Taking as a start point the work 

developed in [11], we derive a full end-to-end systems model in section 2 that renders both 

the fundamental as well as the second- (IMD2) and third- (IMD3) order intermodulation 

distortion terms. In section 3, we specialize this model to derive the conditions leading to the 

suppression of the third-order intermodulation, finding two simple design cases for which 

IMD3 is suppressed with a very low penalty on the fundamental tone current. Furthermore, 

IMD2 is also mitigated as compared to the case where no linearization technique is employed. 

We provide a discussion and a comparison of the results obtained using the two cases as well. 

Furthermore, we compare our approach with that based on a recently proposed near linear 

field response modulator (NLFRM) recently reported [14]. Finally, section 4 provides some 

conclusions and future directions of research.  

2. General model for amplitude modulation and single detection 

Figure 1 shows the layout of a general self-beating filtered MWP system based in self-

homodyne coherent detection with amplitude modulation described in [11], where the 

modulation stage incorporates a DPMZM to perform the linearization process. The rest of the 

system parameters are defined in [11]. Similarly to the technique developed in [13] for direct 

detection systems using two parallel MZMs, we have derived an analytical end-to-end model 

exploiting the same physical principle of achieving destructive interference in the detected 

photocurrent for a desired intermodulation order and maximizing the fundamental term 

relation, providing the optimum parameters of the modulator to suppress the IMD3.  

We have followed similar steps as those described in [11], to obtain the photocurrent 

associated with the self-beating term for both the fundamental and the intermodulation tones. 

As a result, there are seven degrees of freedom for the linearized system design: the two bias 

voltages of the MZMs defined by dc,i = Vdc,i/V, the excess coupling ratio γ of the (same) RF 

signal supplied to one of the modulators with respect to the other, where rf,1 = Vrf/V  and 

rf,2 = γrf,1, the optical in- and out- coupling ratios in the DPMZM (a and b, respectively) and 

the phase shifts for the upper and the lower arms (ψ1 and ψ2). In particular, the physical 

meaning of γ > 1 is related to the increase in the RF amplitude voltage that has to be applied 

to one modulator with respect to the value applied to the other and therefore, can be 

considered as an electrical power penalty EP = 20 log (γ).   



By developing the same analytical procedure used in [11], but including the DPMZM, the 

fundamental tone C at the frequency  Ω1is given by the photocurrent beating term 
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Fig. 1. (Left) DPMZM scheme and (Right) self-homodyne MWP system architecture. 

The second-order intermodulation component IMD2 at frequency (Ω1- Ω2) is given by the 

photocurrent beating term 
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And finally, the third-order intermodulation component IMD3 at frequency (2Ω1- Ω2) is 

given by the photocurrent associated to the beating term 
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3. Third-order intermodulation distortion linearization 

We understand here the third-order linearization as the process of finding a value of γ that 

cancels the IMD3 photocurrent (Eq. (5)) maximizing at the same time the fundamental 

photocurrent term without increasing the second-order intermodulation IMD2 photocurrent. 

By forcing Eq. (5) to zero and solving for γ, we obtain the optimum value as: 
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In practice, we prefer a real value of γ since otherwise an extra RF phase shifter has to be 

inserted prior to the RF modulation input of one of the MZMs. A real value for γ is obtained if 

ψ1 =  and ψ2 = 0: 
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For comparison purposes, it is necessary to know in which way the fundamental and the 

IMD2 terms are affected by the linearization process. Ideally, the photocurrent associated to 

the linearized fundamental tone CL should not decrease whereas the IMD2L should do. Fig. 2 

(a) shows the spectral components where one MZI is employed without linearization, i.e. a = 

b = 0, γ = 0, while Fig. 2(b) shows the spectral components after the linearization process that 

employs the DPMZM. As a figure of merit to evaluate the change produced in the 

fundamental and the IMD2 contributions by the linearization process, we define the ratio 

between the linearized and unlinearized second order intermodulation terms IMD2L/ IMD2 

and the ratio between the linearized and unlinearized fundamental terms CL/ C as: 
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Fig. 2. Photodetected spectrum without (Left) and with the applied linearization (Right) 

We require values greater than 1 for this figure of merit to guarantee that the second-order 

distortion compared to the fundamental term is not increased as a result of the IMD3 

suppression. We have identified two cases of practical interest due to their simplicity in terms 

of the required values for the bias points and phase shifters in the two arms of the DPMZM. 

3.1 Case 1: ψ1 = π and ψ2 = 0, φdc,1 = φdc,2 = π/2 

In this case, our degrees of freedom in the DPMZM are the coupling constants (a and b) of its 

in- and out- Y junctions, which we can actually design, optimize and fix. Both upper- and 

lower- arm modulators are biased in quadrature and will modulate the same RF signal. 

However, as previously mentioned, the lower modulator will be feed with the same RF signal 

as the upper modulator but with a voltage amplitude excess given by γ = φRF2/φRF1. Finally, 

there is a static π-phase shift between the upper and lower arms of the DPMZM to produce 

destructive interference between the parallel outputs. By substituting the parameters values, 

we can directly obtain from Eq. (8) the necessary value of γ to suppress the IMD3: 
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The ratio between linearized and unlinearized (a = b = 0) fundamental tone currents CL/C 

is obtained from Eq. (1): 
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and must be maximized subject to the condition given by Eq. (10). This is done by means of a 

Lagrange multipliers method, which is described in detail in the appendix. The outcome of 

this optimization renders the following values for a and b:  
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Under this condition, the ratios between the linearized photocurrents and the unlinearized 

terms are obtained as: 
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Substituting Eqs. (13) and (14) in Eq. (9), we have: 
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Figure 3 (upper left) shows the results computed for Eqs. (13)-(15) against the electrical 

power penalty EP = 20 log (γ), [13]. As far as the fundamental current is concerned, the black 

trace indicates that, in principle, almost negligible optical penalty can be achieved in theory 

provided that an electrical penalty of over 10 dB can be assumed. In practical terms, and due 

to the coupling of the electrical penalty with the values of the optimized splitting ratios for the 

input and output Y branches of the DPMZM, (Eq. (12)), there is a maximum electrical 

penalty that can be assumed if realistic splitting ratios are to be employed. This is illustrated 

in the lower left part of Fig. 3, where we plot Eq. (12) versus EP. If, for instance, a minimum 

value of a = 0.05 can be assumed due to fabrication tolerances, the maximum affordable 

electrical penalty is around 9 dB, which results in an optical penalty slightly below 1 dB. In a 

similar way, the blue trace curve describes the system’s behavior as related to IMD2. The first 

interesting feature is that, for any value of the electrical penalty, the blue curve remains above 

the black curve. This means that upon this third-order linearization process the IMD2 

photocurrent always suffers a higher attenuation than that of the fundamental tone. The solid 

red line indicates that, at the same time that IMD3 is suppressed, the IMD2 term experiences 

a greater attenuation as compared to that experienced by the fundamental tone. This means 

that as far as IMD2 is concerned, the system linearity is also improved.  

3.2 Case 2: ψ1 = π and ψ2 = 0, φdc,1 = φdc,2=π/2, b=1/2 

This is a particular condition of Case 1, where b is fixed to ½ to obtain two balanced 

modulated outputs. Since now there is one variable less than in Eq. (11), we obtain a direct 

relation that yields the optimum operation: 
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Fig. 3. Case 1. (Upper) Optical penalties vs Electrical Penalties, (Lower) Coupler coefficient vs 

Electrical Penalty for Case 1 (left) and Case 2 (right).  
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Substituting Eqs. (17) and (18) in Eq. (9), we  obtain exactly the same value given by Eq. 

(15). The right part of Fig. 3 shows the results for this case, where we observe a similar 

behavior as in case 1. However, the range of allowed electrical penalty values is reduced (5 

dB as compared to 8 dB of case 1), while the minimum optical penalty for the fundamental 

tone is increased of (around 4.5 dB as compared to 1 dB of case 1). As in case 1, the behavior 

as compared to IMD2 is improved and, in fact, the relative improvement is the same in both 

equalization methods.  

3.3 Discussion 

Both linearization cases are in principle capable of cancelling third-order intermodulation 

distortion from the modulation stage while, at the same time, improving the linearity of the 

system as related to second-order intermodulation distortion. Note that whereas the 

standard/commercial DPMZMs are usually symmetric it is feasible to obtain asymmetric 

coupling in Y-branches by proper design [15]. In the first case, a better performance is 

obtained in terms of optical power penalty for the fundamental tone (i.e. smaller than in case 

2 for the same amount of electrical power penalty). This is achieved at the expense of a more 

complex design of the DPMZM since both the input and output Y-branch splitting ratios are 

asymmetric. However, as a result from the optimization process, both have the same value 

(Eq. (12)). In case 2, one of the two Y-branches can be symmetric, however this does not 

render any significant advantage in terms of fabrication. Since case 2 is more restrictive in 

terms of affordable electrical power penalty the conclusion is that the approach of case 1 is 

Case 1 Case 2



preferable from the practical point of view. Note however that the optimum bias point for 

IMD3 suppression should be kept fixed and this requires the stabilization of the bias voltages 

for the upper and lower MZMs as well as for the phase shifters to avoid the drifting of the 

optimum operation conditions. 

It should be pointed out as well that none of the two cases can obtain simultaneous 

cancellation of second- and third-order intermodulation distortion despite that fact that both 

MZMs at the two DPMZMs are biased in quadrature. This is not surprising as second-order 

intermodulation distortion cancellation at quadrature biasing points is only achieved for the 

case of direct detection, that is for intensity modulators, while the system under consideration 

here works under self-beating coherent detection, that is for electric field modulators. In fact, 

the topic of linearized electric field modulators has been scarcely addressed in the literature but 

is currently rising interest as coherent systems are becoming commonplace in optical fiber 

communications. A possible configuration for a near linear field response modulator 

(NLFRM) has been reported very recently in [14], which proposes a two-stage modulator 

configuration as shown in Fig. 4.  

 

 
Fig. 4. Configuration for a Near-linear Field Response modulator reported in [12]. 

The layout includes two MZMs, just as in the case of the DPMZM, so the overall device 

complexity is similar. The difference here is that the modulators are placed in tandem and 

there are two separate paths for signal propagation. One path traverses two modulators in 

series while the second one only propagates through one modulator. The two stages are 

connected by a 2x2, 3-dB coupler. The Y-branch at the left is a 3-dB configuration while the 

one closing the right part is asymmetric and has a power ratio given by r. Another difference 

with the DPMZM configuration resides in the fact that the same RF input voltage (but 

opposed in phase) is employed to drive the two modulators (i.e., there is no RF power penalty 

γ). 

In particular, the output-input field relationship in the modulator of Fig. 4 is given by: 
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where ΦRF = π VRF /Vπ. Using Eq. (19), we can follow a similar process here to derive the 

output photocurrents for the fundamental, second- and third-order intermodulation tones 

when the MZM device in the self-beating MWP link is replaced by the NLFRM in the system 

of Fig. 1. We can  then compare both approaches. For the fundamental tone we have: 
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The IMD2 contribution is: 
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not surprisingly, it is completely suppressed as the modulator response is linearized to cancel 

even order intermodulation distortions. Finally, the IMD3 contribution is: 
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To linearize the overall response, the photocurrent of the IMD3 term must cancel and 

therefore: 
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and this leads to a fundamental tone photocurrent given by: 

                   

 		

I
bL

W
1( )» jI

dc
a

U
a

L
CD

f
RF

2

æ

è
ç

ö

ø
÷

16

17
-

1

17

é

ë

ê
ê

ù

û

ú
ú

A
W

1

I ,B =

= j0.364I
dc

a
U
a

L
CDf

RF
A

W
1

I ,B ,

A
W

1

I ,B = H w
o
+W

1
é
ë

ù
û+ H* w

o
-W

1
é
ë

ù
û{ }cosj.

                                            (24) 

If we compare this value to that obtained when no linearized modulator is employed (Eq. 

(19) subject to the condition r=0), we finally find: 
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Therefore, the photocurrent of the fundamental tone when linearization is employed is 

reduced by a 27% or the RF power by a 47%, in other words, roughly by 3 dB 

4. Summary and conclusions 

We have developed, analyzed and applied a linearization technique based on DPMZM in self-

homodyne MWP systems. The approach enables broadband low-distortion transmission and 

reception at expense of an additional moderate electrical power penalty while yielding a low 

optical power penalty (<1 dB). Two practical linearization cases were identified. In the 

optimum case, non-symmetrical (but equal) signal division ratios at the input and output Y-

branches of the DPMZM are required. In the second, the signal division ratio at the output Y-

branch is symmetric (50%) while the input Y-branch division ratio is asymmetric. In both cases, 

IMD3 cancellation is accompanied with a reduction of the IMD2 values. For self-beating 

coherent detection, a complete and simultaneous cancellation of both IMD2 and IMD3 terms 

will require a near linear field response modulator, such as that reported in [14] and for which 

we have derived the fundamental, second- and third-order intermodulation distortion terms for 

the sake of comparison. While the NLFRM approach can achieve complete IMD2 and IMD3 

cancellation, its optical penalty is 3 dB. In the DPMZM case, only IMD3 cancellation is 

achieved while IMD2 is suppressed with an optical penalty that can be as low as 1 dB.  
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Appendix 

We aim to maximize Eq. (11) subject to the condition given by Eq. (10). The Lagrangian is 

thus given by: 

                                   
 

3, 1 1 1 1 ,L a b a b ab a b ab              (26) 

where is the Lagrange multiplier. We now compute: 
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The first equality in Eq. (26) leads to:  
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The second equality in Eq. (26), taking into consideration Eq. (27), leads to:  
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Finally, the third equality in Eq. (26) yields: 
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