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Abstract

In this paper, a simultaneous canonical form of a pair of rectangular complex matrices

is developed. Using this new tool we give a necessary and sufficient condition to assure

that the reverse order law is valid for the weighted Moore-Penrose inverse. Additionally, we

characterize matrices ordered by the weighted star partial order and adjacent matrices as

applications.
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1 Introduction

For an m× n complex matrix A ∈ C
m×n
r of rank r > 0, a singular value decomposition (SVD) of

A [3, pp. 206]
A = U(Σ⊕O)V ∗

is a well-known factorization where U ∈ C
m×m and V ∈ C

n×n are unitary matrices and Σ ∈ R
r×r

is a diagonal matrix; the so called singular values σ1, σ2, . . . , σr are on the diagonal of Σ ordered
as σ1 > σ2 > · · · > σr > 0.

A simultaneous diagonalization for rectangular matrices is also possible under a certain condi-
tion. That is, a pair of matrices A ∈ C

m×n and B ∈ C
m×n has a simultaneous diagonalization [3,

Ex. 15, pp. 208] such as

A = UΣAV
∗ and B = UΣBV

∗,

with U ∈ C
m×m and V ∈ C

n×n unitary and ΣA,ΣB diagonal real matrices if and only if AB∗ and
B∗A are both hermitian matrices.

On the other hand, a Hartwig-Spindelböck decomposition of a square matrix A ∈ C
n×n of rank

r > 0 [6, 1] is given by

A = U

[
ΣK ΣL
O O

]
U∗, (1)

where U ∈ C
n×n is unitary, Σ ∈ C

r×r is a positive definite diagonal matrix and K ∈ C
r×r, L ∈

C
r×(n−r) satisfy the condition KK∗ + LL∗ = Ir.

By keeping as far as possible the essential properties of all these factorizations, the main aim
of this paper is to present a simultaneous decomposition of a pair of rectangular complex matrices
without restrictions. Such a factorization is given in Section 2. In Section 3, we present some
applications. First of all, we study the reverse order law for the weighted Moore-Penrose inverse.
Secondly, we show the form of the matrices ordered by the weighted star partial order. And finally,
we characterize the adjacent matrices related by the weighted star partial order.
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2 A simultaneous canonical form of a pair of matrices

Theorem 1 Let A ∈ C
m×n
r and B ∈ C

m×n
s . Then there exist unitary matrices U ∈ C

m×m and
V ∈ C

n×n such that

A = U

[
ΣAA1 ΣAA2

O O

]
V ∗ and B = U

[
B∗

1ΣB O

B∗
2ΣB O

]
V ∗,

where ΣA ∈ R
r×r and ΣB ∈ R

s×s are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks A1 ∈ C

r×s, A2 ∈ C
r×(n−s), B1 ∈ C

s×r, and B2 ∈ C
s×(m−r) satisfy

A1A
∗
1 +A2A

∗
2 = Ir and B1B

∗
1 +B2B

∗
2 = Is.

Proof. First, let us consider singular value decompositions of A and B∗:

A = UA

[
ΣA O

O O

]
V ∗
A and B∗ = UB

[
ΣB O

O O

]
V ∗
B ,

where UA, VB ∈ C
m×m and VA, UB ∈ C

n×n are unitary matrices and ΣA ∈ R
r×r and ΣB ∈ R

s×s

are positive definite diagonal matrices (with non-increasing diagonal entries). It is clear that V ∗
AUB

and V ∗
BUA are unitary as well. Now, according to the decompositions of A and B, we partition

V ∗
AUB =

[
A1 A2

A3 A4

]
and V ∗

BUA =

[
B1 B2

B3 B4

]
.

Then, computing the (1, 1)-block in V ∗
AUB(V

∗
AUB)

∗ = In and V ∗
BUA(V

∗
BUA)

∗ = Im we obtain
A1A

∗
1 +A2A

∗
2 = Ir and B1B

∗
1 +B2B

∗
2 = Is, respectively. Finally,

A = UA

[
ΣA O

O O

]
V ∗
AUBU

∗
B = UA

[
ΣA O

O O

] [
A1 A2

A3 A4

]
U∗
B = UA

[
ΣAA1 ΣAA2

O O

]
U∗
B

and

B∗ = UB

[
ΣB O

O O

]
V ∗
BUAU

∗
A = UB

[
ΣB O

O O

] [
B1 B2

B3 B4

]
U∗
A = UB

[
ΣBB1 ΣBB2

O O

]
U∗
A.

Defining U = UA and V = UB and computing the conjugate transpose of B∗ we get the required
form for A and B.

3 Applications

3.1 The reverse order law for the weighted Moore-Penrose inverse

Next result characterizes the reverse order law for Moore-Penrose inverses. For matrices A,B such
that AB exists, the following conditions are equivalent [3, pp. 176]:

(AB)† = B†A† ⇔ R(A∗AB) ⊆ R(B),R(BB∗A∗) ⊆ R(A∗) ⇔ R(A∗ABB∗) = R(BB∗A∗A),
(2)

where R(.) denotes the range of the matrix (.). For more properties and applications we refer the
reader to [4, 17, 18].

Next, we need the following technical result.

Lemma 2 Let X ∈ C
s×r, Y ∈ C

s×(k−r), Z ∈ C
p×s be matrices such that XX∗ + Y Y ∗ = Is and

M =

[
ZX ZY

O O

]
∈ C

ℓ×k.

Then

M† =

[
X∗Z† O

Y ∗Z† O

]
.
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Proof. If we define

E =

[
X∗Z† O

Y ∗Z† O

]
,

it is easy to check the properties MEM = M , EME = E, (ME)∗ = ME, and (EM)∗ = EM .
The uniqueness of the Moore-Penrose inverse gives M† = E.

Notice that this lemma is a slight extension of [2, Formula (1.13)] and [12, Lemma 3] to
rectangular matrices, since both of them are valid for square matrices.

The equivalences in (2) give conditions on matrices A and B such that the reverse order law
is valid. Related results can be found in [5, 14, 15]. Next theorem describes the form of both
matrices A and B for which the Moore-Penrose inverse satisfies that property.

Theorem 3 Let A ∈ C
m×n
r and B ∈ C

n×m
s . Then (AB)† = B†A† if and only if there exist

unitary matrices U ∈ C
m×m and V ∈ C

n×n such that

A = U

[
ΣAA1 ΣAA2

O O

]
V ∗ and B = V

[
ΣBB1 ΣBB2

O O

]
U∗,

where ΣA ∈ R
r×r and ΣB ∈ R

s×s are positive definite diagonal matrices (with non-increasing
diagonal entries), blocks A1 ∈ C

r×s, A2 ∈ C
r×(n−s), B1 ∈ C

s×r, and B2 ∈ C
s×(m−r) satisfy

A1A
∗
1 +A2A

∗
2 = Ir, B1B

∗
1 +B2B

∗
2 = Is, and

(ΣAA1ΣB)
† = Σ−1

B A∗
1Σ

−1
A .

Proof. Applying Theorem 1 to the pair of matrices A and B∗ we can assure that there exist
unitary matrices U ∈ C

m×m and V ∈ C
n×n such that

A = U

[
ΣAA1 ΣAA2

O O

]
V ∗ and B∗ = U

[
B∗

1ΣB O

B∗
2ΣB O

]
V ∗,

where ΣA ∈ R
r×r and ΣB ∈ R

s×s are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks A1 ∈ C

r×s, A2 ∈ C
r×(n−s), B1 ∈ C

s×r, and B2 ∈ C
s×(m−r) satisfy

A1A
∗
1 +A2A

∗
2 = Ir, B1B

∗
1 +B2B

∗
2 = Is.

Then,

U∗ABU =

[
ΣAA1 ΣAA2

O O

] [
ΣBB1 ΣBB2

O O

]
=

[
(ΣAA1ΣB)B1 (ΣAA1ΣB)B2

O O

]

and applying Lemma 2 we get

U∗(AB)†U =

[
B∗

1(ΣAA1ΣB)
† O

B∗
2(ΣAA1ΣB)

† O

]
.

Applying twice Lemma 2 we obtain

U∗B†A†U =

[
B∗

1Σ
−1
B O

B∗
2Σ

−1
B O

] [
A∗

1Σ
−1
A O

A∗
2Σ

−1
A O

]
=

[
B∗

1Σ
−1
B A∗

1Σ
−1
A O

B∗
2Σ

−1
B A∗

1Σ
−1
A O

]
.

Hence, (AB)† = B†A† if and only if B∗
1(ΣAA1ΣB)

† = B∗
1Σ

−1
B A∗

1Σ
−1
A and B∗

2(ΣAA1ΣB)
† =

B∗
2Σ

−1
B A∗

1Σ
−1
A . Pre-multiplying both equalities by B1 and B2, respectively, and using B1B

∗
1 +

B2B
∗
2 = Is we arrive at (ΣAA1ΣB)

† = Σ−1
B A∗

1Σ
−1
A .

Now, if we consider three Hermitian positive definite matrices M,R ∈ C
m×m, and N ∈ C

n×n,
we can apply Theorem 3 to the pair of matrices Ã := M1/2AN−1/2 and B̃ := N1/2BR−1/2 to
get a generalization of the reverse order law [9, 16] taking into account that the {M,N}-weighted
Moore-Penrose inverse of A ∈ C

m×n is given by

A
†
M,N = N−1/2(M1/2AN−1/2)†M1/2.
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Corollary 4 Let A ∈ C
m×n
r , B ∈ C

n×m
s and consider three Hermitian positive definite matrices

M,R ∈ C
m×m, and N ∈ C

n×n. Then (AB)†M,R = B
†
N,RA

†
M,N if and only if there exist unitary

matrices U ∈ C
m×m and V ∈ C

n×n such that

A = M−1/2U

[
ΣAA1 ΣAA2

O O

]
V ∗N1/2 and B = N−1/2V

[
ΣBB1 ΣBB2

O O

]
U∗R1/2,

where ΣA ∈ R
r×r and ΣB ∈ R

s×s are positive definite diagonal matrices (with non-increasing
diagonal entries), blocks A1 ∈ C

r×s, A2 ∈ C
r×(n−s), B1 ∈ C

s×r, and B2 ∈ C
s×(m−r) satisfy

A1A
∗
1 +A2A

∗
2 = Ir, B1B

∗
1 +B2B

∗
2 = Is, and (ΣAA1ΣB)

† = Σ−1
B A∗

1Σ
−1
A .

3.2 (M,N)-Star partial order and adjacent matrices

We remind that a pair of matrices A,B ∈ C
m×n are ordered under the star order ≤∗, and written

A ≤∗ B, if AA∗ = BA∗ and A∗A = A∗B [7, 8, 11, 13]. It is well-known that inequalities under
≤∗ are preserved under unitary equivalences, that is A ≤∗ B if and only if SAT ≤∗ SBT for all
unitary matrices S ∈ C

m×m and T ∈ C
n×n. We will denote by N (.) the null space of the matrix

(.).

Theorem 5 Let A ∈ C
m×n
r and B ∈ C

m×n
s . Then A ≤∗ B if and only if there exist unitary

matrices U ∈ C
m×m and V ∈ C

n×n and a matrix Z ∈ C
(m−r)×s such that

A = U

[
ΣAA1 O

O O

]
V ∗ and B = U

[
ΣAA1 O

Z(Is −A∗
1A1) O

]
V ∗,

where ΣA ∈ R
r×r is a positive definite diagonal matrix (with non-increasing diagonal entries),

and block A1 ∈ C
r×s satisfies A1A

∗
1 = Ir.

Proof. Applying Theorem 1 to the pair of matrices A and B we can assure that there exist
unitary matrices U ∈ C

m×m and V ∈ C
n×n such that

A = U

[
ΣAA1 ΣAA2

O O

]
V ∗ and B = U

[
B∗

1ΣB O

B∗
2ΣB O

]
V ∗,

where ΣA ∈ R
r×r and ΣB ∈ R

s×s are positive definite diagonal matrices (with non-increasing
diagonal entries) and blocks A1 ∈ C

r×s, A2 ∈ C
r×(n−s), B1 ∈ C

s×r, and B2 ∈ C
s×(m−r) satisfy

(A) A1A
∗
1 +A2A

∗
2 = Ir, (B) B1B

∗
1 +B2B

∗
2 = Is.

Then, A ≤∗ B if and only if U∗AV ≤∗ U∗BV . Using the block forms of A and B and making
some computations, the last inequality is equivalent to the matrix equation system given by:

(a) B∗
1ΣBA

∗
1 = ΣA, (b) B∗

2ΣBA
∗
1 = O, (c) A∗

1Σ
2
AA1 = A∗

1ΣAB
∗
1ΣB , (d) A∗

2Σ
2
AA2 = O.

From (d) we get (ΣAA2)
∗(ΣAA2) = O, which yields A2 = O. So, A1A

∗
1 = Ir. Then, we have

found the form of matrix A.
The remaining computations will give the form of matrix B. Indeed, pre-multiplying (a) by

B1, (b) by B2 and adding them we obtain ΣBA
∗
1 = B1ΣA after using (B). Thus, B1 = ΣBA

∗
1Σ

−1
A .

On the other hand, pre-multiplying (c) by A1 and using the non-singularity of ΣA we arrive at
ΣAA1 = B∗

1ΣB , or equivalently, B1 = Σ−1
B A∗

1ΣA. Now, we obtain A1 from both expressions
of B1 and using A1A

∗
1 = Ir we have Ir = (Σ−1

A B∗
1ΣB)(Σ

−1
B B1ΣA), that is, B∗

1B1 = Ir. Hence,
(B1B

∗
1)

2 = B1B
∗
1 . In order to find an expression for B2, we observe that B

∗
2B1 = B∗

2(ΣBA
∗
1Σ

−1
A ) =

(B∗
2ΣBA

∗
1)Σ

−1
A = O by (b) and so B1B

∗
1B2 = O holds. So, R(B2) ⊆ N (B1B

∗
1) = R(Is − B1B

∗
1),

from which B2 = (Is −B1B
∗
1)Z̃ for some Z̃. Now, B∗

1ΣB = (ΣAA1Σ
−1
B )ΣB = ΣAA1 and B∗

2ΣB =

Z̃∗(Is − B1B
∗
1)ΣB = Z̃∗(Is − ΣBA

∗
1Σ

−1
A ΣAA1Σ

−1
B )ΣB = Z̃∗ΣB(Is − A∗

1A1) = Z(Is − A∗
1A1), for

some Z.
Considering the (M,N)-star partial order [9] given by A ≤∗

M,N B if and only if A†
M,NA =

A
†
M,NB and AA

†
M,N = BA

†
M,N for A,B ∈ C

m×n, we can extend Theorem 5 to the weighted case

(using again the matrices Ã and B̃ as in Subsection 3.1).
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Corollary 6 Let A ∈ C
m×n
r , B ∈ C

m×n
s and let two Hermitian positive definite matrices M ∈

C
m×m and N ∈ C

n×n. Then A ≤∗
M,N B if and only if there exist unitary matrices U ∈ C

m×m

and V ∈ C
n×n and a matrix Z ∈ C

(m−r)×s such that

A = M1/2U

[
ΣAA1 O

O O

]
V ∗N−1/2 and B = M1/2U

[
ΣAA1 O

Z(Is −A∗
1A1) O

]
V ∗N−1/2,

where ΣA ∈ R
r×r is a positive definite diagonal matrix (with non-increasing diagonal entries),

and block A1 ∈ C
r×s satisfies A1A

∗
1 = Ir.

In order to state the last application, we recall that two matrices A ∈ C
m×n
r and B ∈ C

m×n
s

are called adjacent if rank(B −A) = 1 [10].

Theorem 7 Let A ∈ C
m×n
r and B ∈ C

m×n
s be two matrices such that A ≤∗ B. Then A and B

are adjacent if and only if there exist unitary matrices U ∈ C
m×m and V ∈ C

n×n and a matrix
Z ∈ C

(m−r)×s such that

A = U

[
ΣAA1 O

O O

]
V ∗ and B = U

[
ΣAA1 O

Z(Is −A∗
1A1) O

]
V ∗,

where ΣA ∈ R
r×r is a positive definite diagonal matrix (with non-increasing diagonal entries),

s = r + 1 and block A1 ∈ C
r×s satisfies A1A

∗
1 = Ir and N (Z) ∩ N (A1) = {0}.

Proof. Applying Theorem 5 to the pair of matrices A and B we can assure that there exist
unitary matrices U ∈ C

m×m and V ∈ C
n×n and a matrix Z ∈ C

(m−r)×s such that

A = U

[
ΣAA1 O

O O

]
V ∗ and B = U

[
ΣAA1 O

Z(Is −A∗
1A1) O

]
V ∗,

where ΣA ∈ R
r×r is a positive definite diagonal matrix (with non-increasing diagonal entries) and

block A1 ∈ C
r×s satisfies A1A

∗
1 = Ir. Since star order implies minus order, that is, A ≤∗ B implies

A ≤− B (see [7, 13]), we notice that rank(B − A) = rank(B) − rank(A) = s − r holds. From
(A∗

1A1)
2 = A∗

1A1 = (A∗
1A1)

∗ and rank(A∗
1A1) = rank(A1A

∗
1) = r we can assure that there exists

a unitary matrix S ∈ C
s×s such that A∗

1A1 = S(Ir⊕Os−r)S
∗. Then Is−A∗

1A1 = S(Or⊕Is−r)S
∗,

that is rank(Is−A∗
1A1) = s−r. Hence, A and B are adjacent if and only if rank(Z(Is−A1A

∗
1)) = 1.

In this case, s = r+1. Using the Sylvester formula rank(Z(Ir+1−A∗
1A1)) = rank(Ir+1−A∗

1A1)−
dim(N (Z) ∩R(Ir+1 −A∗

1A1)) and the fact that R(Ir+1 −A∗
1A1) = N (A1) holds, we obtain that

rank(Z(Is −A∗
1A1)) = 1 if and only if N (Z) ∩ N (A1) = {0}.

The weighted case is given in the following result.

Corollary 8 Let A ∈ C
m×n
r , B ∈ C

m×n
s and consider two Hermitian positive definite matrices

M ∈ C
m×m and N ∈ C

n×n such that A ≤∗
M,N B. Then A and B are adjacent if and only if there

exist unitary matrices U ∈ C
m×m and V ∈ C

n×n and a matrix Z ∈ C
(m−r)×s such that

A = M−1/2U

[
ΣAA1 O

O O

]
V ∗N1/2 and B = M−1/2U

[
ΣAA1 O

Z(Is −A∗
1A1) O

]
V ∗N1/2,

where ΣA ∈ R
r×r is a positive definite diagonal matrix (with non-increasing diagonal entries),

s = r + 1 and block A1 ∈ C
r×s satisfies A1A

∗
1 = Ir and N (Z) ∩ N (A1) = {0}.
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