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Abstract—Matrix inversion is routinely performed in 

computational engineering, with coupling matrix filter synthesis 

considered here as just one of many example applications. When 

calculating the elements of the inverse of a matrix, the 

determinants of the submatrices are evaluated.  

The recent mathematical proof of the Desnanot-Jacobi (also 

known as the ‘Lewis Carol’) identity shows how the determinant 

of an N+2 order square matrix can be directly computed from 

the determinants of the N+1 order principal submatrices and N 

order core submatrix. For the first time, this identity is applied 

directly to an electrical engineering problem; simplifying N+2 

order coupled matrix filter synthesis (general case, which 

includes lossy and asymmetrical filters). With general 2-port 

network theory, we prove the simplification using the Desnanot-

Jacobi identity and show that the N+2 coupling matrix can be 

directly extracted from the zeros of the admittance parameters ( 

given by N+1 order determinants) and poles of the impedance 

parameters( given by the N order core matrix determinant). The 

results show that it is possible to decrease the computational 

complexity (by eliminating redundancy), reduce the associated 

cost function (by using less iterations) and under certain 

circumstances obtain different equivalent solutions. Nevertheless 

the method also proves its practical usefulness under constrained 

optimizations (when the user desires specific coupling matrix 

topologies and also constrained coefficients values (purely real/ 

imaginary/positive/negative) when it manages to lead to a direct 

coupling matrix constrained configuration when other similar 

methods fail ( using the same optimization algorithms) 

 
Index Terms—coupling matrix, determinant, filter synthesis 

I. INTRODUCTION 

N computational engineering, matrix inversion is routinely 

performed and this requires the calculation of its 

determinant. While generally considered a mature subject, 

there is still scope for new algorithms [1] and methods [2], 

which is critical for simplifying computational effort and 

ultimately speeding up simulation time.  
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For an N order filter, N order coupling matrix filter 

synthesis requires N order matrix inversion [3-4]. The N+2 

coupling matrix, on the other hand, includes an extra pair of 

rows (top and bottom) and extra pair of columns (to the left 

and right) surrounding the N order core submatrix, to describe 

all the couplings between the source and load and the different 

nodes of the circuit [5-6]. The N+2 order coupling matrix 

synthesis can start from the transversal coupling matrix [6], 

(lossless case) [7] (lossy case) which can be obtained directly 

from the poles and residues of the short-circuit admittance or 

Y-parameters. Since transversal coupling is not practical for 

physical implementations, the authors of [6-7] search for a 

new coupling matrix that shares the same target frequency 

response. Classical synthesis/reconfiguration techniques 

employ similarity transformations; based on either rotations 

[6, 8] or reflections [9] for reciprocal lossless filters (having 

symmetrical real coupling matrices), hyperbolic rotations [10-

11] or hyperbolic reflections [12] for reciprocal lossy filters 

(having symmetrical complex coupling matrices). These 

transformations are reapplied until the coupling matrix is 

transformed into the desired filter topology. The drawbacks of 

these methodologies are represented by the fact that one has to 

find the sometimes complicated sequence of transformations 

which has to be applied in order to obtain the desired filter 

topology. Further one cannot impose an ideal user constrained 

reconfiguration of the coupling matrix (supposing one desires 

a coupling topology with coefficients values within a specific 

range).Once the proper sequence of transformations is found 

(which reconfigures an initial coupling matrix to a new one in 

a desired topology), one may still have to work on changing 

the signs of the coupling coefficients to adjust them to the 

practical ones. This can be analytically using the method of 

enclosures (proposed by Cameron) and /or using scaling 

matrices in order to work with more practical coupling 

coefficient values [7] Alternatively, since it can be 

cumbersome to find the appropriate sequence of 

transformations, it is possible to use optimization techniques 

to replace the transversal coupling matrix with one that can 

generate an equivalent network topology; for example  the 

technique proposed and applied in [13] for a reciprocal 

symmetrical lossless filter. 

Another synthesis procedure transforms the Y-parameters of 

a lossy filter directly into the desired complex coupling 

matrix, based on the computation of four determinants of three 
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principal (sub)matrices [14]; one of order N+2 and three of 

order N+1. However, by exploiting a recent mathematic proof 

(Desnanot-Jacobi identity) [2], it is shown that the synthesis in 

[14] can be simplified using lower order determinants for its 

(sub)matrices; three of order N+1 and one of order N. With 

general 2-port network theory, we prove the simplification 

using the Desnanot Jacoby identity and propose a simplified 

hybrid coupling matrix extraction/reconfiguration method 

based on the zeros of the admittance parameters and on the 

poles of the impedance parameters (or vice versa if one works 

with admittance inverters coupling matrices models). 

. 

II.  DESNANOT-JACOBI IDENTITY WITH NETWORK THEORY 

In 2012 it was shown that for a matrix      of order N+2 

(with N ≥ 1) its determinant        can be computed directly 

from the determinants of its N+1 order principal submatrices 

 ,  ,   and   and N order core submatrix   , with      
  [2]. With reference to (1),   is obtained by deleting the last 

row and last column,   by deleting the last row and first 

column,   by deleting the first row and last column and   by 

deleting the first row and first column; while    (the core 

N*N submatrix of     ) is obtained by deleting the first and 

last rows and the first and last columns: 
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A. Y-parameters and N+2 coupling matrix 

Using a low-pass filter prototype and impedance inverters 

[4], from [16], the Y-parameters for a 2-port network are 

related to the extended coupling matrix      [14]: 

 

                                      (2a) 

 

     

 

 
 
 

                   

                      

                      

            
                      

                    

 
 
 

       (2b)     

                        

     
      
      

   
    

        
  

      
          

     

 

   
               

                   
  

                 
                     

    (3) 

 

where         is the complex operator, ω is angular 

frequency,      is the (N+2)*(N+2) impedance matrix [15], 

and      is a diagonal matrix of order N+2 [14] with 

elements equal to 1, with the exception of               

 . Since our computational reduction procedure is based on 

(1), where all the coefficients can be complex, if (2) includes 

an additional summing term (represented by a diagonal matrix 

that includes resonator losses [17]), the following analysis is 

unaffected. 

Now, (3) can be further simplified as follows. Using 

determinants for its submatrices, in their (3), the authors of 

[14] interchange     with     by mistake; as can be seen in 

our (4),      is related to    ): 
 

                 
 

      
 

             

             
           (4)  

 

From now, if we only address reciprocal networks having 

symmetrical coupling matrices, (4) is further simplified to: 

 

                 
 

      
 

             

             
           (5)  

 

Finally, for the first time, we introduce (1b) to make a 

further simplification:  
 

                 
    

           
 

             

             
       (6) 

 

This result is important because it can now be seen that 

admittance parameters are completely determined by lower 

order determinants   ,    ,     and     . In addition, by 

combining (6) and (1), with         , the determinant of 

    can be calculated from the new and elegant relationship: 
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B.  ABCD-, Y- and Z-parameters 

With traditional normalized synthesis, for a low-pass filter 

prototype, the ABCD-parameters can be expressed as [13]: 

 

                                    
 

    
 
        
        

                     (8) 

 

where complex frequency      (ignoring transient 

behavior), P(s) is a polynomial whose degree is given by the 

number of finite transmission zeros for the filter and   is a 

normalization constant. 

The admittance parameters for a reciprocal network are 

related to the ABCD-parameters as: 
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where          is the numerator matrix of the admittance 

parameters and            is the common denominator. 

Using a low-pass filter prototype and impedance inverters, the 

associated degrees are: N for     ; N-1 for      and     ; 
and      would have degree N-2, except with the fully 

canonical case (i.e. source-load coupling occurs with 

               ) when it is also N. Note that, if 

admittance inverter coupling matrix models are used, 

     would be the (N+2)*(N+2) admittance matrix and the 

associated degrees would be N for     ; N-1 for      and 

    ; and      would have degree N-2, except with the fully 

canonical case when it is also N [15]). 

In a similar way, we can determine the relationship between 

the open-circuit impedance or Z-parameters for the 2-port 

network and ABCD-parameters: 
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where          is the numerator matrix of the impedance 

parameters while            is the common denominator. 

C.   Desnanot-Jacobi simplification to the coupling matrix 

By inverting (6) we obtain: 

 

    
 

    
 

           

           
              (11) 

 

This shows an important point in that the poles of the Z-

parameters are given by the core N*N coupling matrix 

Eigenvalues (with          ). 
With direct synthesis (in a translated generalized 

Eigenvalue problem), the authors of [14] force the zeros of 

   ,     and     to be equal to the zeros of      ,       

and      ;  while the poles of the Y-parameters should be 

equal to the zeros of       . Thus, the authors of [14] impose 

the optimized network to share the same values for     , 
    ,      and        in (9) as the target filter. 

 Translating this into a simplified Eigenvalue problem, for 

the condition that an N+2 order coupling matrix generates the 

same admittance poles as the target network (with      
      ), gives [14]: 

 

                                        (12) 

 

where    are the Eigenvectors and    are the corresponding 

generalized Eigenvalues. 

Using similar expressions for the zeros of the Y-parameters, 

based on N+1 order determinants    ,     and    , the 

associated cost function    can be defined as [14]: 

 

              
     

     
         

                     (13) 

 

where py are the poles of the prototype Y-parameters,   
  ,    

   

and   
   are the zeros of the target    ,     and    , 

respectively. Also,    are the generalized Eigenvalues of (12), 

corresponding to the poles of the prototype Y-parameters 

(while    are the zeros of             in either (5) or (9), 

and equal to the zeros of       in (9)); while   ,      and      
are the set of generalized Eigenvalues for equations similar to 

(14), but now using the N+1 order principal submatrices 

matrices  ,   and   [14]. During the optimization process 

    
          are calculated for each iteration, until the target 

values are reached. 

Now, a classical Eigenvalue equation has the standard form 

           , where   denotes an arbitrary matrix and   is 

the identity matrix (with unity along the main diagonal and 

zeros elsewhere); both square matrices having the same order. 

With (12), while      is a diagonal matrix of order N+2, its 

diagonal elements are not all equal to 1, since     

          ; this can be seen as providing additional and  

unnecessary redundancy. Therefore, the ‘generalized 

Eigenvalues’ [14] obtained from (12) cannot be the same as 

the classical Eigenvalues of      and, thus, (12) represents a 

non-standard solution.  

Here, since    (the core N*N submatrix of     ) has only 

unity along its main diagonal, using (11) with (2), gives us the 

standard form of the Eigenvalue equation: 

 

                                         (14) 

 

where    is the core N*N submatrix of     . The coupling 

matrix now has the same values for     ,     ,      and 

       in (10) as the target filter. The resulting cost function 

now changes to    : 
 

           
     

     
         

                     (15) 

  

where pz are the poles of the prototype Z-parameters; while    

are the zeros of           in either (10) or (11), and equal 

to the zeros of       in (10).  

It should be noted that (14) generates N different solutions, 

corresponding to the zeros of      in (10). However, (12) 

generates either N-2 solutions, corresponding to the zeros of 

     in (9), if there is no source-load coupling, or N solutions 

with the fully canonical case. This can also be seen from 

matrix theory. With reference to (2b), the extended coupling 

matrix      has the first and last elements on the main 

diagonal equal to zero [6, 8] (corresponding to no source-

source and load-load self-coupling) and if the source (S) and 

load (L) are not coupled together (i.e.            ) then 

                             . Using a Laplace 

expansion, it can be seen that             or (12) only 

generates N-2 solutions. With the canonical case,       

       and, therefore,                 and again, 

using Laplace expansion, it can be seen that             
or (12) now generates N solutions. 

D.   Computational cost advantage 

It will be found that (14) has the following computational 
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advantages over (12): (i) It uses an N order matrix, unlike the 

N+2 order matrix in (12); (ii) It is a classical Eigenvalue 

problem unlike a generalized Eigenvalue problem in (12); (iii) 

It always uses the core N order coupling matrix and, thus, 

avoids taking into account the elements corresponding to the 

couplings between the source-load and different resonators – 

using less variables in the optimization steps; and (iv) it is less 

affected when source-load coupling occurs, as (12) also  

generates N solutions. 

The resulting computational gain with our standard form is 

represented by the difference in time Δt needed for a processor 

to solve (12), when compared to (14), at each iteration step of 

the optimization process.   

The computational gain for arbitrary 2nd to 6th order filters 

having symmetrical N+2 order coupling matrices can be 

significant, as shown in Fig. 1(a). Here, one needs more than 

400 seconds using Mathematica 9.0 for N = 6 (coupling 

matrix of order 8) to solve (12) and only 2.91 seconds for (14), 

using random symbolic (non-numerical) coupling matrix 

coefficients [18].  

With a typical optimization process [19], depending on the 

initial numerical values, algorithm used and accuracy required, 

from ten to thousands of iterartions may be required to achieve 

the target Y-parameters; the associate cost advantage can be 

clearly seen in Fig. 1(b).  

 

 

 

 

 

 
 

 

 

 

 

(a)  

 

 

 

 

 

 

 

 

 

 

(b)  

Fig. 1. Computation gain using Mathematica 9.0 with an Intel i7 processor 

and 2 GB RAM: (a) Time taken t for solving (12) (solid lines) and (14) 

(dashed line) for arbitrary 2nd to 6th order filters with symmetrical N+2 order 

coupling matrix (using symbolic non-numerical coefficients); (b) Results 

against iteration number for different order coupling matrices (using 

numerical coefficients) (with the cost functions    and     giving the same 

final results). 

III. FILTER DESIGN EXAMPLES 

Design examples will now be given to an arbitrarily chosen 

asymmetrical lossy filter  [p. 60 in 20]; the target filter 

response is given by the scattering or S-parameters in Fig. 2, 

for a 4th order filter having both source and load couplings. 

With all design examples, the Nelder Mead, Simulated 

Annealing and Differential Evolution algorithms available in 

[18] for constrained optimizations (direct search optimization 

algorithms) are used and compared. Gradient based 

optimization algorithms [21] are available in Mathematica for 

unconstrained optimization problems. Thus we tested too the 

Fletcher (conjugate gradient algorithm) which gave the best 

results among the the latter ones available.( in the cases when 

we put no restrictions on the coupling matrix coefficients). 

The initial solutions for the coupling matrix coefficients are 

considered always the ones Mathematica generates 

authomatically, mainly a set of points with random numbers in 

the interval [-1,1]. We consider this authomatical intial 

solution always unchanged since we aim to test our coupling 

matrix extraction/ reconfiguration method in a variety of cases 

( different topologies sharing the same frequency response but  

with different constraints on the coefficients too). 

Optimizations is  implememnted using an Intel i5 3317u 

processor, with 4 GB of RAM, until the filter is optimized to 

match with the target given in Fig. 2. Having a pre-defined 

topology, a search starts for coupling matrix coefficient values 

that share those for the target filter response (as in Fig. 2); 

optimization is completed once this is achieved. The iteration 

number represents the number of times the search algorithm 

re-computes the values of the coupling matrix coefficients 

during the optimization process. 

 

 

 

 
 

 

 

 

 

 

Fig. 2. Target S-parameters for an asymmetrical lossy filter (low-pass 

prototype with unity source and load resistances) [p. 60 in 20]: solid lines for 

|S21| and |S11|; dashed line for |S22|. 

 

The general form for the 4th order extended coupling matrix 

for a reciprocal filter is given by: 

 

     

 

 
 
 
 

                        

                        

                        

                        

                        

                         

 
 
 
 

     (19) 

 

To meet the target specification given by Fig. 2, if the 

elements of the coupling matrix are used as optimization 

variables (with the exceptions of             and 

      ), there will be 18(36) independent complex(real) 

variables; loss is considered here to be distributed evenly over 

all elements. 
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A.   Proposed general synthesis  

Our optimization routine performs iterations until either 

∆C<10
-6

 or ∆C´<10
-6

 or better is achieved; at which point the 

reconfigured topology shares the same response (which would 

be indistinguishable to see if we plotted this out). Using our 

synthesis procedure with (15), we obtain the extended 

coupling matrix given in Table I with the associated cost 

function against iteration number shown in Fig. 3. With 17 

iterations and in 28 seconds ( fastest using the Nelder Mead 

algorithm) we get         ). With Simulated Annealing 

and with Differential Evoultion we obtain the same results but 

in 33 and 40 seconds respectively. On the other hand the 

gradient based optimizer reaches too for this unconstrained 

coupling matrix solution in around 30 seconds in 300 

iterations. 

 
TABLE I 

N+2 COUPLING MATRIX OBTAINED WITH (15)  

 

0 0.1295-

0.0549j 

-0.0430+ 

0.0067j 

0.4643+ 

0.0022j 

-0.1604-

0.0396j 

0 

0.1295-

0.0549j 

0.52264-

0.0141j 

-0.5781- 

0.0570j 

-0.7806-

0.0195j 

0.20735-

0.049j 

-0.1146- 

0.0156j 

-0.0430+ 

0.0067j 

-0.5781- 

0.0570j 

0.0120+ 

0.0518j 

-0.9083-

0.0267j 

-0.9114+ 

0.0462j 

-0.1461- 

0.0098j 

0.4643+ 

0.0022j 

-0.7806-

0.0195j 

-0.9083-

0.0267j 

-0.2344-

0.1036j 

-0.2518+ 

0.1410j 

-0.5176- 

0.0990j 

-0.1604-

0.0396j 

0.20735-

0.049j 

-0.9114+ 

0.0462j 

-0.2518+ 

0.1410j 

0.4070+ 

0.0059j 

-1.2698+ 

0.0429j 

0 -0.1146- 

0.0156j 

-0.1461- 

0.0098j 

-0.5176- 

0.0990j 

-1.2698+ 

0.0429j 

0 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3. Cost function associated with the extended coupling matrix from Table 

I, calculated using (15). (solid line- Nelder Mead, dashed- Simulated 

Annealing, dots-Differential Evolution) 

 
 

B.   Previous general synthesis  

By comparison, using the previous synthesis procedure 

[14] with (13), we obtain the extended coupling matrix given 

in Table II with the associated cost function against iteration 

number shown in Fig. 4. With 27 iterations and in 102 

seconds, we get          ( fastest using the Nelder Mead 

algorithm). With Simulated Annealing and with Differential 

Evoultion we obtain the same results but in 150 and 244 

seconds respectively. On the other hand the gradient based 

optimizer Fletscher fails to obtain in 5000 iterations and 10 

minutes any solution in this case. 
TABLE II 

N+2 COUPLING MATRIX OBTAINED WITH (13) 

 

0 -0.253-

0.0031j 

0.2947- 

0.1285j 

0.1877- 

0.0220j 

0.3203+ 

0.1286j 

0 

-0.253-

0.0031j 

-0.0327+ 

0.0274j 

-0.4058- 

0.17588j 

-0.8475+ 

0.0246j 

-0.2752+ 

0.1700j 

-0.3891+ 

0.3176j 

0.2947- 

0.1285j 

-0.4058- 

0.17588j 

0.3567+ 

0.0134j 

-0.5005+ 

0.2018j 

-1.1917- 

0.0349j 

-0.6164+ 

0.1380j 

0.1877- 

0.0220j 

-0.8475+ 

0.0246j 

-0.5005 

+0.2018j 

-0.1806+ 

0.1008j 

-0.4826- 

0.2372j 

-1.1248 - 

0.3357j 

0.3203+ 

0.1286j 

-0.2752+ 

0.1700j 

-1.1917- 

0.0349j 

-0.4826- 

0.2372j 

0.5637- 

0.2017j 

0.6393- 

0.2642j 

0 -0.3891+ 

0.3176j 

-0.6164+ 

0.1380j 

-1.1248 - 

0.3357j 

0.6393- 

0.2642j 

0 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

Fig. 4. Cost function associated with the extended coupling matrix from Table 

II, calculated using (16). (solid line- Nelder Mead, dashed- Simulated 

Annealing, dots-Differential Evolution) 

 

Both matrices can be then uneasy manipulated using 

hyperbolic rotations [7, 10-11] or hyperbolic reflections [12], 

with the proper sequence, to generate a coupling matrix that is 

optimal for the implementation technology used. 

C.    Proposed direct synthesis  

Now, we try to directly synthetize a more practical coupling 

matrix topology (as in many cases no solutions exists), having 

symmetry (being reciprocal), and assume complex coupling 

coefficients (representing lossy elements) on the main 

diagonal only (giving a total of 22 independent real variables), 

using our synthesis procedure with (15). We obtain the 

extended coupling matrix given in Table III, with the 

associated cost function against iteration number shown in 

Fig. 5. With 11 iterations and in 5.2 seconds,           we 

get the soultion with the Nelder Mead algorithm and in less 

than 6 seconds with the  Simulated Annealing and Differential 

Evolution. On the other hand the gradient based optimizer we 

get the solution in 2 seconds in this particular case( 190 

iterations). 

 

 

 



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2631262, IEEE Access

 6 

 

 
TABLE III 

N+2 COUPLING MATRIX OBTAINED WITH (15) WITH 4 COMPLEX AND 14 REAL 

NON-ZERO COUPLING COEFFICIENTS 

 

0 -0.1855 0.0190 0.1883 0.4302 0 

-0.1855 0.5773-

0.015j 

0.9122 0.8296 0.0726 1.2139 

0.0190 0.9122 -0.4613-

0.015j 

-0.9086 -0.2891 -0.4153 

0.1883 0.8296 -0.9086 0.6373-

0.015j 

-0.0732 -0.1200 

0.4302 0.0726 -0.2891 -0.0732 -0.0461-

0.015j 

0.4921 

0 1.2139 -0.4153 -0.1200 0.4921 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Cost function associated with the extended coupling matrix from Table 

III, calculated using (15). (solid line- Nelder Mead, dashed- Simulated 

Annealing, dots-Differential Evolution) 

D.   Previous direct synthesis  

By comparison, using the previous synthesis procedure 

[14] with (13), by imposing the same coupling configuration, 

we obtain the extended coupling matrix given in Table IV 

with the associated cost function against iteration number 

shown in Fig. 4. With 18 iterations and in 9.7 seconds,  

       . we get the soultion with the Nelder Mead 

algorithm and in less than 10 seconds with the  Simulated 

Annealing and Differential Evolution . On the other hand the 

gradient based optimizer  ( Fletscher) fails to find in this case 

any solution. 

 

 
TABLE IV 

N+2 COUPLING MATRIX OBTAINED WITH (13) WITH 4 COMPLEX AND 14 REAL 

NON-ZERO COUPLING COEFFICIENTS 
 

0 0.1551 0.1744 -0.4403 0.0826 0 

0.1551 -0.1742- 

0.015j 

0.9346 1.0709 -0.5499 -0.9147 

0.1744 0.9346 -0.1045-

0.015j 

-0.2545 -0.2572 0.5724 

-0.4403 1.0709 -0.2545 0.2069-

0.015j 

0.3439 0.1624 

0.0826 -0.5499 -0.2572 0.3439 0.7790-

0.015j 

0.8438 

0 -0.9147 0.5724 0.1624 0.8438 0 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 6. Cost function associated with the extended coupling matrix from Table 

IV, calculated using (13).  

E.   Synthesis for conditions imposed by [20] 

We now impose the coupling configuration given in [20], 

having lossy elements only along the main diagonal and with 

the only non-zero cross-coupling coefficients     ,      and 

    . We obtain the same coupling matrix as in [20], shown in 

Table V, in less than 3 seconds with both procedures (13) and 

(15) and with all optimization algorithms. The associated cost 

function against iteration number is shown in Fig.7. In this 

particular case the Fletcher algorithm is fastest finding the 

solution in 0.5 seconds for (15) and in 1.5 seconds for the 

previous procedure (13). 
 

 

TABLE V 

N+2 COUPLING MATRIX OBTAINED WITH (13) AND (15) WHILE SEARCHING 

IMPOSING THE COUPLING ELEMENTS GIVEN IN [20] WITH 4 COMPLEX AND 8 

REAL NON-ZERO COUPLING COEFFICIENTS 

 

 
 

 

 

 

 

 

 
 
(a)            (b) 

Fig. 7. Cost functions associated with the extended coupling matrix from 

Table V, calculated using: (a) (15); and (b) (13). (solid line- Nelder Mead, 

dashed- Simulated Annealing, dots-Differential Evolution) 

 

F.  Synthesis for arbitrary lossless resonator condition 

Finally, we now arbitrarily impose that the second and third 

resonators be lossless. The extended coupling matrix using 

0 -0.5053 0 0 0 0 

-0.5053 -0.2562- 

0.0150j 

-0.8464 0 -0.4143 0.0873 

0 -0.864 0.0679-

0.0150j 

0.2310 -0.9313 0 

0 0 0.2310 0.9841-

0.0150j 

0.7653 0 

0 -0.4143 -0.9313 0.7653 -0.0886-

0.0150j 

1.3767 

0 0.0873 0 0 1.3767 0 
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(15) is given in Table VI, while that using (13) is given in 

Table VII. The former now requires 151 seconds with Nelder 

Mead algorithm (which proves to be the faster in this case as 

the other algorithms fail to converge in 10 minutes), while the 

latter only requires 30 seconds using the Nelder Mead 

algorithm or around 40 seconds using Differential Evolution 

or Simulated Annealing. Clearly, for this example, there is a 

computation loss with our technique and also a flexibility in 

the choice of the optimization algorithm. Further, if we impose 

new constrains in the optimization search we may find that the 

proposed reconfiguration/ extraction procedure leads to the 

only direct solution.   

 
TABLE VI 

N+2 COUPLING MATRIX OBTAINED WITH (15) WITH 2 LOSSLESS CENTRAL 

RESONATORS (16 COMPLEX AND 2 REAL VARIABLES ) 

 

0 0.3050+ 

0.0020j 

0.1279-

0.0148j 

0.0712+ 

0.0026j 

-0.3755- 

0.0028j 

0 

0.3050+ 

0.0020j 

0.4114-

0.0154j 

-0.5329- 

0.0063j 

-1.051- 

0.0019j 

0.0846+ 

0.0194j 

-0.9965- 

0.0011j 

0.1279-

0.0148j 

-0.5329- 

0.0063j 

0.3237 -0.9911- 

0.0100j 

0.4332- 

0.0136j 

-0.3188- 

0.0146j 

0.0712+ 

0.0026j 

-1.051- 

0.0019j 

-0.9911- 

0.0100j 

-0.3105 -0.3557+ 

0.0193j 

-0.2801+ 

0.0016j 

-0.3755- 

0.0028j 

0.0846+ 

0.0194j 

0.4332- 

0.0136j 

-0.3557+ 

0.0193j 

-0.2825- 

0.0044j 

-0.8543+ 

0.006 j 

0 -0.9965- 

0.0011j 

-0.3188- 

0.0146j 

-0.2801+ 

0.0016j 

-0.8543+ 

0.006 j 

0 

 
 

TABLE VII 

N+2 COUPLING MATRIX OBTAINED WITH (13) WITH 2 LOSSLESS CENTRAL 

RESONATORS (16 COMPLEX AND 2 REAL VARIABLES) 

 

0 0.0160-

0.0506j 

-0.1851-

0.0348j 

-0.1797+ 

0.0058j 

-0.4386+ 

0.0104j 

0 

0.0160-

0.0506j 

0.1795-

0.059j 

0.3077- 

0.1284j 

-0.9165+ 

0.0061j 

0.3905+ 

0.0321j 

-1.2773- 

0.0282j 

-0.1851-

0.0348j 

0.3077- 

0.1284j 

0.1665 0.6426-

0.0334j 

-1.1372-

0.0144j 

0.5008- 

0.0398j 

-0.1797+ 

0.0058j 

-0.9156 

+0.0061j 

0.6426-

0.0334j 

0.2750 0.3005+ 

0.1256j 

-0.1564+ 

0.0342j 

-0.4386 

+0.0104j 

0.3905+ 

0.0321j 

-1.1372-

0.0144j 

0.3005+ 

0.1256j 

0.0860- 

0.0003j 

-0.1028 

+0.1047j 

0 -1.2773- 

0.0282j 

0.5008- 

0.0398j 

-0.1564+ 

0.0342j 

-0.1028 

+0.1047j 

0 

 

 

 

 

 

 

      (a)                      (b) 
Fig. 8. Cost functions associated with the extended coupling matrix from: (a) 

Table VI; and (b) Table VII. (solid line- Nelder Mead, dashed- Simulated 

Annealing, dots-Differential Evolution) 

G.  Synthesis of a paralell coupled pair  filter without resistive 

coupling coefficients 

 

 As an example, the parallel coupled pair filter is 

considered, having its routing schematic shown in Fig. 9 [7]. 

A search is made for a practical coupling matrix configuration 

with lossy resonators, without resistive couplings. Using our 

method (15) and the Nelder Mead algorithm we obtain the 

coupling matrix given in Table VIII in 72 seconds, as seen in 

Fig.10. The same solution is obtained with the Simulated 

Annealing and Differential Evolution Algorithm within 

between 72 and 104 seconds; while no solution could be found 

with the Fletcher-Powell algorithm. Using these four 

optimization algorithms with the previous methodology (13), 

no solution could be found for this coupling scheme in over 45 

minutes of simulation time. 

 

 

 

 

 

 

 

 

 
Fig. 9. Parallel coupled filter topology 

 

 
TABLE VIII 

N+2 COUPLING MATRIX OBTAINED WITH (15) WITH A PARALEL COUPLED 

TOPOLOGY WITHOUT ANY RESISTIVE COUPLINGS : M1 

 

 

0 -0.3428 0.054 0.362 0.061 0 

-0.3428 -0.064- 

0.015j 

0 0 1.291 0.820 

0.054 0 1.391-

0.015j 

-0.2565 0 -0.611 

0.362 0 -0.2565 0.035-

0.015j 

0 0.8193 

0.061 1.291 0 0 -0.655-

0.015j 

-0.4285 

0 0.820 -0.611 0.8193 -0.4285 0 

 

 

 

 
Fig. 10. Cost function associated with the extended coupling matrix from 

Table VIII, calculated using (15) using the Nelder Mead algorithm. Using (15) 

we reach a solution while using (13) we fail. 
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IV. FURTHER DISCUSSION 

 

 

The classical deterministic reconfiguration process of the 

lossless coupling matrices (for reciprocal networks) is based 

on similarity transformations involving rotations for the 

lossless cases [1-4], [6, 8] and hyperbolic rotations [7, 10, 11] 

for lossy cases which are applied to the coupling matrix via 

(20). The authors themselves introduced a new class of 

similarity transformations (for reciprocal networks) based on 

reflections (lossless cases) and hyperbolic reflections (lossy 

cases) [9, 12]. By this means the authors reconfigure a given 

matrix    to a new one    which will have the same 

frequency response as the first one while keeping the 

symmetry of it (and thus converting a reciprocal network into 

a new reciprocal one). 
 

 

 

                                            
                           (20) 

 

 

Recently lossless non-reciprocal networks synthesis has 

gathered the attention of the microwave community [22], the 

authors proposing there a first technique to synthesize and 

reconfigure lossless nonreciprocal networks based on coupling 

matrices. The transformations used to reconfigure the coupling 

matrices are still based in [22] on a modified form of (20) and 

thus on complex similarity transformations. 

Let us now consider the simple rotation matrix presented in 

Table IX (one can replace it with a complex rotation matrix, 

but for keeping results simple we will consider it a simple 

rotation matrix).  

 
TABLE IX 

ROTATION MATRIX T 

 

1 0 0 0 0 0 

0 Cos(/4) 0 Cos(/4) 0 0 

0 0 1 0 0 0 

0 Cos(/4) 0 Cos(/4) 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

 

For the matrix given in Table VIII and let us consider the 

extended generalized impedance matrices: 

 

                                                                    (21) 

 

                                      
                            (22)   

                            

                              =                      (23)   

 

Using the Desnanot Jacobi property it can be proved that 

the new proposed form (23) will generate the same admittance 

parameters as (21) and (22) if the rotation matrix T has no 

pivot on the first and last lines and rows (and thus has just 

ones and zeros there). Unlike (21) or (22) the matrix in (23) 

will not be any more a symmetrical matrix since (23) is not a 

similarity transformation, it is a rotation (please beware that 

we do not apply a simple rotation to the coupling matrix    

(this would be completely wrong), we apply it to 2a) and thus 

to   ).  

Indeed applying    to    via (23) we get the matrix in 

Table X which represents a frequency dependent extended non 

reciprocal impedance matrix sharing the same frequency 

response with       and     . Equation (23) shows that the 

direct application of rotation matrices ( without any pivots on 

the first and last rows/columns) to the generalized extended 

impedance matrices leads to the same frequency response as 

the initial one. Even though the matrix in Table X has the 

inconveniency of   frequency dependence, the result may be of 

a theoretical interest in the new topic proposed in [22], since it 

is obtained without a similarity transformation and it is valid 

for lossy networks too. 

 

 
TABLE X 

FREQUENCY DEPENDENT W3 EXTENDED IMPEDANCE MATRIX 

 

0 -0.3428 0.054 0.362 0.061 0 

-0.4984 0.707  -

-0.045-

0.01j 

0.1814 -0.707   -

0.025+0.01j 

0.9128 0.0009 

0.054 0   

+1.3911-

0.015j 

-0.2565 0 -0.611 

0.01357 0.707  -

-0.045-

0.01j 

-0.1814 0.707   -

0.025-0.01j 

0.9128 1.1596 

0.061 1.291 0 0   -

0.655-

0.015j 

-0.4285 

0 0.820 -0.611 0.8193 -

0.4285 

0 

 

 

 

V. CONCLUSION 

It has been shown that, based on the recent mathematic proof 

of the Desnanot-Jacobi identity in (1b), the optimization 

process for coupling matrix filter extraction and 

reconfiguration can be simplified; decreasing computational 

complexity, by eliminating redundancy, and reducing the cost 

function. Until now, (1b) was previous used in the so-called 

‘Dodgson condensation procedure’ [23]. However, by 

exploiting the properties of (1b), we derived simplifying 

expressions for the Y- and Z- parameters. These results prove 

that the poles of the Z-parameters are given by the 

Eigenvalues of    (unlike the poles of the Y-parameters, 

which are given by the zeros in       ). The technique 

proves especially suitable when the search is made for specific 

constrained coupling matrices configurations, in this case 

leading always to a solution, even though the previous 
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technique irrespective of the proposed algorithm failed to do 

(using the same initial coupling matrix). The proposed 

method, which exploits our new equations (14) and (15), 

simplifies the associated cost function by computing  different 

lower-order determinants; significantly speeding up the 

optimization procedure used in [14], based on impedance 

inverter coupling matrix models [4, 15, 17].  Similarly, it will 

be found that (1b) can also be used when working with 

admittance inverter coupling matrix models [6, 15].  
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