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Changes in gene expression are the main outcome of
hormone signaling cascades that widely control plant
physiology. In the case of the hormones gibberellins,
the transcriptional control is exerted through the activity
of the DELLA proteins, which act as negative regulators
in the signaling pathway. This review focuses on recent
transcriptomic approaches in the context of gibberellin
signaling, which have provided useful information on
new processes regulated by these hormones such as
the regulation of photosynthesis and gravitropism.
Moreover, the enrichment of specific cis-elements
among DELLA primary targets has also helped extend
the view that DELLA proteins regulate gene expression
through the interaction with multiple transcription fac-
tors from different families.
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Abbreviations: bHLH, basic helix-loop-helix; GR, gluco-
corticoid receptor; JAZ, jasmonate ZIM-domain; PIF, phyto-
chrome-interacting factor.

Introduction

Gibberellins are a class of plant hormones that regulate multiple
aspects of development, from seed germination to fruit growth,
including the control of organ size, photomorphogenesis and
floral induction (Yamaguchi 2008). Molecular and genetic stu-
dies in the past 20 years have helped decipher the cellular
events responsible for gibberellin activity in several plant spe-
cies, such as Arabidopsis thaliana and rice, and have unveiled a
very high degree of conservation in the signaling mechanism.
Although several physiological studies suggest a role for gibber-
ellins in the control of cell processes other than gene expression
(Bethke et al. 1997), strong evidence indicates that the end-
point of gibberellin signaling is the regulation of transcriptional
activity. This conclusion is derived from two observations. First,
genetic analysis has revealed that most of the control that gib-
berellins exert on plant development occurs through a small set
of nuclear proteins, named DELLAs (Sun and Gubler 2004),
which interact with and regulate the activity of several tran-
scription factors (see below). Consequently, and secondly, sev-
eral reports have documented rapid changes in gene expression

in response to gibberellin treatments, from very specific ones—
such as the classical up-regulation of o-amylase gene expression
in barley aleurone cells (Fincher 1989)—to transcriptomic
changes observed more recently with the use of genomic
approaches (Table 1).

DELLA proteins mediate the regulation of
gene expression by gibberellins

DELLA proteins constitute a subgroup of the GRAS family of
plant-specific, loosely defined transcription factors. The name
was coined on the basis of a short stretch of amino acids
(D-E-L-L-A) in their N-terminal region, which is tightly con-
served among all plant species. They also present additional
conserved motifs, such as the VHYNP domain; a poly(serine/
threonine) stretch; two leucine heptads repeats which may
mediate protein—protein interactions; a putative nuclear local-
ization signal, and a putative SH2 phosphotyrosine-binding
domain. Several plant species possess a single DELLA gene,
such as SLENDER RICET1 (SLR1) in rice (Ikeda et al. 2001) or
PROCERA in tomato (Marti et al. 2007, Bassel et al. 2008,
Jasinski et al. 2008), while the DELLA genes in other plants
such as the Brassicaceae have undergone multiplication. For
instance, DELLAs are encoded by five genes in Arabidopsis:
GAl, RGA, RGL1, RGL2 and RGL3 (Peng et al. 1997, Silverstone
et al. 1998, Lee et al. 2002, Wen and Chang 2002, Tyler et al.
2004). Careful phenotypic analysis of dellakO mutants in
Arabidopsis indicates that each of the five proteins displays
a distinct preferential role in a particular process in the plant,
although with a certain degree of redundancy in some cases.
For example, while only the pentuple dellaKO mutant seems
to rescue completely the defects caused by gibberellin defi-
ciency, GAl and RGA are the major DELLAs controlling cell
expansion in hypocotyl, shoot and root; and RGL2 becomes
the major DELLA protein regulating germination under certain
conditions (Dill and Sun 2001, King et al. 2001, Fu and
Harberd 2003, Cheng et al. 2004, Tyler et al. 2004, Cao et al.
2005). In agreement with this, it has been proposed, based on
promoter-swapping studies, that the functional diversification
of the different DELLA proteins in Arabidopsis is the result of
subfunctionalization probably due to changes in their regula-
tory sequences (Gallego-Bartolomé et al. 2010).
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Table 1 Transcriptomic analyses for the study of DELLA protein function in Arabidopsis

DELLA protein

Description

Reference

All
GAl, RGA, RGL1, RGL2

RGA

All

GAl, RGA, RGL1, RGL2

RGA

All

GAI

All

RGL2

Transcriptome of gibberellin-deficient mutant ga7 during germination.

Comparison of the transcriptomes of a quadruple dellaKO mutant in the
gal background in two developmental stages: germination and flower
development.

Search for DELLA targets misregulated upon RGA induction under the con-
trol of a glucocorticoid-inducible promoter. Confirmation by chromatin
immunoprecipitation for some of them.

Comparison of the transcriptomes of gal and the triple gid1abc receptor
mutants in response to gibberellin application.

Analysis of the transcriptome of a quadruple dellaKkO mutant in the gal
background in response to NaCl.

Changes in gene expression caused by induction of 355:RGA:GR during
flower development in the gal rga gai mutant.

Analysis of the transcriptome of dark-grown seedlings of the pentuple
dellaKO mutant in the gal background.

Search for DELLA targets misregulated upon the induction of HS:gai-1 in
etiolated seedlings. Confirmation for some of them in GAl:gai-1:GR
seedlings.

Analysis of the transcriptome of a pentuple dellaKO mutant in the phases
of minimal and maximal daily growth under short days.

Analysis of the transcriptome of gal rga rgl2 compared to gal rga in seeds
after imbibition for 5d in the cold.

Ogawa et al. (2003)
Cao et al. (2006)

Zentella et al. (2007)

Willige et al. (2007)
Achard et al. (2008)
Hou et al. (2008)
Cheminant et al. (2011)

Gallego-Bartolomé et al.
(2011a)

Arana et al. (2011)

Stamm et al. (2012)

As mentioned, complete loss of DELLA function mimics the
phenotype of continuous gibberellin application (Dill and Sun
2001, Cheng et al. 2004, Tyler et al. 2004, Cao et al. 2005).
Therefore, DELLAs can be considered as negative elements of
gibberellin signaling. In support of this idea, DELLA proteins are
degraded in response to gibberellin accumulation. Importantly,
this destabilization requires the N-terminal region of the
protein, containing the DELLA domain (Dill et al. 2001).
Accordingly, DELLA protein variants lacking this motif are
stable even in the presence of high gibberellin levels. For in-
stance, the stable variants gai-1 and rga- A 17 cause dwarfism in
Arabidopsis equivalent to that caused by gibberellin deficiency
(Peng et al. 1997, Dill et al. 2001). The mechanism by which
gibberellins modulate DELLA accumulation is also conserved at
least between monocots and dicots (Fig. 1). Gibberellin signal-
ing initiates with the binding of the hormone to the GID1
receptor, which is encoded by a single gene in rice (Ueguchi-
Tanaka et al. 2005), and by three paralogs (GID1a, GID1b and
GID1c) in Arabidopsis (Griffiths et al. 2006, Nakajima et al. 2006,
Willige et al. 2007). The gibberellin-loaded GID1 receptor inter-
acts with and inactivates the DELLA proteins (Willige et al.
2007, Ariizumi et al. 2008, Murase et al. 2008, Shimada et al.
2008), and subsequently promotes their polyubiquitination by
an E3 ubiquitin ligase, a process that is mediated by the F-box
proteins SLEEPY1 and SNEEZY in Arabidopsis (McGinnis et al.
2003, Ariizumi et al. 2011). Interestingly, several dicotyledonous
plants have evolved GID1 paralogs—AtGID1b in the case of
Arabidopsis—with the ability to interact with DELLA proteins
in a gibberellin-independent and gibberellin-hypersensitive

F-box

Target gene

Fig. 1 Simplified scheme of gibberellin signaling. DELLA proteins regu-
late the expression of gibberellin target genes, and they undergo poly-
ubiquitination and subsequent degradation by the proteasome in
response to the interaction between the hormone and the GID1 re-
ceptor. Polyubiquitination is facilitated by the participation of an
F-box protein encoded by SLEEPY1 and its paralog SNEEZY.

manner, probably to adapt to low gibberellin cellular environ-
ments (Yamamoto et al. 2010). Very probably, all gibberellin
signaling operates exclusively through the GID1 receptors—at
least at the seedling stage—based on the unequivocal coinci-
dence between genes misregulated in the gal mutant defective
in gibberellin biosynthesis and the gid1 receptor triple mutants,
and on the inability of exogenous gibberellin to recover the
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transcriptomic defects see in the gid1 triple mutants (Willige
et al. 2007).

The localization of DELLA proteins in the nucleus is in agree-
ment with a role in the regulation of gene expression
(Silverstone et al. 1998, Dill et al. 2001). However, there is no
evidence for direct binding of these proteins to DNA, which
suggests that they probably interact with DNA-binding tran-
scription factors. The aforementioned recent evidence suggests
that this is the case, given that, for example, the regulation by
DELLAs of the expression of several light-regulated genes is
mediated by physical interaction with the transcription factor
PHYTOCHROME-INTERACTING FACTOR3 (PIF3), and with
other PIF paralogs (Daviere et al. 2008).

Given these observations, a big challenge in the field is to
explain how a single hormone can exert so many—and so di-
verse—functions durng the plant’s life cycle. Also, in particular,
how DELLA proteins can accurately turn on and off the expres-
sion of specific sets of genes in a context-dependent manner.
This mini review summarizes the genomic approaches that have
been recently undertaken, and the way in which the information
obtained improves our knowledge of gibberellin signaling.

Context-dependent transcriptional regulation
by DELLA proteins

Consistent with the widespread role of gibberellins in control-
ling different aspects of a plant’s life, several transcriptomic
approaches show that there is only a marginal overlap between
sets of genes mobilized by DELLAs in different organs and/or
physiological contexts (Table 1). Interestingly, genes involved
in gibberellin metabolism are among the genes regulated by
DELLAs under all circumstances examined. In general, genes
encoding GA 20-oxidases and GA 3-oxidases are under positive
regulation by DELLAs, while GA 2-oxidase genes are repressed
(Cao et al. 2006, Zentella et al. 2007, Hou et al. 2008, Arana et al.
2011, Cheminant et al. 2011, Gallego-Bartolomé et al. 2011a).
This result confirms that the mechanism for feedback regula-
tion of gibberellin metabolism operates through DELLA pro-
teins, although their precise role has not been elucidated.

As expected, transcriptomic analyses of DELLA mutants
have provided a good molecular description of already
known processes regulated by gibberellins, and have identified
the possible targets in the regulatory circuits that would be
subject to modulation by these hormones. For example, it
has long been known that gibberellins regulate cell expansion
(Cowling and Harberd 1999). Microarray analyses indicate that
DELLAs participate at different levels in the transcriptional cas-
cade that promotes cell expansion. First, DELLAs act early in the
cascade, regulating genes encoding other transcriptional regu-
lators such as the growth-promoting factors PRET and PRE5
(Bai et al. 20124, Ikeda et al. 2012), whose expression is repressed
by DELLAs (Lee et al. 2006, Gallego-Bartolomé et al. 2011a).
Secondly, DELLAs also control the expression of the down-
stream genes involved in the process of cell elongation itself,
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including those that encode enzymes involved in the biogenesis
and modification of the cell wall components, or enzymes re-
sponsible for the modification of cell wall structures in
Arabidopsis (Cao et al. 2006, Zentella et al. 2007, Hou et al.
2008, Arana et al. 2011, Cheminant et al. 2011, Gallego-
Bartolomé et al. 2011a), and in other species such as tomato
or rice (Tsuji et al. 2006, Carrera et al. 2012). However, plant
growth is subtended not only by cell expansion, but also by cell
division, and DELLAs have been found to decrease the cell div-
ision rate in roots and aerial organs through the up-regulation
of the expression of genes encoding cyclin-dependent kinase
inhibitors, such as KRP2 and SIM (Achard et al. 2009), or
through the cross-talk with cytokinin signaling (Moubayidin
et al. 2010), in agreement with a more general function of
DELLAs in the regulation of plant size. Importantly, for this
function to be exerted, DELLAs need only be expressed in the
endodermis (Ubeda-Tomas et al. 2009), and gibberellin levels
are higher in elongating endodermal cells (Shani et al. 2013),
opening up the possibility that size control by gibberellins is
directed by specific cell types.

Similarly, the involvement of gibberellins in reproductive
development has been assigned to different phases, from
floral induction (Langridge 1957, Blazquez et al. 1998) to the
development of floral organs (Wilson et al. 1992, Goto and
Pharis 1999). Accordingly, microarray analyses focused on
these developmental processes have identified a subset of
genes that could explain this regulation. DELLASs repress several
MADS-box and other homeotic genes (Cao et al. 2006, Hou
et al. 2008), which is in line with functional and genetic analyses
that showed that the direct regulation of floral homeotic genes
by the DELLA protein RGA is important for proper flower de-
velopment (Yu et al. 2004). More recently, transcriptional regu-
lation of these MADS-box genes and other flowering time
integrators by DELLAs has been shown to operate through
their known activators, the SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE (SPLs) transcription factors, both in
leaves and in the meristem (Galvao et al. 2012).

Finally, several transcriptomic analyses with Arabidopsis have
yielded a set of genes regulated by gibberellin during seed ger-
mination. Although the first attempt to identify such targets was
based on the application of GA; to gibberellin-deficient seeds,
and not necessarily aimed at identifying DELLA targets (Ogawa
et al. 2003), more recent analyses with DELLA mutants have
confirmed the initial results (Cao et al. 2006). Interestingly, tem-
poral examination of gene expression has revealed that the ear-
lier changes after gibberellin application occur in the regulation
of genes encoding transcription factors, such as AtMYB34/ATR1,
several DOF genes and ATHB-16, followed by the up-regulation of
genes encoding enzymes related to cell wall structure, seed coat
rupture and radicle protrusion (Ogawa et al. 2003, Zentella et al.
2007). The combination of transcriptomic and functional ana-
lyses of misregulated genes revealed an even more important role
for GNC and GNL, encoding two GATA-type transcription factors
whose loss of function caused increased resistance to DELLA-
dependent inhibition of seed germination (Richter et al. 2010).
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Extensive phenotypic analysis of loss- and gain-of-function mu-
tants in these two transcription factors also confirmed their par-
ticipation as negative regulators of gibberellin signaling not only
during germination, but also during vegetative growth and in
reproductive development. Finally, alternative transcriptomic
studies with rice embryoless half seeds also confirmed the role
of SLR1 (the only rice DELLA ortholog) upstream of GAMYB
transcription factors during germination and also in other devel-
opmental processes (Tsuji et al. 2006).

New DELLA functions uncovered through
transcriptomics

A more exciting outcome of DELLA-related transcriptomic stu-
dies is the identification of new, previously unsuspected func-
tions for gibberellins. Such results have been possible through
two strategies: (i) meta-analysis of the obtained gene data sets
with sets of genes regulated by other pathways; and (ii) the
identification of individual genes or groups of genes that link
gibberellin signaling with a specific biological process.

As an example, gibberellin-deficient seedlings display a tran-
scriptomic profile in darkness that resembles that of light-
grown wild-type seedlings (Cheminant et al. 2011), which is
very much in agreement with a role for gibberellins in the re-
pression of photomorphogenesis in darkness (Achard et al.
2007, Alabadi et al. 2004, Alabadi et al. 2008). The overlapping
set of genes was strikingly enriched in those coding for proteins
that participate in photosynthesis (Achard et al. 2007).
Interestingly, gibberellin-deficient plants accumulate large
amounts of protochlorophyllide (a phototoxic precursor of
Chl), but they are notably more resistant to photooxidative
damage when transferred to the light (Cheminant et al.
2011). This is due to the DELLA-dependent up-regulation of
POR, the gene encoding the enzyme protochlorophyllide oxi-
doreductase, suggesting a function for DELLA proteins in the
protection of plants prior to light exposure. In fact, the key
regulator of anthocyanin biosynthesis, PAP1 (Borevitz et al.
2000), has also been found in transcriptomic analyses as a pu-
tative direct target up-regulated by DELLAs (Gallego-Bartolomé
et al. 2011a), suggesting that the involvement of DELLAs in the
promotion of photoprotection is achieved in different ways.
This could be relevant for instance during de-etiolation, but
also at the beginning of every diurnal cycle, as suggested in
an alternative study in which the circadian regulation of
DELLA stability showed an impact in the expression of these
and other genes involved in stress resistance (Arana et al. 2011).
Indeed, DELLAs probably have a more extensive role in stress
resistance than previously suspected. Transcriptomic analysis of
DELLA gain- and loss-of-function mutants in response to high
NaCl concentrations and meta-analysis with published data
revealed that a significant number of genes that respond to
oxidative stress were also under the control of DELLA proteins
(Achard et al. 2008). These analyses led the way to establishing
that stress-induced DELLA accumulation would induce the

expression of genes encoding enzymes for the detoxification
of reactive oxygen species, thereby delaying senescence and
promoting stress tolerance.

An equivalent study looking for early DELLA target genes in
very young dark-grown seedlings showed that DELLA repressed
the expression of MASSUGU2/IAA19 (MSG2/IAA19) (Gallego-
Bartolomé et al. 2011a, Gallego-Bartolomé et al. 2011c), a gene
encoding an Aux/IAA protein that acts as a negative element in
the auxin signaling pathway. One of the main functions of this
protein is the regulation of auxin action during tropic responses
such as gravitropism or phototropism (Tatematsu et al. 2004),
and its repression by DELLAs suggested the possible involve-
ment of gibberellins in the modulation of these sorts of re-
sponses. Indeed, the hypocotyls of gibberellin-deficient
mutants specifically display an enhanced gravitropic reorienta-
tion capacity, without affecting phototropism (Gallego-
Bartolomé et al. 2011¢, Rodrigo et al. 2011). Interestingly, the
attenuation of gravitropism by gibberellins through the regula-
tion of MSG2/IAA19 has been proposed to be particularly rele-
vant to establish plant orientation under competing tropic
stimuli, such as during shade avoidance or during seedling
emergence from the soil (Gallego-Bartolomé et al. 2011c)

The regulation of MSG2/IAA19 expression is not the only
example of cross-talk between gibberellins and other hormones
uncovered through transcriptomics. In the context of hypo-
cotyl gravitropic reorientation and apical hook formation, tran-
scriptional regulation by DELLAs of PIN7, encoding an auxin-
efflux carrier, can also contribute to the interaction between
gibberellins and auxin (Gallego-Bartolomé et al. 2011a, Gallego-
Bartolomé et al. 2011b). Also relevant in this context seems to
be the gibberellin-dependent up-regulation of WAG2 on the
concave side of the apical hook (Willige et al. 2012). This
gene encodes a protein kinase that phosphorylates PIN auxin
transporters, and the wag2 mutant is defective in apical hook
maintenance in darkness and in the formation of the auxin
gradient across this structure (Willige et al. 2012). The import-
ance of post-translational regulation of PINs by DELLAs has also
been proposed in other spatial contexts such as root growth
(Willige et al. 2011) and root gravitropism (Lofke et al. 2013).

In addition, ACC SYNTHASE5 (ACS5) and ACS8, which
encode the key enzyme in ethylene biosynthesis, have also
been identified in this way. In particular, their expression is
repressed by DELLA proteins, and dellaKO mutants have a sig-
nificantly higher content of ethylene compared with the wild
type (Gallego-Bartolomé et al. 2011b). Together with the effects
on auxin transport, this molecular interaction very probably
contributes to the enhanced curvature of the apical hook asso-
ciated with high gibberellin activity (Vriezen et al. 2004, Gallego-
Bartolomé et al. 2011b, An et al. 2012).

Primary target genes of DELLA proteins

Most of the transcriptomic studies carried out to date in con-
nection with gibberellin signaling do not distinguish between
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Transcription Family Physiological context Reference
factor
PIFs bHLH Hypocotyl elongation, apical hook development, De Lucas et al. 2008; Feng et al. (2008);
Chl synthesis Gallego-Bartolomé et al. (2010, 2011b);
Cheminant et al. (2011)
SPT bHLH Seed germination Gallego-Bartolomé et al. (2010);
Josse et al. (2011)
ALC bHLH Fruit development Arnaud et al. (2010)
MYC2 bHLH Gibberellin—jasmonic acid cross-talk Hong et al. (2012)
EIN3 EIL Gibberellin—ethylene cross-talk, apical hook development An et al. (2012)
SPLs SBP-box Floral induction Yu et al. (2012)
BES1, BZR1 BES1/BZR1 Gibberellin—brassinosteroid cross-talk Bai et al. (2012b); Gallego-Bartolomé
et al. (2012); Li et al. (2012)
SCL3 GRAS Seed germination, hypocotyl elongation, root growth Zhang et al. (2011)
IDD1/ENY C2H2 Zinc Seed germination Feurtado et al. (2011)
finger
JAZs JAZ Gibberellin-jasmonic acid cross-talk, biotic stress, root Hou et al. (2010); Wild et al. (2012);
growth Yang et al. (2012)
BOIs RING finger Seed germination, floral induction Park et al. (2013)

the primary set of genes directly regulated by DELLA proteins,
and those secondary targets that are affected as a consequence
of primary alterations.

The first committed approach to the identification of DELLA
primary targets was based on the use of transgenic plants express-
ing the RGA gene under the control of a glucocorticoid-inducible
promoter (Zentella et al. 2007). In these plants, the application of
dexamethasone induced a fast up-regulation of RGA, which in
turn provoked subsequent transcriptional changes. Among the
genes whose expression was quickly altered upon RGA induction
were those related to gibberellin metabolism, again suggesting that
DELLA proteins are intimately linked to the feedback regulatory
mechanism that controls gibberellin homeostasis. However, even
more importantly, eight of the early target genes were confirmed
as direct targets of RGA by chromatin immunoprecipitation of
their promoter regions, suggesting that DELLAs may act in the
vicinity of the target promoters, even if they do not directly bind
DNA. Interestingly, among the genes directly up-regulated by RGA
was XERICO (XER), which encodes a RING-H2 E3 ubiquitin ligase
that promotes ABA synthesis in response to dehydration (Ko et al.
2006), and this up-regulation was in agreement with the repres-
sion caused by gibberellin treatments. The induction of XER ex-
pression by DELLAs could thus represent one of the mechanisms
to explain the known antagonistic roles of gibberellins and ABA in
different situations, such as germination and floral initiation
(Razem et al. 2006). This has been further supported more recently
in seeds, where rgl2 mutants display lower levels of XER expression
(Piskurewicz et al. 2008), but the relative importance of this par-
ticular regulation in the control of ABA synthesis still has to be
tested.

A second approach analyzed the transcriptomic response
following the conditional induction of the stable gai-1 allele

under the control of a heat shock-inducible promoter in etiol-
ated seedlings (Gallego-Bartolomé et al. 2011a). With this strat-
egy, around 150 genes were identified based on their rapid up-
or down-regulation in response to gai-1 induction. Subsequent
experiments with wild-type and mutant versions of GAI and
other DELLA proteins indicated that the regulation of these
target genes is a general ability of DELLA proteins, and not of
gai-1 in particular. Remarkably, the use of a transgenic line ex-
pressing gai-1 fused to the glucocorticoid receptor (gai-1:GR) in
combination with cycloheximide showed that DELLAs could
regulate the expression of these target genes even in the ab-
sence of additional protein synthesis, indicating that this tran-
scriptional control is direct and these genes are primary targets.
This mechanism was confirmed for one of them, ACSS8, for
which we showed by chromatin immunoprecipitation that
binding of PIF5 to its promoter region was reverted upon
DELLA accumulation (Gallego-Bartolomé et al. 2011b).

A general mechanism of transcriptional
regulation by DELLA proteins

The mechanism for the regulation of ACS8 expression based on
the sequestration of PIF5 by DELLAs is just another example of
the relevance that the DELLA-PIF interaction has for transcrip-
tional regulation in response to gibberellins (de Lucas et al.
2008, Feng et al. 2008). Importantly, the stability of these
growth-promoting transcription factors is decreased by light,
which means that this interaction represents a cross-talk node
between gibberellin and light signaling (Daviere et al. 2008). In
agreement with this model, there is a significant overlap be-
tween DELLA- and PIF-dependent transcriptomes, and an
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enrichment of G- and E-boxes (the cis-regulatory elements
recognized by PIFs) in the promoters of DELLA targets
(Gallego-Bartolomé et al. 2011a). In fact, the physiological rele-
vance of this mechanism is strengthened by the observation
that DELLA accumulation oscillates in a circadian fashion, and
the lowest DELLA levels coincide with PIF peaks at the end of
the night, resulting for instance in maximal cell expansion rates
(Arana et al. 2011). Apart from PIFs, other basic helix-loop-
helix (bHLH) transcription factors have also been identified as
DELLA interactors, such as ALCATRAZ (ALC) (Arnaud et al.
2010) and SPATULA (SPT) (Gallego-Bartolomé et al. 2010,
Josse et al. 2011) (Table 2).

However, the comparison between the temporal transcrip-
tomic patterns in a dellaKO mutant and in the wild type indi-
cates that DELLA proteins also regulate gene expression in daily
phases in which PIFs are not present (Arana et al. 2011). This
observation agrees with the enrichment of cis-elements other
than G- or E-boxes in the promoters of DELLA targets during
seedling growth (Gallego-Bartolomé et al. 2011a) and also
during seed imbibiton (Stamm et al. 2012). Therefore, DELLA
proteins could act through alternative transcription factors to
control the same and other physiological processes. Indeed,
DELLAs interact with transcription factors other than bHLHs
(Table 2); for instance, with the C2H2 zinc finger protein IDD1/
ENY (Feurtado et al. 2011), BES1 and BZR1 (Bai et al. 2012b,
Gallego-Bartolomé et al. 2012, Li et al. 2012), EIN3 and its para-
logs (An et al. 2012), MYC2 (Hou et al. 2010, Hong et al. 2012)
and the SPLs (Yu et al. 2012), as well as with the transcriptional
regulators that do not bind DNA directly, including SCL3
(Zhang et al. 2011), several members of the JAZ (jasmonate
ZIM-domain) family (Hou et al. 2010, Wild et al. 2012, Yang
et al. 2012) and the four members of the BOI family (Park et al.
2013). Some of the interactions with these non-DNA-binding
transcriptional activators have been confirmed as biologically
relevant. For example, gibberellins modulate jasmonic acid sig-
naling and the response to pathogens (Navarro et al. 2008)
through the DELLA-JAZ i nteraction (Hou et al. 2010, Wild
et al. 2012).

Moreover, the activation by RGL2 of reporter constructs
under the control of cis-elements recognized by DOFs in
Arabidopsis protoplasts (Stamm et al. 2012) suggests that
the activity of these transcription factors might also be sub-
jected to regulation by DELLAs. Thus, the modification of the
activity of transcription factors, either by sequestration or by
interaction at the target promoters (Fig. 2), could constitute
a widespread strategy for transcriptional regulation by gib-
berellins involving DELLAs. In addition, it has been observed
that gibberellins affect histone methylation at the GA 200x1
gene in tobacco (Fukazawa et al. 2010), possibly to regulate
the binding of the RSG transcription factor to this promoter,
which suggests that gibberellins might also regulate transcrip-
tion through the interference with chromatin remodeling.
This exciting possibility is further supported by the extensive
overlap between genes regulated by gibberellins and by
BRAHMA, a member of the SWI/SNF complex involved in

- @
PIFs
ALC, SPT
MyC2
EIN3
BES1/BZR1

Fig. 2 Mechanism of DELLA-mediated transcriptional control. Based
on current experimental evidence gathered through the combination
of genomic and molecular genetic studies, DELLAs regulate gene ex-
pression through at least three mechanisms. (A) Sequestration of
DNA-binding transcription factors that induce or repress the target
genes. This has been demonstrated for the bHLH transcription factors
of the PIF family, for the brassinosteroid-dependent BES1 and BZR1
transcription factors, for EIN3 (which binds to the ‘EBS’ element
[ATTTCAAA] and regulates the expression of HOOKLESST), and has
been proposed for the interaction with SPL9 and other SPLs (which
bind cis-elements with the core GTAC sequence), for ALCATRAZ
(ALC) (an additional bHLH transcription factor that regulates the
expression of genes involved in ovary/fruit morphology) and for
SPATULA (whose genetic interaction with DELLAs predicts mutual
functional interference). (B) Interaction with the JAZ negative regula-
tors of jasmonate signaling, thereby relieving the repression of MYC2
transcriptional activity. This mechanism is further supported by the
enrichment of MYC2-binding sites (extended G-boxes) in the pro-
moters of DELLA primary targets identified with genomic tools. (C)
The presence of DELLA in transcriptional complexes, as indicated by
chromatin immunoprecipitation studies on DELLA primary targets.
The modifications caused by DELLA in this case, and the correspond-
ing interacting partners are unknown, although the BOI RING finger
proteins might act through this mechanism. (D) Other known inter-
actors of DELLA proteins, such as SCL3 and IDD1, might reflect an
additional layer of regulation through which these partners would
modulate the ability of DELLAs to interact with DNA-binding tran-
scription factors (PIFs and others). Genetic interactions agree with the
model presented here, but molecular proof is not available yet.

chromatin remodeling, in Arabidopsis (Archacki et al. 2013).
Nonetheless, it is not clear at this point to what extent
BRAHMA regulates the common genes in a DELLA-depend-
ent or -independent manner.
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