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Abstract 

Train-track interaction has been extensively studied in the last 40 years at least, leading to 

modelling approaches that can deal satisfactorily with many dynamic problems arising at the 

wheel/rail interface. However, the available models are usually not considering specifically the 

running dynamics of the vehicle in a curve, whereas a number of train-track interaction phenomena 

are specific to curve negotiation. 

The aim of this paper is to define a model for a flexible wheelset running on a flexible curved track. 

The main novelty of this work is to combine a trajectory coordinate set with Eulerian modal 

coordinates; the former permits to consider curved tracks, and the latter models the small relative 

displacements between the trajectory frame and the solid. In order to reduce the computational 

complexity of the problem, one single flexible wheelset is considered instead of one complete 

bogie, and suitable forces are prescribed at the primary suspension seats so that the mean values of 

the creepages and contact forces are consistent with the low frequency curving dynamics of the 

complete vehicle. 

The wheelset model is coupled to a cyclic track model having constant curvature by means of a 

wheel/rail contact model which accounts for the actual geometry of the contacting profiles and for 

the non-linear relationship between creepages and creep forces. 

The proposed model can be used to analyse a variety of dynamic problems for railway vehicles, 

including rail corrugation and wheel polygonalisation, squeal noise, numerical estimation of the 

wheelset service loads. In this paper, simulation results are presented for some selected running 

conditions to exemplify the application of the model to the study of realistic train-track interaction 

cases and to point out the importance of curve negotiation effects specifically addressed in the 

work. 
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1. INTRODUCTION 

Train-track interaction consists of the coupled vibration of a railway vehicle or train set and of a 

flexible track, with coupling of the two sub-systems being provided by wheel-rail contact forces and 

excitation arising mainly from surface imperfections in the rails and wheels, such as rail roughness 

and wheel out-of-roundness. In some cases, large level of vibration and large dynamic fluctuations 

of the contact forces may take place, leading to unwanted phenomena such as high levels of noise 

and vibration [1], damage of the rolling surfaces in the form of corrugation [2] or rolling contact 

fatigue [3]. Furthermore, train-track interaction also leads to dynamic stresses in the track 

components and in the wheelsets, which need to be carefully considered in order to avoid failures 

due to metal fatigue. 

For these reasons, a large effort has been spent over the last 40 years to define suitable models for 

studying train-track interaction. Early models were mostly based on the representation of the 

vehicle as a system formed by rigid bodies, possibly simplified to considering only the wheelset as 

a rigid mass resting on a Hertzian stiffness [4]. More recently, the need to widen the frequency 

range of analysis led to the incorporation of wheelset flexibility in the models, leading to a more 

realistic representation of wheel-rail interaction effects at higher frequencies. For the study of rail 

corrugation and wheel polygonalisation, generally a modal synthesis is introduced to reduce the size 

of the problem [5 – 7], whereas in case the frequency range of interest is up to 1kHz and above 

(such as for the study of rolling noise) a Finite Element model of the wheel or the wheelset is used 

without condensation [8, 9]. Only very recently, a further model refinement was introduced to 

consider the inertial effects due to wheelset rotation [10, 11]. 

It should be noted that many phenomena related with train-track interaction, particularly squeal 

noise, short pitch rail corrugation and the largest stresses generated in the wheels and axle are 

mostly occurring when the rail vehicle negotiates a curved track, calling for a proper consideration 

of the effects related with wheelset curving in train-track interaction models. When a rail vehicle 

runs through a curve, two mutually influencing phenomena take place at wheel rail contact: on one 

hand, contact parameters such as the contact point position, the normal and creep forces and the 

creepages are slowly evolving in response to curve negotiation; on the other hand, the same 

quantities are subject to faster changes due to high-frequency interaction of the flexible bodies in 

contact. On account of the non-linearity of the problem, the two effects cannot be superimposed and 

a more comprehensive approach needs to be deployed which, to the Authors’ knowledge, has not 

been presented yet. 
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The aim of this paper is therefore to propose a mathematical model for the dynamics of a flexible 

wheelset running through a curve and interacting with a flexible railway track, considering in full 

the nonlinearities introduced by wheel-rail contact. In order to reduce the computational complexity 

of the problem, one single flexible wheelset is considered instead of one complete bogie, and forces 

are prescribed at the primary suspension seats, according to a procedure described in Section 2.2, so 

that the mean values of the creepages and contact forces are consistent with the low frequency 

curving dynamics of the complete vehicle. 

A trajectory coordinates set is introduced that permits to describe the large motion of the wheelset 

along the curved track, and the small relative movements of the wheelset with respect to the 

trajectory frame are described by means of Eulerian modal coordinates introduced with respect to a 

set of modal shapes obtained from a finite element model of the wheelset. The wheelset model is 

coupled to a cyclic track model having constant curvature by means of a wheel/rail contact model 

which accounts for the actual geometry of the contacting profiles and for the nonlinear relationship 

between creepages and creep forces. In the track model, the rails are modelled as Timoshenko beam 

elements, this confines the range of validity for the complete wheelset-track model to 1.5 kHz, see 

Section 3. In order to avoid errors associated with modal truncation, the modes considered for the 

track and the wheelset are covering a frequency range wider than the range of validity of the track 

model, as detailed in Sections 2.1 and 3 of the paper. 

Results for the proposed modelling approach are presented for a selected vehicle type and curving 

condition and for different excitation sources including short wavelength geometric imperfections 

in the rail profiles and singularities such as wheel flats. Results are also shown considering the 

wheelset running in tangent track, to point out the importance of curve negotiation effects 

specifically addressed in this work. 

The paper is organised as follows: in Section 2 the equations of motion for the flexible wheelset in a 

curve are derived. In Section 3 the model of a cyclic curved flexible track is presented. In Section 4 

the model of wheel-rail contact forces is introduced and the final equations of the train-track 

interaction problem are obtained. In Section 5 simulation results are presented for some selected 

running conditions and finally in Section 6 conclusive remark are provided. 

 

2. THE FLEXIBLE WHEELSET MODEL IN CURVED TRACK 

The study of vehicle-track interaction is carried out in this paper considering one single wheelset, 

given that in the frequency range of interest the dynamics of the sprung masses (bogie frame and 

car body) are effectively isolated from the motion of the un-sprung masses (wheelsets and axle 
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boxes) on account of the mechanical filter introduced by the suspensions. The effect of low 

frequency curving dynamics of the complete vehicle needs however to be included in the model, in 

order to obtain suitable mean values for the creepages and contact forces, which affect the coupled 

wheelset-track vibration also at higher frequency. This is accomplished by prescribing the forces 

applied by the primary suspension to the wheelset in the vertical plane and the yaw rotation of the 

bogie at the primary suspension, as explained in Section 2.2. 

2.1. Equations of motion of the flexible wheelset 

Fig. 1 shows the reference frames and position vectors used to describe the motion of the wheelset 

in a curve. In order to model the flexible wheelset travelling on curved track, two reference frames 

are considered. The first one is an inertial frame X0Y0Z0 which is fixed in an arbitrary point. The 

second is a trajectory coordinate frame XTYTZT that follows the motion of the wheelset. The system 

XTYTZT is centred in the undeformed configuration of the wheelset, with the XT-axis parallel to the 

forward speed, the YT-axis parallel to wheelset axis and the ZT-axis pointing upwards. A vector 

referred to the fixed and trajectory frame is denoted by 0a  and a , respectively. 

 

Figure 1: Reference frames and position vectors. The undeformed configuration of the wheelset is shown in 

dashed trace; a generic position of the flexible wheelset is sketched in solid colours. 

The coordinates that are implemented in the wheelset model do not follow the material points of the 

solid which is the most common procedure in Mechanics, nonetheless they are associated with 

spatial points (Eulerian approach). The position vector 0r  of a material particle which is in the 

spatial position u  at instant t  for the undeformed configuration, can be defined by means of the 

following formula: 

 )),(+( += 00 tuwuTpr , (1) 



6 

where 0p  is the position vector of the track frame; w  corresponds to the displacement vector due to 

the elastic deformation and small rigid body displacement of the solid; T  is the rotation matrix that 

relations the trajectory frame of the track with the fixed frame.  

Considering that the coordinate frame is chosen so that the wheelset spin rotation Ω is in the 

second axis YT, the angular velocity tensor Ω~  is defined as follows: 
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The velocity due to the rigid body spinning is: 
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where p  is the speed of centre of the track frame (expressed in the trajectory frame) and TTω  ~ T=  

the angular velocity matrix of the track frame. The two first velocity terms are associated to 

translational and rotational movement of the track frame, respectively; w  represents the velocity of 

the spatial point due to the flexibility; the term uJ  Ω  is the velocity due to the rigid body spinning; 

and the last term is the convective velocity associated with the Eulerian coordinate system. 

In order to obtain the expression of the kinetic energy for the wheelset, the square of the particle 

velocity is obtained, which reads: 
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Due to the geometry of revolution of the wheelset, the displacement vector w  can be calculated 

through superposition of mode shapes in the non-rotating trajectory frame XTYTZT: 

 ( ) ( ) ( )tt quΦuw =, , (6) 

where )(uΦ  is the mode shape functions matrix of the free-boundary wheelset and )(tq  is the 

Eulerian-modal coordinate vector. The small rigid body displacements of the solid are considered in 

this approach through the rigid body modes of the wheelset. It must be pointed out that the mode 

shape functions do not depend on time since the rotation of the solid does not change the mode 

shapes functions in spatial coordinates, because of the axial symmetry of the wheelset. In this study, 

200 vibration modes of the wheelset have been considered, covering a frequency range up to 

4.3 kHz, in order to obtain accurate results in the range of validity of the track model, which is up to 

1.5 kHz. It should be noted that the wheelset is a very stiff and low damped solid, and consequently 

few modes above the maximum frequency of study are required to minimise errors due to modal 

truncation. Once the formula Eq. (6) is applied in Eq. (5), the kinetic energy results in the following 

expression: 
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Once the kinetic energy is known, the two terms of Lagrange’s equation are computed as follows: 
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with 















=−=
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The equation of motion of the flexible and rotating wheelset is derived by means of Lagrange’s 

equation. Considering Eqs. (8) and (9) and taking into account that matrix ω~  is anti-symmetric, the 

following equation is obtained: 
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The modal properties are computed from a finite element (FE) model, therefore it is adequate to use 

the FE methodology for computing the equation of motion numerically. The mode shape functions 

are obtained into the e-th element of the FE mesh as follows: 

 ( ) ( ) e
FE

e ΦuNuΦ = , (11) 

where ( )uNe  is the basis (or shape) function matrix of the e-th element, and e
FEΦ  the mode shapes 

computed in the nodes of the e-th element through the FE model. 
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where en  is the number of elements in the FE mesh, vol  is the volume domain associated with the 

undeformed solid, and evol  is the volume of the e-th element. 

Defining the e-th element matrtix eV  as: 
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resulting the following equation of motion for the flexible wheelset running along a curved track: 
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( ) ( )( ) scΩΩΩΩΩ QQGNHUcqDBRSCAqPVq ++ +~-~+~-~ 2-~ = ~+~-~+~ 2+~-~+ ~ 2~ 2+ 22 . (26) 

where: 

- matrices V~  and P~  are associated with the inertial force due to Coriolis acceleration 

originated by the rotations of the wheelset and track frames, respectivelly; 

- matrix A~  is related to the force due to the convective acceleration;  

- C~  is the centrifugal stiffening matrix; 

- matrix S~  introduces the inertial force due to the convective velocity and the angular velocity 

of the track frame; 

- matrix R~  takes into account the force due to the tangential acceleration of the track frame 

that is associated with the deformed configuration; 

- matrix B~  considers the centrifugal effect due to the deformation of the solid that is 

associated with the track frame rotation; 

- D~  is the wheelset modal stiffness matrix, a diagonal matrix formed by the squares of the 

undamped natural frequencies of the free-boundary wheelset; 

- vector c~  is the modal force due to the centrifugal effect associated with the wheel rotation in 

the undeformed configuration; 

- vector U~  contains the constant forces associated with Coriolis effect; 

- vector H~  accounts for the forces due to the tangential acceleration of the track frame that is 

associated with the undeformed configuration; 

- N~  is the generalised force vector of the centrifugal forces related to track frame rotation; 

- vector G~  accounts for the centrifugal effects associated with the translation motion of the 

track frame; 

- vectors cQ  and sQ  contain the generalized forces acting on the flexible wheelset resulting 

respectively from wheel-rail contact forces (see Section 4) and from the forces applied by the 

primary suspension (see Section 2.2). 

2.2. Boundary conditions 

While running through a curve, the wheelset develops steady-state values of the creepages and 

contact forces that are substantially different from the case of tangent track running. On account of 

the non-linearity of wheel-rail contact, these steady-state contact forces and creepages strongly 

affect the coupled wheelset - track dynamics in the entire frequency range addressed by the study, 

and therefore need to be properly taken into account in the numerical simulation procedure. It is 
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also worth noticing that the elastic coupling of different wheelsets in the vehicle, typically via the 

primary suspensions and bogie frame, affects the steady-state contact forces and creepages in the 

curve.  

The approach followed in the paper is to consider one single wheelset and to reproduce the steady-

state curving effects by prescribing appropriate forces at the primary suspension: these forces are 

derived from the results of a low-frequency multi-body simulation in which the whole vehicle is 

considered, but all bodies are assumed to behave as rigid. Compared to considering the complete 

bogie with two flexible wheelsets, this approach allows to reduce substantially the time required for 

the simulation, because the additional degrees of freedom of the second wheelset and of the bogie 

frame are not included in the analysis, and also because the time consuming procedure required to 

evaluate the contact forces at each time step is carried out for two wheels instead of four, whereas 

the low-frequency simulation of the whole vehicle requires a very short simulation time, on account 

of the assumption of neglecting the flexibility of all bodies. 

The low frequency multi-body simulation is performed using software ADTreS developed at 

Politecnico di Milano [12] and considers a vehicle formed by one carbody, two bogies and four 

wheelsets. Given that the interest of the rigid body simulation is only to derive the steady-state 

curving condition for the vehicle, no effect of track irregularity or wheel imperfections is 

considered in this simulation. 

In order to ensure that the contact forces and creepages are correctly initialised, the steady-state 

forces applied on the wheelset at the axle-boxes via the primary suspension along the ZT and YT 

axes of the trajectory coordinate frame are prescribed in Eq. (26) to match the values obtained in the 

low-frequency simulation: in this way, the steady state ZT component of the contact forces on the 

two wheels and the sum of the steady-state contact forces along the YT axis are correctly 

reproduced by the flexible wheelset-track model. Furthermore, the longitudinal stiffness of the 

primary suspension is introduced in Eq. (26) and the longitudinal displacements (i.e. directed along 

axis XT) of the bogie at the primary suspension are prescribed to match the values obtained from the 

low-frequency simulation. By doing so, the steady-state longitudinal and lateral creep forces on 

both wheels are correctly initialised in the high-frequency model. As shown in Section 5, cf. 

comments to Table 2, this procedure allows to obtain a very good agreement of the steady state 

forces for the rigid body model of the complete vehicle and for the model of the single flexible 

wheelset. 
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Table 1: Simulation parameters 
Wheelset model data Track model data 

Mass of wheelset 1375 kg Sleeper bay 0.6 m 

Axle load 120 kN Sleeper number 70 

Primary suspension longitudinal stiffness 7.5 MN/m Sleeper mass 324 kg 

Primary suspension lateral stiffness 7.1 MN/m Track bed stiffness 200 MN/m 

Primary suspension vertical stiffness 0.81 MN/m Track bed damping 150 kNs/m 

Primary suspension longitudinal damping 100 kNs/m Rail pad stiffness 1 GN/m 

Primary suspension lateral damping 100 kNs/m Rail pad damping 50 kNs/m 

Primary suspension vertical damping 30 kNs/m Rail section UIC60 

 

Table 2: Steady-state wheel-rail contact forces for the rigid multi-body model of the entire vehicle and for the 

single flexible wheelset model. 

 Outer wheel Inner wheel 

Rigid 

multi-body model 

Flexible 

wheelset model 

Rigid 

multi-body model 

Flexible wheelset 

model 

Vertical force  69.57 kN 70.01 kN 49.82 kN 49.71 kN 

Lateral force 5,68 kN 5,91 kN -3,75 kN -3,99 kN 

Longitudinal force 14.39 kN 15.16 kN -14.39 kN -15.16 kN 

 

All the above described boundary conditions are applied on the flexible wheelset model Eq. (26) by 

appropriately setting the terms in vector sQ . These consist of the generalised forces associated with 

the modal coordinates q  of the concentrated forces applied at the axle-box seats, defined as 

explained above in this section.  

 

3. THE TRACK MODEL 

The track model has been adapted from the one presented in reference [13] where cyclic boundary 

conditions were adopted. With respect to this previous work, here different sleeper bay distances 

have been considered in order to take into account the dynamics of a constant radius curved track. 

The cyclic track approach that is used in the present paper models a circumferential constant radius 

track negotiated by a set of identical vehicles, uniformly distributed in such a way that each vehicle 
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is set at a constant distance L apart from the adjacent ones and travel at the same velocity V, see Fig. 

2. The constant distance L is set large enough to avoid the dynamic interaction between the vehicles 

and cyclic boundary conditions are introduced at the ends of the model. Hence, due to the 

periodicity of the structure and of the loading conditions, the study of the track is reduced to a 

single section having finite length L.  

 

Figure 2: The cyclic track model.  

The approach adopts a substructuring technique where rails and sleepers are treated separately. The 

rails are modelled as Timoshenko beams, including bending deformations in vertical/lateral 

directions, as well as torsional deformations. Since the model addresses curves with radius in the 

range of hundreds of meters or larger, the curvature of the rails is neglected in the beam 

formulation. 

Rail vibration is introduced in terms of modal superposition for the unconstrained rail with cyclic 

boundary conditions, hence resulting into a set of de-coupled 1-dof equations. According to [1], the 

rail model base on one single Timoshenko beam is valid up to 1.5 kHz for lateral rail vibration and 

up to 2 kHz in vertical for vertical vibration. Given that lateral rail vibration is important for 

wheelset track interaction in curve, it is assumed that the frequency range of validity for the track 

model is 1.5 kHz approximately. In order to minimise errors caused by modal truncation, all the 

rails modes of vibration falling in the range below 8 kHz were considered. A procedure for 

obtaining an optimised number of modes was proposed in Ref. [13]. 

The discrete rail supports are introduced in the form of lumped parameter systems. The rail pads are 

modelled as lumped visco-elastic elements generating the interaction forces between the rails and 

the sleepers, represented as lumped masses. Ballast dynamics is neglected here, being not relevant 
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for the dynamic behaviour of the wheelset, but the equivalent ballast stiffness and damping are 

accounted for by means of lumped spring and dashpot elements connected to the sleepers. 

The lateral and vertical displacements of the rail axis are [13]: 

 ( ) ( ) ( )∑=
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r

y
r

y tqxWtxw , , (27) 
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and the torsion and the rotations of the rail’s cross-section are: 
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where ( )xW y
r , ( )xW z

r , ( )xx
rΨ , ( )xy

rΨ  and ( )xz
rΨ  are the r-th modal functions of the Timoshenko 

periodic beam, and ( )tqx
r , ( )tq y

r  and ( )tq z
r  are the modal coordinates associated with torsional, 

lateral and vertical rail vibrations, respectively. 

The resulting r-th equation of motion for the cyclic track model in modal coordinates take the form: 

 rrrrrrr fqqq =++ 22 ωωξ  , (32) 

being rω  the r-th undamped frequency and rξ  the modal damping. The modal forces rf  are 

computed from the wheel rail contact forces acting on the track.  

In this way, the displacements of the rail in the present contact point can be evaluated from the 

displacements and rotations of the rail axis as follows: 

 ( )T,
z
j

y
j

x
j

z
j

y
jjjr ww ψψψEx = , (33) 

where jr ,x  is the vector of contact point displacements in j-th rail, and the matrix jE  relates the 

displacements in rail axis and contact points. 
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4. THE MODEL OF THE WHEEL-RAIL CONTACT FORCES 

Eqs. (26) and (32) are coupled by the wheel-rail contact forces, which can be defined as a function 

of the wheelset modal coordinates q  and their time derivatives q  and of the track displacements rx  

together with their time derivatives rx . The calculation of the contact forces is performed within the 

time step integration of the equations of motion for the wheelset and the track. First the motion 

(position and velocity) of the contact points on wheel and rail surfaces is determined, then the 

normal and tangential wheel-rail contact forces are computed as a function of the relative wheel-rail 

motion at the contact point, finally the generalised forces on the vehicle and track coordinates are 

defined based on the principle of virtual work. 

4.1 Contact kinematics 

Using the modal superposition principle, the vectors jw,r  of the wheel displacements at the contact 

point (with j = 1,2 representing the left and right wheel) are computed as: 

 ( ) ( ) ( )tt irr
jwjwjw

)(
,,, rquΦr += , (34) 

with jw,u  the position of the contact point on the wheel and )(
,
irr

jwr  a vector accounting for the effect 

of wheel out-of-roundness, which is defined as a periodical function of time. In the same way, the 

“material velocity” vectors ( )M
jw,r  of the wheel at the contact point, i.e. the velocity of the material 

point on each wheel instantaneously in contact with the rail are defined as: 

 ( ) ( ) ( ) ( )t
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uΩt
i i

ijw
M

jw qΦquΦr 
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,,  . (35) 

The rail displacements at the contact points on the left and right rails jr ,r  are obtained according to 

the following expression: 

 ( ) ( )tt irr
jrjrjr

)(
,,, rxr += , (36) 

where )(
,
irr
jrr  is a vector accounting for the effect of geometric imperfections in the track due to 

irregularity and rail roughness, whereas the material velocity of the rails at the contact points is 

computed as: 
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being V the speed of the wheelset. 
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4.2 Calculation of wheel-rail contact forces 

The model of wheel-rail contact used to reproduce the dynamic coupling between the vehicle and 

the track is a pre-tabulated, multi-Hertzian one [14]. Prior to the simulation, wheel-rail contact 

geometry is processed starting from measured or theoretical wheel and rail profiles and the contact 

parameters required to compute wheel-rail contact forces are stored in a contact table. According to 

this procedure, the change in the location of the contact point due to the instantaneous deformation 

of the wheelset is neglected in the calculation of the contact forces. This simplification is justified 

because the magnitude of the elastic wheel deformation (in the order of 1 – 10 10-5 m) is much 

smaller than the rigid lateral movement of the wheelset relative to the track, which is between 5 10-3 

and 10-2 m, depending on the track gauge, rail profiles, wheel profile. 

An alternative approach would be to compute the position of the contact point and the contact 

parameters at each time step of the numerical integration, considering also the deformation of the 

wheelset as in [9]. However, this approach would entail a much more CPU intensive calculation, 

whereas the focus in this work is to keep the computational effort as low as possible, while retaining 

in the model the main effects of wheelset flexibility for the problem studied. 

The parameters stored in the contact table are the contact angle, the variation of the wheel rolling 

radius with respect to the nominal one, the curvatures of the wheel and rail profiles in the contact 

point region and an undeformed distance which is equal to zero for the geometric contact point and 

greater than zero for the other potential contact points. More details on the process used to derive 

the contact table can be found in [15], note that with respect to the theory presented there, in this 

work the effect of the angle of attack is neglected, thus leading to a simplified planar contact 

problem. This assumption is reasonable on account of the fact that only large radius curves are 

considered in this research. 

In order to compute the contact forces at time t, the relative wheel-rail lateral displacement is 

computed and the contact tables are interpolated, finding the contact parameters for one or more 

wheel-rail potential contact points. Then, for each i-th potential contact point of the j-th wheel-rail 

couple the so-called “normal problem” is solved. To this aim, an elastic penetration is computed by 

projecting the relative wheel-rail displacements in the contact point along the direction normal to 

the contact plane, which is defined by the contact angle parameter in the contact table. To consider 

the change with time of the normal direction, the penetration is computed according to an 

incremental definition, so that the penetration ( )t
jip ,  at time t is defined as the sum of the penetration 

at the previous time step t-∆t plus the penetration increment from the previous to the present time 

step: 
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where in  is the vector defining the normal direction for the i-th contact, ji,δ  is the undeformed 

distance for the i-th contact of the j-th wheel-rail couple, and superscripts “(t)” and “(t-∆t)” denote 

quantities evaluated at the present and previous time step respectively. 

The normal force ( )t
jiN ,  is computed as function of the elastic penetration according to Hertz’s 

formulae using the profile curvatures retrieved from the contact table: 
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The creep forces are then computed as function of the creepages, according to the heuristic 

formulae by Shen et al. [16]. The longitudinal and transversal creepages, 
jiL ,

ε  and 
jiT ,

ε  respectively, 

are computed as follows: 
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with il  and it  the vectors defining the longitudinal and transversal direction for the i-th contact, 0R  

the radius of the curve, V the speed of the wheelset, jiR ,∆  the rolling radius variation for the contact 

point under consideration, jσ  the angle of attack of the wheel, s  half-distance between the wheel 

nominal running circles and jγ  the contact angle of the wheel at the actual contact point. 

Finally, the normal and creep forces obtained at each i-th wheel-rail contact point are projected 

along the trajectory frame XTYTZT and summed over all active contacts occurring in the same 

wheel-rail couple, and the components of the resulting contact forces along the modal coordinates 

q  are derived by standard application of the principle of virtual work, providing vector cQ  in Eq. 

(26). 

 

5. RESULTS 

In this section, results of wheelset-track interaction simulations are presented considering different 

sources of excitation: a single harmonic rail corrugation, random rail roughness and a wheelflat. 

Results are also presented for a rigid wheelset model, i.e. including in the modal synthesis only the 
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rigid modes of vibration of the unconstrained wheelset. In this way, the effect of wheelset flexibility 

is pointed out. Furthermore, for the wheelflat excitation case, results are also presented for the 

wheelset running at the same speed in tangent track, to assess the effect of curving on high-

frequency wheelset-track interaction, which is the main innovation introduced in this paper.  

The case study considered here refers to the trailed car of a concentrated power train for high-speed 

passenger service. The vehicle is equipped with a solid axle wheelset with monobloc, light design 

wheels. The track considered features UIC60 rails and track parameters are based on the 

EUROBALT project [17], considering a “stiff” track. Table 1 summarises the input data used to set-

up the simulation model.  

All simulation cases presented below consider the wheelset running at 150 km/h through a curve 

with radius 1000 m and a track cant equal to 150 mm. For this running condition, Table 2 compares 

the steady-state values of the contact force components for the rigid body model of the complete 

vehicle and for the model of the single flexible wheelset: a very good agreement of the two series of 

data is observed, leading to the conclusion that, at least for the considered running condition, the 

procedure introduce in Section 2.2 is able to correctly set-up the boundary conditions for the 

flexible wheelset model. Note that for the sake of brevity in Table 2 and below in this section, 

‘vertical’, ‘lateral’ and ‘longitudinal’ force respectively mean the components of the contact force 

along the ZT, YT and XT axes of the track-following reference, despite the XT- YT- ZT reference is 

rotated by the track cant angle. 

5.1 Results for single harmonic rail corrugation 

The first excitation case considered is rail corrugation having sinusoidal waveform with wavelength 

60 mm, i.e. one tenth of the sleeper bay, and the corrugation amplitude is 2.42 µm that corresponds 

to the limit amplitude at 60 mm wavelength as defined by the ISO 3095 standard [18]. In Fig. 3 the 

vertical contact force generated by the wheelset travelling on the corrugated rail at 150 km/h is 

plotted as a function of time. The rail roughness profile is also reported in the figure using an 

appropriate scaling and offset to obtain a proper visualisation. 
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Figure 3: Vertical wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a corrugated curved 

track (1000 m curve radius) with corrugation wavelength 60 mm. Corrugation amplitude corresponding to the 

ISO 3095 limit. 

Two harmonic contents are observed in the vertical contact force, the largest one having the same 

wavelength as the rail corrugation and a second one with wavelength equal to the sleeper bay. This 

second harmonic component is due to the periodic variation of the rail stiffness seen by the wheelset 

as the consequence of the discrete rail support. The contact force is also highly affected by wheelset 

flexibility: considering a rigid wheelset leads to an over-estimation of the peak-to-peak dynamic 

force by approximately 15 per cent on the inner wheel and 40 per cent on the outer wheel. This is 

due to the fact that the mass participating in the high frequency vibration of the flexible wheelset is 

lower than the whole mass of the wheelset, mainly due to bending deformations occurring in the 

axle, a mechanism which is not captured by the rigid wheelset model. 

Fig. 4 shows the lateral component of the contact force on the two wheels, for the same running 

condition considered above. The steady state values of the contact forces (see also Table 2) reflect 

the curving condition of the wheelset. Here, the leading wheelset in the front bogie of the vehicle is 

considered, for which a small negative angle of attack takes place on account of curve negotiation, 

causing a steady component of the transversal creep force which points towards the outside of the 

curve. This is balanced by the lateral component of the flange force on the outer wheel, leading to 

the typical condition of the two lateral forces pointing in opposite directions in a way that tends to 

widen the track gauge. Like for the vertical contact force component, the dynamic component of the 

lateral contact force shows two harmonic contents, one corresponding to the sleeper-passing 

frequency, the other corresponding to the wavelength of the harmonic corrugation introduced as the 
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source of excitation. Also in this case, simplifying the problem to the case of a rigid wheelset leads 

to an over-estimation of the dynamic contact force harmonics synchronous with the corrugation. 

The longitudinal contact force component caused by a single harmonic rail corrugation is not shown 

as the level of dynamic excitation for this case is very low. 
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Figure 4: Lateral wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a corrugated curved 

track (1000 m curve radius) with corrugation wavelength 60 mm. Corrugation amplitude corresponding to the 

ISO 3095 limit. 

5.2 Results for random rail corrugation  

Figs. 5, 6 and 7 show the time history of the vertical, lateral and longitudinal contact forces for 

excitation caused by randomly corrugated rails, assuming a corrugation spectrum corresponding to 

the ISO 3095 limit, which establishes a third-octave band spectrum of the rail roughness. The 

corrugated profiles of the rails are assumed as two independent stochastic processes, given the 

relatively short wavelengths involved. Hence, the irregularity of the r-th rail is generated according 

to: 

 ∑ 









+=

j
jr

j
jr

xAxz α
λ
π2cos)( , (42) 

where jA  is the amplitude at the j-th wavelength jλ  of the ISO 3095, and jrα  is a random phase 

angle in rail r.  
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Figure 5: Vertical wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a randomly 

corrugated curved track (1000 m curve radius). Amplitudes corresponding to the ISO 3095 limit. 
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Figure 6: Lateral wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a randomly 

corrugated curved track (1000 m curve radius). Amplitudes corresponding to the ISO 3095 limit. 
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Figure 7: Longitudinal wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a randomly 

corrugated curved track (1000 m curve radius). Amplitudes corresponding to the ISO 3095 limit. 

The results obtained for a flexible and a rigid wheelset model are again compared. As expected, the 

dynamic fluctuations of all contact force components show a complex waveform, arising from the 

dynamic response of the wheelset-track system to broadband random excitation. As far as the 

vertical contact force component is concerned, this leads to a maximum dynamic force on the outer 

wheel which is 1.5 times the steady-state value in full curve, whereas on the inner wheel the 

minimum contact force is approximately 0.5 times the steady state value.  

Compared to the results obtained using the flexible wheelset model, the use of a rigid wheelset 

model results in a significant over-estimation of the maximum force on the outer wheel and of the 

maximum wheel unloading on the inner wheel. However, for the lateral and longitudinal contact 

force components the situation is somewhat different, as the maximum amplitude of dynamic 

variations for the flexible and rigid wheelset model is comparable on both the outer and inner 

wheels, but with important differences in the waveform of the signals. 
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Inner flexible wheel Inner rigid wheel Roughness  

Figure 8: Frequency domain plot of the vertical wheel-rail contact forces in the inner wheel when the vehicle 

circulates at 150 km/h on a randomly corrugated curved track (1000 m curve radius), and the rail roughness 

spectrum of the ISO 3095 limit. Forces are referred to 1 kN; roughness is referred to 1 µm.  
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Figure 9: Frequency domain plot of the vertical wheel-rail contact forces in the outer wheel when the vehicle 

circulates at 150 km/h on a randomly corrugated curved track (1000 m curve radius), and the rail roughness 

spectrum of the ISO 3095 limit. Forces are referred to 1 kN; roughness is referred to 1 µm. 
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An alternative representation of the wheel-rail contact forces can be made in the frequency domain. 

Figs. 8 and 9 represent the third-octave band spectrum of the inner and outer wheel forces, 

respectively. These plots have been carried out for the rigid and the proposed models in dB 

(referred to 1 kN), and they also represent the rail roughness in the frequency domain (referred to 1 

µm). There are peaks in the antiresonance of the track frequency (between the P2 and pinned-

pinned frequencies, in the 100-300 Hz band), whereas the smaller responses are at the P2 (below 

100 Hz) and pinned-pinned (below 1 kHz) frequencies. The main differences of the rigid and 

flexible models are above 1 kHz, where there exist many resonances of the wheelset. 

5.3 Results for a wheel flat  

Figs. 10, 11 and 12 show the time history of the vertical, lateral and longitudinal contact forces 

respectively caused by a wheelflat when the wheelset runs over a perfectly even track. In the 

simulations, a rounded geometry of the wheel flat [19] with size 50 mm was adopted. The same 

wheel flat is assumed to occur on both wheel profiles, with in-phase out-of-roundness profile. 

It should be noted that, in principle, the presence of a wheel flat causes the wheelset to lose the 

polar symmetry so that the use of Eulerian coordinates, as introduced in Section 2, becomes 

unfeasible. However, due to the very small size of the wheel flat compared to the size of the wheels 

(the maximum deviation from circularity is approximately equal to 1/1000 of the wheel radius), the 

effect of wheel out-of-roundness on the elastic and inertial properties of the wheelset can be 

neglected, and only the geometric effect of the wheel flat needs to be considered, in the form of a 

periodic wheel-rail relative irregularity. 

Results are presented for the same running condition in curved track considered in Section 5.1 and 

5.2. The wheel flat is assumed to occur on the inner and outer wheel at the same time. Intense 

dynamic effects are observed, initially leading to the occurrence of full loss of contact at both 

wheels, then followed by a severe impact causing peaks in all force components, and finally by a 

transient vibration that generates further dynamic fluctuations in all contact force components. 
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Figure 10: Vertical wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a perfectly even 

curved track (1000 m curve radius) in presence of a 50 mm wheelflat. 
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Figure 11: Lateral wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a perfectly even 

curved track (1000 m curve radius) in presence of a 50 mm wheelflat. 
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Figure 12: Longitudinal wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a perfectly 

even curved track (1000 m curve radius) in presence of a 50 mm wheelflat. 

As far as the vertical contact force component is concerned, the maximum overloading on the inner 

wheel is 306 per cent of the steady-state load, whereas on the outer wheel the maximum 

overloading reaches 335 per cent of the steady state load. For the lateral force component (Fig. 11), 

the peak load is much larger on the outer wheel than on the inner one, on account of the larger 

contact angle experienced by the outer wheel as a consequence of the lateral shift of the leading 

wheelset towards the outside of the curve: this is an effect that is not captured by models neglecting 

curving effects. Also for the longitudinal contact force component (Fig. 12) the peak value is larger 

on the outer wheel, on account of the larger normal contact force occurring on that wheel, which 

generates then a larger creep force for the same or similar creepage condition. 

The differences between the results for the rigid and flexible wheelset model are small in terms of 

duration of the contact loss and of maximum overloading in lateral direction (the rigid wheelset 

model over-estimates the peak lateral load on the outer wheel by 2 per cent approximately with 

respect to the flexible wheelset model), but the transient following the impact is affected quite 

remarkably by wheelset flexibility, as demonstrated by the fluctuations of the contact force 

components following the impact. Furthermore, the maximum value of the vertical and longitudinal 

contact forces on the outer wheel is much larger when the rigid wheelset model is used, with an 

increase in the range of 22 and 20 per cent respectively. 
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In Fig. 13 results are presented for the same wheelset excitation considering the vehicle running at 

the same speed (150 km/h) in tangent track. Because dynamic effects in lateral and longitudinal 

direction are in this case relatively modest, only the vertical force component is shown. 

Furthermore, because of the symmetry in the running condition considered, the forces on the two 

wheels are the same and therefore results are shown for one single wheel. Apart from the difference 

in the steady state value of the contact forces, the waveform of the contact force time history in Fig. 

13 looks similar to the result obtained for curve negotiation in Fig. 10. However, the peak force is 

approximately 180 kN, compared to 235 kN for the outer wheel in the curving condition, showing 

that wheelflat excitation in a curve may lead to considerable overloading of the wheelset and rails 

and can therefore be expected to cause accelerated damage and degradation of the contacting 

surfaces as well as increased noise and vibration. 
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Figure 13: Vertical wheel-rail contact forces when the vehicle circulates at 150 km/h speed on a perfectly even 

tangent track in presence of a 50 mm wheelflat. 

 

6. CONCLUSIONS 

This paper has presented a model for a flexible wheelset running on a flexible curved track. By 

introducing a trajectory coordinates set describing the large motion of the wheelset along the curved 

track and assuming small relative movements of the wheelset with respect to the trajectory frame, 

the terms appearing in the wheelset equations of motion can be efficiently computed, keeping the 
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time required to carry the numerical simulation within acceptable limits. The flexible wheelset is 

coupled to a periodic curved track model by a non-linear description of wheel-rail contact forces. 

Appropriate boundary conditions are prescribed at the wheelset axle-boxes in terms of vertical and 

lateral forces and longitudinal displacements above the primary suspension, to correctly reproduce 

the steady state contact forces and creepages as obtained from a simulation of the low frequency 

running dynamics of the complete vehicle along the curve considered. The results reported in Table 

2 show that this method succeeds in establishing the appropriate steady state contact condition on 

both wheels, for the exemplary curving condition considered in this paper, which consists of the 

wheelset running at 150 km/h along a 1000 m radius curve with a track cant of 150 mm. 

Results are presented for three types of excitation: single harmonic rail corrugation, randomly 

corrugated track and excitation arising from a wheel flat when the wheelset runs over a perfectly 

even track. To point out the implications of modelling wheelset flexibility, results are also presented 

for the case of a rigid wheelset. 

In all three excitation cases considered, the rigid wheelset model leads to an over-estimation of the 

maximum contact forces, compared to the flexible wheelset model. However, in case of wheel flat 

excitation, small difference of the results obtained for the rigid and flexible wheelset model is 

observed for the lateral component of the contact force. 

Finally, for the case of wheel flat excitation results obtained for the wheelset running in curve were 

compared to the case of the wheelset running at the same speed in tangent track: this comparison 

shows that the peak load in the vertical force component is approximately 30 per cent larger when 

the wheelset runs in curve compared to the tangent track running case, leading to the conclusion 

that wheelflat excitation in a curve may lead to considerable overloading of the wheelset and rails 

and can therefore be expected to cause accelerated damage and degradation of the contacting 

surfaces as well as increased noise and vibration. 
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