UNIVERSIDAD POLITECNICA DE VALENCIA
DEPARTAMENTO DEINFORMATICA DE SISTEMAS Y COMPUTADORES

Out-of-Order Retirement of Instructions
in Superscalar, Multithreaded,
and Multicore Processors

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THEDEGREE OF

DOCTOR OFPHYLOSOPHY
(COMPUTERENGINEERING)

Author
RAFAEL UBAL TENA

Advisors
JULIO SAHUQUILLO BORRAS
PEDRO LOPEZRODRIGUEZ

VALENCIA, 2010

Agradecimientos

Para la realizabin de esta tesis ha sido necesario el esfuerzo conjunto de varias
personas, azomo el apoyo profesional y moral de muchas otras. En primer lugar,
mis directores de tesis, Julio Sahuquillo y Pedi@péz, han sido fundamentales
durante todo el proceso. Agradezco a Julio la confianza que dejositi cuando
todava era estudiante de Ingerinnformatica, inshkndome en todo momento a
continuar con los estudios de doctorado y a unirme al mundo de la investigaci
Sus conocimientos, su vocaaiy sus fabitos son un punto de referencia para m
Tambien agradezco a Pedro el tiempo que me ha dedicado en numerosasagunion
sus aportacionegtnicas y su diligencia a la hora de orientar el enfoque del trabajo.

Ademas de mis directores de tesis, otros profesionales han contribuido de forma
directa a dar solidez a este estudio. Salvador Petit ha sido una ayudaduimor
participando activamente en el desarrollo y la evalwadie las &cnicas adu
propuestas. Su voluntad y tenacidad han favorecido la materidlizgal progreso
constante de las ideas iniciales. Asimismo, destaco la capacidad @éudato
para identificariheas de investiga@n abiertas y susceptibles de ser explotadas. Sus
sugerencias han sido de utilidad para configurar la idea original enego@sa esta
tesis.

El esfuerzo diario se ha hechcamllevadero gracias a los que han sido o son
actualmente mis comparos de laboratorio: David, Noel &dtor, Carles, Ricardo,
Crispin, Paco, Samuel, Gaspar, Blas,&)diguel y Andés. Ha sido una experiencia
muy positiva el hecho de trabajar junto a tantas personas con las queuinibégic
conocimientos y resolver dudas.

En la elaboradin de esta tesis ha influido una estancia en Northeastern University
(Boston) gracias al profesor David Kaeli, quien me aéagilidamente en su grupo
de investigadn durante cuatro meses. Las reuniones semanales del grupo completo,
en las que cada uno de sus miembros elpamiculos recientes y producciones
propias de manera rotativa, fueron muy enriquecedoras. Tuve & sigstrabajar en
un ambiente multicultural, donde encdnixcelentes comparos. Especialmente,
agradezco a Dana y Jenny su efiqpe&n hacerme sentir integrado, en ayudarme a
mejorar mi ingés, y en hacerme conocer muchos lugares interesantes de Estados
Unidos.

ii Agradecimientos

Por Gltimo, doy gracias a mis padres, Francisca y Rafael, y a mis abuelos,
Francisca y Miguel, por haber sido un apoyo incondicional y desirddoegn
cualquier circunstancia. El intes que todos ellos han mostrado por mi labor ha
sido esencial para mantener mi motivace ilusbn por el trabajo.

Contents

Abstract Xi
Resumen Xiii
Resum XV
1 Introduction 1
1.1 Background 2
1.1.1 SuperscalarProcessors 2
1.1.2 Multithreaded Processors 4
1.1.3 Multicore Processors 5
1.2 Motivationand Challenges 6
1.2.1 Challengesin Superscalar Processors 7
1.2.2 Challenges in Multithreaded Processors 7
1.2.3 Challenges in Multicore Processors 8
1.3 ObjectivesoftheThesis. 9
1.4 Contributionsofthe Thesis 9
15 ThesisOutline 11
2 The Multi2Sim Simulation Framework 13
21 Overview e 14
2.1.1 Existing SimulationTools 14
2.1.2 The Multi2SimProject 15
2.2 The Superscalar PipelineModel 16
2.2.1 BranchPredition 16
2.2.2 RegisterRenaming 19
2.2.3 PipelineStages Lo 21
2.3 Support for Parallel Architectures 24
2.3.1 Multithreading 26
2.3.2 Multicore Architectures L. 27
24 TheMemoryHierarchy 27

Contents
2.4.1 Memory Hierarchy Configuration 27
242 CacheCoherence 30
2.5 Experimental Environment L. 31
2.5.1 Multi2Sim Extensions 31
2.5.2 Benchmarks and Methodology 32
2.5.3 PerformanceMetrics 34
26 Summary ... e e e e 35
The Superscalar Validation Buffer Architecture 37
3.1 Proposed Architectureo o 38
3.1.1 RegisterReclamation 40
3.1.2 RecoveryMechanism. 42
3.1.3 Uniprocessor Memory Model 43
3.1.4 Potential Benefits in Performance 44
3.2 WorkingExample 44
3.3 Performance Evaluation. 46
3.3.1 Quantifying the Performance Potential 46
3.3.2 Exploring the Behavior in a Modern Microprocessor 49
3.3.3 Impact on Performance of Memory Latencies 51
3.3.4 Supporting Precise Floating-Point Exceptions 52
3.4 Hardware Complexity 53
3.4.1 Size of the Major Processor Components 53
3.4.2 Impactof the PipelineWidth 54
3.5 Summary 55
The Multithreaded Validation Buffer Architecture 57
4.1 Out-of-Order Retirement Multithreaded Architecture 58
4.1.1 Execution of Multiple Contexts 58
4.1.2 ResourcesSharing 59
4.1.3 Resource Allocation Policies 60
4.1.4 Using Out-of-Order Retirement 61
4.2 Performance Evaluation. 62
4.2.1 Sharing Strategies of Hardware Structures 63
4.2.2 Comparison of Multithreading Paradigms 64
4.2.3 Impact of the Number of Hardware Threads 65
4.2.4 Impact of Resource Allocation Policies on SMT processors. 66
4.2.5 Resources Occupancy in SMT Designs 67

4.3 SUMMAry o e e e e 69

Contents \Y;

5 The Multicore Validation Buffer Architecture 71
5.1 Dealing with Sequential Consistency 72
5.2 Out-of-Order Retirement Multiprocessor Architecture 74
5.2.1 Architecture Description 74
5.2.2 Hardware Support 75
5.2.3 WorkingExample 76
5.3 Analysis of Single-Thread Performance 78
5.3.1 Enhanced RegisterUsage 78
5.3.2 Extended Instruction Window 79
5.4 Performance Evaluation. 81
5.4.1 Out-of-Order Retirement and Memory Consistency Model . 81
5.4.2 Performance Bottlenecks 83
5.4.3 Impact of Delayed Writebacks 84
5.4.4 Impact of the Resources Size 85
545 MainMemorylLatency 87
5.5 Hardware Complexity 88
5.5.1 Size of the Major Processor Components 88
5.5.2 Impactof the PipelineWidth 89
56 Summary 90
6 Related Work 93
6.1 Proposals Based on Uniprocessors 94
6.1.1 Speculative Out-of-Order Retirement with Checkpoints . . . 94
6.1.2 Non-Speculative Out-of-Order Retirement Without Check-
POINES 95
6.1.3 Enlargement of the Major Processor Structures 95
6.2 Proposals Based on Multiprocessors 96
6.2.1 Sequential Consistency Implementations 96
6.2.2 Out-of-Order Retirement in Multiprocessors. 97
6.3 Summary 98
7 Conclusions 99
7.1 Contributions 100
7.2 FutureWork e 101
7.3 Publications Related with ThisWork 102

References 105

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

3.5

3.6

3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

Block diagram of a superscalar processor pipeline. 2
Issue bandwidth utilization in superscalar and multithreaded processbrs
Example of a multicore processor. 5
Two-level adaptive branch predictor. 18
Registerrenaming. 19
Multi2Sim model of the superscalar processor pipeline. 20
Block diagram of the fetchstage. 21
Parallel architecture scheme. 25
Example of a memory hierarchy configuration. 28
Enforcement of cache coherence. 31
Vector productexample. 39
VB architecture block diagram. 40
Working example for superscalar processors. 45
Average potential performance for SpecFP and Specint benkbimar

with unbounded 1Q, LSQ,andRF. 47
Potential performance for SpecFP benchmarks with a 32-entry
ROB/VB and unbounded 1Q, LSQ,andRF. 48
Execution time categorized at the dispatch stage in a machine with
unbounded IQ,LSQ,andRF., 48
Performance for SpecFP in a modern microprocessor. 49
RESOUrCeS OCCUPANCY. . . « « v v v v e e e e e e e e e e 50
Performance with an unbounded RF. 51
Impact on performance of memory latencies. 51
Performance with precise floating-point exceptions support. . . . 52
Performance for different RF, IQ, ROB/VB, and LSQ sizes.54
Performance for different pipeline widths. 55

Storage resources sharing for the multithreaded ROB and VB archi-
tectures. e 63

viii

List of Figures

4.2 Performance for different multithreading paradigms in the ROB/VB

architectures. L 64
4.3 Scalability of different multithreading paradigms for ROB/VB archi-

tectures. e 65
4.4 Evaluation of fetch policies for the ROB and VB architectures. . . . 67
4.5 lIssue slots for different SMT architectures and fetch policies. . . .68

4.6 Storage resources occupancy for ROB-DCRA and VB-ICOUNT. .68

5.1 Conditions for instructions to be retired from the ROB/VB and HB. 75

5.2 Implementation of delayed writebacks. 76
5.3 Working example for multiprocessors. 77
5.4 Register allocation time ratio between the ROB and the VB architec-

ture, measured with an ideal branch predictor. 79
5.5 Instruction window size, measured with an ideal branch predictor and

unbounded IQ, LSQ,andRF. 80
5.6 Block diagram of the modeled multicore system. 81
5.7 Performance speedups relativeto ROB-SC. 82
5.8 Processor bottlenecks at the dispatch stage. 83
5.9 Delayed writebacks and the CoWwtable. 84
5.10 Performance scaling for different resource sizes. 85
5.11 Lifetime of instructions classified as per the structure they are placed

in (ROB/VB, HB, or neitherofthem). 86
5.12 Impact of main memory latency. 87
5.13 Performance for different hardware complexity levels. 89

5.14 Pipelinewidth. 90

List of Tables

2.1

2.2
2.3
2.4

2.5

3.1
3.2

4.1
4.2

5.1
5.2

Classification of multithreading paradigms depending on Multi2Sim

Options. e 27
Example of a memory hierarchy configuration file. 29
Sections and variables in the memory hierarchy configuration file. . 29
Classification and command-line arguments for the SPEC2000
benchmarks. o 32
Command-line arguments for the SPLASH2 benchmarks. 33
Renaming actions for different pipelineevents. 41
Baseline superscalar processor parameters. 7. 4
Baseline multithreaded processor parameters. 62
Benchmarkmixes. 63
Frequency of mispredictionevents. 74
Baseline multicore processor parameters. 80

Abstract

Current superscalar processors use a reorder buffer (ROB)dottre instructions in
flight. The ROB is implemented as a FIFO queue where instructions are ingerted
program order after decoded, and from which they are extracted thleg commit,
also in program order. The use of this hardware structure providesphessupport
for speculation, precise exceptions, and register reclamation. Howetvieing in-
structions in program order may lead to a significant performance datggadf a
long-latency operation blocks the ROB head. Several proposals kavepoblished
dealing with this problem. Most of them allow instructions to be retired out aérord
in a speculative manner, so they require checkpoints in order to rolthagiktocessor
to a precise state when speculation fails. Checkpoints management usualihg v
costly hardware and causes an enlargement of other major procegsturges, which
in turn might impact the processor cycle. This problem affects most stdtesadrt
microprocessors, regardless of whether they are single- or multitltreaiderhether
they implement one or multiple cores. This thesis spans the study of nonlapecu
out-of-order retirement of instructions in superscalar, multithreadedi yrauiticore
processors.

First, the Superscalar Validation Buffer architecture is proposed as@pr
sor pipeline design where instructions are retired out of program andarnon-
speculative manner, hence without checkpoints. The ROB is replacea wittaller
FIFO queue, called Validation Buffer (VB), which can be left by instrutsigust af-
ter they are classified either as non-speculative or mispeculated, otiespe their
execution state. The management of the VB is complemented with an aggresgsive
ister reclamation technique that decouples physical register releasegtactions
retirement. The VB architecture largely alleviates the ROB performance betken
and reduces complexity of other processor structures. For exampl@Bac&n be
outperformed by a half as large VB, while decreasing its hardware cost.

Second, the Multithreaded Validation Buffer architecture is extended witrdif
ent multithreading organizations, namely coarse-grain, fine-grain,iandtaneous
multithreading. Multithreaded processors became popular as an evolutipert-
scalar processors to increase the issue bandwidth utilization. Likewisef-otder
retirement of instructions contributes to reduce the issue waste by avordugeht

Xi

Xii Abstract

pipeline stalls due to a full ROB. The evaluation of the VB architecture on multi-
threaded processors shows again significant performance gaites amdduction of
complexity. For example, the number of supported hardware threadecadiced,
or the multithreading paradigm can be simplified, without affecting performanc
Finally, the Multicore Validation Buffer architecture is presented as an but-o
order retirement approach on multicore processors, which define thimalat trend
in the current market. Wide instruction windows are very beneficial to muttgso
sors that implement a strict memory model, especially when both loads and stores
encounter long latencies due to cache misses, and whose stalls mustlbppmar
with instruction execution to overcome the memory gap. The extension of the VB
architecture to work on a multiprocessor environment allows core pipelines- to
tire instructions out of program order, while still enforcing sequentiaissiency.
This proposal provides similar performance to ROB-based multiprocasshitec-
tures implementing a relaxed memory model, and it outperforms in-order retitemen
sequentially consistent multiprocessors.

Resumen

Los procesadores superescalares actuales utilizarearder buffer (ROB) para
contabilizar las instrucciones en vuelo. El ROB se implementa como una cola
FIFO ffirst in first ou) en la que las instrucciones se insertan en orden de programa
despis de ser decodificadas, y de la que se extraen é&mdni orden de programa

en la etapacommit El uso de esta estructura proporciona un soporte simple
para la especula@n, las excepciones precisas y la reclafaale registros. Sin
embargo, el hecho de retirar instrucciones en orden puede detaagaestaciones

si una operaén de alta latencia éstbloqueando la cabecera del ROB. Varias
propuestas se han publicado atacando este problema. Laimayiiza retirada

de instrucciones fuera de orden de forma especulativa, requiriémdoenar puntos

de recuperadin (checkpointspara restaurar un estadalio del procesador ante un
fallo de especuladn. Normalmente, losheckpointsiecesitan implementarse con
estructuras hardware costosas, y adgenequieren un crecimiento de otras estructuras
del procesador, lo cual a su vez puede impactar en el tiempo de cicltofiebste
problema afecta a muchos tipos de procesadores actuales, independidatdel
nimero de hilos hardwaréhfeads y del nimero de facleos de 6mputo €oreg que
incluyan. Esta tesis abarca el estudio de la retirada no especulativdrdedimmes
fuera de orden en procesadores superescatatgsthready multicore

En primer lugar, la arquitectudalidation Buffersuperescalar se propone como
un diséio novedoso del procesador en el que las instrucciones se retganda
orden de manera no especulativa y, por tanto, prescindiendoed&pointsEl ROB
se remplaza por una cola FIFO de menor tamdamadavalidation buffer(\VVB), que
las instrucciones pueden abandonar en cuanto sean clasificadasaroactamente
o incorrectamente especuladas, sea cual sea el estado de subejedizcigestoHn
de la estructura VB se complementa con una estrategia agresiva de radordbr
registros, que desacopla la libeatide registrosisicos de la etapaommit La
arquitectura VB alivia sensiblemente el cuello de botella impuesto por un ROB y
reduce la complejidad de otras estructuras del procesador. Por ejempB,puede
mejorar las prestaciones de un ROB con el doble de entradas, redupt@rndnto el
coste de su implementaci.

Xiii

Xiv Resumen

En segundo lugar, la arquitectux@lidation Buffer Multithreadse propone y
evalia sobre procesadoreuultithreadde grano gruesacparse-grain, multithread
de grano finof{ne-grain) y multithreadsimultaneo. Los procesadoresiltithreadse
popularizaron como una evolaei de los procesadores superescalares para aumentar
la utilizacion del ancho de banda de la etapaue Asimismo, la retirada de
instrucciones fuera de orden contribuye a reducir el desperdicictdeaacho de
banda impidiendo que instrucciones de alta latencia bloqueen el flujo deistres
cuando se llena el ROB. La evaluacide la arquitectura VB en procesadores
multithread muestra de nuevo un incremento de las prestaciones y una r@aucci
de la complejidad hardware. Por ejemplo, @hero de hilos hardware soportados
puede reducirse, o el paradigmardaltithreadingpuede simplificarse, provocando
en ambos casos una redumtdel coste que no afecta a las prestaciones.

Por ltimo, la arquitecturavalidation Buffer Multicorese presenta como un
entorno multiprocesador en el que las instrucciones se retiran fuenaleie. d_os
multiprocesadores, y en particular los chipgilticore constituyen la tendencia
actual en el mercado de procesadores. Los multiprocesadores quenéntde
un modelo de memoria estricto se benefician sensiblemente de la incopporaci
de ventanas de instrucciones muy largas, especialmente en aquellanexasio
gue las instrucciones de lectura o escritura en memoria producen fallEcke
y cuyo tiempo de acceso es deseable solapar con otras instruccion@s jpieta
La extensbn de la arquitectura VB a un entorno multiprocesador contribuye a este
objetivo permitiendo que cadadicleo de émputo retire sus instrucciones fuera de
orden, mientras se contia garantizando la consistencia secuencial en el acceso a
memoria. Esta propuesta exhibe prestaciones similares a un multiproceasado b
en un ROB cuando estdtimo implementa un modelo de memoria relajado, y las
mejora siéste implementa un modelo de memoria estricto.

Resum

Els processadors superescalars actuals utilitzemearder buffer (ROB) per a
comptabilitzar les instruccions en vol. El ROB s’'implementa com una cua FIFO
(firstin first ou) en la que les instruccions s’insereixen en ordre de programaésgespr
de ser descodificades, i de la que s’extrauen &erbordre de programa en 'etapa
commit L’ Us d’aquesta estructura proporciona un suport simple per a I'espiégula
les excepcions precises i la reclantade registres. No obstant aixel fet de retirar
instruccions en ordre pot degradar les prestacions si una opefatta labncia est
bloquejant la capcalera del ROB. Diverses propostes s’han pubb@eant aquest
problema. La majoria utilitza retirada d’instruccions de forma especulagigagrint
emmagatzemar punts de recupeba@@heckpoints per a restaurar un estaald
del processador davant d’'una fallada d’especaladlormalment, elsheckpoints
necessiten implementar-se amb estructures hardware costosegsiraquereixen
el creixement d'altres estructures del processador, la qual casenpactar en el
temps de cicle de rellotge. Aquest problema afecta molts tipus de processador
actuals, independentment del nombre de fils hardwiaregdd i del nombre de
nuclis de ©mput €oreg que incloguen. Aquesta tesi coreprl’estudi de la retirada
no especulativa d’instruccions en processadors superescaldtithreadi multicore

En primer lloc, I'arquitecturd/alidation Buffersuperescalar es proposa com un
disseny del processador enegles instruccions es retiren fora d'orde de manera
no especulativa i, per tant, prescindint cieeckpoints EI ROB es reemplaca per
una cua FIFO ras petita, anomenadalidation buffer(VB), que les instruccions
poden abandonar en quant siguen classificades com correctamentredtament
especulades, siga quin siga 'estat de la seua ex@cuc gestd de I'estructura
VB es complementa amb una eségifh agressiva de nomenament de registres, que
desacobla I'alliberament de registrésiés de I'etapacommit L'arquitectura VB
alleuja sensiblement el coll de botella imposat per un ROB i redueix la complexita
d'altres estructures del processador. Per exemple, un VB pot millsraréstacions
d’'un ROB amb el doble d’entrades, reduint per tant el cost de la sedenraptadd.

En segon lloc, I'arquitecturgalidation Buffer Multithreades proposa i avalua
sobre processadoraultithread de gra gros ¢oarse-graif, multithread de gra fi
(fine-grain) i multithreadsimultani. Els processadonsultithreades van popularitzar

XV

XVi Resum

com una evolud dels processadors superescalars per a augmentar la ublideci
I'ample de banda de I'etapssue Aixi mateix, la retirada d'instruccions fora d’ordre
contribueix a reduir el malgaste d’aquest ample de banda impedint quecistrsi
d'alta la&éncia bloquegen el flux d’instruccions quan s'ompli el ROB. L'availbac
de l'arquitectura VB en processadonsiltithreadmostra de nou un increment de les
prestacions i una reduécde la complexitat hardware. Per exemple, el nombre de fils
hardware suportats pot reduir-se, o el paradignmadiithreadingpot simplificar-se,
provocant en els dos casos una redbicigl cost que no afecta les prestacions.
Finalment, l'arquitecturaValidation Buffer Multicore es presenta com un
entorn multiprocessador en @ues instruccions es retiren fora d'ordre. Els
multiprocessadors, i en particular els xipailticore constitueixen la ter&hcia
actual en el mercat de processadors. Els multiprocessadors que imigemen
un model de meWria estricte es beneficien sensiblement de la incorpbrdei
finestres d'instruccions molt llargues, especialment en aquelles ocasians les
instruccions de lectura o escriptura en nieim produeixen fallades deache i
el temps d’aces de les qualés desitjable sobreposar amb altres instruccions de
comput. L'extensd de I'arquitectura VB a un entorn multiprocessador contribueix a
aguest objectiu permetent que cada nucli@®mgut retire les seues instruccions fora
d’orde, mentre es continua garantint la corigisia sefjencial en I'acés a meraria.
Aquesta proposta exhibeix prestacions semblants a un multiprocessadbebain
ROB quan aquediltim implementa un model de mémia relaxat, i les millora si
aguest implementa un model de mimm estricte.

Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation foorthelev
veloped in this thesis. First, some basic notions about superscalar, muétédyead
multicore processors are given. Then, it is shown how these archascte affected

by the problem of long-latency instructions stalling the processor pipelinally; it

is summarized how the rest of this dissertation deals with this problem by means of
the Validation Buffer architecture proposal.

2 Chapter 1. Introduction

1.1 Background

1.1.1 Superscalar Processors

In the mid-to-late 1980s, superscalar processors began to appearafterapt to
break the bottleneck of executing a single instruction per cycle [1]. By inigatin
more than one instruction at a time, these processors can exploit the instigvid
parallelism (ILP) present in applications. The superscalar procesgidgl has been
implemented in commercial chips with different pipeline organizations, instruction
gueues, or storage structures. A possible block diagram of a safsracchitecture
is shown in Figure 1.1. This model is used along this thesis as the baselina,desig
and its components are described next.

The processor front-end consists of an instruction cache from whsttugtions
are fetched and placed into the fetch queue. The memory address oftthetinas
to be fetched is provided by the branch predictor fed by a programteounstruc-
tions at the head of the fetch queue are decoded, and hame depenitdmockiced
by the compiler are removed by a register renaming mechanism (detailed below)
This mechanism is supported by the front and retirement register alias (RRAS
and RRAT, respectively), as well as by the physical register file.

After decoded, instructions are dispatched into several queues)diegen the
instruction kind. All instructions allocate an entry in the reorder buffer BRC his
is a FIFO queue where instructions stay until the end of their lifetime in the pro-
cessor pipeline. After the instruction at the head of the ROB is completed and its
execution is confirmed, it leaves this structure and commits its result to the defini-
tive machine state. Arithmetic operations allocate an entry in the instruction queue
(IQ), from where they can be chosen for execution in the functioniéd ahany time
after their source operands become available. Memory instructions alkcate-
try in the load-store queue (LSQ), from where they access the data edwn the
memory address (and operand in the case of stores) is ready. Both &mel IKEQ
are associative queues, that is, entries are allocated and deallocaseddmr or-

ROB
Branch FRAT RRAT
pred.
Instr. Decoder/ Reli"gillseter
Cache Renamer
| Fetch ?ueue ’ Data
Cache

Figure 1.1: Block diagram of a superscalar processor pipeline (R@Brder buffer
IQ =instruction queuel. SQ =load-store queug-U =functional units FRAT =front
register alias tableRRAT =retirement register alias tab)e

1.1. Background 3

der. Arithmetic instructions finishing execution in a functional unit, as well ad lo
instructions finishing the cache access, dump the obtained result into thiegdhy
register file.

Data dependences among instructions are tracked by a register renanasimg me
anism. Register renaming techniques distinguish two kinds of registers: llagita
physical registers. Logical or architected registers refer to those mséhe com-
piler, while physical registers are those actually implemented in the machine within
the physical register file. Typically, the number of physical registers ite darger
than the number of logical registers. When an instruction that producesult is
decoded, the renaming logic allocates a free physical register, whichreaftes
said to be mapped to the destination logical register of the instruction. After that,
subsequent data dependent instructions rename their source logistneso as to
read this physical register. The logical-to-physical register mappimgstared in the
FRAT. This table has as many entries as logical registers, and is acetdbede-
name stage to obtain the current register mappings. Additionally, the RRA&iosn
a delayed copy of the FRAT, which is only updated by non-speculativauttsons
at the commit stage.

Control dependences are speculated by the branch predictor. ddespor front-
end provides the pipeline with a constant flow of instructions which are likebeto
long to the correct path. However, speculation may fail, which is detected af
branch condition and target address are computed and any of themfidiffe the
speculated value. On mispeculation, the processor state must be relcavarpre-
vious consistent state, for example, just before the branch instructioexeauted.

Processor recovery can be implemented either at the commit or at the wkitebac
stage. In the first case, the processor waits for the mispeculated licaredrch the
ROB head. At this time, the ROB contains only mispeculated instructions, whose
state is exclusively held in the pipeline structures. Thus, all the prockasdo do is
squash the contents of the queues, and copy the RRAT into the FRAT teerdso
valid mapping tables. Then, subsequent instructions start to be fetcmedHe cor-
rect path. Recovering mispeculation at the commit stage is a simple but nareffic
approach, since mispeculation recovery might start a long time after its detectio

In the second case, recovery starts at the writeback stage as soorpasutais
tion is detected just after the offending branch is resolved. Since thentsmtethe
ROB, the FRAT, and other queues are only partially invalid, specific hamewust
be devoted to selectively recover a valid processor state, by discanipgculated
changes and maintaining correct in-flight instructions. Thus, recayenispecula-
tion at the writeback stage is more efficient and more costly at the same time. Since
the proposal in this thesis changes the behavior of the commit stage, themeab
writeback approach will be used for the baseline superscalar desitairfoompari-
son purposes.

[] wasted [l Thread1 [] Thread 2 Thread3 [Thread 4
HE][] EE[] EN] EEZ]
IOI0I0] WO O000 moagtl

o MBI OO0 Zood oo

= BOOI0 D000 BEELD OZEE

i JO0O0 0000 mEED ERO0

) HEER [O000 ODOOO0 OzEl

l OOO0 OOoO0 BO00 »DOOBEE
HmEC] 000 W0t mZEl

| Y N ey 0 O I

a) Superscalar
processor

b) Coarse-grain
multithreading

c) Fine-grain
multithreading

Chapter 1. Introduction

d) Simultaneous
multithreading

Figure 1.2: Issue bandwidth utilization in superscalar and multithreadedgsors.

1.1.2 Multithreaded Processors

Until the early 1990s, a vast variety of sophisticated microarchitecturahigoes
were proposed to extract ILP. A higher integration scale allowed for mpdeces-
sors with out of order execution [2], higher clock frequencies [B]acger pipeline
gueues (IQ, LSQ). However, these techniques entailed an increasmgexity and
power consumption, and the growing processor-memory gap made theandbless
appealing. Consequently, researchers tried to develop new techibases on the
exploitation of the parallelism across multiple threads of control, or thread {bew-
allelism (TLP). Multithreaded architectures hold the state of differentugi@t con-
texts in the same CPU. The key to increase processor performance iscasia¢he
utilization of a shared pool of functional units (adders, multipliers, etc.prbyiding
them with a higher availability of instructions ready to be executed. Diffareriti-
threading paradigms can be distinguished depending on how execuiomaes are
assigned to threads, namely, coarse-grain (CGMT), fine-grain (AGAMT simulta-
neous multithreading (SMT).

To illustrate how each multithreading paradigm contributes to increase perfor-
mance, Figure 1.2 plots the utilization of the issue bandwidth for a 4-way gsoce
executing 4 threads. A white square represents a wasted issue slot, whitaed
square represents an instruction issued from a specific thread'siimtrgueue. As
observed in Figure 1.2a, a superscalar processor can incur twodiissie band-
width waste, calledertical waste which occurs in those cycles with all issue slots
unused, andhorizontal wastewhich is incurred in those cycles when only a subset
of the total issue bandwidth is used.

CGMT processors can only fetch and execute instructions from a singlacth
at a time. They partially alleviate the vertical waste by performing a thread switch

1.1. Background 5

Superscalar pipeline
ITLB | D-ILB 1Co|[C1][Ca] [Cs]
L1 L1 L [P S S S S
ICache | DCache Interconnection
. network
Switch
Y
Network Shared L2 cache
Interface

1
‘ Main Memory
Interface

Figure 1.3: Example of a multicore processor.

whenever a long-latency event takes place, such as a cache miss.ttéeccurs,
a not stalled thread starts to be fetched. The thread switch usually invabesstty
of some cycles until the stalled thread’s instructions are drained from toegsor.
Thus, the vertical waste is not completely removed, as shown in Figure 1.2b.

FGMT processors fetch and issue instructions from a different thireaach
cycle. The fetch logic usually works in a round-robin fashion among tladadle
threads, skipping those stalled in a cache miss. The issue stage alw&gsoword-
robin, skipping those threads in whose instruction queues no instructianuis f
ready to be executed. As observed in Figure 1.2c, the vertical wastenjglately
removed by avoiding thread switch penalties.

SMT processors increase the complexity of the issue stage by enablinginstr
tions from different threads to be scheduled to the functional units in the sgcle.
While a single thread may not have enough ready instructions to fill up the issu
bandwidth in a given cycle, the ability to pick up instructions from differenédds
makes it more likely to take advantage of all issue slots. As Figure 1.2d skows,
multaneous multithreading mitigates both the vertical and horizontal waste.

1.1.3 Multicore Processors

After the success of multithreaded processors, technology of the R8p0sn evolv-
ing and provided computer architects with a higher integration scale. Yebtherp
constraints remained, and the memory gap still needed to be bridged with thegpove
of memory accesses and computations. Though a multithreaded prodésseda
explicit parallelism to be exploited without requiring costly resources to haid lo
instruction windows, a scalable increase of the number of supportediiwess no
longer affordable to boost performance. This caused totally indepépdacessing
units (i.e., cores) to be integrated in a single chip.

In a homogeneous multicore processor, all elements of a superscatasgoo
pipeline are replicated per core. Each core usually owns its private ¢lecand
lower level caches may be shared or private among cores. Wherakeaehes are

6 Chapter 1. Introduction

present in the same level of the memory hierarchy, a cache coherestoeqgbris
implemented to handle correct concurrent accesses to the same memorynicatio
by different threads. Likewise, interconnection networks need to bedated in

the same die to communicate cores or caches sharing data. The topologgeof the
interconnects may range from a simple bus to a complex point-to-point network
depending on the number of nodes they are giving service to and the pafferns
observed among them. Figure 1.3 shows a block diagram of a possible naulticor
architecture with four embedded processing hodes with superscalinpgrivate

L1 caches, and a shared L2 cache.

1.2 Motivation and Challenges

Current high-performance microprocessors execute instructionsf autler to ex-
ploit instruction level parallelism (ILP). In order to support speculagxecution,
provide precise exceptions, and register reclamation, a reorder (R@8) is used
[4]. After being decoded, instructions are inserted in program ordénernROB,
where they are kept while being executed and until retired at the commit stage
key to support speculation and precise exceptions is that instructiorestteROB
also in program order, that is, when they are the oldest ones in the pip@limen a
branch is mispredicted or an exception is raised, and the offending itisiroeaches
the commit stage, there is a guarantee that all previous instructions haadyabexen
retired, and no subsequent instruction has done it yet. At this time, all tleegsor
has to do to recover a valid state is abort all instructions in flight.

However, this behavior is conservative. When the ROB head is blogkadtbtng-
latency instruction (e.g., a load that misses in the L2 cache), subsequenttions
cannot release their ROB entries. This happens even if these instruatmirele-
pendent from the long-latency one and they have been completed. Hrastese,
since instruction decoding continues, the ROB may eventually fill up, thus stallin
the processor for a valuable number of cycles. Register reclamation ibaisibed
in a conservative way, because physical registers are mapped &mrltdran their
useful lifetime. In summary, both the advantages and the shortcomings oO8e R
come from the fact that instructions are committed in program order.

A naive solution to address this problem is to enlarge the ROB size to accommo-
date more in-flight instructions. However, as ROB-based microarchiescsarialize
the release of some critical resources at the commit stage (e.g., phygisténz or
store queue entries), these resources should be also enlargedesitiigyincreases
the cost in terms of area and power, and it might also impact the proceste[s].

To overcome this drawback, instructions can be committed out of program or
der, releasing resources early and causing a more efficient usenof thiis ap-
proach raises a variety of challenges depending on the processor coodilered.

1.2. Motivation and Challenges 7

These challenges are analyzed next for the three main processitecroks in the
chronological order they showed up in research and industry, narapBrscalar,
multithreaded, and multicore processors.

1.2.1 Challenges in Superscalar Processors

Some solutions that commit instructions out of order have been publishesseTh
proposals can be classified in two approaches depending on whettnectioss are
speculatively retired or not. Some proposals falling into the first apprdieh[6],
allow the retirement of instructions obstructing the ROB head by providingeusa-
tive value. Others, like [7] or [8], replace the normal ROB with alternagivactures
to speculatively retire instructions out of order. As speculation may faiethpeo-
posals need to provide a mechanism to recover the processor to a ctatec To
this end, the architectural state of the machine is checkpointed. Again, thissmplie
the enlargement of some major microprocessor structures, for instapamgikter
file [8] or the load-store queue [7], because completed instructionotéee some
critical resources until their associated checkpoint is released.

Regarding the non-speculative approach, Bell and Lipasti [9] m®po scan a
few entries of the ROB, as many as allowed by the commit bandwidth, and those
instructions satisfying certain conditions are allowed to be retired. Noneegkth
conditions imposes an instruction to be the oldest one in the pipeline to be retired.
Thus, instructions can be retired out of program order. In this sterempty in-
termingled slots may appear in the ROB after commit, so a defragmentation process
is required to preserve its FIFO structure. Collapsing a large structuiesily én
time and might adversely impact the microprocessor cycle, which makes this pro
posal unsuitable for large ROB sizes. In addition, the performancevechi®y this
proposal is constrained by the limited number of instructions that can beaexta
the commit stage.

Given the existing out-of-order retirement approaches, it remainsleca to
design an architecture that aggressively releases processorcessby neither per-
forming checkpoints of the machine state nor collapsing a FIFO structurethém
words, we are looking for a non-speculative, out-of-order retirérapproach where
a sequential release of entries in hardware structures is decouptedhfeocommit
stage.

1.2.2 Challenges in Multithreaded Processors

Multithreaded architectures represent an important segment in the indbstrjn-
stance, the Alpha 21464, the Intel Pentium 4 [3], the IBM Power 5 [1&,3bn
Niagara [11], and the Intel Montecito [12] are commercial microprogssscluded
in this group. The utilization of processor resources is increased in mudtitade

8 Chapter 1. Introduction

processors by exploiting both instruction- and thread-level parallelismileWibth
coarse-grain and fine-grain multithreading contribute to reduce the \eg&e
waste, only simultaneous multithreading tackles the horizontal waste, by isauing
structions from multiple threads in the same cycle. Nevertheless, this is dtime at
expense of adding considerable complexity to the issue logic, which is a lcsttige

in the processor pipeline.

On the other hand, the reduction of ROB stalls in an out-of-order retirearent
chitecture allows instructions to pass more fluently through the processsmgip
Specifically, the issue stage is affected with an income of instructions at erhafe.
Thus, these architectures mainly attack the vertical waste, although hatin@ste
is indirectly also improved. Out-of-order retirement and multithreading octhally
contribute reducing the issue waste, so it is a research opportunity toatgdhese
techniques and evaluate their joint behavior.

1.2.3 Challenges in Multicore Processors

Multicore processors are now the current norm in both the generpbperand em-
bedded system processor markets. The move to multicore has mainly begstguto
by the thermal issues associated with superscalar architectures andithatylibf
high frequency designs to exploit limited amounts of instruction-level paratiell®
address some of these issues, very wide instruction windows are reddeéd mem-
ory latency with computation, which in turn requires large non-scalable nridisa
tectural structures (e.g., reorder buffers). Thus, further sswteoncurrency must
be obtained with the help of explicit parallelism.

There are still many factors present in single-thread performance ehatim
challenges in multicore designs. In this sense, the continued growth in chipante
tion density allows complex designs to be considered that better balancedir@ffa
between the number of cores and increased core complexity. On the atitrthe
intrinsic difficulties of parallel programming and the sequential nature of maisy-
ing applications limit the potential of parallel architectures that sacrifice sihgéad
performance.

Out-of-order retirement of instructions can increase processoompeghce by
providing larger instruction windows, without the necessity of increasiegctim-
plexity of the major microprocessor structures, such as the ROB or theetefijis.
With a suitable implementation, a cost-effective solution might be achieved, which
would be of great interest in the multicore field, where energy dissipatiomigjar
concern. New challenges arise when out-of-order retirement is irdeadin a multi-
processor environment, specifically in terms of the memory consistency meeie|
on parallel architectures.

A memory consistency model defines ordering of memory operations oedshar
memory multiprocessor and multicore systems. Sequential consistency (S€) is th

1.3. Objectives of the Thesis 9

most restrictive memory consistency model. SC forces memory operations to be
viewed by all processors in the same overall global order, which ¢lasestuitive-

ness of the programming interface. This model is widely accepted and kas be
implemented in some commercial microprocessors, such as MIPS R100G8¢but
implementation of an efficient, sequentially consistent, out-of-order retiremeia

ticore architecture is still an open problem.

1.3 Objectives of the Thesis

The main objective of this thesis is to tackle the challenges highlighted in the psevio
section. Regarding superscalar processors, a non-speculatiaf;arder retirement
architecture is pursued, which at the same time avoids costly operations orathe
jor microprocessor structures, such as ROB collapsing, or checkpoamagement.

In the field of multithreaded processors, an integration of multithreadingliggna,
resource-to-thread allocation policies, and out-of-order retirememiuighd, which
are three techniques that potentially increase the issue bandwidth utilizatimh. A
regarding multicore processors, we intend to design a multiprocessateatahe
composed by several out-of-order retirement cores that enforeesgaiirknown and
widely accepted global sequential order of memory operations (i.e., ségjuson-
sistency).

1.4 Contributions of the Thesis

In this dissertation, the Validation Buffer (VB) architecture is proposed p®cess-
ing model where instructions are retired out of program order. Thigqzal is shown
to behave efficiently in the processor organizations currently dominatinuahiest,

that is, it improves performance at a lower hardware cost. The conthitsutibthis

thesis can be summarized as follows:

¢ An energy-efficient out-of-order retirement architecture is devigaich, un-
like previous proposals, needs no checkpoints to handle speculation.

e Itis shown that the architecture of multithreaded processors can belegtem
implement out-of-order retirement, causing an orthogonal increase tdttie
issue bandwidth utilization.

e Although out-of-order retirement makes a strict memory model hard to im-
plement, an extension of the proposed architecture is devised, whidttenfo
sequential consistency while releasing pipeline resources out ofgonagyder.

The VB architecture uses a FIFO structure analogous to the ROB, called Va
dation Buffer (VB), where instruction retirement conditions are relaXdge aim of

10 Chapter 1. Introduction

this structure is to provide support for speculative execution, exceptéord regis-
ter reclamation. While in the VB, instructions are speculatively executede @lhc
previous branches and previous exceptions are resolved, thetioreswde of an
instruction changes either to non-speculative or mispeculated. At thdt ptmuc-
tions are allowed to leave the VB. Instructions leave the VB in program dmaigr
unlike in ROB-based designs, they may not be held in the VB until they aredetir
from the processor pipeline (i.e., functional units, instruction queues, étstead,
instructions remain in the VB only until their speculative state is resolved, so the
can leave this structure while being in any state (completed, issued, or qustate
and not issued). For example, a long-latency memory instruction can leavBth
as soon as its memory address is computed without having raised a page fault.

Superscalar processors implement register renaming based on theafaict- th
structions leave the processor pipeline in program order [13][14]8)ce the VB
architecture does not track in-flight instructions as traditionally, an agiyeregis-
ter renaming strategy and reclamation method are devised, which do nohralyes
guential release of pipeline resources at the commit stage. As evaluatbdpteC3,
the superscalar VB microarchitecture further exploits the available instndieie|
parallelism, while requiring less complexity in some major critical resource$, suc
as the register file or the load-store queue. It is also shown that the ViBesttire
can outperform in-order retirement architectures even when usingwerpipelines.
This has important implications, since the pipeline width has a strong impact on the
processor complexity.

Regarding multithreaded processors, the impact of out-of-order retiteshan-
structions is analyzed for three main models of multithreading, namely fine-grain
(FGMT), coarse-grain (CGMT), and simultaneous multithreading (SMTip&line
design is proposed with proper resource sharing strategies, and g@xd#toation
policies of shared resources are evaluated on top of it. As shown indheéoen in
Chapter 4, three important conclusions arise. First, an out-of-ordement SMT
processor requires in most cases half of the hardware threads ti@B-a&&sed SMT
processor to achieve similar performance. In other words, perforeaacbe main-
tained in VB-based SMT when reducing the number of hardware thrdadssav-
ing all hardware resources to track their status. Second, an outlef-mtirement
FGMT processor outperforms a ROB-based SMT processor. In this, qeerfor-
mance can be sustained while simplifying the issue logic, which can be tranislated
shorter issue delays or lower power consumption of instruction schedulérird,
existing fetch policies for SMT processors provide complementary adyesita the
out-of-order retirement benefits, by orthogonally contributing to inerehs issue
bandwidth utilization. An SMT design can implement both techniques to provide
higher performance if area, power consumption, and hardware aonistallow it.

In the multicore field, an implementation of an out-of-order retirement, sequen-
tially consistent multiprocessor architecture is proposed, based on thelatpe

1.5. Thesis Outline 11

retirement of load instructions. While the resulting architecture enfordesgibal
ordering of memory operations, it relaxes conditions to release pipelinerness,
providing wider instruction windows that lead to performance gains ovés-Ré&sed
multiprocessors. The experimental evaluation presented in Chapter 5 ghpaor-
tant speedups for a sequentially consistent VB-based multiprocessaessiéct to
its ROB-based homologous. Likewise, an evaluation of the VB-basedriesdty a
relaxed memory consistency model is performed, showing higher speéatuprge
ROB sizes.

Finally, the work involved in this thesis includes the development of a simulation
framework, called Multi2Sim, on top of which all performance evaluationg e@en
carried out. This simulator models in a cycle-accurate manner the architetéusa-
perscalar, multithreaded, and multicore processor, as well as the undarigmory
hierarchy and interconnection networks. The construction of this todkstavith
the necessity of modeling these complex systems working as a whole, and-the un
availability of free and efficient simulators providing these characteristingiently,
Multi2Sim has evolved into a formal open-source project aimed at beinipitegh
by the research community in further works.

1.5 Thesis Outline

The rest of this dissertation is structured as follows. Chapter 2 preseridbi2Sim
simulator and the experimental framework. Chapter 3 describes and texzatha
Validation Buffer architecture for superscalar processors. Thiggwal is extended
and evaluated for multithreaded and multicore processors in Chapters 3, agd
spectively. Chapter 6 summarizes some published works related with this Hrasis
finally, Chapter 7 presents some concluding remarks.

Chapter 2

The Multi2ZSim Simulation
Framework

Current microprocessors are based in complex designs, integratiegediffcom-
ponents on a single chip, such as processor cores with severaldrarttweads, a
memory hierarchy with several cache levels, and interconnection netw@&m-
plex simulation tools are required to model these systems, and to evaluate thk glob
impact on performance of alternative designs in specific componentse fibth this
work started, there was no publicly available tool fulfilling the simulation netiess
for the evaluation of the proposed techniques. The Multi2Sim simulation frankew
has been developed as an open-source project, with the aim of ovegctbraidraw-
backs of existing simulation tools, and evaluating the proposals of this thedfss|
chapter, the simulation environment is described, including Multi2Sim’s strictur
and main features, as well as the benchmarks run on top of it.

13

14 Chapter 2. The Multi2Sim Simulation Framework

2.1 Overview

The evolution of microprocessors, mainly enabled by technology adsahes led

to complex designs that combine multiple physical processing units in a single chip
These designs provide for the operating system the view of having multipbegr
sors, and thus, different software processes can be scheduletisstme time. This
processor model consists of three major components: the microprocesssy the
cache hierarchy, and the interconnection network. A design modificati@ny of
these components can affect the rest of them, and cause specific igdtizadors.
Therefore, the entire system should be modeled in a single tool that trackeeh
action between components.

An important part of the work of this thesis has focused on the developafent
the Multi2Sim simulation framework, which covers the limitations of other existing
multiprocessor simulators. Multi2Sim integrates a model of the processas, thee
memory hierarchy, and the interconnection networks in a tool that enalelegaint
evaluation. Next, a brief comparative study is presented, focusing di2&im and
other state-of-the-art simulation frameworks.

2.1.1 Existing Simulation Tools

Multiple simulation environments aimed at evaluating computer architecture pro-
posals have been developed. The most widely used simulator in receathgsa
been SimpleScalar [15], which models an out-of-order superscaleegsor. A vast
amount of extensions has been applied on top of SimpleScalar to model in acnore
curate manner certain aspects of superscalar processors. FollextdmapiotLeak-
age simulator [16] quantifies leakage energy consumption. SimpleScalaités qu
difficult to extend to model new parallel microarchitectures without signifigan
changing its structure. In spite of this, various SimpleScalar extensionppmiu
multithreading have been implemented, e.g. SSMT [17], M-Sim [18], or SMTSim
[19], but they have the limitation of only executing a set of sequential wadd@and
implementing a fixed resource sharing strategy among threads.

Multithread and multicore extensions have been also applied on top of the Tu-
randot simulator [20] [21], which models a PowerPC architecture. Thidemalso
been used with power measurement aims in an implementation called PowerTimer
[22]. Some publications cite the use of Turandot extensions to model panalfe-
tectures (e.g. [23]), but they are not publicly available.

Both SimpleScalar and Turandot are application-only tools, which directly sim-
ulate the behavior of an application without first running an operating sysgeich
tools have the advantage of isolating the workload execution, so statisticetare
affected by the simulation of additional software. Moreover, the simulation time
required to run benchmarks can decrease by about two orders ofitotignin-

2.1. Overview 15

creasing the simulation capabilities and flexibility. Multi2Sim is also classified as
an application-only simulator.

In contrast to the application-only simulators, a set of so-called full-system
ulators are available. Similarly to virtual machines, these tools boot an unnibdifie
operating system, on top of which applications are then run. Although thisimode
provides higher simulation power, it involves a huge computational load ded,
pending on the goal of the study, unnecessary simulation accuracy. $#jds an
example of a generic full-system simulator, commonly used for multiprocegser s
tems simulation, but unfortunately not freely available. A variety of Simicsvddri
tools has been implemented for specific research purposes in this arsas e
case of GEMS [25], which introduces a timing simulation module to model a com-
plete processor pipeline, a memory hierarchy, and cache coheremwevet, GEMS
provides low flexibility to model multithreaded designs and does not integrdte an
terconnection network model, while still adding a sensible amount of compuahtion
overhead and sometimes prohibitive simulation times.

An important feature included in some processor simulators isrtheg-firstap-
proach, provided by GEMS and adopted by Multi2Sim. In such a scheme, agtimin
module traces the state of the processor pipeline while instructions travepss-it,
sibly in a speculative state. Then, a functional module is called to actuallyexec
the instructions, so the correct execution paths are always guardoyteqateviously
developed robust functional simulator. Ttaming-firstapproach confers efficiency,
robustness, and the possibility of performing simulations on different |le¥elstail.
Multi2Sim adopts thdiming-first simulation with a functional support that, unlike
GEMS, need not simulate a whole operating system, but is still capable aftagc
parallel workloads, with dynamic threads creation.

The last cited simulator is M5 [26], which provides support for out-afesISMT-
capable CPUs, multiprocessors and cache coherence, and runsfulbsyatem and
application-only modes. The limitations lie in the low flexibility of multithreaded
pipeline designs. The next sections focus on the design and implementasiomef
components of the baseline Multi2Sim tool, and it is discussed how the archétectu
techniques proposed in this thesis are modeled on top of it.

2.1.2 The Multi2Sim Project

Three subprojects have been started and are currently maintained reltitettie
Multi2Sim simulation framework: the Multi2Sim web site [27], the simulator source
code, and the tool documentation. The web page is organizediks @age, and the
rest of the projects reside in a publicly accessible SVN server. Anyizodijowed
and encouraged to join any of these subprojects, and their format is éutémdllow
and manage access of concurrent developers. These are soradipsopf each
subproject:

16 Chapter 2. The Multi2Sim Simulation Framework

e Multi2Sim web site. This web site provides general information about the
simulator, and includes links for interesting downloads. On one hand, beth th
simulator source code project and the documentation project can be directly
downloaded. On the other hand, several sets of precompiled bencharark
available. The provided binaries have been tested and their executibedras
validated with Multi2Sim. Finally, a mailing list service is available for any-
body to freely subscribe or unsubscribe, to share or ask for informttiother
users of the tool. The web site can be improved by anybody after requastin
account to the administrator.

o Multi2Sim source code Contained in an SVN tree, the simulator source code
is available for read-only access straightforwardly, and for reatkwaccess
for anybody who requests it by contacting the administrator. The code tree
contains three first-level directories. The directbynk holds the most recent
copy of the simulator, which is usually unstable and in progress. The diyecto
tagscontains checkpoints of released versions. Finally, the direbiaryches
contains copies of the trunk for different purposes, such as mamiodifica-
tions that are not intended to affect the central version.

e Multi2Sim documentation. The documentation is a PDF file, generated from
a set of Latex source files, intended to be a user’'s and programmétés fou
Multi2Sim. It is currently in its first phase, and the structure and accesssnode
of this subproject are the same as for the source code subproject.

In the following sections, the simulator structure and the processor maoelel ar
described, including the superscalar architecture, the implementationadlepar-
chitectures, and the memory subsystem. For each component, the asssstaibd
Multi2Sim command-line options for its configuration is given.

2.2 The Superscalar Pipeline Model

Multi2Sim models a pipelined superscalar processor, capable of fetadngding,
and executing Intel x86 instructions. In this model, a high-speed fetck &ayp-
ported by a branch prediction mechanism, and a register renaming strateqgy is
ployed to track data dependences among instructions. Both the brardibtipre
and register renaming schemes are detailed in this section, followed byrgptiesc
of the implemented pipeline stages.

2.2.1 Branch Predition

There are two different components involved in branch predictionbthech target
buffer (BTB) and thebranch direction predictofor simply branch predictoy. The

2.2. The Superscalar Pipeline Model 17

BTB is a set-associative cache indexed by a macroinstruction addrésangh ad-
dress is present in the BTB if any entry in the corresponding set cortaé@gsmatch-
ing the address. In this case, the associated BTB entry contains theaddgess of
the branch and the type of branch (conditional branch, inconditional,jtumption
call, or function return). The command-line option to specify the BTB orgsitn

iS - bpred: bt b <sets>: <assoc>. The argumengdet s is a power of 2 indicating the
number of sets of the BTB, whilsssoc refers to the number of ways or associativity
of the BTB, also a power of 2.

On the other hand, the branch predictor provides the direction of a lbranc
located at a given address, i.e., whether it is taken or not. The branch
predictor kinds modeled in Multi2Sim arperfect taken not-taken bimodal
two level adaptive and combined which can be selected with optiorpr ed
<per f ect >| <t aken>| <not t aken>| <bi nod>| <t wol evel >| <conb>. Each predictor
type is described next.

e Perfect branch predictor. Theperfectpredictor (option bpred perfect) is
an ideal implementation that provides a totally accurate prediction. Accesses
to an ideal BTB always return the correct target address even if tmechr
address was not inserted before, and accesses to the branchagoraldiays
return the right direction. This implementation is unfeasible in hardware, but
provides a useful upper bound for the performance achieved by othach
predictors.

e Taken branch predictor. The takenpredictor (option- bpred t aken) as-
sumes that branches are always taken. However, instructions abitteefrd
are not decoded yet, and branches are identified as such only wheadhe
dress is present in the BTB (see Section 2.2.3). Thus, a branch abskat
BTB is considered as a regular instruction, and is assumed not to jump, even
with thetakenbranch predictor.

e Not-taken branch predictor. The not-taken predictor (option- bpred
nott aken) assumes that conditional branches are never taken. However, it
still predicts as taken those branches that are certainly known as satfs, th
inconditional branches, function calls, and returns whose addreestsiced
in the BTB.

e Bimodal branch predictor. A bimodalpredictor (option bpred bi nod) is a
table indexed by the least significant bits of the instruction address. Thesen
of the table are 2-bit up-down saturating counters. A counter repeetisn
current prediction for a given branch. Values of 0 and 1 repres@at-taken
prediction, while values 2 and 3 mean that the branch is taken. The number of
entries in the table is a power of 2 given by optiensr ed: bi mod <si ze>.

18

Chapter 2. The Multi2Sim Simulation Framework

addr addr\

:

-« — — — — — — _

levell_size
-« — —
2 Ahist_size

. -~ o - -
hist_size (in bits) level2_size

Branch History Pattern History
Table (BHT) Table (PHT)

Figure 2.1: Two-level adaptive branch predictor.

e Two-level adaptive predictor. A two-level adaptivepredictor (option

-bpred twol evel) contains two tables, each corresponding to one predic-
tion level. The additional command-line option involved with this predictor is
-bpred: twol evel <level 1.size> <| evel 2_si ze> <hi st si ze>, which de-
fines specific parameters for each predictor component.

As shown in Figure 2.1, the first accessed table is the Branch History Table
(BHT). This table is indexed by the least significant bits of the branch iostru
tion address, and containsvel 1_si ze entries (power of 2). Each entry con-
sists of a branch history register lnfst _si ze bits that indicates the behavior

of the lasthi st _si ze occurrences of the branch. Every time a branch com-
mits, this register is shifted left, and the least significant bit is set or cleared
according to whether the branch was actually taken or not.

The content of the history register obtained from the BHT is used to index
the row of a second two-dimensional table called Pattern History Table (PHT)
Because the history register haisst si ze bits, the PHT is forced to have
2hi st si ze entries. The column of the PHT is also indexed by the least sig-
nificant bits of the branch instruction address. The number of columns in the
PHT is given by the evel 2_si ze parameter. Each entry in the PHT contains a
2-bit up-down saturating counter that gives the final prediction for theiied
branch.

By properly tunning the parameters of optiaspr ed: t wol evel , one can form

the four two-level adaptive configurations commonly known as GAg, GAp,
PAg, and PAp. See [28] for a more detailed description about thes&pred
tors. The table shown on the right of Figure 2.1 lists the restrictions that the
predictor parameters should fulfill in order to be classified as each oftéee c
configurations.

2.2. The Superscalar Pipeline Model 19

2 Physical register Initial RAT state
g eax o [zps value flags eax - 0
é ebx = of 32 bits 6 bits ebx - 1
= ecx a es S| ek
E edx 2 c's) = af °
o "B fs - 12
&) o ss gs - 13
2 EA - =
& esp §° fs 8 auxl : f = 2
2 ebp @\ gs 2 aux2 i - 3
2 esi £ ea auxl - 14
= n 3 aux2 - 15
= 0 Register
2 edi = data 2

5 fil
(= = ile
“ =

a) Name dependences b) Physical register file c) Register Aliasing Table

Figure 2.2: Register renaming.

e Combined predictor. The combinedpredictor (option- bpred conb) com-
bines the bimodal and the two-level adaptive predictors. On an inquitly, bo
components are looked up, and their corresponding predictions are smpor
ily stored. Then, an additional table, calledoice predictor is accessed to
decide whether to obey the bimodal predictor statement or the two-level pre-
dictor statement. Optiorbpr ed: choi ce specifies the number of entries in the
choice predictor (power of 2).

Each entry contains a 2-bit saturating counter. If its value is 0 or 1, the state
ment of the bimodal predictor is considered. If its value is 2 or 3, the twd-leve
predictor is used to give the final prediction. The choice predictor cosiate
updated at the commit stage only in the case that the bimodal and the two-level
predictors gave a contradicting prediction.

2.2.2 Register Renaming

The register renaming mechanism implemented in Multi2Sim uses a simplification of
the x86 logical registers. There are 22 possible name dependencegbehicroin-
structions, which are listed in Figure 2.2a. Logical registais...edx are general
purpose registers used for computations and intermediate results. Reagiptesdi
are specific purpose registers implicitly or explicitly modified by some microinstruc
tions, such as the stack pointer or base pointer for array accessgistelRses...gs
are segment registers, whiex1...dat a are internally used by the macroinstruction
decoder to communicate the generated microinstructions with one another.

The status of an x86-based processor includes a set of flags, whkietrigen
by some arithmetic instructions, and later consumed mainly by conditional lmanch
to decide whether to jump or not. Flags, cf, anddf are the overflow, carry, and
direction flags, respectively, and are tracked as separate depesdenong instruc-
tions. On the other hand, flags, pf, andsf are the zero, parity, and sign flags,

20 Chapter 2. The Multi2Sim Simulation Framework

Instr. Data ||Register @
Cache = Cache File LIRRLT

Figure 2.3: Multi2Sim model of the superscalar processor pipeline.

respectively, and any x86 instruction modifying any of these three flagsdsfying
all of them. Thus, they are tracked as a single dependence, eafled

The value associated with each logical register, i.e., each potential inpemh-de
dence for an instruction, is stored in the physical register file. As repted in
Figure 2.2b, the register file (RF) consists of a set of physical regigiarstore op-
eration results. Each physical register is formed of a 32-bit value, joiritlyave-bit
field storing the x86 flags. The number of physical registers can belishitbwith
the- phregs_si ze option.

At a given point, each logical register is mapped to a given physicaltezdis
the register file, containing the associated value. In the Multi2Sim renaminglmode
logical register and flags renaming works independently. This meanexéonple,
that registeeax and flagef can be mapped to the same register file entry. In this case,
thevaluefield stores the contents efix while a specific bit in thélagsfield contains
the value forcf. Each logical register is mapped to a different physical register, but
x86 flags can be mapped all to the same physical register, even if the lattzdyalr
has an associated logical register.

A Register Aliasing Table (RAT) holds the current mappings for each lbgica
register. Its initial state is shown in Figure 2.2a. Additionally, a Free Regisieu€®
(FRQ) contains the identifiers corresponding to free (not allocated)qddyegisters.
When a new instruction writing into logical registeis renamed, a new physical
register is taken from the FRQ and the new mappind fsrstored in the RAT. The
previous mapping’ of logical registerl will be needed later, and is stored in the
ROB entry associated with the renamed instruction. When subsequentiiustsu
consuming are renamed, the RAT will make them consume the contegismhere
they will find the associated value.

When the instruction writing oh commits, it releases the previous mapping of
[, i.e., physical register’, returning it to the FRQ if necessary. Notice that, unlike a
classical renaming implementation ignoring flags, a physical register carshegral
entries in the RAT pointing to it (the maximum is the number of flags plus one logical
register). Thus, a counter is associated with each physical registeh wiil only
be freed and sent back to the FRQ in case this counter is 0.

2.2. The Superscalar Pipeline Model 21

taken branches

Branch Prediction Section Instruction Cache Section
imEEE=E= MEEEEEEEEREEERERER peEmEEEER mEEmEEEE=
1 eip i eip .
P $ b
' ot Instruction 1
' BTB :E Cache .
] ' ' L
] Mask of : 1 .
ERLITY povier 3 DI
] X [

] at .

L] L]

: Branch : E Selection logic| 1

' predictor " .
n

] : ' :

s (AT T ot predicr- o+ 224 oA
1

: ¥ ;

: - '

to fetch'queue

Figure 2.4: Block diagram of the fetch stage.

2.2.3 Pipeline Stages

Figure 2.3 shows a block diagram of the processor pipeline modeled in Mutti2S
The gray-painted boxes represent hardware structures, whkesasind shapes rep-
resent pipeline stages. Six stages are modeled in Multi2Sim, néstardecode
dispatch issue writeback andcommit The actions performed in each stage are
described next.

e The Fetch Stage The fetch stage is the first pipeline stage modeled in
Multi2Sim. It is in charge of fetching instructions from the corresponding in-
struction cache at the addresses provided by the branch predictar, fhiese
instructions are placed into the fetch queue. The instruction cache cox&ins
macroinstructions, whose variable size is not known at this stage yet, thieus
fetch queue is just a buffer of uninterpreted bytes, whose size cqrelodied
with the-f et chg_si ze option. Figure 2.4 shows a block diagram of the fetch
stage.

The fetch stage is divided into two main sections, as shown in the figure, called
branch predictionand instruction cache fetchingrespectively. The branch
prediction section provides information about the branches located within the
fetched line. This information is then consumed by the instruction cache sec-
tion. The modeled fetching mechanism works as follows:

() First, the BTB is accessed with the current instruction poirggr regis-
ter). As pointed out in Section 2.2.1, the BTB organization (capacity and
associativity) can be configured by means of a specific command-line
option. However, the BTB has a fixed number of banks (or interleaved

22

Chapter 2. The Multi2Sim Simulation Framework

ways), namely as many as the size of the instruction cache block in bytes.

In Figure 2.4, this value is set to 16. This means that 16 concurrent ac-

cesses to the BTB can be performed in parallel, as long as no pair of

accesses matches the same interleaved way. This condition is true in the
branch prediction section, as only contiguous addresses belonging to the
same block are looked up.

(i) The concurrent accesses to the BTB provide a mask of those instisctio
known to be branches, jointly with their corresponding target addresses
The branch predictor is next looked up to obtain the predicted direction
for the branches, that is, whether they are taken or not. Since the BTB
also provides the type of the branch (conditional branch, function call,
etc.), the branch predictor will consider this information for its output.
This means that an inconditional branch will always provide a predict-
taken output, and function calls and returns will access a Return Address
Stack (RAS) to obtain the actual target addresses. After the access to the
branch predictor, the input mask is converted to an output mask that only
tracks those taken branches.

(iii) In parallel with (i), the instruction cache is accessed in the instruction
cache fetching section (right block in Figure 2.4). After a variable la-
tency, dependent on whether there was a cache hit or miss, the cache
block becomes available, and the mask provided by the branch prediction
section is used to select the useful bytes. Specifically, a selection logic
takes those bytes ranging from the address contained in regjigtentil
the address of the first predict-taken branch, or until the end of thé& bloc
if there is none.

The filtered bytes are then placed into the fetch queue, which communi-
cates the fetch stage with the next pipeline stage. After fetching;ithe
register is set either to the starting address of the next block if no predict-
taken branch was found, or to the target address of the first takeatra

as provided by the BTB.

e The Decode Stageln the decode stage, macroinstructions are taken from the
fetch queue and decoded into the corresponding sequence of udph, ave
then placed into the uop queue. In a single cycle, the decode stage caledec
as many x86 instructions from the fetch queue as the decode bandwidtk allow
(option- decode wi dt h).

e The Dispatch Stage In the dispatch stage, a sequence of uops are taken
from the uop queue. For each dispatched uop, register renaming isdcarr
out by looking up the RAT for the current source and previous destimatio
mappings, and allocating a new physical register for the current destinatio

2.2. The Superscalar Pipeline Model 23

operand. Then, the uop is inserted in the ROB, and either in the LSQ or the IQ
depending on whether the uop is or is not a memory instruction, respectively

The number of instructions dispatched per cycle is specified with the
-di spat ch_wi dt h option. Instruction dispatching can get stalled for several
reasons, such as the unavailability of physical registers, a lack o¢ spaice

ROB, or an empty uop queue. Since the dispatch stage acts as a bridge be-
tween the processor front- and back-end, a stall in this stage is a symptom o
some processor bottleneck constraining performance. For each dispaitc

(i.e., for each uop susceptible of being dispatched in each cycle), thbensa

for dispatch stalls are recorded, and shown after the simulation finishes in th
di.stall statisticsdi.stall[rob],di.stall[iq],etc.).

e The Issue Stage The issue stage operates on the IQ and the LSQ. The uops
placed in these queues are instructions waiting for their source opdmhds
ready, or for their associated processor resource to be availatdésdite stage
implements the so-calledakeup logi¢c which is in charge of selecting from
each queue at the mastsue_wi dt h uops that can be scheduled for execution.
After selecting the proper candidates, instructions from the IQ are s¢iné to
corresponding functional unit to be executed, whelead instructions placed
in the LSQ are sent to the data cache.

Sincestoreinstructions irreversibly modify the machine state, they are handled
in an exceptional manner both in the issue and the commit stage. On one hand,
storesare allowed to access the data cache only after they are known to be
non-speculative, which can be ensured after they have safelyee#od ROB

head. On the other hanstoreshave no destination operand, so they need not
perform any renaming action at the commit stage. Thus, they are allowed to
leave the ROB as soon as they have been issued to the cache, without waiting
for the cache access to complete.

e The Writeback Stage The writeback stage is in charge of taking the results
produced by the functional units or by a read access to the data cathe, a
store them into the physical register mapped to the logical destination of the
executed instruction. If the executed instruction is a mispeculated brameh, th
is when mispeculation is detected, since both the branch condition and the
target address are resolved at this time.

Processor recovery on mispeculation can be performed either at thbauiite

or at the commit stage, as specified in parametetover ki nd. If recovery

is performed at the writeback stage, instructions following the mispeculated
branch are drained from the ROB, 1Q, and LSQ, the RAT is returned tevé-p

ous valid state, and instruction fetching is delayed as many cycles as specifie
by parameterrecover penal ty.

24 Chapter 2. The Multi2Sim Simulation Framework

e The Commit Stage The commit stage is the last stage in a superscalar pro-
cessor pipeline, in which instructions commit their results into the architected
machine state in program order. The oldest instruction in the pipeline is located
at the head of the ROB. The condition fostreinstruction to be extracted
from the ROB is that it be issued to the cache, while the rest of instructions
must be completed before committing.

If the instruction at the head of the ROB is a mispeculated branch and the
recovery process is specified to be triggered at the commit stage, thatswfte

the ROB, 1Q, and LSQ are completely drained (only mispeculated instructions
following the branch remain in the pipeline at this time), the RAT is recovered
to a valid state, andecover penal ty cycles go by before instruction fetch
resumes.

When a completed, non-speculative uop commits, the register renaming mech-
anism frees the physical registers corresponding to the previous ngapmin

the uop’s destination logical registers (see Section 2.2.2). Then, thehjes
diction mechanism updates the appropriate tables, according to the abserve
behavior of the committed uop if it is a branch.

2.3 Support for Parallel Architectures

Multi2Sim provides a model for multicore and multithreaded processors. deror

to evaluate these parallel architectures, they must be stressed with multige task
which can be formed either by several applications with sequential coénguin
parallel, or by one parallel program spawning child tasks at runtime. 3orithe

how a parallel architecture is modeled and evaluated in Multi2Sim, the following
definitions are first given.

e A contextis a software task (sometimes referred tsafiware threajlwhose
state is defined by a virtual memory image and a logical register file. Logi-
cal register values are exclusive for a context, whereas the memoryamap c
be either exclusive or shared with other contexts. If an application cergain
qguential code, its state is represented by one single context. On the goautrar
application can also spawn child contexts at runtime when it contains parallel
code, for example by using the OpenMP or POSIX threads libraries.

e A (hardware) threadis a hardware entity capable of storing the status of a
single context and executing it. In order to store the logical register vadues
thread has its own register aliasing table (RAT), which maps the logical regis-
ters into a physical register file. To store the state of a private memory image,
a thread has its own memory map cached in a private translation look-aside

2.3. Support for Parallel Architectures 25

(Core 0 ROB \| {Core 1 \
]
Thread O | | Thread Thr| | Thr
TLB 1 ead| |ead
RAT 0 1
\ AN y,
\j \J \j
Processing P.N. P.N. PN
Node 0 1 2 3
R Memory hierarchy !

Figure 2.5: Parallel architecture scheme.

buffer (TLB), which maps virtual memory locations into physical memory
pages. Functional units (adders, multipliers, FP execution unit...) aredshare
among threads, while other pipeline structures, stages, and queubsa&uc
ROB, 1Q, LSQ) can be private or shared.

e A (processor) coras formed of one or more threads. It does not share any
pipeline structure, execution resource, or queue with other coresharmhly
communication and contention point among cores is the memory hierarchy.

e A processing nodé the minimum hardware entity required to store and run
one context. In a multithreaded processor, each thread is one prareedi
Likewise, each core in a multicore (and not multithreaded) processor s con
sidered one processing node. Finallycacore,t-threaded processor (meaning
that each core hasthreads) has x t processing nodes, since it can store and
runc x t contexts simultaneously. Each processing node can have its own en-
try point to the memory hierarchy to fetch instructions or read/write data. The
number of processing nodes limits the maximum number of contexts that can
be concurrently executed in Multi2Sim. If an application spawns new con-
texts and this limit is exceeded at runtime, the simulation stops with an error
message.

Based on these definitions, Figure 2.5 represents the structure of tilelpar
chitecture modeled in Multi2Sim. The figure is an example of a processor with 2
cores and 2 threads per core, forming 4 processing nodes with irdigeantry
points to the memory hierarchy.

26 Chapter 2. The Multi2Sim Simulation Framework

2.3.1 Multithreading

A multithreaded processor is modeled in Multi2Sim using optiotr eads, and as-
signing a value greater than 1. In a multithreaded design, most executmmees
can be either private or shared among threads. These resourdes classified as
storage resourceandbandwidth resourcesThe former refer to pipeline structures
(such as the ROB or 1Q), while the latter refer to the uops that a pipeline stege
handle in a single cycle (such as dispatch slots, issue slots, etc.). Multi28onp
to configure each of these resources are given next.

e Storage resources Regarding the configuration of storage resources, options
-rob_kind, -i g_ki nd, -1 sqki nd, and- phr egs ki nd specify the sharing strat-
egy of the ROB, IQ, LSQ, and register file, respectively. The possiiliees
for these options argri vat e andshar ed. The parameter specifying the size
of each structure always refers to the number of entries per threa@gx&m-
ple, when the ROB is shared in anthreaded processor, the total number of
ROB entries that can be occupied by a single thread«isob si ze.

The fact of sharing a storage resource among threads has sevdichiiops

in performance and hardware cost. On one hand, private storaggces con-
strain the number of structure entries devoted to each thread, but they imple-
ment in a natural manner a guarantee for a fair distribution of available ntrie
among threads. On the other hand, a shared resource allows an aetacktth
occupy resource entries not used by other threads, but a greedyl thtalled

in a long-latency operation may penalize other active threads by hundfeds
cycles if it is holding resource entries for too long.

e Bandwidth resourcesThe options to specify how pipeline stages divide their
slots among threads aré et ch ki nd, -di spat ch ki nd, -i ssueki nd, and
-commi t kind. The values that these options can take taneesl i ce and
shared. The former means that a stage is devoted to a single thread in each
cycle, alternating them in a round-robin fashion, while the latter means that
multiple threads can be handled in a single cycle. The stage bandwidth always
refers to the total number of slots devoted to threads. For example, a value
of 4 fori ssue_wi dt h means that at the most 4 uops will be issued per cycle,
regardless of whether the issue stage is shared or not.

The fetch stage can be additionally configured wathg termthread switches,

by assigning the valuewi t chonevent for the -fetch ki nd option. In this
case, instructions are fetched from one single thread either until a quantum
expires or until the current thread issues a long-latency operatioh,asia

load instruction incurring a cache miss.

2.4. The Memory Hierarchy 27

| Option [Coarse-Grain MT | Fine-Grain MT [Simultaneous MT |
-fetchkind Swi t chonevent tineslice timeslicelshared
- di spat ch_ki nd timeslice timeslice timeslicel/shared
-i ssuekind tinmeslice timeslice shar ed
-comm t ki nd timeslice tinmeslice timeslicelshared

Table 2.1: Classification of multithreading paradigms depending on Multi2Sim op-
tions.

Depending on the combination of sharing strategies for pipeline stages, a multi-
threaded design can be classified as coarse-grain (CGMT), fiire(g§@MT),

and simultaneous multithreading (SMT). The combination of parameters for
each stage and its classification are listed in Table 2.1. The main enhancement
of FGMT with respect to CGMT is a round-robin fetch stage, which feeds th
rest of the pipeline with uops from a different thread every cycle, thereas-

ing thread-level parallelism. The key improvement of SMT with respect to
FGMT is the shared issue stage, which feeds functional units at higteer ra
with ready instructions, regardless of the thread they belong to.

2.3.2 Multicore Architectures

In Multi2Sim, a multicore architecture is modeled by assigning a value greater than
1 to option- cor es. Since processor cores do not share any pipeline structure, there
is no other option related with the multicore processor configuration. Wheruthe

ber of cores is greater than 1, all processor pipelines and their assbstauctures

are simply replicated, and they work simultaneously in every execution cyde.
mentioned above, the only common entity for cores is the memory hierarchy.

2.4 The Memory Hierarchy

Multi2Sim provides a very flexible configuration of the memory hierarchyy Amm-

ber of cache levels can be used, and caches can be unified ortedpadata and in-
structions, and they can be private or shared per groups of coesslthrin this chap-
ter, it is shown how the memory hierarchy is modeled, configured and impledhente
in Multi2Sim, including caches, main memory, and interconnection networks.

2.4.1 Memory Hierarchy Configuration

The configuration of the memory hierarchy is specified in an independeriti¢e If
the file name isnane>, Multi2Sim is notified to use it as memory hierarchy config-

28 Chapter 2. The Multi2Sim Simulation Framework

L1 data L1 instr.
1KB, 2 ways| |1KB, 2 ways

Unified L2 Cache
8KB, 4 ways

...... l....T...

Main
Memory

Figure 2.6: Example of a memory hierarchy configuration.

uration file with option- cacheconfi g <name>. The configuration file is formed of
sections and fields. Each section represents a component of the menrarghyie
and is specified with a name enclosed in brackets (for exanvplenvenor y]). After
the section header, a set of fields formed of pakks/>=<val ue> follows, specifying
the properties of the specific component.

The format of the memory hierarchy configuration file is illustrated by means of
an example modeling the memory hierarchy represented in Figure 2.6. Thiplexa
corresponds to a processor with one single core and one single tlugad,two
levels of cache, where L1 caches are separated for instructionsatendadid an L2
cache is unified. The contents of the associated configuration file is listeable T
2.2.

In this code, a set of sections namgthcheTopol ogy <nane>] defines cache
organizations, that is, a set of characteristics used to later createscdate cache
organizations are defined first, namiett opo and| 2t opo, which will be used to
create the L1 and L2 caches, respectively. The former is defined wits8xways,
and 64-byte blocks (1KB of storage capacity in total), while the latter defiReets,

4 ways, and 64-byte blocks (8KB in total). The total capacity of the cachgtas is
the product of the number of sets, the associativity, and the block size.

The next two sectionsNet <nare>] define the interconnection networks. In this
case, two of them are created, calted - 0 andnet - 1, respectively. Both intercon-
nects are defined with a bus topology and a link width of 32 bytes per cybles, B
64-byte cache block is transfered in two cycles.

The sections entitleficache <nanme>] create cache memories. The L1 cache
is namedd! 1, has the topology 1t opo, and is connected to the next cache level
by means of theet - 0 network. The cachel 1 is the instruction cache, also with
topology! 1t opo, and connected to networet - 0 below. Finally, the unified L2

2.4. The Memory Hierarchy 29
[CacheTopol ogy | 1t opo] [Cache ill]
Sets = 8 Topol ogy = | 1t opo
Assoc = 2 LoNet = net-0
Bl ockSi ze = 64
Latency = 2 [Cache 2]
Topol ogy = | 2t opo
[CacheTopol ogy | 2t opo] H Net = net-0
Sets = 32 LoNet = net-1
Assoc = 4
Bl ockSi ze = 64 [MainMenory]
Latency = 20 H Net = net-1
Bl ockSi ze = 64
[Net net-0] Latency = 200
Topol ogy = Bus
Li nkWdth = 32 [Node 0]
Core = 0
[Net net-1] Thread = 0
Topol ogy = Bus DCache = dl 1
Li nkWdth = 32 | Cache = il1l
[Cache dI1]
Topol ogy = | 1t opo
LoNet = net-0
Table 2.2: Example of a memory hierarchy configuration file.
Section Variable Meaning
Sets Number of sets.
Assoc Associativity (number of ways).
Topol ogy <name> | Bl ockSi ze Block size in bytes.
Lat ency Access time in cycles.
Pol i cy Block replacement policyLRU, FI FO, or Random).
Li nkW dt h Link bandwidth in bytes per cycle.
Net <nane>
Topol ogy Network topology Bus or P2P).
Topol ogy Cache topology name, as defined in sectjon
Cache <nane> [Topol ogy <nane>].
Hi Net Name of the network connected above, as defined
in section] Net <nane>] .
LoNet Name of the network connected below.
Hi Net Name of the network connected above.
Mai nMeror y Lat ency Access latency.
Bl ockSi ze Memory block size in bytes.
Core Core identifier of the processing node.
Node <nume Thr ead Thread identifier.
DCache Name of the cache for data access, as defined in
section] Cache <name>] .
| Cache Name of the cache for instruction fetch.

Table 2.3: Sections and variables in the memory hierarchy configuration file.

30 Chapter 2. The Multi2Sim Simulation Framework

cache is named2, has the topology 2t opo, is connected toet - 0 above, and to
net - 1 below.

Section[Mai nMenory] defines the main memory parameters. In this case, the
main memory is connected to networdt - 1 above, has a 64-byte block size, and a
200-cycle access time.

Finally, section] Node 0] specifies which is the entry point to the memory hi-
erarchy for the computational node 0, corresponding to thread 0 inCcoiith
the cache names assigned to varialbleshe andi Cache, it is stated that the node
should access cachie1 when requesting data, and it should fetch code from cache
il11. Table 2.3 lists all possible variables that can be used in each section of the
memory hierarchy configuration file, including a brief description of theirmrega

2.4.2 Cache Coherence

Multi2Sim models a cache hierarchy with any number of cache levels, amoieh wh
cache coherence is maintained. Coherence is enforced with the dirbetary
MOESI protocol at all caches connected to the upper link of an inteszinmith
respect to the single allowed cache connected to the lower link (see Figlrd Be
upper level caches can belong to different threads, differenscora group of them,
and they can contain instructions, data, or both. Even if one instructitre @a one
data cache are connected to a unified cache at the lower level, coberemaintained
among them (which is required in the case of, for example, self-modifyidg)co

Figure 2.7 represents an example of four coherent L1 caches withctespan
inclusive L2 cache. Each block in the L2 cache, and in general eack bicany
lower level cache, contains the fields listed in the figure. Besides the dgtand
status, a block has a directory entry containing two fields: the first oneidatifier
of the single possible upper level cache being the owner of the block {d.la
cache with the block in staexclusivemodified or owned. There is a specific value
for this identifier to express that there is no owner in the upper level. Tétende
field is a bitmap with as many bits as upper level caches, with those bits set to one
corresponding to the caches having a copy of the block.

In fact, a single block can contain several directory entries in case thk bire
of an upper level cache is smaller. For example, two L1 caches with 16 2nd 3
byte block size connected to an L2 cache with 64-byte blocks, requiresdtaiy
entries per L2 block. The reason is that there can be at the most 4 bldakgoor
subblocksn an L2 cache block split among different cache lines in the L1 cache with
the smallest block size.

2.5. Experimental Environment 31

L1 L1 L1 L1
Cache Cache Cache Cache
1 1 1 1

| Tag
Data
Status (M, O, E, S, or I)
Directory entry with:

L2 cache —Owner (logyN bits)
—Sharers (bitmap of N bits)

Cache block

Figure 2.7: Enforcement of cache coherence.

2.5 Experimental Environment

The experiments in this thesis have been carried out on top of the Multi2Sim simula
tion framework. First, this section describes how the simulator is extended tel mod
the proposed techniques. Then, the rest of the simulation environmemtethddol-

ogy is presented, including a brief description of the executed benclsudes, and

the performance metrics extracted from the simulation reports.

2.5.1 Multi2Sim Extensions

Version 2.1 of the Multi2Sim framework has been used to carry out theiex@ets in

this thesis. The baseline simulator has been instrumented to implement the gropose
techniques on top of the superscalar, multithreaded, and multicore proossdels.

The following extensions have been applied in each case:

e Superscalar model. The implementation of the out-of-order retirement ar-
chitecture proposed in this thesis, referred to as Validation Buffer (V&8)ia
tecture, mainly involves an alternative management of the reorder baiffer,
an aggressive register renaming mechanism. First, the commit stage has been
modified to enforce a different set of retirement conditions for instrustion
Then, the physical register file and the renaming tables have been reskbsig
to implement the new renaming scheme. Finally, the simulator has been instru-
mented with an additional option to switch between the ROB and VB architec-
tures.

e Multithreaded model. The baseline simulator provides support for differ-
ent multithreading paradigms and sharing strategies for the major processor
structures. For the evaluation of out-of-order retirement in a multithreaded
processor with shared structures, these resources have beemargted with
specific allocation policies that manage the assignment of their entries to active
threads.

32 Chapter 2. The Multi2Sim Simulation Framework

Benchmark Type Arguments Benchmark Type Arguments
164.gzip Int | CPU [input.random 60 186.crafty Int | CPU || < crafty.in
168.wupwise | FP |CPUJ- 187.facerec | FP |MEMJ < ref.in
171.swim FP |IMEM] < swim.in 188.ammp § FP [MEM]<ammp.in
172.mgrid | FP | CPU | < mgrid.in 189.lucas FP [MEM] < lucas2.in
173.applu FP |MEM] < applu.in 191.fma3d | FP |CPU|-
net.in arch.in place.out dum.out -nodisp 197.parser | Int | CPU |2.1.dict -batch <ref.in
175.vpr Int [MEM]J -place_only -init_t 5 -exit_t 0.005 -alpha_t
0.9412 -inner_num 2 200.sixtrack | FP | CPU < inp.in
176.gcc Int | CPUQ166.i 252.con mt | cpu chair.control.cook chair.camera chair.surfaces

chair.cook.ppm ppm pixels_out.cook

253.perlbmk | Int | CPU |-1./ib diffmail.pl 2 550 15 24 23 100

177.mesa FP | CPU | -frames 1000 -meshfile mesa.in -ppmfile mesa.ppm
178.galgel FP |MEM] < galgel.in

254.gap Int | CPUJ-1./-q-m 192M < ref.in

-scanfile ¢756hel.in -trainfilel al0.img 255 vortex It | cPU [bendiant.raw

179.art FP |MEM] -trainfile2 hc.img -stride 2 -startx 110 -starty
200LsndiiGOLend 2 08objcetelil 256.bzip2 Int | CPU [input.source 58
181.mcf Int IMEMJ < inp.in 300.twolf Int |MEM] ref
183.equake | FP [MEM]<inp.in 301.apsi FP |CPU|-

Table 2.4: Classification and command-line arguments for the SPEC2008-benc
marks.

e Multicore model. For a configuration using multiple cores, the simulator has
been instrumented to support the release and sequential memory copgsistenc
models. The sequential consistency model is based on speculative ratireme
of loads [29]. This implementation uses a history buffer, where instructions
are inserted after leaving the reorder buffer. Additionally, L1 cache@matru-
mented to monitor memory blocks that are accessed by instructions located in
the history buffer.

2.5.2 Benchmarks and Methodology

The benchmark suites executed on top of Multi2Sim in the experimental evalsiatio
are SPEC2000 [30] and SPLASH2 [31]. A brief description of thesgams is
given next, including their combinations for multithreaded designs, and citieg th
command-line arguments for each benchmark.

e SPEC2000 This suite is formed of 26 single-threaded benchmarks, classified
as integer (Int) or floating-point (FP). Integer benchmarks are writte am
C++, and include compression, compilation, artificial intelligence algorithms,
or FPGA routing and placing, among others. Floating-point benchmaeks ar
written in C, Fortran77, or Fortran90, and deal with physics simulation, image
processing, numeric algorithms, etc. For each benchmark, three inpugeata
with different sizes are provided, namesst train, andref.

The SPEC2000 suite is used in this thesis to evaluate the baseline and gropose
superscalar and multithreaded architectures. In the case of a slpensodel,

2.5. Experimental Environment 33

Benchmark [Arguments

Iu -pSNTHREADS -n2048 -b16
fft -ml8 -pSNTHREADS -n65536 -14
radix -pSNTHREADS -r4096 -n262144 -m524288

cholesky |-pSNTHREADS < tk14.0

barnes SNTHREADS < input

fmm $NTHREADS < input

ocean -n258 -pSNTHREADS -ele-07 -r20000 -t28800

radiosity || -batch -room -pSNTHREADS

raytrace -pSNTHREADS balls4.env

waternsq SNTHREADS < input

watersp $SNTHREADS < input

Table 2.5: Command-line arguments for the SPLASH2 benchmarks.

one single benchmark is run at a time to obtain one performance resultashere
multithreaded models use a mix of at least two benchmarks, each allocated to
a hardware thread. To form these mixes, benchmarks are classifiél.aC
memory-intensive applications, depending on the amount of instruction level
parallelism (ILP) they exhibit. Then, they are combined to build mixes with
only CPU-intensive programs, only memory-intensive ones, or both kinds to
gether. The specific configuration of SPEC2000 benchmark mixes is detaile
in Section 4.2, where experiments with multithreaded architectures are shown.

As done in some previous works using this benchmark suite [6][9], mest ex
periments are run by initially performing a functional simulation of the initial
code, using here 500M x86 macroinstructions, and then running a desaled
ulation until the next 500M uops commit. The objective is to skip programs
initialization with fast simulation speed, which does not contribute to the com-
putation of the final statistics. The files for the input data are taken fromethe
set. For each benchmark, Table 2.4 lists the numerical computation kind (Int
of FP), the classification as per ILP (CPU or MEM), and the command-line
arguments used for its execution.

e SPLASH2 This suite consists of 11 parallel benchmarks, classified as kernels
or applications. All of them provide command-line arguments or configuration
files to specify the input data size. SPLASH2 benchmarks perform computa
tions, synchronizations, and communication, stressing processor nwees
ory hierarchy, and interconnection networks. Thus, they are usebdaeval-
uation of the baseline and proposed multicore architectures presented in this
thesis. Additionally, SPLASH2 benchmarks provide arguments to specify the
number of contexts created at runtime, which allows the evaluation of systems

34

Chapter 2. The Multi2Sim Simulation Framework

with different number of cores. Table 2.5 shows the arguments useadar e
benchmark.

The initialization code is not skipped in the SPLASH2 suite. Parallel programs
do not necessarily execute the same instructions for the same input parame-
ters and different hardware designs, because synchronizatiots poay be
reached at different times, causing threads to stop at different waitoms.lo
Thus, a fixed amount of assembler instruction has no direct correspoad

with the same amount of job. Since SPLASH2 benchmarks can flexibly tune
the problem size to provide reasonable simulation times, programs are run until
completion, including initialization and finalization code.

2.5.3 Performance Metrics

After carrying out a simulation, Multi2Sim dumps a report with simulation statistics.
In the experiments presented in this thesis, results of several simulatigisgvane

or more input parameters are usually filtered and represented graplsoadly to
show a specific performance trend. By default, Multi2Sim provides afstandard
performance metrics, such as the number of committed instructions, the IRE (co
mitted instructions per cycle), the branch prediction accuracy, cachathut etc.
Although the default statistics suffice for most exhaustive evaluationsjringdator
has been instrumented to provide the following additional performance migtrias
deeper comprehension of the modeled out-of-order retirement archigctu

e Used dispatch slots The number of used dispatch slots in a cycle, which

ranges from O up to the dispatch bandwidth, is the number of uops takan fro
the uop queue and placed into the ROB, among other structures. If the numbe
of dispatched uops does not reach the dispatch bandwidth, it meanglegther
the uop queue is empty, or that no additional uop could be placed into some
other full structure. The specific reasons for dispatch stalls areded@very
cycle, and the final average values are considered in our experinsentsaful
metric to analyze performance bottlenecks.

Used issue slotsThe number of issued uops, which ranges from O up to the
issue bandwidth, is stored every cycle to form a probability distribution. This
statistic is especially useful for the evaluation of multithreaded designsewher
an improvement of the multithreading paradigm is usually reflected in a higher
issue rate.

Resource occupancyThis metric gives the fraction of busy entries for a given
resource, either as an average value, or as a probability distributi@nsiifi
ulator is instrumented to measure the occupancy of the reorder buff@)(RO
instruction queue (IQ), load-store queue (LSQ), and register file. \RFH the

2.6. Summary 35

obtained statistics, it may be possible to identify which processor structure is
causing performance bottlenecks in a given scenario. For example, Esimu
tion showing a fraction of 0.96 occupied entries in the ROB is suggesting that
a slight increase of this structure will provide important performance gains

2.6 Summary

This chapter has presented the simulation environment used in the remditfusr o
thesis for evaluation purposes. First, its main features have been citedmpared

with other existing simulation tools. The modeled architecture for supersoalér;
threaded, and multicore processors has been detailed, including tloé bradiction
mechanism, register renaming scheme, and memory hierarchy configurBtiem,

the SPEC2000 and SPLASH2 benchmark suites have been briefly fedisanlud-

ing the command-line arguments for their execution, and the simulation methodol-
ogy. Finally, the main performance metrics have been cited and described.

Chapter 3

The Superscalar Validation Buffer
Architecture

The commit stage is typically the latest in the processor pipeline. At this stagm-a c
pleted, non-speculative instruction updates the architectural machingfistatethe
used resources, and exits the ROB. On the contrary, the Validatiorr Budtgitecture
implements a FIFO structure similar to the ROB, but instructions can leave it as soo
as they are known to be non-speculative, and even though they arempleted yet.
Once they complete, they update the machine state and free the usedessioeince
exiting the processor pipeline in an out-of-order fashion. This chapésepts the
Validation Buffer architecture for single-threaded superscalar gsurs.

37

38 Chapter 3. The Superscalar Validation Buffer Architecture

3.1 Proposed Architecture

The necessary conditions to allow an instruction to be committed out-of-aelf]a

1) the instruction is completed;) WAR hazards are solved (i.e., a write to a partic-
ular register cannot be permitted to commit before all prior reads of thaitected
register have completed)ii) previous branches are successfully predictefinone

of the previous instructions is going to raise an exception,@grttle instruction is
not involved in memory replay traps. The first condition is straightforwanady by
any proposal at the writeback stage. The last three conditions arketdrydthe Val-
idation Buffer (VB) structure, which replaces the ROB and contains thealictsons
whose conditions are not known yet. The second condition is fulfilled bg¢hised
register reclamation method (see Section 3.1.1).

The VB deals with the speculation-related conditiofis, (v andv) by decom-
posing code into fragments epochs The epoch boundaries are defined by instruc-
tions that may initiate speculative execution, referred teepsch initiators(e.g.,
branches or potential exception raiser instructions). Only those insingotibose
previous epoch initiators have completed and confirmed their predictionl@aned
to modify the machine state. We refer to these instructionsabdated instructions

Instructions reserve an entry in the VB when they are dispatched, asdttimy
enter this structure in program order. Epoch initiator instructions are mhadkesuch
in the VB. When an epoch initiator detects a mispeculation, all the following instruc
tions must be canceled. Therefore, an epoch initiator reaching the B rhaat
wait for its execution to be completed before leaving the VB. After completion, it
is allowed to update the machine state and release its entry at the head of the VB.
Instructions other than epoch initiators reaching the VB head can leagaititess
of their execution state. That is, they can be either dispatched, issusainpteted.
However, only those validated (i.e., not canceled) instructions update tbleimea
state. On the other hand, canceled instructions are drained and fresstheces
they occupy (see Section 3.1.2).

Like in a ROB-based approach, a completed instruction that leaves the \éB is n
consuming any other execution resource in the pipeline. In contrast, amphete
but validated instruction leaves the VB, but remains in the processor pipeitiiét
completes. Since execution time is variable among instructions, the VB architectur
is said to retire instructions from the processor pipeline out of progratarorin
other words, the proposal in this thesis can be classified as an outlafretirement
architecture.

The VB architecture allows a flexible set of epoch initiators to be established.
At least, those epoch initiators are supported corresponding to the geeglation-
related aforementioned conditionsi(iv, andv). Therefore, branches and memory
reference instructions (specifically its address computation) necessetréyg epoch
initiators. This means that branch speculation, memory replay traps (s@éenSec

3.1. Proposed Architecture 39

a) C source code

for (i = 0; 1 < 100000; i++)
{
result[i] = v1[i] * v2[i];

}

b) Target assembler code

$L.11: 1.4 $£0, 0($3)
1.4 $£2, 0($4)
mul.d $£0, $£f0, $f2
addu $6, $6, 1
slt $2, $7, $6
addu $4, $4, 8
addu $3, $3, 8
s.d $£0, 0($5)
addu $5, $5, 8
beq $2, $0, $L11

Figure 3.1: Vector product example.

3.1.3) and exceptions related with address calculation (e.g., page faultgabd in
addresses) are supported by design.

It is possible to include more instructions in the set of epoch initiators. For in-
stance, floating-point instructions should belong to this set in order tmsupecise
floating-point arithmetic exceptions. However, as instructions are allowésht@
the VB only after the preceding epoch initiators validate their epoch, a langeiat
of epoch initiators might constrain the VB-based processor performafcsolve
this, a user modifiable flag can be introduced in the ISA to dynamically switch the
support for precise exceptions. This flag could be handled by the camipilbeing
disabled in those program sections where exceptions are known notaisbd, or
in which their precise handling is not required.

Hardware interrupts can be handled like in a ROB-based processoouivitir-
ther modifications. In particular, the occurrence of such an evenidicancel all
instructions located in the VB. The recovery mechanism (see Section 3ill.@en
automatically recover valid register mappings, squash canceled instrutbonthe
pipeline, and resume execution at the interrupt service routine.

Figure 3.1 presents a typical scenario where the benefits of out-ef-cetire-
ment are clearly illustrated. A portion of source code (Figure 3.1a) anaite-c
sponding sequence of MIPS assembler instructions (Figure 3.1b) ackdstepos-
sible implementation of the product of vecters andv_2. When this code is run in
a ROB-based microprocessor, the first load missing in the data cachdluwog®B
head, and later stalls instruction dispatching when the ROB eventually fills bpnW
this occurs, the ROB contains plenty of memory instructions, namely two loabls an
one store per iteration, which are a potential source of additional cackeswggra-

40 Chapter 3. The Superscalar Validation Buffer Architecture

Validation Buffer
1T I —>{RRAT
Branch FRAT «13
peed. | L4y L. - £§%
* * Physical § 5 §
Register reg. index == ©
Instr. Decoder/ File LI-EEELI
Cache Renamer
I Fetch ?ueue ’ I =
i Data]
H Register]:|:|:
1 Cache Status |'|°'I°
L S »| Table

Figure 3.2: VB architecture block diagram.

vating the problem. A modern microprocessor running this code (see S&8c3ipis

stalled during about 77% of the execution cycles. In contrast, this pageis nearly
negligible (about 0.02%) when the program runs in a VB-based proGegsere the
pressure is moved into the instruction queue and load-store queue. Asetzored

conditions are required to release these resources, IPC rises frono.D5.

3.1.1 Register Reclamation

Typically, modern microprocessors free a physical register when threigtion that
renames the corresponding logical register commits [1]. Then, the physiister
index is placed in the list that contains the free physical registers availabtefv
producers.

Waiting until the commit stage to free a physical register is easy to implement,
but conforms to a conservative approach; a sufficient condition isathednsumers
have read the corresponding value. Therefore, this method doefinigtndly use
registers, as they might be mapped for longer than their useful lifetime.ditiad
this method requires to keep track of the oldest instruction in the pipeline. As this
instruction may have already left the VB, this method is unsuitable for ouogaip

For these reasons, an alternative register reclamation strategy haddsagred,
based on the counter method [32][1], and targeted to the VB microarchigedibe
hardware components used in this scheme, as shown in Figure 3.2, are:

e Front Register Alias Table (FRAT). This table maintains the current mapping
for each logical register and is accessed at the renaming stage. Ibisdholea
logical register to obtain the corresponding mapped physical registéifiden
Whenever a new physical register is mapped to a destination logical register
the FRAT is updated.

e Retirement Register Alias Table (RRAT) The RRAT is updated whenever
an instruction exits the VB. This table contains a precise state of the register
mappings, as only those validated instructions leaving the VB are allowed to
update it.

3.1. Proposed Architecture 41

e Register Status Table (RST)The RST is indexed by a physical register iden-
tifier. It contains three fieldgpending unmappedindcompleted Thepending
field tracks the number of decoded instructions that consume the camcespo
ing physical register, but have not read it yet. This value is incrementet w
consumers enter the decode stage, and decremented when they atgdssue
the execution units. The second and third fields are composed each ef a sin
gle bit. Theunmappedit is set when the associated logical register has been
definitivelyremapped to a new physical register, that is, when the instruction
that remapped the logical register has left the VB as validated. Finally, the
completedbit indicates that the instruction producing its value has completed
execution, dumping its result into the corresponding physical register.

With this representation, a free physical regigtean be easily identified when
the corresponding entry in the RST contains the triplel,1}. A O in pending
guarantees that no instruction within the pipeline is going to read the contents
of p. Next, a 1 inunmappedmplies that no new instruction will enter the
pipeline (i.e., theenamestage) and read the contentgpbecause has been
unmapped by a valid instruction. Finally, a 1 in tbempletedfield denotes
that no instruction within the pipeline is going to write pnagain. These
conditions ensure that a specific physical register can be safely raakdbon

a subsequent renaming. On the other hand, a triflé,1} denotes a busy
register, with no pending readers, not unmapped by a valid instructiah, an
appearing as the result of a completed (and valid) operation.

Table 3.1 shows different situations which illustrate the dynamic operation of
the proposed register reclamation strategy in a non-speculative mode|l @sthe
updating mechanism of the RST, FRAT and RRAT.

Event Actions

Instruction I, with physical register (p.r.) p as

source operand, enters the rename stage. RST(p].pending + +

Find a free p.r., say p.
I enters the rename stage and reclaims a p.r. to FRATI[I] = p.

map an output logical register [. RST[p].completed = 0
RST[p].unmapped = 0

I'is issued and reads p.r. p. RST[p].pending — —

I finishes execution, writing the result over p.r. p. | RST[p].completed = 1

I exists the VB as validated, [is the logical
destination register, p.r. p is the current mapping
of [, and p.r. p' is the previous mapping of .

RST[p'].unmapped =1
RRAT[l]=p

Table 3.1: Renaming actions for different pipeline events.

42 Chapter 3. The Superscalar Validation Buffer Architecture

3.1.2 Recovery Mechanism

The recovery mechanism is triggered after a mispeculated branch finisleecu-
tion, resolving its target address and branch direction. Among other acpiorces-
sor recovery involves restoring a previous valid state of both the FRAT@RST
structures.

Regarding the recovery of the mappings in the FRAT, different methaderar
ployed in current microprocessors. The method presented in this wegkhath
FRAT and RRAT, similarly to the Pentium 4 processor [3]. The RRAT contains
delayed copy of aalidatedFRAT. That is, it matches the FRAT at the time the exit-
ing (as valid) instruction was renamed. A simple method to implement the recovery
mechanism (restoring the mapping to a precise state) is waiting until the offendin
instruction reaches the VB head, and then copying the RRAT contents irfeRAE
Alternative implementations can be found in [7].

On the other hand, the recovery mechanism must restore the RST by gndoin
the modifications performed by mispeculated instructions in any of its three fields.
Concerning thainmappedield, two possible techniques are proposed to restore its
values. The first technique squashes from the VB those entries pongiag to
instructions younger than the offending one after the latter reaches thieed@.

At that point, the RRAT contains the physical register identifiers used toreethe
correct mapping. The remaining physical registers must be freed. Terbdisall
unmappeckntries are initially setto 1, and the RRAT is scanned for physical registers
whoseunmappedntry must be cleared in the RST.

The second technique relies on the following observation: only thosdgathys
registers allocated by instructions younger than the offending one musedx:
Canceled instructions can leave the VB normally without being squashetheyu
are processed differently by the validation logic. Specifically, these rt&ins must
set to 1 theunmappedentry of their current mapping. Unlike validated instructions,
mispeculated ones update tihemappedentry corresponding to the currently mapped
destination physical register, instead of accessing the previous maggidgne in
non-speculative mode. While canceled instructions are being drainednstuc-
tions can enter the pipeline, provided that the FRAT has been alreadyeredo
Therefore, the VB draining can be overlapped with subsequent resegsor opera-
tions.

Thependingdfield cannot be just reset, because there might already be valid pend-
ing readers in the issue queue. Thus, eaehdingentry must be decremented as
many times as the number of canceled pending readers for the corregpphgsi-
cal register. To this end, the issue logic must allow the detection of thosedtisirs!
younger than the offending instruction, that is, the canceled pendingn&aThis
can be implemented by using a bit mask in the issue queue to identify which instruc-
tions are younger than a given branch [2]. The canceled instructiosshawrained

3.1. Proposed Architecture 43

from the issue queue to correctly handle (i.e. decrement) pleeidingentries. This
logic can be also reused to handle twmpletedfield, by enabling a canceled in-
struction to set the entry of its destination physical register. Alternativeiy,atso
possible to simply let the canceled instructions follow their normal execution path
to correctly handle th@endingand completedfields, which avoids the previously
described recovery logic.

3.1.3 Uniprocessor Memory Model

To correctly follow the uniprocessor memory model, it must be ensured tloaida
instruction read the data produced by the youngest previous store nggitishimem-
ory address. A key component to improve performance in this model is ttestoeae
queue (LSQ).

In the VB microarchitecture, as done in some current microprocessonsome
reference instructions are internally split by the decoder into two uopsnémsory
address calculation, which is considered an epoch initiator, and the mepergtion
itself. When dispatched, the former reserves one IQ entry, the lattevessan entry
in the LSQ, and both occupy one entry each in the VB. A load can be issubd to
data cache as soon as its effective address is ready. On the othea ktore is issued
to the data cache and retired from the VB when both the effective adaindssource
operand are ready, and it is the last write access to memory in the pipeliaéatier
condition is enforced by issuing stores only when they are placed at #tedighe
VB. Finally, any memory instruction frees its corresponding LSQ entry atiitine it
is issued to the data cache.

Load bypassings an aggressive, widely used speculation technique applied on
the LSQ to improve processor performance. This technique permits eaduten
of loads by making them advance previous stores, even though thesaddiany of
the latter is not known yet. As speculation may fail, a mechanism must be pdovide
to detect and recover from a load mispeculation. As proposed in [38¢usatively
issued loads can be placed in a special buffer cditéshed load buffe(FLB). The
entry of this buffer is released when the load commits. When a store commits, the
FLB is looked up for aliasing loads (note that all loads in the buffer arageuthan
the store). If an address match is detected, the load in the FLB and albsgnse
instructions must be canceled and re-executed.

An FLB is straightforwardly adapted into the VB architecture with no additional
complexity. In this case, a load instruction releases its entry in the FLB when it
leaves the VB. When a store is issued and retired from the VB, the addrekall
previous memory instructions and its own address have been resolves, iTban
already search the FLB for aliasing loads that were speculatively isstiedn a
ROB-based implementation, all loads in the buffer are younger than the Sara

44 Chapter 3. The Superscalar Validation Buffer Architecture

hit, the recovery mechanism is triggered as soon as the mispeculated loathexits
VB. Notice that this implementation allows mispeculation to be early detected.

Load forwardingis another optimization for the LSQ. This technique is applied
whenever a load address matches a previous store address, ansl ivawaresolved
nor matching store address between them. In this case, the load data iscfszime
the previous store, and the cache access is avoided. This techniquedsralsatible
with the VB architecture, and the hardware devoted to it is no different &dROB-
based processor.

3.1.4 Potential Benefits in Performance

The VB architecture improves the management of instructions in the ROB archite
ture by means of an early retirement of instructions from the VB and an esdelgse

of unused physical registers. These features provide two main soofg®tential
benefits in performance, which can be described as follows:

e On one hand, an instruction placed at the VB head is only retained if it is an
unresolved branch, an uncompleted memory address computation, or an in-
struction susceptible of raising an exception. The rest of instructionleaaa
the VB regardless of their execution state. Thus, the number of entries in the
VB does not constrain the number of in-flight instructions in the processor
pipeline. The potential benefit provided by the relaxation of retiremerdieon
tions is referred to hereafter agtended instruction window

e On the other hand, an instruction leaving the VB tries to release the previous
mapping of its destination logical register. If the associated physical registe
has moreover already been written, and there is no pending consumer in the
pipeline, the register is indeed freed, even if older incomplete instructiens ar
still in flight. The potential benefit that the register renaming technique pro-
vides will be referred to asnhanced register usage

3.2 Working Example

Figure 3.3 illustrates a VB-based processor pipeline with four in-flightunttins,
each in a different state. The table on the left (Figure 3.3a) lists thesedtistrs,
labeled fromi; to i4, with their source grc), destination dsf), and previous desti-
nation physical registemp(ev) —prev refers to the physical register mapped to the
logical destination of an instruction before it was renamed. Though mdsidtisns
consume two source operands, they are assumed to have only one $akéhef
simplicity. Instructions, i, andi4 are arithmetic operations that generate a result,
while instructionis is a branch. This means that instructignmust be completed
before the speculative state of the following instruction¥ié resolved.

3.2. Working Example 45

. > D>
RST & o & &
& & &S
Y N <
1 0 @ 1
Instr ‘Src Dst Prev{ Status 2 Y @ .
iy 4 5 1 completed, validated VB _ f . 1 3 0 @ 8
ip 5 6 2 issued, not completed unct!;ma 4 @ 1 1
iy | 6 — —| notissued, validated _ > units 5 @ @ @
iy | 6 7 3 |notissued, not validated Q ... ". 612 O ©
branch 4 Y @ @
a) Portion of code b) Pipeline state c) RST state

Figure 3.3: Working example for superscalar processors.

Figure 3.3b shows the VB, the 1Q, and the functional units, while Figureli3i3c
the contents of the RST in its current state. The circled identifiers comd¢pahose
values affected by at least one of the four instructions. The followirgpidations
can be made:

e Instructioni; has completed execution and left the pipeline as validated. This
makes both RST[5¢ompletecand RST[1Junmappede set, causing physical
register 1 to become free.

e Instructioni, has exited the VB as validated, but it remains in execution in
the corresponding functional unit. Thus, RST¢®mpleteds still clear, but
RST[2]unmappeds already set, causing physical register 2 (the previous des-
tination mapping) to be freed, even before the instruction completes. Likewise
RST[5]pendingis set to 0, since no instruction in the 1Q is going to read its
contents.

e Instructioniz has also exited the VB as validated. However, it remains in the
IQ because its source operand, which is produced kg not ready yet. Since
bothis andiy will read register 6 in the future and they are located in the 1Q,
RST[6]pendingis equals to 2.

e Finally, instructioni4 has an unknown speculative state, sifges an incom-
plete branch. Thus, it cannot leave the VB, and the RSuifiBhappedield
remains clear. Sincg has not been issued yet, it is obviously not completed,
and RST[7]completeds clear.

Based on this pipeline state, let us consider the two possible actions dependin
on the resolution of branch. A correct prediction of the branch makes instruction
14 hon-speculative, and the RST management should continue normallynthast
a branch misprediction causes the following instructions to be squashkthere-
naming actions performed by should be undone. In the example, the final state after

46 Chapter 3. The Superscalar Validation Buffer Architecture

all instruction have been issued, completed, and (in)validated would belkhifig
depending on the prediction correctness:

e Correct prediction All physical registers would be free (i.e., RSJ'f {0, 1,
1}), except register 5, 6, and 7 (i.e., R$JIE {0, 0, 1}). The action performed
by i, after leaving the VB is to set the RST[Bhmappedit.

e Misprediction of branchis. All physical register would be free, except reg-
isters 3, 5, and 6. The action carried out Qayafter leaving the VB is to
undo its changes by setting the RST{ifimappedbit. Wheni, completes,
RST[7].completeds set, and physical register 7 becomes free.

3.3 Performance Evaluation

For comparison purposes, two ROB-based proposals without chetikgohave
been modeled, one retiring instructions in program order (hereafterQt@epko-
cessor) and the other implementing the out-of-order retirement techniqpesad
in [9] (from now on, the Scan processor). To perform a fair comparithe recovery
mechanism for the ROB-based architectures is triggered at the writetzayk (see
Section 1.1), to make it independent from the time instructions are retiredidin a
tion, the recovery penalty has been assumed to take a constant valueyafd®for
all simulated microarchitectures, regardless of the ROB/VB size. Notice tisatth
a conservative assumption for the VB, since it will usually have a smaller euotb
entries, which helps decrease the real recovery penalty [7].

Table 3.2 summarizes the architectural parameters of the baseline modeled ma-
chine. Experiments have been performed by running the SPEC200@rbaricsuite,
following the methodology described in Section 2.5.2. The experimental study p
sues two main goals: first, it quantifies the potential of the proposed artcinéec
by modeling an unlimited number of entries for some structures, and makirayperf
mance be limited only by the size of other specific storage elements; secostlidire
spans performance and complexity issues with realistic structure sizes\biasy a
real commercial processor.

3.3.1 Quantifying the Performance Potential

The first step in our performance study is the evaluation of the maximum tsctiett
can be achieved by out-of-order retirement of instructions. For this ainsjzk of the
major processor structures other than the ROB/VB are assumed unlourtuese
structures include the instruction queue (IQ), load-store queue (L&8W@)register
file (RF). Figure 3.4 shows the average IPC for SpecFP and SpehBbt warying
the ROB/VB size.

3.3. Performance Evaluation 47

| Processor Core |

Machine width (decode
dispatch, issue, commit/ 4 uops/cycle
validate)
Storage resources 40-entry 1Q, 20-entry LSQ, 64-entry ROB, 64-entry RF
Functional units and 4 Int. add (2/1), 1 Int. mult. (5/2), 1 Int. div (20/10)

latency (totallissue) 2 FP add (5/2), 1 FP mult. (10/5), 1 FP. div. (30/15)
Hybrid (2-level + bimodal)

2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.

Choice pred.: 1K entries.

| Memory Hierarchy |

Branch predictor type

L1 cache 32KB, 4-way, 64-byte block, 2-cycle latency.
L2 cache 512KB, 8-way, 64-byte block, 20-cycle latency.
Main memory 200-cycle access time.

Table 3.2: Baseline superscalar processor parameters.

25 1
] N iy~
ol O
& &
[R S5~ < MR EELE LR m 10C 0.4 -
4 Scan
0.5 BT A 0.2 Fmmrememm e
0 1 1 1 1 1 1 ‘ 0 1 1 1 1 1 1
32 64 128 256 512 1024 32 64 128 256 512 1024
ROB/VB size ROB/VB size
a) SpecFP benchmarks b) SpecInt benchmarks

Figure 3.4: Average potential performance for SpecFP and Spestohimarks with
unbounded 1Q, LSQ, and RF.

As observed, performance improvements provided by the VB microartimiéec
are much higher for floating-point benchmarks. The reason is that tBesiR® is not
the main performance bottleneck in integer applications, partially due to a igher
centage of mispredicted branches—this result complies with the observataues
in [6] and [9]. Thus, performance analysis will focus on SpecFPditre Concern-
ing the latter, the highest IPC difference appears for the smallest VB/R@Ri.,
32 entries), and this difference gets smaller as the VB/ROB size increlassgite
of this, a large 1024-entry ROB is required for the IOC and Scan psocg$o match
the performance achieved by the VB microarchitecture.

Figure 3.5 presents the IPC achieved by each individual benchmaik 3@r

entry ROB/VB. Loads and floating-point instructions are the main sourc&®
differences, since instructions taking long time to complete are the ones mabgt like

48 Chapter 3. The Superscalar Validation Buffer Architecture

| LAl

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi Average
dioc-32 O scan-32 WVB-32

IPC

Figure 3.5: Potential performance for SpecFP benchmarks with a 32ROB/VB
and unbounded 1Q, LSQ, and RF.

to be stalling the ROB head. To provide more insight into this fact, the specific
impact on performance of long-latency instructions has been explorigdreF3.6
shows the distribution of cycles where the decode stage was stalled duectodd la
space in the ROB. Stalled cycles are classified according to the type of thectitn

that was blocking the ROB (memory, floating-point, and others). The catégmme
represents those cycles where no stalls occurred (i.e., the fetchedttiostsuvere
effectively decoded). Finally, decode stalls due to an absence ofdtietra to be
consumed from the fetch queue (IFQ) are also quantified. Notice thatith@fall
categories represents the total execution time of each benchmark.

As observed, memory instructions are the main cause for stalls. The second
though much more infrequent, cause of ROB blocking are floating-poitntict®ns.
Notice that the VB microarchitecture effectively deals with both causes in ofost
the benchmarks (e.gart). In contrast, the VB provides minor benefits for those
benchmarks where dispatching is stalled neither by memory nor by floating-po
instructions (e.g.aps).

O None

B Fetch queue

73 ROB blocked by memory uop
& ROB blocked by FP uop

B3 ROB blocked by other uop

Millions of cycles
@
8
3

. 7
. .
- /
ledsBBR4A

ioC vB |IOC VB
marid applu

EERE N\

I||||
m EEmEEKE

ioc vB \OC VB |IOC VB |[IOC VB |IOC VB |IOC VB
equake | facerec | ammp lucas fma3d | sixtrack

- 1
loc VB |l0C VB
galgel art

oC VB
wupwise

Ioc VB
swim

oC VB
mesa

oC VB
apsi

oc vB
Average

Figure 3.6: Execution time categorized at the dispatch stage in a machine with un-
bounded 1Q, LSQ, and RF.

3.3. Performance Evaluation 49

3.3.2 Exploring the Behavior in a Modern Microprocessor

IPC

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi Average
Oioc-64 @i0C-128 M scan-64 M Scan-128 FVvB-8 NvB-16 BVvB-32 HvB-64 [VB-128

Figure 3.7: Performance for SpecFP in a modern microprocessor.

This section explores the behavior of the VB architecture with the major micro-
processor structures closely resembling those implemented in the Intel Pehtium
microprocessor, as specified in Table 3.2. The size of the VB has beged&om
8 to 128 entries, and IPC values are shown in Figure 3.7 for SpecFRroariks.
Results show that the VB microarchitecture is much more efficient, achieving with
only 16 entries higher IPC than its counterparts, on average. On thehatheyVBs
larger than 32 entries provide minor benefits on performance.

Although the VB microarchitecture does not stand out to the same extent for
integer as for floating-point benchmarks, simulations for Specint Haweebaen per-
formed, showing that a 32-entry VB performs as well as a 128-entry.R®@Bs, it
can be concluded that performance of integer benchmarks is not sigrlifiaffected
when reducing the VB size.

To explore the complexity requirements of the four major microprocessa-stru
tures in the VB microarchitecture, their occupancy in number of entries &éas b
measured. As shown in Figure 3.8, the VB architecture tends to reduceéanay,
regardless of the VB/ROB size, and with the exception of the instructionequin
increase in the latter’s occupancy is explained by the reduction in dispattshdiie
to a lack of space in the ROB, which shifts the pressure of the instructioniritow
the instruction queue (see Section 3.4.1).

The VB occupancy is about one third of the ROB occupancy on averége
highest IPC benefits appear in those applications whose VB requiremersisaller
than the 1Q demand (e.gswimor mgrid, Figures 3.8a and 3.8b). In these cases,
the VB microarchitecture effectively increases ILP by enlarging the iostn win-
dow size, and allowing more instructions to be concurrently executed.ltRadso
show the effectiveness of the proposed register reclamation mechaiggme(3.8c¢),
which leads to a lower number of required registers. Finally, the LSQ ecmypis
also lower in the VB microarchitecture (Figure 3.8d). The reason is thatS{ L
entry cannot be released in ROB-based schemes until all previouscimmtsihave

Chapter 3. The Superscalar Validation Buffer Architecture

o 9 9 9 o o o
S g ® © ¥ &

Sa1U3 JO JaquINN

50

equake facerec ammp lucas fma3d sixtrack apsi Average
SvB-64 BVB-128

Oioc-128 @ scan-128 MVB-8 HVB-16 @A VB-32

mgrid applu mesa galgel art

swim

wupwise

a) ROB and VB.

V2222222222
INNNNNNN

SaLU3 JO JaquINN

fma3d sixtrack apsi Average

lucas

equake facerec ammp
Oioc-128 Mscan-128 MvB-8 BvB-16 KvB-32 NvB-64 BIVB-128

rt

swim mgrid applu mesa galgel a

wupwise

b) Instruction queue.

VL2l
AR

2 RIS I
V2070022 2022022
RIS

SaLUa JO JIaquInN

fma3d sixtrack apsi Average

lucas

mp

m
VB-32 NvB-64 BIVB-128

t equake facerec al

i

swim morid applu mesa galgel a

wupwise

Oioc-128 Mscan-128 WMVB-8 BVB-16

c) Register file.

REX

SaLUa JO JaquINN

V222
[NNNNNN

fma3d sixtrack apsi Average

swim mgrid applu mesa galgel art equake facerec ammp lucas
O10c-128 M Scan-128 WVB-8 HVB-16 £VB-32 NVB-64 EVB-128

wupwise

d) Load-store queue.

Resources occupancy.

Figure 3.8

3.3. Performance Evaluation 51

SN I| “ EN

wupwise swim mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtack apsi Average

Oioc-128 Escan-128 WVB-8 BVB-16 HVB-32 NVB-64 KVB-128

Figure 3.9: Performance with an unbounded RF.

10G 1,10, 100

10C 1,10, 200 ~

a) Speedup over b) Speedup over IOC witfi1, 10, 10¢
10C. memory configuration.

Figure 3.10: Impact on performance of memory latencies.

committed. In contrast, the VB microarchitecture can free an LSQ entry asaso0
all previous instructions have been validated, which is a weaker condition.

The proposed architecture benefits both from out-of-order retireamehaggres-
sive register reclamation. To distinguish the isolated contribution of outdsro
retirement, a set of simulations has been run by modeling a processor with- an u
bounded register file. As observed in Figure 3.9, the register renaminigamiem
itself slightly affects the overall performance of the VB microarchitectunemsst
benefits come from the fact that instructions are retired out of ordeoritrast, IOC
and Scan improve their performance with an unbounded amount of phregicsers,
yet these configurations are outperformed by a 16-entry VB.

3.3.3 Impact on Performance of Memory Latencies

To analyze the impact on performance of the access time of the memory hierarc
components, this section explores different realistic access times for L11(e@d

3 cycles), L2 (10 and 18 cycles) and main memory (100, 200, and 408s3yd he
processor core parameters remain as specified in Table 3.2. Each gure %10a
shows the speedup achieved by the VB over the 10C architecture wittlyekae
same memory configuration. As observed, the main impact on performansco

52 Chapter 3. The Superscalar Validation Buffer Architecture

?<

7

IPC

7

LTI
AANANRNNNANNNNNNNAN
LI 7777 777
|
SANANNNANNANNNNNNANNANNAN

.
2
.
.
.
¢
.
¢
.
.
.
¢
/

| ASNANNANNANNNNNNNNNNNNNNNN

r

LT
NNANNANNNAN
\zzzzz777A

e I I

equake facerec ammp lucas fma3

EN 7
wupwise swim mgrid applu mesa galgel

Oioc-128 @ scan-128 MVB-32 BVB-64 FAVB-128 N VB-128 (no exc.)

SN

sixtrack apsi Average

Figure 3.11: Performance with precise floating-point exceptions stippor

from the main memory latency. When the latter increases, the wider instructien win
dow provided by the VB architecture makes the speedup grow.

Figure 3.10b shows a cross-comparison version of the previous resthis
figure plots relative speedups over the IOC processor with the fastestipeonfig-
uration (1, 10, 100). For the same main memory latency, the VB achievegdugpe
of about 27%. When comparing the VB-based system with a 200-cycle rgdazor
tency against the I0C processor with the fastest main memory, perfornsssicavn
to drop by about 8%, while an I0C processor with the same memory latencysmake
it drop by about 43%.

3.3.4 Supporting Precise Floating-Point Exceptions

The VB architecture can support precise floating-point exceptions tiyadimg
within the set of epoch initiators those instructions susceptible of raising them- H
ever, the inclusion of all floating-point instructions damages performasamany of
them take tens of cycles to complete. In this section, an epoch initiated by adloatin
point operation is assumed to be resolved when the instruction completese thatic
this is a conservative approach, since some floating-point exceptinreczarly de-
tected by comparing the operator exponents (e.g., overflow) or chechm@f the
operands (e.qg., division by zero).

Figure 3.11 shows the impact on performance of the precise floating-@aint
ceptions support, compared with VB architecture with imprecise exceptigsxA
pected, the VB architecture performance is damaged, even thoughrarg2/B still
behaves similarly to the IOC processor with a 128-entry ROB. Also, a 64-¥iB
achieves performance close to the Scan and I0C models with a ROB twicges lar

Although precise floating-point exceptions are encouraged by the -IEEBE
floating-point standard, the performance penalty is considerable in mamganic
chitectures. As a matter of fact, most processors enable the deactivitioatimg-
point exceptions by software. In some of them (e.g., Alpha 21164), thesptions
are even imprecise by default [34], and the help of the compiler is reqtoreld-

3.4. Hardware Complexity 53

tect which instruction raised an exception [35]. This behavior is desifablthe
proposed architecture to sustain the benefits provided by out-of-@til@ment.

3.4 Hardware Complexity

Superscalar processors exploit instruction level parallelism by keé&piggchains of
instructions in flight. Usually, this requires an increase of complexity in somermajo
hardware structures, which can in turn adversely impact the clock cydith this
tradeoff in mind, this section shows how hardware complexity, in terms oftateic
sizes and pipeline width, varies for a given performance.

3.4.1 Size of the Major Processor Components

The microprocessor design involves correctly dimensioning hardwaretstes. If
one component is too small, it becomes a bottleneck that incurs performegice d
dation. In contrast, an unnecessarily large component incurs powearaa waste.
The goal of this section is to identify the least complex configuration to regalea
performance level. To this end, a wide range of sizes for the major mocssuc-
tures has been analyzed: 64, 128, and 256 entries for the regist&H)lel6, 32, 64,
128, and 256 entries for the instruction queue (1Q); 16, 32, 64, 1’8286 entries
for the load-store queue (LSQ); and 16, 32, 64, 128, and 256 efdritee ROB/VB.
The rest of the parameters remain as specified in Table 3.2.

The combination of all tested structure sizes provides an amouiit af3 =
375 configurations for each modeled architecture, which multiplied by the number
of executed benchmarks represents an important number of simulationsas&o
this analysis, results have been first ordered by increasing perfoen@hen, those
configurations providing very similar performance have been filteredispaciing
those with higher complexity.

Figure 3.12 shows the filtered results for both the in-order and the ourteef-
retirement processor. In general, the RF presents itself as the maimnpanfoe
bottleneck in both architectures. The second bottleneck differs forezeseh though.

In the 10C processor, it is imposed by the ROB, while in the VB architecture it is
the 1Q. A complexity comparison is performed by selecting four performaaveds,
labeled from A to D.

Based on the lowest performance level (label D), it can be obseraethin [OC
processor requires a minimum complexity of a 128-entry RF, a 128-entf, RO
64-entry 1Q, and a 64-entry LSQ, while the VB-based processohesagimilar per-
formance with half the size of the IQ, and both a VB and an LSQ four times smaller
Regarding the highest labeled performance level (label A), the IO€pBDI requires
a complexity of at least 256 RF entries, a 256-entry ROB, a 128-entrgria 128-
entry LSQ, while the VB-based processor reaches similar performaiticéaif the

54 Chapter 3. The Superscalar Validation Buffer Architecture

1.60

b) VB microarchitecture.

Figure 3.12: Performance for different RF, 1Q, ROB/VB, and LSQsize

size of the 1Q, and a VB four times smaller. Performance levels B and Cseqtre
other intermediate IPC values in both architectures. For any given peafme level,

it is possible to find a hardware configuration in the VB architecture with mussh le
complexity than that required for the IOC processor.

3.4.2 Impact of the Pipeline Width

In this section, several values for the pipeline width (i.e., fetch, decoslee ind
commit/validation bandwidth) are explored on top of the I0C and VB-based pro
cessor models with the baseline core parameters. A reduction of the pipdite w
has important implications in complexity, which is usually more aggressive than jus
resizing a hardware structure. For example, the hardware costeaxchyrthe de-
pendence check logic in the instruction queue depends over-linearlyeoisshe

3.5. Summary 55

12
1

0.8

IPC

0.6

0.4
0.2
0
ROB/VB| 64 128 8 16 32| 64 128 8 16 32 64 128 8 16 32

Architecture 10C VB 10C VB 10C VB
F/D/I width 1 2 4

Figure 3.13: Performance for different pipeline widths.

bandwidth. Also, the number of ports in the register file is directly affectethby
renaming logic, among others. More details on complexity issues can be fiound
[5].

Figure 3.13 represents the performance achieved by pipeline widthiagdrngm
1 to 4 instructions per cycle for the compared architectures. A remarkeduét is
the performance equivalence of a 4-way IOC design with a 128-entify &@l a
2-way VB-based design with an 8-entry VB. Also, a VB-based prawessth a
pipeline width of 1 instruction per cycle reaches performance close to a mach
complex 10C processor with a 2-way pipeline and a 64-entry ROB. In sugymar
experimental results evidence that the VB microarchitecture can not otggrborm
existing in-order and out-of-order retirement architectures, but &goires much
lower hardware complexity.

3.5 Summary

In this chapter, the VB microarchitecture has been proposed for sisterproces-
sors. This architecture retires instructions out of order, while providingport for
speculation and precise exceptions. Moreover, checkpoints areeaded due to
the non-speculative nature of the out-of-order retirement proposglerformance
evaluation study has been presented, where the VB architecture masdrepared
against a typical ROB-based processor and a previously propased-order retire-
ment approach.

From this study, two significant results are highlightéda 32-entry VB achieves
performance similar to a 256-entry ROB, aii)l other major processor structures,
or even the pipeline width, can be reduced, simplifying their hardwarevaiobs
sustaining performance. In summary, a VB-based superscalar poodess been
shown to behave as a complexity-effective microarchitecture, since lhiearewed
as a design aimed either at improving performance or at reducing complexity.

Chapter 4

The Multithreaded Validation
Buffer Architecture

Multithreaded processors in their different organizations (simultaneoasse grain
and fine grain) have been shown as effective architectures to rdtetEsue waste.
On the other hand, out-of-order retirement of instructions helps uncbog@B when

a long-latency instruction reaches its head, which further contributes riegsise the
utilization of the available issue bandwidth. In this chapter, a performartean-
plexity evaluation of a multithreaded, out-of-order retirement architecturarised
out, where different multithreading models and instruction fetch policies rae a
lyzed.

57

58 Chapter 4. The Multithreaded Validation Buffer Architecture

4.1 Out-of-Order Retirement Multithreaded Architecture

As any multithreaded processor, the multithreaded Validation Buffer (V&)itec-
ture provides for the operating system the illusion of having multiple logicalgs-o

sors working in parallel. The key idea behind multithreading is sharing a common

functional unit pool to increase its utilization by feeding it with independestrire-
tions from different threads. The main design issue when extendingla-s¢hrgaded
processor to support multithreading is deciding whether hardware camfsother
than functional units should be private or shared among threads [B].aspect will
be tackled in the following sections, ending with a discussion about shaéngBh
structure.

4.1.1 Execution of Multiple Contexts

A multithreaded processor contains hardware to store the state of seuivedhre

contexts and, optionally, execute them at the same time. As detailed in Section 2.3,

the state of a context is represented by a virtual memory image and a logjisaére
file, which are designed as follows:

¢ Virtual memory image. Hardware threads in a multithreaded processor access
a common main memory pool with a shared physical address space, which is
split among threads by the MMU (Memory Management Unit). The MMU
includes a page table managed by the operating system (OS), which isdndexe
by a process identifier and a virtual address, and returns the asdqutigiacal
address. To avoid a memory access for each address translationskaiioan
Look-aside Buffer (TLB) is used within the processor as a cache topye
table, which is flushed every time a context switch is triggered by the OS.

Since there are multiple active contexts in a multithreaded processor, the page
table must be cached independently for each context using one of theifalo
options. On one hand, a TLB shared among threads can be adapted to be
indexed by a virtual address and a thread identifier. On the other haBs, T

can be simply private per thread and indexed only by a virtual addrdss. T
advantage of a private approach is that no selective TLB flush neels to
implemented to support context switches; the whole private TLB is reset in
this case. Even though no context switch is required in a model where the
number of contexts matches the number of hardware threads, the private T
approach is used for our simulations.

Logical register file. The values associated with logical registers and status
flags are stored in entries of the physical register file. This structurdean
shared or private per thread. In both designs, it is guaranteed thatliset

4.1. Out-of-Order Retirement Multithreaded Architecture 59

of physical registers bound to specific threads are always disjointisthat
physical register is mapped to two logical registers of different contexts.

To keep disjoint register mappings for each context in a multithreadedgroce
sor, the register alias table (RAT) can be implemented in the following man-
ners. On one hand, a common RAT can be modified to be indexed by a logical
register and a thread identifier, returning the associated physical rediste

the other hand, one private RAT can be used per thread, indexed/jadbh-

ical register. The latter approach is used for our simulations, since its@oid
selective RAT recovery after a branch mispeculation.

4.1.2 Resources Sharing

A straightforward way to extend a single-threaded processor to implemdtit mu
threading consists in replicating all hardware structures per threal,asuthe re-
order buffer (ROB), the instruction queue (1Q), the load-store qe8€), or the
register file (RF), while maintaining a common pool of functional units. In the op
posite approach, hardware structures can be shared among thusigspolicies
that dynamically allocate resource slots. Between these limits, there is a grafdien
solutions to be explored in order to find the optimal sharing strategy fouress.

Shared resources are often more costly than private ones due to alagtheare
complexity devoted for allocation or deallocation of individual entries. Nueg,
shared resources need to increase read/write ports in order to eaadllel@ccess
from various threads, which may increase both their area and latenmyntrast, the
potential advantage of shared resources is that one single threadropete for all
its entries. For example, if only one thread has instructions in its uop quadg re
to be dispatched, it can use all entries of a shared IQ to dump them. If the IQ is
private per thread, the active context is restricted to its assigned 1Q mostidle the
remaining 1Qs are unused.

But this does not mean that a shared approach performs always Bstfminted
out in [36], shared storage resources can cause a performagreeldeon if they are
abusively occupied by inactive threads. For example, if a thread is abltate all
entries of a shared RF and then it stalls in a long-latency operation, notbtkad
can be dispatched until this operation finishes. This case is a sample ofan un
assignment of resources to a thread that cannot make an effectigéthsen.

The problem of fairly assigning resources to threads is solved with twerdiff
ent approaches, evaluated in this chapter. On one hand, a simple pymat@ach
provides a fair distribution of resources among threads, with simple haedmale-
mentation but poor single-thread performance (Section 4.2.1). On thel@hdr a
shared approach can be instrumented with wise resource allocation pilipresent
stalled threads from greedily occupying resources (Section 4.2.4).

60 Chapter 4. The Multithreaded Validation Buffer Architecture

4.1.3 Resource Allocation Policies

To exploit the advantages of shared structures in a multithreaded designalsre-
source allocation policies have been proposed in other works. The aiesairce
allocation policies is to make proper decisions about the assignment of strectu
tries to threads requesting them. In general, these decisions are babedcarnrent
distribution of resource entries and the recent history of running terédte alloca-
tion policies used in our evaluated multithreaded architectures with sharetlisés
are briefly described next.

¢ Round-Robin (RR). This is a straightforward allocation policy, which con-

sists in assigning resource entries to threads in a rotative way each dycle.
one thread has no ready instructions in a given cycle, it is skipped without
consuming its allocation time slot.

Instruction Count (ICOUNT) . This is a fetch policy proposed by Tullsen et

al. [37], which assigns fetch priority to those threads with less instructions in
the decode, rename, and issue stages. The notation IC@lN;Tmeans that

at mostn; threads can be handled at the fetch stage in the same cycle, taking at
mostn; instructions from each. Experiments shown later use an ICOUNT.2.8
configuration, which provides the best results for the ROB-SMT ardhitec

Predictive Data Gating (PDG). This policy was proposed by EI-Moursy et al.
[38], and can be classified as a fetch policy, too. This technique is aimed at
avoiding a long permanence of non-ready instructions in the issue gl@@ue (
due to data dependences with long-latency instructions, long data depgende
chains, or contention for functional units or cache. To early detectlategmcy
events, a load miss predictor is placed in the processor front-end, agd a p
thread specific counter tracks the estimated number of pending cache.misses
The values of these counters are used to stop instruction fetch whetaim cer
threshold is exceeded.

As suggested in [38], experiments assume a load miss predictor of 4K entries
with 2-bit saturating counters. The predictor is indexed by the PC of the load
instruction, and the prediction is given by the most significant bit of the satu-
rating counter. Whenever a load incurs a data cache miss, the com@spon
counter is reset, whereas it is incremented when the associated load hits in the
cache.

Dynamically Controlled Resource Allocation (DCRA) This policy was pro-
posed by Cazorla et al. [39]. Unlike ICOUNT and PDG, DCRA does nbt o
control the fetch bandwidth fraction granted to each thread, but alsogesna
the allocation of other shared resources. DCRA classifies threadslarto

4.1. Out-of-Order Retirement Multithreaded Architecture 61

two criteria. First, a thread is considered slow or fast, depending on etiéth
has or not pending L1 cache misses. Second, a thread is considgvedbac
inactive for a given resource depending on whether it has recengly i the
last 256 cycles) requested its allocation.

The authors propose a mathematical formula to limit the number of entries in
a shared resource that a thread can allocate depending on the thesificala
tion. The additional hardware consists of resource occupancy esuarid a
lookup table to efficiently implement the formula.

4.1.4 Using Out-of-Order Retirement

A multithreaded processor can implement the proposed out-of-ordemmetitear-
chitecture by using a validation buffer (VB) and the aggressive registeaming
technique presented in Section 3.1.1. Since it is a FIFO queue, the VB igialspe
case when it is designed as a structure shared among thread. Two methare
devised to manage the assignment of VB entries to threads, referredlymasic

VB partitionsandunified VB Both approaches enjoy the advantages of a shared re-
source, namely that one single thread can flexibly use any number ofserarie
both of them can implement a resource allocation policy to avoid thread starvatio
However, there are additional issues to be considered when sharifigagkeue.
These are the discussed alternatives:

e Dynamic VB partitions. Similarly to the sharing strategy for the ROB pro-
posed in [40], this mechanism consists in assigning disjoint VB portions to
threads, whose size hinges upon the threads demand. Each portiodlschan
as an independent VB, where instructions are inserted and extractaxloi th
cal thread’s FIFO order. The main drawback of this design is that VBqrsr
cannot grow arbitrarily to fill the whole VB size. Specifically, a portion size
is constrained by the position of the contiguous portions, and VB portions can
only be shifted when the associategadandtail pointers are properly aligned.

e Unified VB. An alternative approach consists in inserting instructions in global
FIFO order into a unified VB, as tough all of them belonged to the same thread
As a consequence, instructions are forced to be retired in the samegldéal
The problem presented by this implementation is that instructions from differ-
ent threads are intermingled throughout the VB; if an instruction at the dnifie
VB head cannot be validated, it will prevent instructions from other dsea
from leaving the VB, incurring unnecessary head-of-line blockingreduer,
the recovery process should cancel instructions selectively, fortiedeaved
gaps to remain in the VB until they are drained.

62 Chapter 4. The Multithreaded Validation Buffer Architecture

In a previous work [41], we have tackled the problem of sharing a RO8 in
multithreaded, in-order retirement processor, where an efficient solistiproposed
to trade off the advantages and drawbacks of each sharing strategyevet, this
study is out of the scope of this thesis. For all experiments presented irhtpset,
private ROBs and VBs have been assumed, eluding the problem of glaaRi-O
queue.

4.2 Performance Evaluation

Performance and complexity issues have been addressed on a multidhpeacks-

sor implementing the VB architecture. The main characteristics of the modeled ma-
chines are listed in Table 4.1. For those experiments running more than octe be
mark simultaneously, the following criterion, based on previous works [#3 been
used to construct workload mixes. First, SPEC2000 benchmarks hawechar-
acterized as memory- or CPU-bound, as described in Section 2.5.2, anthibe
different groups are created according to this classification. Two additgroups

are analyzed including only integer or floating-point benchmarks, otisply. The
specific benchmark mixes are listed in Table 4.2.

| Processor Core / Hardware Threads
Machine width (decode
dispatch, issue, commit/ 8 uops/cycle
validate)

40-entry 1Q, 20-entry LSQ, 64-entry ROB,
64-entry RF, all private per thread.

Functional units and 8 Int. add (2/1), 2 Int. mult. (5/2), 2 Int. div (20/10
latency (totallissue) 4 FP add (5/2), 2 FP mult. (10/5), 2 FP. div. (30/15%)
Hybrid (2-level + bimodal)
2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.
Choice pred.: 1K entries.

| Memory Hierarchy |
32KB, 4-way, 64-byte block, 2-cycle latency,

Storage resources

Branch predictor type

L1 cache .
private per thread.

L2 cache 1MB, 8-way, 64-byte block, 20-cycle latency,
shared among threads.

Main memory 200-cycle access time.

Table 4.1: Baseline multithreaded processor parameters.

4.2. Performance Evaluation 63

Classification | Mix name |Benchmarks
CPU M%x 0 wup'wise, e?n
Mix 1 apsi, eon, fma3d, gcc
CPUMEM M%X 2 art, gztp :
Mix 3 art, gzip, wupwise, twolf
Mix 4
MEM Tx applu, ammp
Mix 5 applu, ammp, art, mcf
Integer Mix 6 gce, gzip
Floating-point | Mix 7 wupwise, mgrid

Table 4.2: Benchmark mixes.

{ VB Baseline |

IPC

Figure 4.1: Storage resources sharing for the multithreaded ROB andcViBes-
tures. Baseline IPCs refer to processors with no shared storageaeso

4.2.1 Sharing Strategies of Hardware Structures

This section studies the effect of sharing some storage resources daahgare
threads, focusing on the L1 caches, the fetch queue (IFQ), the itistrgeieue (1Q),
and the register file (RF). In Figure 4.1, the performance achieveddbydssign is
plotted for both the ROB and the VB multithreaded architectures. In eachgocenfi
ration, only one storage resource (X-axis) is shared among threaa@dl. dases, an
SMT processor with a round-robin fetch policy is simulated, and eaclompeaihce
value is computed as the average IPC for the execution of all benchmark. mide
ditionally, the performance obtained with a ROB-based and a VB-baseggsor
with all resources set as private is represented with two horizontal lalesled as
ROB baselinendVB baselinerespectively.

Coherently with conclusions stated in [36] for a ROB-based procdsgure 4.1
reveals that there is a performance loss when sharing any storagecessdthout
a proper allocation policy. Out-of-order retirement does not affeet slo stalled
threads, which continue to abuse of shared resources by resergingitkries for a
long time and preventing other threads from using them fruitfully.

64 Chapter 4. The Multithreaded Validation Buffer Architecture

IPC

Z)
[T A T LTI

A1/ 1A LAY

N

\
\
A
\
\
\
\
\
\
\
\

\E|
El
E
=
£l
£l
H

Vo
AN

AANNNNNNNNNNNNY

0 N N N N /!

Mix 0 Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Average
0O RoB-cGMT [ROB-FGMT B ROB-SMT 2 VB-CGMT N VB-FGMT E VB-SMT

Figure 4.2: Performance for different multithreading paradigms in the RBEV
chitectures.

4.2.2 Comparison of Multithreading Paradigms

The VB architecture has been evaluated on top of the three major multithread-
ing paradigms, namely coarse-grain (CGMT), fine-grain (FGMT), amdilsaneous
multithreading (SMT). The FGMT design is modeled with a timeslice issue policy,
while the SMT issue stage takes instructions from different threads in the eg

cle (shared issue). Both FGMT and SMT are modeled with either a timeslice or a
round-robin instruction fetch policy. The CGMT design uses a threadtgoaof

1000 cycles, and the thread switch penalty is equal to the number of cypddeato
drain all instructions of the previous thread from the processor pipedine [

Performance results are represented in Figure 4.2. Comparing thedyesfalie
multithreaded VB architecture in its different variants (i.e., VB-CGMT, VBNFG
and VB-SMT) with the ROB-SMT processor, it can be observed that tier s
outperformed by VB-FGMT and VB-SMT by about 16.4% and 19.7%, eesgely,
while only VB-CGMT performs worse with a 5% slowdown. Mixes 2 and 6 show
a flat behavior both when substituting the ROB by the VB and when improving the
multithreading paradigm. As observed in previous works [9][42], spebiéinch-
marks, most of them integer benchmarks, do not obtain benefits frongEgahe
ROB, nor from retiring instructions out of order. This situation is caused $carce
instruction level parallelism, aggravated by a high L1 miss rate, as well ahigha
branch misprediction rate. Thread level parallelism is also affected byatiisgfre-
venting SMT from outperforming CGMT and FGMT.

An interesting observation is the average performance improvement of VB-
FGMT over ROB-SMT. The former is a simple multithreading paradigm with
lightweight additional hardware devoted to bandwidth resources, whilaties in-
troduces more complex hardware in the issue stage to schedule instructions f
different threads in the same cycle. The reason is that the benefits abitgifiding
empty issue slots with instructions from various threads in ROB-SMT is corafeshs

4.2. Performance Evaluation 65

Benchmark gcc Benchmark mgrid
3 T T T T T /&,_,77&7'74 45 T T T T
»,,/“""'“‘—» 4 oy & T
o 257 B - -1 e g -
o o g S
= 2 R e =2 3 iy R Sz A
3 / 5 25t - p
2 15 e T - ™]
(=) [=2]
3 1F - 3 15} -
E 05 E 1r T
’ 05 o -
O 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of Threads Number of Threads
Benchmark wupwise Benchmark art
ASrT— T T I I i I 3% 3 L B B s S S— —
P/ T— e /:/;i—.:;”"é;: -éf ~ 7*; PR 45 | & e el 24
o | . i o 4 L . .
Q 35t £ el ot , i
= 3 g et e g st = . . I e N Sl bbbt L]
— w v > X > X — 3 " . _
> 25 | Xz - > SH T LIS B N TEIER
Q. P [N 25 | A . 4
= 2 b 4 < e
=3 e =) 2 ot -
3 15 [l B 3 15| %= 4
£ Ir 1 £ 1t .
05 - 05 | 4
O 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of Threads Number of Threads

+ ROB-CGMT O VB-CGMT

X ROB-FGMT B VB-FGMT

% ROB-SMT O VB-SMT
Figure 4.3: Scalability of different multithreading paradigms for ROB/VB #ech
tures.

in VB-FGMT with the extra performance gained from the efficient managémien
the VB structure, which makes the pipeline stall less often.

4.2.3 Impact of the Number of Hardware Threads

The complexity of a multithreaded processor varies across multithreadindsnasle
well as with the number of supported hardware threads. This section trades off
performance and complexity, by exploring how different multithreaded MBitec-
tures behave whemranges from 1 to 8. In each experiment, a specific benchmark is
launched with as many instances as architected hardware threads.

Figure 4.3 shows results for four different benchmarks running oRB and
VB architectures with FGMT, CGMT and SMT. The top left plot represeetsch-
mark gcc, which shows a characteristic behavior of integer applications. As men-
tioned before, out-of-order retirement of instructions provides scpezformance
benefits for integer workloads, so the rest of this section will focus cetifig-

66 Chapter 4. The Multithreaded Validation Buffer Architecture

point benchmarks. The remaining plots correspond to the floating-paichbearks
mgrid, wupwiseandart, and show extremely contrasting results comparegtto

Themgrid plot shows an important effect wherincreases. On one hand, CGMT
provides neither gain nor loss of performance up to 3 threads. In ayst@m, the
benefits of CGMT in this case would come from the fact of avoiding softwangext
switches by the operating system. However, this effect is not appreciataun
threaded processor runningcontexts. It can be observed that a further increase
of n has even negative effects on the global IPC, shown clearly in the ¢agg-o
CGMT. The reason is that the impact of the thread switch penalty grows thate
the benefits of a higher utilization of functional units whers overly large.

The FGMT and SMT curves belonging to the ROB architecture show wellkno
effects of multithreading. A fine grain design reaches better performapde 4
threads, while an SMT design is capable of exploiting thread level parallatism
more scalable manner. Notice that this trend differs when instructionstaesireut
of order. In the VB architecture, performance grows abruptly for u$ tiareads on
an SMT organization, and it stabilizes after this point. The reason is thatex low
congestion in the VB with respect to the ROB allows other processor stesatey.,
issue queue or functional units) to be fed more aggressively, so higifarmance
is reached with a lowet, and thus, a lower hardware overhead.

An interesting result can be observed in tihgrid and wupwisecurves: VB-
FGMT provides better performance than ROB-SMT up to 4 threads. Im othels,
the fact of retiring instructions out of order makes a simple fine grain multideca
organization outperform the simultaneous multithreading model with a complex issu
logic in a ROB-based architecture. Although the ROB-SMT scalability is slightly
imposed for values ofi higher than 4, the simpler VB-FGMT implementation still
reaches higher performance up to approximately 4 threads.

4.2.4 Impact of Resource Allocation Policies on SMT process®

In this section, different fetch policies are evaluated on top of the ROB-\é
based architectures. Except for those processors using the DG&¥pidicy, all of
them are based on the parameters shown in Table 4.1. The DCRA modekemclud
a shared instruction fetch queue, a shared issue queue and a sharstbl@e queue
among hardware threads. The reason is that DCRA does not only diffégent and
variable fetch slots to threads, but also obtains benefits from dynamicalbnasy
different number of entries of shared resources to threads.

Results plotted in 4.4 show, on one hand, the pronounced advantagepiia-s
ticated instruction fetch policy in SMT processors. Any fetch policy othen fRR
provides higher benefits than the replacement of a ROB by a VB. On thelathd,
Figure 4.4 illustrates that the benefits of fetch policies also apply to the VB-arch
tecture. Comparing the advanced fetch policies (the three right bars sivédrage

4.2. Performance Evaluation 67

IPC

N
g§
A
N\
AN
N\
N\
N
N
A

AN

Mix 0 Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Average
[JROB-RR [ROB-ICount H ROB-PDG M ROB-DCRA HVB-RR & VB-ICount VB-PDG B VB-DCRA

Figure 4.4: Evaluation of fetch policies for the ROB and VB architectures.

group) against the naive VB-RR policy, we obtain on average 28.4%9%32nd
40.2% benefits for VB-ICOUNT, VB-PDG and VB-DCRA, respectivaBomparing
these three policies with the ROB-DCRA policy (the best ROB-based policg),
performance speedup reaches 12%, 15.6% and 21.9%, respectively.

Although an improved fetch policy is needed in the VB microarchitecture to out-
perform a ROB-DCRA architecture, there is no need to implement the mestieé
one (VB-DCRA), which requires more complex hardware. Instead, thieuiction
counters added by ICOUNT are sufficient to make the simple VB-basewagip
behave better than the best fetch policy for a ROB-based proce9&-[KCRA).
However, it can be appreciated that out-of-order retirement canrobioed with the
most effective fetch policy, contributing orthogonally to improve perforogawith
respect to the remaining designs.

4.2.5 Resources Occupancy in SMT Designs

SMT processors pursue to reduce the waste of issue slots by issuingstasetions

into the functional units, and thus providing a higher throughput in theutiet
stage. This section deals in depth with the reason why a VB-SMT design with a
simple fetch policy outperforms a ROB-SMT with a complex one. To this endsit ha
been quantified how these architectures stress the issue queue anshainmits,

by measuring the average issue slots used in each cycle.

Figure 4.5 represents the issue bandwidth utilization as a percentageofiere
cycles in which a specific number of issue slots has been filled. Resultdshothe
VB architecture reduces the horizontal waste, since plotted regiorsspomding to
less than 7-8 issue slots are significantly smaller for VB-SMT. Vertical wasitso
diminished for VB-SMT, which can be observed in the solid black region$ityig
smaller for the VB architecture. These results corroborate the relatiohshigeen
filled issue slots and the multithreaded processor performance, when ogipia-

68 Chapter 4. The Multithreaded Validation Buffer Architecture

1
0.8
0.6

0.4

Percentage of Cycles

0.2

Fetch Policy

[£] 8/7 Issue Slots 7 4/3 Issue Slots H 0 Issue Slots
[] 6/5 Issue Slots B 2/1 Issue Slots

Figure 4.5: Issue slots for different SMT architectures and fetch pslicie

a) Instruction Queue Occupancy b) Load-Store Queue Occupancy
1 T T T T 1 ~~ T T T T
09 [ROB-DCRA ——— | 09k X ROB-DCRA ——— |
: VB-ICOUNT ------- : VB-ICOUNT -------
0.8 B 0.8 B
0.7 - - 0.7 - -
> >
% 0.6 E % 0.6 - -
g 0.5 B g 0.5 B
& 04 E 5 0.4 E
03 B 0.3 B
0.2 — 0.2 - -
01 E 01 E
0 - ! 0 ! ! T S
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1
Fraction of Instruction Queue Entries Fraction of Load-Store Queue Entries

Figure 4.6: Storage resources occupancy for ROB-DCRA and BURT.

ures 4.4 and 4.5. The highest occupancy is achieved with VB-DCRA hwtiis 7
or 8 issue slots in more than 40% of the execution time.

Let us compare the bars corresponding to the ROB-DCRA and VB-ICDUN
designs, both in Figures 4.4 and 4.5. Figure 4.4 points ROB-DCRA as the most
performance-effective ROB design, while Figure 4.5 shows that it éspieost ef-
ficiently the issue bandwidth. On the other hand, it is shown that a simple IQOUN
policy suffices to make VB-ICOUNT outperform ROB-DCRA (a naive R&ch pol-
icy is not enough). This fact makes VB-ICOUNT a cost-effective solytieaching
higher performance than the most complex fetch policy for ROB-SMT, whildgmp
menting a simple fetch policy in VB-SMT.

The occupancy of storage resources has also been measursihdamuthe most
efficient ROB design (ROB-DCRA) and the design with the simplest effidetoh
policy on the VB (VB-ICOUNT). Figure 4.6 shows the occupancy of thérugdion
gueue (IQ) and the load-store queue (LSQ) for these designs. Thescin the

4.3. Summary 69

figures should be interpreted as the probability (Y-axis) for a resaafrbaving an
occupancy equal or greater than a specific fraction of its entries ig¥-ax

As observed, VB-ICOUNT causes a lower occupancy both in the IQtlaad
LSQ. In the case of the 1Q (Figure 4.6a), only 50% of the 1Q entries argyheed
in ROB-DCRA, which means that the IQ is over-dimensioned. However,ibhead
fraction of the 1Q grows up to almost 70% in the case of VB-ICOUNT. Somgthin
similar occurs in the LSQ, which could be implemented with 20% less entries without
practically affecting performance. As a consequence, VB-ICOUNdsdmwt only
outperform ROB-DCRA with a simpler fetch policy, but also allows for a citun
of the main storage resources size, maintaining performance gains.

4.3 Summary

In this chapter, the VB architecture has been extended for multithreadedgsors
with different multithreading paradigms, sharing strategies of hardwamirees,
fetch policies, and resource allocation techniques. An exhaustiveieeal evalu-
ation has been performed, where multithreaded executions have beenesthusiag
several mixes of single-threaded benchmarks.

The obtained results provide three main conclusieyafine-grain multithreaded
VB-based processor outperforms, on average, a simultaneous mutteédr&DB-
based processofj) a simultaneous multithreaded VB-based processor reaches the
maximum performance with about half of the hardware threads than a simultane
ous multithreaded ROB-based processor; @i)dbenefits of fetch policies (such as
DCRA) are orthogonal to those provided by the transition to the VB archiectu
These contributions justify the viability and cost-effectiveness of an totder re-
tirement, multithreaded processor microarchitecture.

Chapter 5

The Multicore Validation Buffer
Architecture

Multicore processors are now the current norm in the processor tmeakging from
the general purpose to the embedded systems sectors. In these amasiefciu
ther sources of concurrency are obtained with explicit parallelism in thkcagions.
Multicore systems provide a shared memory hierarchy whose accesssodeéned
by the memaory consistency model. In this sense, sequential consistencyrieshe
convenient model, since it eases the system programming interface. efpivéwm-
poses ordering restrictions that may interfere with out-of-order retirenfénstruc-
tions. In this chapter, an implementation of an out-of-order retirement, ségiye
consistent, multiprocessor system is proposed, based on the Validatifen &whi-
tecture.

71

72 Chapter 5. The Multicore Validation Buffer Architecture

5.1 Dealing with Sequential Consistency

Due to optimizations in the load-store queue, memory accesses, as seeertpyroth
cessors in a multiprocessor system, can be reordered in the VB arclatedtois
means that the originally proposed VB architecture is suitable when only>edela
memory consistency model (RC) is imposed. In contrast, parallel prograsrimer
tuitively assume stricter models, like the sequential memory consistency m&jel (S
[43], which, by definition, precludes the freedom of the system to arbyjtiater the
order of memory accesses. This conflict is solved in the RC models by prgvid
programmers with mechanisms that can override the reordering of memassasc
when the semantic of the parallel program is compromised by this reorddforg.
example, it is known that if a parallel programdata-race-freg44] and correctly
labeled[45] by synchronization operations, any reordering is allowed betwgen
chronizations without affecting the semantics of the parallel program.

Nevertheless, supporting the SC model is encouraged, since it allowses-to
son about parallel programs assuming a simple behavior where memoatiopgr
are executed atomically one at a time and in program order, which is whapnoast
grammers expect. Therefore, aggressive implementations of this congistedel
have been devised. Below, we present a formal description of the S€l uod the
aggressive implementation used in this thesis as a baseline.

In a multiprocessor environment,storeis globally performedf no load to the
same address in the system can return a value prior to ioad is globally per-
formedwhen its value is bound (it can be used by consumers of the same threlad) an
the store producing it is globally performed. Based on these definitions, two suffi-
cient conditions have been presented [46] for a system to be sequectiadiistent:

1) every thread must issue memory accesses in program afylafter a memory
instruction (oad or store) is issued, the issuing thread waits for it to be globally per-
formed before issuing its subsequent access. In-otfflan¢l atomic {7) execution of
memory instructions prevents from hiding the memory latency, and stronglygéema
performance.

Several techniques have been proposed to improve the performaseguetial
consistency implementations (see Chapter 6). In this thesispbeulative retire-
ment of loadgechnique [29] is used as baseline implementation. This technique is
based on the fact that both conditions just discussed can be spedyl@gtveed as
long as the results of the speculative computations appear as if they waireeakby
obeying them. In a modern multiprocessor system, a simple way to prevent remote
processors from observing a local speculative computation is to monitstatesof
the speculatively accessed cache blocks, and trigger a rollback véremme of these
blocks receives a remote invalidation (assuming an invalidation-basececalegro-
tocol) or is evicted. In such a case, the processor must be able to résmtate prior
to the offending memory instruction.

5.2. Out-of-Order Retirement Multiprocessor Architecture 73

Therefore, speculative memory instructions and subsequent onefemestov-
erable until they are globally performed. A straightforward solution is to iioéd
ROB entries of the memory instructions until they are globally performed. This s
lution holds critical resources of the execution pipeline for recoveriognfmemory
consistency mispeculations. For instance, traditional register renamiisghdoal-
low physical registers to be released until instructions leave the ROB. \onas
shown in Section 5.2, these mispeculation events are rare. Moreoveralcmitic
sources are kept busy for long periods of time, since globally perforanimgmory
instruction may involve long latency coherence actions.

Speculative retirement of loaddleviates this waste by splitting the instruction
window into two FIFO queues: the ROB and the History Buffer (HB). In thisesne,
memory instructions and following ones can commit (releasing executionrgesou
as they leave the ROB) even if they are still subject to memory consistencyioisa
After committed, instructions enter the HB, where they stay until they are globally
performed.

Each entry of the HB contains information to undo the modifications performed
on the processor state by its corresponding instruction. To do so, anyciisn re-
naming (i.e., writing to) a given logical register holds in its HB entry two values. O
one hand, it stores the identifieiof its destination logical register; on the other, it
attaches the value dfbefore it was rewritten, that is, the contents of physical reg-
isterp’ (i.e., RF[p']) that were produced by the nearest previous (in program order)
instruction renamingd, beingp’ the previous mapping df Notice that in a ROB-
based multiprocessor, the latter value is always available after the commit\éfilye
this implementation, whenever a cache block accessed by a non-globdtiynpea
memory instruction is being remotely accessed or evicted, execution is redove
from mispeculation by squashing the contents of the ROB and undoing thgeha
logged in the HB.

Finally, store instructions need not be inserted into the HB, because thagtdo
modify the processor state, and they are forbidden to write to the cachehatil
can be globally performed, that is, until the next instruction in prograrmerasilo-
cated at the HB head. Nevertheless, to prevent long-latency storeshipse, that
involve remote block invalidations) from blocking the HB, the baseline SC imple-
mentation also includestore prefetching47]. This technique allows stores to per-
form aread-exclusive prefetdbefore they are globally performed, thus reducing the
odds of needing to invalidate remote copies when they exit the HB.

Chapter 5. The Multicore Validation Buffer Architecture

Committed instructions

Branch mispredictions

Arithmetic exceptions

4041 943 035 33498 322 (0.8%) 0
Page faults Load replay traps Memory consistency
57 425 0.01%) 331 180 k 0.01%) 561 070 (0.01%)

Table 5.1: Frequency of misprediction events.

5.2 Out-of-Order Retirement Multiprocessor Architecture

5.2.1 Architecture Description

The condition to extract an instruction from the VB in a single-core envirartrise
that its speculative state is resolved, that is, it is a completed branch, astarction
that is already known not to raise an exception. Table 5.1 lists differesesaf mis-
prediction that should be checked before an instruction’s speculasiteis consid-
ered resolvedBranch mispredictiomefers to the resolution of a branch target address
and direction that does not match the branch predictor staterAdttimetic excep-
tion and page faultrefer to the resolution of the respective trajpmad replay trap
refers to the resolution of the address aftarewhich was bypassed by a lodahd

to the same address. Finallpemory consistenagfers to the eviction/invalidation

of an L1 cache block accessed by an in-flight memory instruction.

Table 5.1 also attaches the total frequency of occurrence of each dictjme
event during the execution of the SPLASH2 benchmark suite on a machine with
the configuration shown in Section 5.4, as well as the number of total committed
instructions. As observed, the frequency of occurrence is negligitwe even null
for correctly written programs— relative to the number of committed instructions,
except for branch mispredictions. Based on these results, the folloeingenstially
consistent out-of-order retirement architecture is proposed.

After being dispatched, instructions enter the VB. This structure allovtgdas
covery on mispeculation, but it prevents critical resources such asgalhyegisters
from being released by those instructions holding their VB entry. For tlisore
the VB is responsible for resolving only those mispeculations that are likelgto o
cur, that is, branch mispredictions. After exiting the VB in any of their possible
execution states, instructions enter the HB. This structure provides affiessne
recovery mechanism, but it is decoupled from any other processaotigteysuch as
the register file. Thus, the infrequent misprediction events, that is, alpexranch
mispredictions, can be resolved in the HB.

With this specification, the conditions to retire instructions from the ROB/VB and
HB queues become the ones listed in Figure 5.1. As observed, the difidretween
the ROB and VB architectures is the relaxation of the conditions for instriection
to leave both the ROB/VB and the HB. As specified in Section 3.1.4, the sources
of potential benefits in a VB-based single processor can be classifiedtesded

5.2. Out-of-Order Retirement Multiprocessor Architecture 75

Load: C — Store: DAR — Load: GP — Store: GP —
Branch: C — Other: C Branch: C — Other: C

[_RrROB] | HB]
a) ROB-based Architecture

Load: N — Store: N — Load: GP — Store: GP —
Branch: C — Other: N Branch: C — Other: ER
| VB] | HB]
b) VB Architecture

N = None; C = Completed; DAR = Data/address ready;
GP = Globally performed; ER = Exception resolved

Figure 5.1: Conditions for instructions to be retired from the ROB/VB and HB.

instruction windowand enhanced register usagdhese features are maintained in
the multicore VB architecture using the additional HB, as justified next:

e First, the only reason to stall an instruction at the VB head is that it is an uncom-
pleted branch. This relaxation makes the VB alleviate most of its head-of-line
blocking effects, enabling physical registers to be released much. fabies,
the enhanced register usagdfect is not only maintained, but also intensified
with respect to the superscalar VB architecture, where validation conglition
were slightly stricter.

e Second, instructions other than brancheads andstorescan leave the HB in
the VB architecture as soon as their speculative state is resolved, evew if th
are not completed or issued. As a consequence, the sum of the VB anB the
sizes does not limit the number of instructions in flight, which maintains the
effect previously referred to atended instruction windaw

5.2.2 Hardware Support

As instructions can leave the VB uncompleted, the contents of the physiistere

p’ corresponding to the previous mappingldfalso RFp’]) may not be available

to be copied to the HB. This problem can be solved either by blocking the B ex
until the contents to be copied are ready (thus adding an additional conftition
instructions to leave the VB), or by allocating an entry in the HB whose contents
will be written later. We choose the second option because it only requires little
additional hardware support (explained below) to handle delayed wdkshto the

HB. Likewise, instructions may leave the HB uncompleted, so this mechanism must

76 Chapter 5. The Multicore Validation Buffer Architecture

consider that the writebacks should only occur as long as the corisgdiB entry
is valid.

Lp' I, RE[p']

[VB | |->| | HB]| =

Insert {p’, HB index}

e

clete entry oW Table
Copy RF[p] to HB

P[] index Delete

entry

Figure 5.2: Implementation of delayed writebacks.

Figure 5.2 shows a possible implementation of the supporting hardware, which
uses a small CAM calle@opy-on-WritebackCoW) table. Each valid entry in this
table contains a paifp’, HB entry}, which indicates that any result generated by the
functional units for physical registef should be forwarded to the corresponding HB
entry. Considering that VB entries contain by design the fiéldadp’ (previous
mapping ofl) for each instruction, the mechanism works as follows.

If the contents ofp’ are ready when an instruction enters the HB (i.e.,
RST[]p'].completedl), they are straightforwardly copied to the allocated HB entry,
with the same procedure as in the baseline architecture. Otherwise, atngin &me
CoW table is created, using and the index of the next free HB entry. When a func-
tional unit generates a value for a destination physical register, the idewtifihis
register is associatively searched in the CoW. On hit, the value is also wrétthrirp
the corresponding HB entry. Instructions that leave the HB remove thsceded
entries in the CoW if present, avoiding overly delayed writebacks to affiedtiB.

When recovering from a mispeculation at an instruction in the HB, a sufficien
condition to retrieve all the recovery information is to wait until the CoW table is
empty, that is, all delayed writebacks have been performed. Alternatitaelyecov-
ery process could only wait for the contents of the HB entries of canaedédictions.
Finally, although the CoW table can be implemented as a direct-mapped table, an as
sociative implementation is chosen, since a small CoW table suffices to pievent
from becoming a bottleneck for performance (see Section 5.4).

5.2.3 Working Example

Figure 5.3 represents the pipeline of a single processing unit of a V&dasltipro-
cessor in three consecutive cycles, focusing on the VB, the HB, anddWétable.
A piece of code formed of four instructions is listed in Figure 5.3a. Instrostip
andi, are exception-free arithmetic instructions, whiteandi, are long-latency
memory instructions. Each instruction attaches its physical destination register

5.2. Out-of-Order Retirement Multiprocessor Architecture 77

Instr |Dst Status

VB HB

wg ||| [u]o]e]a] wm HB

E O [e | [a]5]
—

CoW
1 completed 25 postiy)

i, | 2 incomplete CoW 3 2 CoW i
-y B
load — iy | 4 incomplete post,, 4 — pos(i,)

a) Portion of code b) Pipeline in cycle 1 ¢) Pipeline in cycle 2 d) Pipeline in cycle 3

Figure 5.3: Working example for multiprocessors.

and its status, which is assumed invariant during the three cycles. Whestarcin
tion is labeled incomplete, it can be either not issued in the 1Q, or issued into the
corresponding functional unit. These are the observations for gatdt c

e Cycle 1(Figure 5.3b). All four instruction are located at the head of the VB,
and are currently processed by the validation logic. No branch is fomomhg
them, so they are ready to be placed into the HB. The CoW table is empty so
far.

e Cycle 2 (Figure 5.3c). The four instructions are placed into the HB, and
their completion is verified by the commit logic by testing the correspond-
ing completed bits in the RST. Completed instructiong)Y copy the value of
their destination physical register into the HB. For each incomplete instruction
(i2, i3, andiy), a delayed writeback into the HB is scheduled by allocating a
new entry in the CoW. For exampl®, records the identifier of its destination
physical register (2), jointly with the HB position where the instruction was
inserted.

e Cycle 3 (Figure 5.3d). Instructions, andis exit the HB, because they are
known to be free of exception, mispeculation, or memory consistency viola-
tion. However,is andi, are long-latency loads that must remain in the HB.
Instructioni, has released its HB entry while being still incomplete. Since
there remains no HB entry associated with it, its eventual completion should
no longer be propagated into the HB. Thus, the CoW entry holding the identi-
fier 2 is removed to prevent an undesired delayed writeback.

After cycle 3, the completion of either instructiof or i, will cause the CoW
table to be looked up, and it will provide the indexes of the HB where the ntsod
physical registers 3 and 4 should be copied. In contrast, the CoW tabf@ailte no
valid position when searching physical register 2 after the completion otigtiin
12, and its result will be silently copied into the register file.

78 Chapter 5. The Multicore Validation Buffer Architecture

5.3 Analysis of Single-Thread Performance

This section evaluates the impact of thehanced register usaged extended in-
struction windoweffects provided by a single VB-based processing node. Notice
that the main difference between this study and the study of potential pedsian
Section 3.3.1 lies in the fact that the architecture now under evaluation isdhee
HB implementation shown in Figure 5.2, that is, it is a processor model suscepti-
ble of being integrated into a multiprocessor environment. However, singtadad
benchmarks from the SPEC2000 suite [30] are used for the moment toecies-

sor stalls due to synchronization and communication delays. To avoid mispieaula
in the control flow stream, a perfect branch predictor is utilized, andsameplicitly
stated, the remaining machine parameters match the baseline configurationishow
Table 5.2.

5.3.1 Enhanced Register Usage

The VB architecture uses an aggressive register renaming strategytraditional
renaming mechanisms, instructions reclaim registers at the decode/rengme sta
However, register release is decoupled from the withdrawal of instngfrom the

VB, which entails a more efficient management of the register file. The foltpwin
experiment illustrates this advantage.

When an instruction is dispatched (i.e., enters the VB), it allocates a physical
registerp as its destination mapping; when the instruction exits the VB, it may be
ready to release the physical registércorresponding to the previous mapping of
its destination logical register (this is a necessary, but not sufficierditbom). We
have measured the average register allocation time as the number of cyalesrbe
the time an instruction allocates physical regigtand the time that physical register
p’ is released. Notice that in the ROB architecture this time is equals to the time
spent by the mapping instruction in the ROB, whereas these times differ in the VB
architecture.

Figure 5.4 presents differences in register allocation time between the RDB an
VB architectures. The bars represent the ratio between the allocation tphgsital
registers in the ROB and the VB architecture. As observed, this ratio waoresd-
erably for different benchmarks, with an average value of 6.5%. Thensé¢hat,
for the modeled machine with an ideal branch predictor, instructions taker@di®
time (the absolute value is roughly 2.5 cycles) in the ROB architecture to release
a physical register since they were dispatched, increasing the probalbitigcode
stalls due to a full register file.

5.3. Analysis of Single-Thread Performance 79

l1.67636

1.15

11

1.05

Allocation time ratio

1

R LY SELEL SO & o@*'zrtew
@“"&o@;\f\i %?&Q&i\("%\‘&cb&@& 'q;\}(\e&%&@@ & q\& \‘({f\é& 9\\& PO @“‘%ﬁo «5&20@&?&
TA? AN AD N 6¢ AV DD Y AP V., Qv C X =)
'\;‘:éz),Q\'y'{,\'\r 'y'x{\ &@é\&'\,r@@{&@ 'f?Q rf,’)’b"b

Figure 5.4: Register allocation time ratio between the ROB and the VB architecture
measured with an ideal branch predictor.

5.3.2 Extended Instruction Window

Sequentially consistent multiprocessors need to maintain very wide instrudtien w
dows to support long-latency loads and stores.ir&yruction window sizewe refer

to the decode distance between the youngest and the oldest instructiopiipetiee
(assuming no squashed mispeculated instructions). A ROB-basedsopossally
limits this width to a fixed number of instructions, which is equal to the sum of the
entries in the ROB and the HB for our baseline ROB-based multiprocessutear
ture.

The second source of potential speedup in the proposed VB-basedroudspor
is that, unlike ROB-based architectures, the number of entries in the VB 8&d H
does not constrain (in general) the instruction window size. Specificaly, wide
instruction windows can occur when long chains of instructions other thamonye
accesses and branches enter the pipeline. To explore the potentifiisbehthis
effect, a machine with an unbounded instruction queue, load-store caredigegister
file is modeled, using the baseline sizes for the ROB/VB and HB. A perfacichr
predictor is used again to avoid gaps of squashed instructions that tiffetrue
occupancy of the instruction window.

The instruction window sizes are plotted in Figure 5.5, where a group of two
bars represents a single SPEC2000 benchmark run on a ROB-belsitelcare (left
bar) and VB-based architecture (right bar). The bar height repteshe number of
in-flight instructions. In the case of the ROB architecture, instructions ihtfége
located either in the ROB or in the HB. However, notice that instructions in the VB
architecture may not be allocated in either of them, since they might leave the HB
without being completed. Each bar in the figure has two parts. The lowesh@ars
the average number of in-flight instructions, while the upper part shavs#ximum
width of the instruction window.

(o]
o

Chapter 5. The Multicore Validation Buffer Architecture

200

150” ”””” N P e | a5 b1

RXHRRXKA

2
i
I
|

Instruction window size
XX

i i
SAANNNNNNNNNNNNNNY

SRR RRRERRRIXX

22

I

2

F QI RLGFIS S
0(/51/?10 Q}*Q&(,)V'Q@\\(){\Z‘qug @00\/,09
VR V& S >
Vv
V) ROB-Arch.Average [Z] VB-Arch.Average [ROB-Arch.Max [1 vB-Arch.Max

Figure 5.5: Instruction window size, measured with an ideal branch poediad
unbounded 1Q, LSQ, and RF.

Results show that, while the maximum window size in the ROB architecture is
limited to 128 (ROB size + HB size), the window size in the VB architecture exxeed
this value for most applications. The average window size also increszsti®re are
more chances during program execution to further exploit ILP. Thispiatecan be
especially observed, for instance, in benchmagksluor art, which contain portions
of code with long chains of arithmetic instructions that allow instructions to leave th
HB without being completed.

| Processor Cores
Machine width (decode
dispatch, issue, commit/ 4 uops/cycle
validate)

40-entry 1Q, 20-entry LSQ, 64-entry RF,

64-entry ROB, 64-entry HB

Functional units and 4 Int. add (2/1), 1 Int. mult. (5/2), 1 Int. div (20/10
latency (totallissue) 2 FP add (5/2), 1 FP mult. (10/5), 1 FP. div. (30/15)
Hybrid (2-level + bimodal)
2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.
Choice pred.: 1K entries.

| Memory Hierarchy |

Storage resources

Branch predictor type

L1 caches 32KB, 2-way, 64-byte block, 2-cycle latency.
L2 caches 512KB, 8-way, 64-byte block, 10-cycle latency.
L3 caches 8MB, 16-way, 64-byte block, 50-cycle latency.
Main memory 200-cycle access time.

Table 5.2: Baseline multicore processor parameters.

5.4. Performance Evaluation 81

dil|ill | [di1|ill | |di1]ill] |dll]ill dil|ill | |di1|ill | |di1]ill]|dl1]ill

.&.L..T.L&. .&.L?..L&. .&.&...T.L&. .&.&.T..LL

L2 Cache (12) L2 Cache (I12) L2 Cache (I12) L2 Cache (12)
Unified data/instr. Unified data/instr. Unified data/instr. Unified data/instr.
L3 Cache (13) L3 Cache (I3)

Unified data/instr. Unified data/instr.
| |
S T @
| Main Memory |

Figure 5.6: Block diagram of the modeled multicore system.

5.4 Performance Evaluation

A realistic multicore processor with 8 cores has been modeled to evaluateothe pr
posed architecture. Figure 5.6 shows a block diagram of the modeledsygese
characteristics are summarized in Table 5.2. The memory subsystem cofisiste 0
levels of cache, where coherence adheres to the MOESI protocchreep1 in-
struction and data caches are modeled, whereas L2 and L3 cachesfiae (ie.,
contain both code and data). This memory hierarchy and core interdoisnee
spired on the recent commercial quad-core AMD Opteron 8350 procgss]. In
the figure, the gray boxes represent replicas of this same chip. Pavalldbads
with shared data, i.e., the SPLASH2 benchmark suite [31], have beerfarsegr
performance evaluations to stress shared components involved bgooberctions
and long-latency memory operations. Programs have been run until completio

5.4.1 Out-of-Order Retirement and Memory Consistency Model

This section presents performance results for the VB multiprocessateatcine im-
plementing both relaxed and sequential consistency (referred to asG/B+Rl VB-
SC, respectively), and compares them to ROB-based multiproces$oBsRE and
ROB-SC). In Figures 5.7a, 5.7b and 5.7c, the results are presentefasyance
speedups over the ROB-SC architecture for 2-, 4-, and 8-corensystespectively.
The bar height represents the speedup achieved by VB-SC, wtibeseiscle- and
triangle-ended lines represent the ROB-RC, and VB-RC architectiagsectively.
Each bar/line in a group belongs to a different ROB/VB size, ranging 8dm128
entries, both for the represented architecture and the baseline. The imfAéore

82 Chapter 5. The Multicore Validation Buffer Architecture

16
I e e e e
o
S
S
8
& L2rWMlwia || ff
I ! I!II' '
i+ d) - 19
2NN AZNN
a) 2 processors
N 8-entry VB
16 Q 16-entry VB
) 1 32-entry VB
> 64-entry VB
128-entry VB
R T et @ ROBRC 7O
s A VBRC
54
g rerMliagia k- || ——
| PERN
1+ o pe
? PN N
] N A
lu fft radix cholesky barnes fmm ocean radiosity raytrace waternsq watersp Average
b) 4 processors
16
I e e e e
o
S
S
[
@
=%
2]

o B

Averag

P

waters)

2 R

fmm oceal radiosity raytrace watel

c) 8 processors

Figure 5.7: Performance speedups relative to ROB-SC.

of the RC designs is modeled with the absence of an HB, as the order of memory
operations can be safely altered.

The following observations can be made from the average results shave in
last groups of bars. Performance speedups are especially high ilBtheckitecture
for small VB sizes, regardless of the memory consistency model usedre@ken
is that an 8 or 16-entry ROB is a very restrictive bottleneck in most applicgtion
and is the main source of pipeline stalls, which are effectively avoided by/Ehe
architecture.

Regarding the memory consistency model, results show that VB-SC outpsrfo
both the ROB-SC and the ROB-RC in most cases (exceptions are whemsideo
large 64 and 128-entry ROBs for 8 processors). Compared to ROBHRG/B-SC
architecture introduces the history buffer, which can serve as an additiottleneck;
nevertheless, VB-SC speeds up the instruction flow from the VB into thear8,
allows instructions to be extracted early from the HB. As results show, tttiatfaws
SC to be enforced while maintaining better performance.

. Performance Evaluation 83

I
IN

N

0.8+

\\\\\\\\
\\\\\\\\\\\\\

[Used
Empty FQ
] ROB/VB
I 1B
Other

0.6+

04+

7
n
o
i
i

AR

Ay

Dispatch slots fraction

02+

EIFIGIH _|AIBICIDIEIFIGIHI _|AIBICIDIEIFIGIHI _|AIBICIDIEIFIGIHI R(‘DFF
radix cholesky barnes fmm

ABICIDIEIFIGIH| |AIBIC]

O

5
=

A:ROB-8

B: ROB-16
C: ROB-32
D: ROB-64

=y %

ARy

E: VB-8

F: VB-16
G: VB-32
H: VB-64

MMM

AN

Dispatch slots fraction

AIBICIDIE|F|G|H AIBICIDIE|F|G|
ocean radiosity raytrace waternsq watersp

Figure 5.8: Processor bottlenecks at the dispatch stage.

Finally, given the simulation results, the VB-RC model is the best approach,
reaching speedups of about 5% for large VB sizes, and up to 25%nfdl¥B sizes.
In this architecture, both loads and stores can leave the processor@ipihiout be-
ing globally performed. Since these instructions are the main source of [|gédilts,
significant speedups are achieved, especially in memory-intensive ajpie.

5.4.2 Performance Bottlenecks

To observe how bottlenecks shift when the ROB/VB size varies in botlitactires,

the dispatch stage has been instrumented in the following experiment. In @ 4-wa
processor, four instructions are potentially dispatched in each cyckadoof the
four available dispatch slots can be either used or wasted, depending amdih
ability of processor resources. Figure 5.8 plots the amount of dispatshfgtahe
execution of the SPLASH2 benchmarks in the baseline 8-core procassaralized

with respect to the total number of dispatch slots, which is equal to the nurhéer o
ecution cycles multiplied by the dispatch width and the number of cores. A dispatc
slot can be classified in the following categories:

e Used a microinstruction located at the head of the fetch queue has been dis-
patched. The instruction can either belong to the correct execution path or
mispeculated.

o Empty FQthe fetch queue is empty and the dispatch slotis wasted. As dispatch
slots are tracked for all cores, this case is only considered while there is a
running task in the core.

¢ ROB/VB the ROB or VB is full and the dispatch slot cannot be used.

84 Chapter 5. The Multicore Validation Buffer Architecture

60

501 - -

40

30

Instructions

18

IPC

20

10

0 5 10 15 20
Number of entries

Maximum [Average

a) CoW table occupancy. b) CoW table size.

Figure 5.9: Delayed writebacks and the CoW table.

e HB: the HB is full, and has caused the ROB/VB to become full as well, pre-
venting the dispatch slot from being used.

e Other. the register file, instruction queue or load-store queue is full.

Let us focus on benchmarkatersp which shows a representative trend for the
rest of the benchmarks. The bars labeled frdto D represent the ROB architecture
with different ROB sizes. For an 8-entry ROB, a lack of space in this streiés the

cause for most stalls at the dispatch stage. When its size is doubled, a lofttlene

shift into the HB can be observed. Then, a 32-entry ROB makes the disgtaits
be balanced among all processor structures, while a 64-entry ROBesuifi totally
prevent this structure from causing pipeline stalls.

In the VB architecture, represented by the bars labeled ffbto H, the same
trend is observed. However, a balance of reasons for pipeline statlsies’ad with a
smaller VB. As observed, an 8-entry VB is large enough to make otheegyeuthe
register file) become the processor bottleneck in some cases. For 182-amdry
VBs, the fraction of wasted dispatch slots due to a full VB decreases veeot to
the ROB architecture, while a 64-entry VB completely shifts the bottleneck.away

5.4.3 Impact of Delayed Writebacks

Two experiments have been carried out on top of the baseline 8-caregsar to
evaluate how delayed writebacks to the HB affect performance of therbtidtac-
ture. On one hand, we have measured the occupancy of the CoW taleléygyycle,
and average and maximum values are shown in Figure 5.9a. The heiglet ludrth
represents the number of instructions in the HB that have been issuedveuhbt
written back their result yet, and thus, occupy an entry in the CoW. Rebolig that
the number of busy entries is variable depending on the benchmark, taerege
is low with respect to the number of entries in the HB.

5.4. Performance Evaluation 85

1.8
g f g 19
R / =
1.8
1.6
|
15 L L L L L L 1.7 Il Il Il Il Il Il
8 16 32 48 64 128 8 16 32 64 128 Inf.
Number of entries Number of entries
a) ROB/VB b) History Buffer

IPC

2
19 | .
1'3 I B ROB arch.
' ® VB arch.
16 |
. /

L L L L L
30 40 50 60 70 80
Number of entries

c) Register File

Figure 5.10: Performance scaling for different resource sizesh gaiot represents
average values for all SPLASH2 benchmarks.

On the other hand, we have tuned the CoW table size by looking for the point
where a reduction of the number of entries prevents incomplete instruatmnsh-
tering the HB and causes pipeline stalls. Figure 5.9b shows averagenpanice for
the whole benchmark suite and different table sizes. A 5-entry table makfs-p
mance drop by only 2.3% relative to an unbounded CoW table (represeitkethe
dashed line labelebhf), whereas a 15-entry table provides a negligible impact.

5.4.4 Impact of the Resources Size

This section explores the impact on performance of varying the size of the th
main processor structures affected by our proposal —ROB/VB, H8register file
(RF)— focusing on both ROB- and VB-based, sequentially consistecwy&pro-
cessors. Performance values are shown in Figure 5.10, computedasthge of
single IPC values obtained from the execution of the SPLASH2 benchmarks

e ROB/VB. Figure 5.10a shows the results obtained when changing the ROB/VB
size from 8 to 128 entries, with the remaining parameters matching the base-
line configuration. The VB efficacy can be analyzed either from a coat 0
performance point of view. On one hand, a 16-entry VB provides siméar p
formance to a 64-entry ROB. This makes the VB a cost-effective solutidn tha
sustains performance, while reducing its size by a factor of 4. A smaller VB
not only saves hardware devoted to storage, but also reduces thataofiou
logic (decoders/encoders) required to implement access to a largeustruc

86 Chapter 5. The Multicore Validation Buffer Architecture

Cycles

ROB K& vB [IHB Il Neither

Figure 5.11: Lifetime of instructions classified as per the structure theylaregin
(ROB/VB, HB, or neither of them).

On the other hand, VB sizes of 8, 16, and 32 entries outperform their dinilar
sized ROB-based designs by 17.7%, 7.8%, and 3%, respectively.

e History Buffer. We evaluated HB sizes from 8 to 128, including an infinite
HB (Figure 5.10b). A ROB-based architecture provides a modestrpeafice
boost when the HB size is increased beyond 64 entries. The reasort is tha
the ROB is a restrictive bottleneck, where instructions spend the bulk of their
lifetime. The only instruction that can advance to the HB without being com-
pleted is astore so the HB only causes a machine stall when a long-latency
storeblocks the head and propagates the stall until the ROB tail. On the other
hand, a VB-based system alleviates the ROB bottleneck, and makes the HB
a more critical structure. In this case, an increase of the HB size results in
nice performance gains. The VB-based processor with a 64-entryutfizie
forms its homologous ROB-based design by 7.1%, and behaves similarly to
the in-order retirement processor with an infinite HB.

The effects of addressing the ROB bottleneck can be seen in FigureThis1.
figure plots the number of cycles that instructions spend on average in the
ROB/VB, in the HB, or in neither of them. The case where instructions are
still in the pipeline without being either in the ROB/VB or in the HB can only
occur in the VB architecture. As observed, the lifetime portion of instructions
in the VB decreases with respect to the ROB. In contrast, instructions remain
longer in the HB in the VB architecture, causing a higher occupancy of this
structure, and thus explaining the observed performance improvements du
increased HB sizes.

e Physical Register File. The register file (RF) is a critical resource inua
way superscalar processor, since it is potentially acceaseunes for reading

5.4. Performance Evaluation 87

1.2
ROB-RC —l—
VB-SC —hA—

11r VB-RC —@— |

Speedup
=
T

0.9

08 1 1 1 1 1
100 200 300 400 500

Latency (cycles)

Figure 5.12: Impact of main memory latency.

andw times for writing (assuming instructions with 2 source and 1 destination
operand). The register renaming strategy used in the VB architectunel@so

for the management of the register mapping tables and is able to releasd unuse
registers even if younger instructions have not finished execution. oAesh
allocation time of physical registers provides two main benefits: on one hand,
a higher number of in-flight instructions can be supported; on the otimel, laa
lower occupancy of the RF enables hardware complexity to be reducealvith
adversely impacting performance.

Experiments model RF sizes of 40 to 80 physical registers. As shown ing-igu
5.10c, a 40-entry RF on a VB-based multiprocessor behaves similarly to a 60
entry RF on a ROB-based design. A difference of 20 physical registan
entail notable hardware and energy overhead due to the high numiesacbf r
and write ports implemented in this structure. From a performance point of
view, the VB architecture improves the ROB-based approach by abd@@#ol5
and 7.7% for RF sizes of 40 and 80, respectively.

5.4.5 Main Memory Latency

Different latencies for main memory have been simulated to test their impact on the
performance of the multicore VB architecture. Figure 5.12 shows the rpeafce
speedup with respect to the baseline sequentially consistent, 8-coreh&se mul-
tiprocessor with a memory access time of 200 cycles. The plot includes memory
latencies ranging from 100 to 500 cycles both for ROB- and VB-basdalked and
sequentially consistent machines.

A longer access time makes speedups decrease for the different@roieseand
consistency models. However, the ROB-based system implementing retesse- c
tency is less affected than the VB-based systems. Specifically, the ROB+HRE
touches the VB-SC plot at a short latency, and tends to shorten the gapheith
VB-RC curve for higher latencies. When the main memory latency incretises,
amount of information created by speculative overlapped computations gaod it

88 Chapter 5. The Multicore Validation Buffer Architecture

becomes harder to enforce sequential consistency. This makes any B@Genma-
tion perform worse than RC for very large memory access times. HowteeX/B
is especially appealing for systems with low memory access times, where an imple-
mentation of sequential consistency performs similarly to relaxed considtaritye
ROB.

When observing the interpolated curve for VB-SC between the memory Jatenc
values 200 and 300, it can be appreciated that a speedup of 1 is achidva mem-
ory latency of about 230 cycles (this interpolated value has been codftsyieirther
experiments using 230 cycles as memory latency). In this case, one cdndmthat
the VB architecture tolerates higher memory access delays (causegafople, by
the reduction of the cache size), while still sustaining performance of theliba
processor.

5.5 Hardware Complexity

5.5.1 Size of the Major Processor Components

Several combinations of structure sizes have been modeled to compdweater
complexity of the ROB and VB architectures with similar performance levels. To
this aim, the HB, the ROB (or VB), and the RF size have been varied betw&en 3
and 128, between 16 and 64, and between 40 and 80, respectivethesd com-
binations have been evaluated for 1-, 2-, 4-, and 8-core, sequeittiaibistent pro-
cessors. Likewise, all considered benchmarks have been rundiorceafiguration.
Due to the high number of simulations, only average performance resulteeor
whole benchmark suite are shown, and some of them are filtered with the ifadlow
criterion.

Twenty performance results are shown in Figure 5.13 both for the ROBgpb.1
and VB (5.13b) architectures. They have been picked out from the totdlieyx-
periments by grouping similar performance values and discarding those ighitarh
complexity. Each bar represents the average performance for a specifbination
of simulation parameters specified at the bottom of each plot.

The performance levels of interest are labeled as A, B, and C. Eaclermf ith
plotted for both architectures for comparison purposes. PerformanekeAecor-
responds to an IPC of 1.11. It is achieved by a 2-core, ROB-bassxgsor with
80 physical registers, a 32-entry ROB, and a 128-entry HB, but glso\lB-based
processor with 20 registers less, a VB 2 times smaller than the ROB, and a 2 times
less complex HB. For an 8-core processor, performance level Bsstiat the VB
architecture provides an average IPC of 2.02 with 20 registers lesa,\dRdwice as
small as for the analogous ROB-based processor. Finally, perfoeneved C (IPC
of 1.7) is provided by a VB-based processor that doubles the RF ansiaéBof a

5.5. Hardware Complexity 89

25
2 - — B
— H FEFA 1 ElA -C
15 —
o —
a
dLLe-dfbb|—[d4LE|-H444=-A
1
05 H H
0
History Buffer|32 |32 | 32| 32|128/ 32|32 |32 (32|32 ‘ 643232 ‘128 32 ‘64 128 64 | 64 ‘128
ROB|16 |32 |16|32|32|64 (16|16 |32| 64 [16| 16 32 |64|16| 64
Register file|40 |60 | 40| 60| 80 |40| 60 80 |40 60 80
Processor Cores 1 2 4 8
a) ROB architecture
25
2 o —- 43 -B
— e E-H 4+ -1+ -C
1.5
Q
o —
- L[4 4L bl-[dd 4 El<[-44=-A
1
0.5 H
0
History Buffer| 32 |32 ‘ 6464128128/ 64 |32 32|32 ‘128 32|32 ‘ 64[128|32 128 64 | 32 ‘128
VB|16| 16 16 |32|16|64|32| 32 (64| 16 |16|32(32|16| 32
Register file|40 | 40 60 |80| 40 |60 80 40 60 80
Processor Cores| 1 2 4 8

b) VB architecture

Figure 5.13: Performance for different hardware complexity levels.

ROB-based machine, and also uses an HB 4 times as large, but halvesitier rod
processor cores.

5.5.2 Impact of the Pipeline Width

Different values between 1 and 8 have been tested for the pipeline weltbdd, dis-
patch, issue, and commit/validate bandwidth) for the baseline ROB- and ¥&ipa
8-core, sequentially consistent architectures. Figure 5.14 shows'pearfce results
for the ROB (light gray) and VB (dark gray) systems. Notice that pernforce is
computed globally for all cores, which is the reason why the IPC value xeeed
the number of ways.

90 Chapter 5. The Multicore Validation Buffer Architecture

25

1.5

IPC

0.

o

ROB/VB Size 16 64 8 16 64 16 64 8 16 64 16 64 8 16 64 16 64 8 16 64
Architecture = ROB VB ROB VB ROB VB ROB VB
Pipeline 1-way 2-way 4-way 8-way

Figure 5.14: Pipeline width.

Results show that the pipeline width especially constrains performancevay 1-
processors. In this case, the transition from the ROB into the VB architeistlgss
beneficial (6% for 16 entries) than for wider pipelines, which sustaineadyyp of
at least 8.3%. Though 2-way cores clearly outperform 1-way cerneker pipelines
provide a moderate performance boost. The following comparisons drghitged.

A 2-way, VB-based processor with 16-entry VBs outperforms an }-R&B-
based processor with the same number of ROB entries. Likewise, a A/Bdyased
processor with 64-entry VBs performs better than an 8-way, ROBdbas®essor
with similar ROBs. An increase of the pipeline width involves more instructioneach
ports (fetch stage), register file ports (rename stage), and assosigdingh ports in
the 1Q (issue stage), as well as an increase of complexity of other hardwactures.
Thus, it is preferable to transition to the VB architecture rather than intingugore
pipeline ways in the above cited cases.

5.6 Summary

In this chapter, the VB multicore architecture has been presented asentatiy
consistent, out-of-order retirement, multiprocessor approach. Segjuemsistency
is based on speculatively retiring load instructions using a history bufey, (while
maintaining a non-speculative approach for retiring the rest of instrigtidrhis
approach relies on the introduction of a small table (CoW) to support dBegsti-
nation operands to be written into the HB.

An extensive evaluation has been carried out dealing with single-thietad-p
tial, performance on multicore processors with different number of corgsct of
the resources size, and memory consistency models. Experimental rasultthat
the multicore VB architecture can speed up both relaxed and sequentia#iiscon

5.6. Summary 91

tent in-order retirement in future multiprocessor systems by between 3%Q&n0d
depending on the ROB size.

Chapter 6

Related Work

In this chapter, some work related with this thesis is discussed. The citeobapps
are classified in two sections, depending on whether they address agspoo or
multiprocessor environments. For both of them, previously proposedfaartder
retirement architectures are briefly described. The summary of the psewviork
dealing with multiprocessors includes memory consistency implementations.

93

94 Chapter 6. Related Work

6.1 Proposals Based on Uniprocessors

Long-latency operations constrain the output rate of the ROB, and thusyproe
cessor performance. Many microprocessor mechanisms have beatiy@coposed
dealing with this problem. Some of them try to alleviate this bottleneck by aggres-
sively and carelessly releasing some resources out of program asileg check-
points to return to a previous valid state on mispeculation. Others release gipelin
resources non-speculatively and also out of program order, iagoitheckpoints by
carefully taking retirement decisions. And others reduce the impact ofldagcy
operations by enlarging some processor structures that constrainttioetios win-

dow size. In what follows, some proposals related with this thesis and lmsed
uniprocessors are classified into these three categories and summarized.

6.1.1 Speculative Out-of-Order Retirement with Checkpoitis

Proposals in this category permit the retirement of instructions in a speeutatide

when a long-latency operation blocks the ROB head. These solutionsuntcge-
cific hardware to periodically checkpoint the architectural state ancgtese correct
execution. When a misprediction occurs, the processor rolls back to thehkssk-

point, discarding all intermediate computations.

In [49], Mutlu et al. propose the run-ahead architecture. The state@irtihitec-
tural register file is checkpointed each time a long-latency memory operatioksblo
the ROB head. When a checkpoint is performed, the processor entéms ian-
ahead mode until the long-latency instruction finishes. Meanwhile, a bajus is
distributed among dependent instructions to enable them to continue. Hotese
execution mode does not allow instructions to update the architectural sthien W
the long-latency operation finishes, the processor rolls back to the mhiecland
re-executes the instructions in normal mode, discarding previous re3iiésrun-
ahead execution provides useful prefetching requests (both fangtisins and data),
as well as effective train for branch predictors.

In [6], Kirman et al. propose the checkpointed early load retirement nmésrina
which has certain similarities with the previous one. To unclog the ROB when a
long-latency load instruction blocks the ROB head, a predicted value igleibior
those dependent instructions to allow them to continue. When the value ofathe lo
is fetched from memary, it is compared against the predicted one. On mipyed
the processor rolls back to the checkpoint.

In [8], Cristal et al. propose to replace the ROB with a set of checkpaints
specific instructions. This mechanism uses a CAM structure for registepinap
purposes, which is also in charge of freeing physical registers. sSStoaé at the
commit stage to modify the machine state until the closest previous checkpsint ha
committed. In addition, instructions taking a long time to issue (e.g., instructions

6.1. Proposals Based on Uniprocessors 95

dependent on a load) are moved from the instruction queue to a segdndtar,
freeing resources that can be used by other instructions. Thesectitsisuare re-
inserted into the instruction queue when the instruction they are depemnulératso
completed (e.g., the load data has been fetched). This problem has aidadided
by Akkary et al. in [7].

In [50], Martinez et al. propose an in-order retirement mechanism which identi-
fies irreversible instructions for early release of resources. Unlik&/Benicroar-
chitecture, this proposal retires instructions in order from the procegseline, and,
like the works discussed above, checkpoints are required to eventolhlhack to a
previous machine state.

6.1.2 Non-Speculative Out-of-Order Retirement Without Clreckpoints

In [9], Bell and Lipasti present a checkpoint-free approach. A R®BIill used,

into which instructions are inserted in order, but from which they are ebeeout of
program order. To this end, a specific number of entries is scanned BB head

in the commit stage, and the empty slots caused by instructions withdrawn out of
order are removed by collapsing the remaining entries. Unfortunately, ritjimgal

is unsuitable for large ROB sizes, and resources are handled like in altiRiB-
based processor, without any focus on improving resources usage.

6.1.3 Enlargement of the Major Processor Structures

Some proposals alleviate the performance degradation caused by ROBst@tis
larging the major microprocessor structures or managing them more efficiémtly
the case of non-scalable structures, such as the load-store queuegitter file,

or the instruction queue, alternative designs allow an increase in numkeetrads
compensated by a limited functionality, which still provides a global perforemanc
gain.

In [51], Raasch et al. propose a segmented instruction queue (I@)yf@am-
ically scheduled processors. Though a larger IQ increases theeskpustruction
level parallelism (ILP), it also slows down its access time, and might impacteon th
clock speed. The authors of this work propose to divide the IQ into snatheets
among which instructions are promoted until they reach a small issue biudfer,
which they can be actually scheduled into the corresponding functiomtal Tinis
allows the global 1Q complexity to be reduced for a given total number ofemnior
performance to be increased for a specific complexity and higher nurhbetries.

In [52], Balasubramonian et al. deal with the complexity of the register fif§.(R
While a large multiported RF improves ILP, the same side effects occur as iQthe |
namely that the access latency rises, and the system clock might be forsled/to
down. First, the authors reduce the global number of RF entries by degigitwo-

96 Chapter 6. Related Work

level RF. Physical registers are assigned to each level by beingdtierally divided
into those with active consumers and those waiting for specific conditioeen8ea
banked organization of the RF is proposed to reduce the port requitensemilarly
to banked data caches, the RF is able to provide high read/write bandwiilihstilh
being minimally ported.

Finally, in [53], Park et al. overcome the scarce scalability of the loac: sfoeue
(LSQ), motivated by an increasing pressure on this structure in termpacitaand
search bandwidth. As an associative structure, the LSQ presents sinoitdemns
to the IQ when its size tries to be straightforwardly increased. First, the zubho
this work present two techniques to reduce the required search bahdwdd one
hand, they introduce a store-load aliasing predictor. On the other,latieely issued
loads are stored in a separate load buffer, so the store-load ordeiorialatection
is moved off the LSQ. Second, the authors propose a segmentation of @é¢oLS
scale its size. In the resulting design, the LSQ is divided into segments ¢edriec
a chain.

Since the previous proposals focus on structures other than the ROBend
renaming tables, they are orthogonal with the VB architecture proposeid thdsis.
With the joint implementation of these techniques, a very aggressive pooaeasgd
support a very large instruction window by alleviating the bottlenecks impogé#ue
traditional management of the main pipeline structures in conventional safrrs
processors.

6.2 Proposals Based on Multiprocessors

Regarding multiprocessor environments, two mainstream research topebden
merged in this thesis. On one hand, sequential consistency (SC) implementation
have been studied to investigate their compatibility with out-of-order retirement in
multiprocessors. On the other hand, some proposals dealing with outtefretire-
ment of instructions in multiprocessors have been examined.

6.2.1 Sequential Consistency Implementations

There is a significant body of previous work in sequentially consistent mobtgs-
sors. Performance enhancements suchtai® prefetchingandspeculative execu-
tion of loadsare considered in [47], argpeculative retirement of loads discussed
in [29]; both features have been detailed in Section 5.1 and are implementes in th
baseline multicore architecture used for simulations due to their low complexity and
effectiveness.

More sophisticated SC implementations can be found in the literature. In [54],
speculative retirement of loads is improved by also retiring stores befeiresghrecu-
lative state is confirmed. The fact that stores may commit stale values to the memory

6.2. Proposals Based on Multiprocessors 97

hierarchy forces &istory buffer(in this context calledHiQ) to store the previous
value at the written memory address. To get this value, SC++ requires $tobe
implemented as read-modify-write operations in the cache. On mispeculatien, SC
performs a burst of cache writes to roll back to a previous valid statentrast, this
work avoids to impose these complexities in the cache hierarchy.

SC++lite [55] is an improvement of SC++, based on the observation that the
SHIQ is usually underutilized, although its storage is fully required during small
periods of execution. To avoid its hardware overhead, the SHiQ is implethente
directly in the memory hierarchy. On mispeculation, SC++lite recovers at a&slow
rate than SC++, but consistency mispeculations are rare enough t iaffor

Finally, BulkSC [56] is another SC implementation where memory instructions
are grouped in chunks, and appear to execute atomically and in isolatierhartt-
ware enforces SC at a coarser grain (i.e., chunks), obtaining pefme close to
relaxed consistency implementations, by enabling optimizations in the execution of
memory instructions.

6.2.2 Out-of-Order Retirement in Multiprocessors

A number of key papers have addressed the subject of out-of@titement in mul-
tiprocessors. In the Cherry-MP architecture [57], resources (ghgsical registers)
are released speculatively, entering into the so-calhetry mode by checkpointing
previous valid machine states, which processors roll back to on futureauikgtions.
A Cherry-MP system supports both release and sequential consigtgsejting up
the conditions to release processor resources. Unfortunately, ya¥ierinvolves
modifications in the cache hierarchy, such as the adaptation of the MO&Stot,
and also needs storage history about data shared among procesgwmaymode.
This reduces its adaptability to generic memory systems, and checkpoinedrfeed
managing speculation involve a considerable amount of hardware to bd talthe
processor pipeline.

The Kilo-Instruction Multiprocessor (or KIMP) [58] was also propossdan out-
of-order retirement multiprocessor architecture. A KIMP enables maigutsns
to be in-flight by checkpointing the processor state when long-latencyatistns
block the pipeline and requires an aggressive register renaming meohariese
checkpoints commit globally by locking a shared snoopy bus and braaugasem-
ory write accesses. SC is enforced by making remote processorsalolidjarevious
checkpoints when an address match is snooped on the shared bustchliecture
imposes harsh restrictions on the system architecture, such as thecpresashared
bus (constraining scalability) and again the cost of several checkpoitfits proces-
sor pipelines.

98 Chapter 6. Related Work

6.3 Summary

In this chapter, some previous work pursuing similar aims to the VB architecture
has been presented. They range from alternative ways to retire timtisiout of
order from the processor pipeline, to memory consistency implementation in multi-
core environments. The novelties of the work proposed in this thesis wiikce

the cited works reside if) the design and evaluation of a low-cost, non-speculative,
out-of-order retirement architecturig) an evaluation and integration of out-of-order
retirement in multithreaded environments, and) the design and evaluation of a
checkpoint-free, out-of-order retirement multiprocessor design.

Chapter 7

Conclusions

The Validation Buffer (VB) architecture has been proposed in this dedsan as
an alternative design where instructions are retired out of prograer émin the
processor pipeline. This technique has been implemented and evaluat@ddthte
three major processing models available in the microprocessor marketyéaigihe
last two decades, namely, superscalar, multithreaded, and multicorsgoose In
this chapter, the main contributions on each of these fields are summaribedetb
by a discussion about future working directions and an enumeration stibstific
publications related with this thesis.

99

100 Chapter 7. Conclusions

7.1 Contributions

In Chapter 3, the baseline VB architecture has been proposed fassafa proces-
sor. First, the potential of this proposal has been evaluated by assuraimgaibr
microprocessor structures unbounded, namely the register file, thectitrgueue,
and the load-store queue, showing that current applications, andabp#oating-
point benchmarks, can be considerably benefited from out-of-cetiezment. Then,
a realistic VB-based machine has been modeled and compared against Bvo RO
based proposals, one retiring instructions in order and the other oudef &kesults
show that a 32-entry VB provides performance similar to a 256-entry RDBse
performance benefits are accompanied by a reduction in the occuphtioy K-
maining structures, which has further implications in terms of hardware cpsiner
consumption.

In a study trading off complexity and performance, results show thatengier-
formance level is achieved in the VB architecture with simpler hardwardacotgte
major microprocessor structures than for in-order retirement procebsareover,
the pipeline width can be narrowed in a VB-based processor, drastiedliging the
cost of a superscalar pipeline, while sustaining performance of a R3Bdudesign
with the same structure sizes. This might be of special interest in those ataréte
where complexity is a crucial issue, such as power-aware or embeysteds.

In Chapter 4, the VB architecture has been extended for multithreadbd arc
tectures, including coarse-grain, fine-grain and simultaneous multithgeadihe
behavior of different thread selection policies at the fetch stage hasebgiored,
showing that out-of-order retirement and both multithreading and fetchigolare
techniques that orthogonally contribute to increase the issue bandwidthtigiiza
and processor performance.

Performance results provide three main conclusigrasfine-grain multithreaded
VB-based processor outperforms, on average, a simultaneous muttgbr&pB-
based processofj) a simultaneous multithreaded VB-based processor reaches the
maximum performance with about half of the hardware threads than a simultane
ous multithreaded ROB-based processai) benefits of fetch policies are orthog-
onal to the ones provided by the VB. These contributions justify the viability an
cost-effectiveness of an out-of-order retirement multithreaded psocenicroarchi-
tecture.

Finally, Chapter 5 has shown the extension of the VB architecture for multi-
core/multiprocessor environments, where instructions are retired oudef m dif-
ferent processing nodes, while sequential consistency is still enforthis strict
memory model is enforced by using tBpeculative retirement of loadechnique
with an additional hardware structure, called History Buffer (HB). Oubraler re-
tirement in multiprocessors is implemented by focusing on three centralized compo-
nents. First, conditions for instructions to leave both the VB and HB areaé)ax

7.2. Future Work 101

with no additional hardware cost. Second, renaming tables are handleannatter-
native register renaming strategy, which decouples register releasatfeocommit
stage by means of little additional storage per physical register. Finally, latatiia
(CoW) is introduced to support a delayed write back of destination ogsfato the

HB. Since no loss of generality is incurred regarding memory hierarcihytencon-
nects, the VB multiprocessor architecture remains highly scalable with the numbe
of processors.

Results provide three main conclusion$:a sequentially consistent VB-based
multiprocessor outperforms, in general, a ROB-based system implemertageae
consistency, regardless of the number of processgrROB, register file, and HB
sizes can be reduced in the VB multiprocessor architecture, maintainiryrparice
and lowering complexity, anili) relaxation of instruction retirement conditions and
memory model strictness can coexist without significantly impacting the pernfmena
of the VB architecture.

An additional contribution of this thesis is the development of the Multi2Sim sim-
ulation framework, presented in Chapter 2. This tool integrates importaiurés of
existing simulators and extends them to provide additional functionality. The main
characteristics of Multi2Sim are a model of superscalar, multithreaded altidone
processors, a cache coherence protocol, interconnection netveorttghe exten-
sions to support the VB architecture with different memory consistency isotlee
Multi2Sim simulation framework has been made publicly available and researche
are encouraged to contribute to its further development through SMM¢rsion)
access and mailing lists.

7.2 Future Work

More research is planned as for future work on the topic of out-oéraretirement of
instructions. Specifically, we intend to design a superscalar procepsting where
neither a reorder buffer nor an alternative FIFO structure (like the atatid buffer)
is present. In the VB architecture proposed in this thesis, the charactbgestikof-
line blocking effect caused by the ROB is largely alleviated. However,logtms
are still extracted in program order from the VB (albeit with less restriativedi-
tions), and this may still be a cause for pipeline stalls, especially for very $/Ball
The key observation that allows the removal of this bottleneck is that the tratida
of correctly speculated instructions, as well as the discard of mispecuats] is
performed in form of instruction bursts embraced by epoch initiators. ,Thasonly
information about sequentiality that needs to be kept track of is the prograen of
epoch initiators.

In this proposal, an alternative register renaming strategy needs to igaet:s
again to handle register reclamation by itself, without the information aboisteeg

102 Chapter 7. Conclusions

mappings that was stored both in the ROB and the VB. Specifically, a hyloéare

ing scheme has been already proposed and published [59], which am@biontent
addressable memory (CAM) and a random access memory (RAM) in orgerio
form efficient checkpoints of the aliasing table at specific execution paetsver

the machine state in constant time after mispeculation, and provide the pipeline with
register mappings at full decode bandwidth, while even reducing pawvsuenption

and increasing performance of traditional register renaming.

The removal of a FIFO structure holding instructions in flight opens ngyerp-
nities when pipeline resources are shared by instructions among whigyuoerdial
order needs to be enforced, such as those that belong to differksit Hsis is the
case of multithreaded processors, which decode instructions fromeditfehreads
that share some processor structures. As discussed in [60], sHaiR{PB among
threads is preferable when a multithreaded processor is loaded with a tolenof
tasks, because a single task can compete for all its entries. Howeverea $HFO
structure has other pernicious effects when highly loaded, such aghinted block-
ing, thread starvation, and holes at recovery. All these effects aut@ihatianish
in an architecture without ROB or VB, and the benefits of a shared resaue kept
when the proposed non-FIFO (i.e., associative) structure storinghepiiators is
shared among threads.

New challenges are also posed by this proposal when introduced in a wultipr
cessor environment. Existing techniques to enforce sequential corgisésrcited
in this thesis, may not be straightforwardly applicable to architectures thatladte
order in which instructions leave the processor pipeline. Even spe@utativement
of loads using a history buffer (HB), as adapted in this thesis for the ¢Bitcture,
is not suitable in this case, since the income of instructions into the HB needs to be
provided in sequential order by some other structure in the rest of thingip&€hus,
it becomes a research opportunity to design an efficient implementation ofeC th
is again transparent to the memory hierarchy and interconnects in a systera w
processor pipelines lack a ROB or VB.

In summary, out-of-order retirement of instructions is still a hot topic that ca
increase processor performance in state-of-the-art systems, byingntead-of-
line blocking effects on FIFO structures and increasing the number otigtgns
in flight.

7.3 Publications Related with This Work

The following list enumerates the papers related with this dissertation thabkawe
published, or are under review process, in specialized conferengmsrnals.

7.3. Publications Related with This Work 103

e R. Ubal, J. Sahuquillo, S. Petit, Fopez, and J. Duato, “The Validation Buffer
Microarchitecture for Multithreaded Processor&aCACES Summer School,
L'Aquila (Italy), Jul. 2007.

e R.Ubal, J. Sahuquillo, S. Petit, Fopez, and J. Duato, “VB-MT: Design Issues
and Performance of the Validation Buffer Microarchitecture for Multitlegh
Processors”, ifProc. of the 16th International Conference on Parallel Archi-
tectures and Compilation Techniques, Brasov (Romaiept. 2007.

e R. Ubal, J. Sahuquillo, S. Petit, and Fopgez, “A Simulation Framework to
Evaluate Multicore-Multithreaded Processors” Hroc. of the 19th Interna-
tional Symposium on Computer Architecture and High Performance Cempu
ing, Gramado (Brazil)Oct. 2007.

e R. Ubal, S. Petit, J. Sahuquillo, Pbphez, and J. Duato, “A First Approach
to Non-Speculative Out-of-Order Instructions RetiremeX¥]ll Jornadas de
Paralelismo, Zaragoza (Spaindept. 2007.

e R. Ubal, J. Sahuquillo, S. Petit, and Fogez, “The Impact of Out-of-Order
Commit in Coarse-Grain, Fine-Grain and Simultaneous Multithreaded Archi-
tectures”, inProc. of the 22nd International Parallel and Distributed Process-
ing Symposium, Miami (Florida, USAApr. 2008.

e R. Ubal, J. Sahuquillo, S. Petit, and Bpez, “An Experimental Framework to
Simulate Sequential and Parallel Workloads in Multicore-Multithreaded Pro-
cessors”XIX Jornadas de Paralelismo, Castatl (Spain) Sept. 2008.

e S. Petit, R. Ubal, J. Sahuquillo, Pbpez, and J. Duato, “An Efficient Low-
Complexity Alternative to the ROB for Out-of-Order Retirement of Instruc-
tions”, in Proc. of the 12th Euromicro Conference on Digital System Design,
Patras (Greece)Aug. 2009.

e S. Petit, J. Sahuquillo, P.dpez, R. Ubal, and J. Duato, “A Complexity-
Effective Out-of-Order Retirement MicroarchitecturéEEE Transactions on
Computers, Vol. 58 No. 1Dec. 2009.

e R.Ubal, J. Sahuquillo, S. Petit, Fopez, and D. Kaeli, “A Sequentially Consis-
tent Multiprocessor Architecture for Out-of-Order Retirement of Ingtans”,
IEEE Transactions on Parallel and Distributed Systemgmitted.

All published works listed above are exclusively related with this thesisnand
of them are or will be used as supporting material for other theses. Huodisgon-
tributions of the PhD candidate reside mostly in the implementation of the proposed
techniques (including the complete code of the Multi2Sim simulation framework, as

104 Chapter 7. Conclusions

well as the necessary modifications for the VB architecture), the setugxaedtion

of most simulation experiments, and the writing of the paper drafts and tethnica
reports describing the work. Along these processes, the coauthagrgdeatedly
provided useful hints and advices, which the PhD candidate has thkedajgomake

the work evolve into its final version.

References

[1] J. E. Smith and G. Sohi. The Microarchitecture of Superscalar BsocgProc.
of the IEE 83(2), Dec. 1995.

[2] K. C. Yeager. The MIPS R10000 Superscalar Microproces$BEE Micro,
Apr. 1996.

[3] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyled 81 Rous-
sel. The microarchitecture of the Pentium 4 procedatel Technology Journal.
Q1, Feb. 2001.

[4] J. E. Smith and A. R. Pleszkun. Implementation of Precise Interrupts in
Pipelined Processors. Froc. of the 12th Int'l Symposium on Computer Ar-
chitecture June 1985.

[5] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-Effectiye&aealar
Processors. IfProc. of the 24th Int'l Symposium on Computer Architecture
June 1997.

[6] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Marez. Checkpointed Early
Load Retirement. IfProc. of the Int'l Symposium on High Performance Archi-
tecture Feb. 2005.

[7] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Pssgggy and Recov-
ery: Towards Scalable Large Instruction Window Processor®Prde. of the
36th Int'l Symposium on MicroarchitectyrBec. 2003.

[8] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order Comnnades-
sors. InProc. of the Int'l Symposium on High Performance Architectireb.
2004.

[9] G.B. Belland M. H. Lipasti. Deconstructing Commit. Rroc. of the The Int’l
Symposium on Performance Analysis of Systems and SaftMare2004.

[10] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: a DQare
Multithreaded ProcessolEEE Micro, 24(2), 2004.

[11] P. Kongetira and K. Aingaran and K. Olukotun. Niagara: a 32-Wati-
threaded Sparc ProcesstiEEE Micro, March-April 2005.

[12] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Threachiten

105

106 References

ProcessorlEEE Micro, 25(2), 2005.

[13] R. E. Kessler. The Alpha 21264 MicroprocessdEEE Micro, 19(2), Mar.
1999.

[14] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoywd?é System
Microarchitecture, Technical white papéBM Server GroupOct. 2001.

[15] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Versi@n Zech-
nical Report CS-TR-1997-1342, 1997.

[16] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadrod MnStan. HotLeak-
age: A Temperature-Aware Model of Subthreshold and Gate Leakager+f
chitects. Univ. of Virginia Dept. of Computer Science Technical Report CS-
2003-05 2003.

[17] D. Madon, E. Sanchez, and S. Monnier. A Study of a Simultaneoulki-M
threaded Processor Implementation.Etropean Conference on Parallel Pro-
cessing1999.

[18] J. Sharkey. M-Sim: A Flexible, Multithreaded Architectural SimulatioviEn
ronment.Technical Report CS-TR-05-DP01, Department of Computer Sgienc
State University of New York at Binghamt@®05.

[19] D. M. Tullsen. Simulation and Modeling of a Simultaneous Multithreading
Processor22nd Annual Computer Measurement Group Confereee. 1996.

[20] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot, atFFascessor
Model for Microarchitecture ExplorationEEE Int'| Performance, Computing,
and Communications Conferend®99.

[21] M. Moudgill, J. Wellman, and J. Moreno. Environment for PowerP{Cnvlar-
chitecture ExplorationlEEE Micro, pages 15-25, 1999.

[22] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, anRiken-
field. Microarchitecture-Level Power-Performance Analysis: Thed?@imer
Approach.IBM J. Research and Developme#?(5/6), 2003.

[23] B. Lee and D. Brooks. Effects of Pipeline Complexity on SMT/CMP Bow
Performance EfficiencyWorkshop on Complexity Effective Desi@005.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgientallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A FudteBy
Simulation PlatformIEEE Computer35(2), 2002.

[25] M. R. Marty, B. Beckmann, L. Yen, A. R. Alameldeen, M. Xu, andMoore.
GEMS: Multifacet’s General Execution-driven Multiprocessor Simulabor’]
Symposium on Computer Architectu2€06.

[26] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-Oriehteull-
System Simulation Using M%th Workshop on Computer Architecture Evalu-
ation using Commercial Workloads (CAECW§b. 2003.

References 107

[27] The Multi2Sim Simulation Frameworkttp://www.multi2sim.org

[28] T. Y. Yeh and Y. N. Patt. A Comparison of Dynamic Branch Predictbet
Use Two Levels of Branch History. IRroc. of the 20th Int'l Symposium on
Computer Architecturgl993.

[29] P. Ranganathan, V. S. Pai, and S. V. Adve. Using SpeculatitieeRent and
Larger Instruction Windows to Narrow the Performance Gap between Memo
Consistency Models. IRroc. of the 9th ACM Symposium on Parallel Algo-
rithms and Architectureslune 1997.

[30] Standard Performance Evaluation Corporatiattp://www.spec.org/cpu20Q0/

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. TREASH-2
Programs: Characterization and Methodological Considerationdrda. of
the 22nd Int'l Symposium on Computer Architecfulene 1995.

[32] M. Moudgdill, K. Pingali, and S. Vassiliadis. Register Renaming and Dyina
Speculation: an Alternative Approach. lRmoc. of the 26th Int'l Symposium on
Microarchitecture Dec. 1993.

[33] J. P. Shen and M. H. LipastiModern Processor Design: Fundamentals of
Superscalar Processarguly 2004.

[34] J. H. Edmondson, P. Rubinfeld, and R. Preston. Superscalauttion Execu-
tion in the 21164 Alpha MicroprocessdEEE Micro, 15(2), 1995.

[35] Free Software Foundatiohttp://www.gnu.org/software/gcc/onlinedoc&CC
Online Documentation. 2006.

[36] S. E.Raasch and S. K. Reinhardt. The Impact of Resource Pairigion SMT
Processors. IRroc. of the 12th Int’l Conference on Parallel Architectures and
Compilation Techniquef003.

[37] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lal & L. Stamm.
Exploiting Choice: Instruction Fetch and Issue on an Implementable Simul-
taneous Multithreading Processor. Mmoc. of the 23rd Int'l Symposium on
Computer ArchitectureMay 1996.

[38] A. EI-Moursy and D. H. Albonesi. Front-End Policies for Improvedue Effi-
ciency in SMT Processors. Proc. of the 9th Int’l Conference on High Perfor-
mance Computer Architectyreeb. 2003.

[39] F. J. Cazorla, A. Raimez, M. Valero, and E. Feamdez. Dynamically Con-
trolled Resource Allocation in SMT Processors.Pimc. of the 37th Int'| Sym-
posium on Microarchitecture2004.

[40] J. Sharkey, D. Balkan, and D. Ponomarev. Adaptive ReordéfieB for SMT
Processors. liProc. of the 15 Int'l Conference on Parallel Architectures and
Compilation Technique2006.

[41] R. Ubal, J. Sahuquillo, S. Petit, and Ppez. Paired ROBs: A Cost-Effective

108 References

Reorder Buffer Sharing Strategy for SMT Processor?roc. of the Euro-Par
ConferenceAug. 2009.

[42] M. Peridas, A. Cristal, R. Gor&édez, D. A. Jingénez, and M. Valero. A Decou-
pled Kilo-Instruction Processor. IRroc. of the 11th Int'l Conference on High
Performance Computer Architectyreeb. 2006.

[43] L. Lamport. How to Make a Multiprocessor Computer That Correctlgdtxes
Multiprocess Program3EEE Transactions on ComputeiSept. 1979.

[44] S. V. Adve.Designing Memory Consistency Models for Shared-Memory Multi-
processorsPhD thesis, Madison, WI, USA, 1993.

[45] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Guptad J. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Sharatbiyle
Multiprocessors. IrProc. of the 17th Int'l Symposium on Computer Architec-
ture, May 1990.

[46] C. Scheurich and M. Dubois. Correct Memory Operation of Cagased Mul-
tiprocessors. IrProc. of the 14th Int'l Symposium on Computer Architecture
June 1987.

[47] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Technitu&nhance the
Performance of Memory Consistency Models.Pioc. of the Int'l Conference
on Parallel ProcessingAug. 1991.

[48] AMD Opteron 8350 Quad-Core Processor — http://multicore.amd.com/us-
en/quadcore/

[49] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Execut#ionAlter-
native to Very Large Instruction Window for Out-of-Order Processém Proc.
of the 9th Int'l Symposium on High Performance Architectireb. 2003.

[50] J. F. Martnez, J. Renau, MC. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed Early Resource Recycling in Out-of-Order ProcessofRroc.
of the 35th Int'l Symposium on Microarchitectuféov. 2002.

[51] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A Scalableuottin Queue
Design Using Dependence Chains. Rroc. of the 29th Int'l Symposium on
Computer ArchitectureMay 2002.

[52] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Redubm Com-
plexity of the Register File in Dynamic Superscalar ProcessorBradn. of the
34th Int'l Symposium on MicroarchitectyrBec. 2001.

[53] I. Park, C. L. Ooi, and T. N. Vijaykumar. Reducing Design Complewityhe
Load-Store Queue. IRroc. of the 36th Int'l Symposium on Microarchitecture
Dec. 2003.

[54] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RCPhoc. of the
26th Int'l Symposium on Computer Architectut®99.

References 109

[55] C. Gniady and B. Falsafi. Speculative Sequential Consistency ith Cus-
tom Storage. IrProc. of the Int’l Conference on Parallel Architectures and
Compilation Technique$ept. 2002.

[56] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bmforcement
of Sequential Consistency. Froc. of the 34th Int'l Symposium on Computer
Architecture 2007.

[57] M. Kirman, N. Kirman, and J. F. Mdirtez. Cherry-MP: Correctly Integrating
Checkpointed Early Resource Recycling in Chip Multiprocessor®rde. of
the Int'l Symposium on Microarchitecturisiov. 2005.

[58] E.Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. StenstromEJ
Smith, and M. Valero. Implementing Kilo-Instruction MultiprocessorsPtac.
of the IEEE Int'| Conference on Pervasive Servicidy 2005.

[59] S. Petit, R. Ubal, J. Sahuquillo, and Ppez. A Power-Aware Hybrid RAM-
CAM Renaming Mechanism for Fast Recovery.RAroc. of the 27th Int'l Con-
ference on Computer Desig@ct. 2009.

[60] R. Ubal, J. Sahuquillo, S. Petit, and Ppez. Paired ROBs: a Cost-Effective
Reorder Buffer Sharing Strategy for SMT Processors.Ptoc. of the 2009
Euro-Par ConferenceAug. 2009.

