
UNIVERSIDAD POLITÉCNICA DE VALENCIA
DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

Out-of-Order Retirement of Instructions

in Superscalar, Multithreaded,

and Multicore Processors

A D ISSERTATIONSUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THEDEGREE OF

DOCTOR OFPHYLOSOPHY

(COMPUTERENGINEERING)

Author
RAFAEL UBAL TENA

Advisors

JULIO SAHUQUILLO BORRÁS

PEDRO L ÓPEZRODRÍGUEZ

VALENCIA , 2010

Agradecimientos

Para la realización de esta tesis ha sido necesario el esfuerzo conjunto de varias
personas, ası́ como el apoyo profesional y moral de muchas otras. En primer lugar,
mis directores de tesis, Julio Sahuquillo y Pedro López, han sido fundamentales
durante todo el proceso. Agradezco a Julio la confianza que depositó en ḿı cuando
todav́ıa era estudiante de Ingenierı́a Informática, inst́andome en todo momento a
continuar con los estudios de doctorado y a unirme al mundo de la investigación.
Sus conocimientos, su vocación y sus h́abitos son un punto de referencia para mı́.
Tambíen agradezco a Pedro el tiempo que me ha dedicado en numerosas reuniones,
sus aportaciones técnicas y su diligencia a la hora de orientar el enfoque del trabajo.

Además de mis directores de tesis, otros profesionales han contribuido de forma
directa a dar solidez a este estudio. Salvador Petit ha sido una ayuda primordial,
participando activamente en el desarrollo y la evaluación de las t́ecnicas aqúı
propuestas. Su voluntad y tenacidad han favorecido la materialización y el progreso
constante de las ideas iniciales. Asimismo, destaco la capacidad de José Duato
para identificar ĺıneas de investigación abiertas y susceptibles de ser explotadas. Sus
sugerencias han sido de utilidad para configurar la idea original en que se basa esta
tesis.

El esfuerzo diario se ha hecho más llevadero gracias a los que han sido o son
actualmente mis compañeros de laboratorio: David, Noel, Héctor, Carles, Ricardo,
Crisṕın, Paco, Samuel, Gaspar, Blas, José Miguel y Andŕes. Ha sido una experiencia
muy positiva el hecho de trabajar junto a tantas personas con las que intercambiar
conocimientos y resolver dudas.

En la elaboracíon de esta tesis ha influido una estancia en Northeastern University
(Boston) gracias al profesor David Kaeli, quien me acogió cálidamente en su grupo
de investigacíon durante cuatro meses. Las reuniones semanales del grupo completo,
en las que cada uno de sus miembros exponı́a art́ıculos recientes y producciones
propias de manera rotativa, fueron muy enriquecedoras. Tuve la suerte de trabajar en
un ambiente multicultural, donde encontré excelentes compañeros. Especialmente,
agradezco a Dana y Jenny su empeño en hacerme sentir integrado, en ayudarme a
mejorar mi ingĺes, y en hacerme conocer muchos lugares interesantes de Estados
Unidos.

i

ii Agradecimientos

Por último, doy gracias a mis padres, Francisca y Rafael, y a mis abuelos,
Francisca y Miguel, por haber sido un apoyo incondicional y desinteresado en
cualquier circunstancia. El interés que todos ellos han mostrado por mi labor ha
sido esencial para mantener mi motivación e ilusíon por el trabajo.

ii

Contents

Abstract xi

Resumen xiii

Resum xv

1 Introduction 1
1.1 Background . 2

1.1.1 Superscalar Processors . 2
1.1.2 Multithreaded Processors 4
1.1.3 Multicore Processors . 5

1.2 Motivation and Challenges . 6
1.2.1 Challenges in Superscalar Processors 7
1.2.2 Challenges in Multithreaded Processors 7
1.2.3 Challenges in Multicore Processors 8

1.3 Objectives of the Thesis . 9
1.4 Contributions of the Thesis . 9
1.5 Thesis Outline . 11

2 The Multi2Sim Simulation Framework 13
2.1 Overview . 14

2.1.1 Existing Simulation Tools 14
2.1.2 The Multi2Sim Project . 15

2.2 The Superscalar Pipeline Model 16
2.2.1 Branch Predition . 16
2.2.2 Register Renaming . 19
2.2.3 Pipeline Stages . 21

2.3 Support for Parallel Architectures 24
2.3.1 Multithreading . 26
2.3.2 Multicore Architectures 27

2.4 The Memory Hierarchy . 27

iii

iv Contents

2.4.1 Memory Hierarchy Configuration 27
2.4.2 Cache Coherence . 30

2.5 Experimental Environment . 31
2.5.1 Multi2Sim Extensions . 31
2.5.2 Benchmarks and Methodology 32
2.5.3 Performance Metrics . 34

2.6 Summary . 35

3 The Superscalar Validation Buffer Architecture 37
3.1 Proposed Architecture . 38

3.1.1 Register Reclamation . 40
3.1.2 Recovery Mechanism . 42
3.1.3 Uniprocessor Memory Model 43
3.1.4 Potential Benefits in Performance 44

3.2 Working Example . 44
3.3 Performance Evaluation . 46

3.3.1 Quantifying the Performance Potential 46
3.3.2 Exploring the Behavior in a Modern Microprocessor 49
3.3.3 Impact on Performance of Memory Latencies 51
3.3.4 Supporting Precise Floating-Point Exceptions 52

3.4 Hardware Complexity . 53
3.4.1 Size of the Major Processor Components 53
3.4.2 Impact of the Pipeline Width 54

3.5 Summary . 55

4 The Multithreaded Validation Buffer Architecture 57
4.1 Out-of-Order Retirement Multithreaded Architecture 58

4.1.1 Execution of Multiple Contexts 58
4.1.2 Resources Sharing . 59
4.1.3 Resource Allocation Policies 60
4.1.4 Using Out-of-Order Retirement 61

4.2 Performance Evaluation . 62
4.2.1 Sharing Strategies of Hardware Structures 63
4.2.2 Comparison of Multithreading Paradigms 64
4.2.3 Impact of the Number of Hardware Threads 65
4.2.4 Impact of Resource Allocation Policies on SMT processors . 66
4.2.5 Resources Occupancy in SMT Designs 67

4.3 Summary . 69

Contents v

5 The Multicore Validation Buffer Architecture 71
5.1 Dealing with Sequential Consistency 72
5.2 Out-of-Order Retirement Multiprocessor Architecture 74

5.2.1 Architecture Description 74
5.2.2 Hardware Support . 75
5.2.3 Working Example . 76

5.3 Analysis of Single-Thread Performance 78
5.3.1 Enhanced Register Usage 78
5.3.2 Extended Instruction Window 79

5.4 Performance Evaluation . 81
5.4.1 Out-of-Order Retirement and Memory Consistency Model . 81
5.4.2 Performance Bottlenecks 83
5.4.3 Impact of Delayed Writebacks 84
5.4.4 Impact of the Resources Size 85
5.4.5 Main Memory Latency . 87

5.5 Hardware Complexity . 88
5.5.1 Size of the Major Processor Components 88
5.5.2 Impact of the Pipeline Width 89

5.6 Summary . 90

6 Related Work 93
6.1 Proposals Based on Uniprocessors 94

6.1.1 Speculative Out-of-Order Retirement with Checkpoints . . . 94
6.1.2 Non-Speculative Out-of-Order Retirement Without Check-

points . 95
6.1.3 Enlargement of the Major Processor Structures 95

6.2 Proposals Based on Multiprocessors 96
6.2.1 Sequential Consistency Implementations 96
6.2.2 Out-of-Order Retirement in Multiprocessors 97

6.3 Summary . 98

7 Conclusions 99
7.1 Contributions . 100
7.2 Future Work . 101
7.3 Publications Related with This Work 102

References 105

List of Figures

1.1 Block diagram of a superscalar processor pipeline. 2
1.2 Issue bandwidth utilization in superscalar and multithreaded processors. 4
1.3 Example of a multicore processor. 5

2.1 Two-level adaptive branch predictor. 18
2.2 Register renaming. 19
2.3 Multi2Sim model of the superscalar processor pipeline. 20
2.4 Block diagram of the fetch stage. 21
2.5 Parallel architecture scheme. 25
2.6 Example of a memory hierarchy configuration. 28
2.7 Enforcement of cache coherence. 31

3.1 Vector product example. 39
3.2 VB architecture block diagram. 40
3.3 Working example for superscalar processors. 45
3.4 Average potential performance for SpecFP and SpecInt benchmarks

with unbounded IQ, LSQ, and RF. 47
3.5 Potential performance for SpecFP benchmarks with a 32-entry

ROB/VB and unbounded IQ, LSQ, and RF. 48
3.6 Execution time categorized at the dispatch stage in a machine with

unbounded IQ, LSQ, and RF. 48
3.7 Performance for SpecFP in a modern microprocessor. 49
3.8 Resources occupancy. 50
3.9 Performance with an unbounded RF. 51
3.10 Impact on performance of memory latencies. 51
3.11 Performance with precise floating-point exceptions support.52
3.12 Performance for different RF, IQ, ROB/VB, and LSQ sizes. 54
3.13 Performance for different pipeline widths. 55

4.1 Storage resources sharing for the multithreaded ROB and VB archi-
tectures. 63

vii

viii List of Figures

4.2 Performance for different multithreading paradigms in the ROB/VB
architectures. 64

4.3 Scalability of different multithreading paradigms for ROB/VB archi-
tectures. 65

4.4 Evaluation of fetch policies for the ROB and VB architectures. . . . 67
4.5 Issue slots for different SMT architectures and fetch policies.68
4.6 Storage resources occupancy for ROB-DCRA and VB-ICOUNT. .. 68

5.1 Conditions for instructions to be retired from the ROB/VB and HB. 75
5.2 Implementation of delayed writebacks. 76
5.3 Working example for multiprocessors. 77
5.4 Register allocation time ratio between the ROB and the VB architec-

ture, measured with an ideal branch predictor. 79
5.5 Instruction window size, measured with an ideal branch predictor and

unbounded IQ, LSQ, and RF. 80
5.6 Block diagram of the modeled multicore system. 81
5.7 Performance speedups relative to ROB-SC. 82
5.8 Processor bottlenecks at the dispatch stage. 83
5.9 Delayed writebacks and the CoW table. 84
5.10 Performance scaling for different resource sizes. 85
5.11 Lifetime of instructions classified as per the structure they are placed

in (ROB/VB, HB, or neither of them). 86
5.12 Impact of main memory latency. 87
5.13 Performance for different hardware complexity levels.89
5.14 Pipeline width. 90

List of Tables

2.1 Classification of multithreading paradigms depending on Multi2Sim
options. 27

2.2 Example of a memory hierarchy configuration file. 29
2.3 Sections and variables in the memory hierarchy configuration file. . 29
2.4 Classification and command-line arguments for the SPEC2000

benchmarks. 32
2.5 Command-line arguments for the SPLASH2 benchmarks. 33

3.1 Renaming actions for different pipeline events. 41
3.2 Baseline superscalar processor parameters. 47

4.1 Baseline multithreaded processor parameters. 62
4.2 Benchmark mixes. 63

5.1 Frequency of misprediction events. 74
5.2 Baseline multicore processor parameters. 80

ix

Abstract

Current superscalar processors use a reorder buffer (ROB) to track the instructions in
flight. The ROB is implemented as a FIFO queue where instructions are insertedin
program order after decoded, and from which they are extracted when they commit,
also in program order. The use of this hardware structure provides a simple support
for speculation, precise exceptions, and register reclamation. However, retiring in-
structions in program order may lead to a significant performance degradation if a
long-latency operation blocks the ROB head. Several proposals have been published
dealing with this problem. Most of them allow instructions to be retired out of order
in a speculative manner, so they require checkpoints in order to roll backthe processor
to a precise state when speculation fails. Checkpoints management usually involves
costly hardware and causes an enlargement of other major processor structures, which
in turn might impact the processor cycle. This problem affects most state-of-the-art
microprocessors, regardless of whether they are single- or multithreaded, or whether
they implement one or multiple cores. This thesis spans the study of non-speculative
out-of-order retirement of instructions in superscalar, multithreaded, and multicore
processors.

First, the Superscalar Validation Buffer architecture is proposed as a proces-
sor pipeline design where instructions are retired out of program orderin a non-
speculative manner, hence without checkpoints. The ROB is replaced witha smaller
FIFO queue, called Validation Buffer (VB), which can be left by instructions just af-
ter they are classified either as non-speculative or mispeculated, irrespective of their
execution state. The management of the VB is complemented with an aggressivereg-
ister reclamation technique that decouples physical register release frominstructions
retirement. The VB architecture largely alleviates the ROB performance bottleneck,
and reduces complexity of other processor structures. For example, a ROB can be
outperformed by a half as large VB, while decreasing its hardware cost.

Second, the Multithreaded Validation Buffer architecture is extended with differ-
ent multithreading organizations, namely coarse-grain, fine-grain, and simultaneous
multithreading. Multithreaded processors became popular as an evolution ofsuper-
scalar processors to increase the issue bandwidth utilization. Likewise, out-of-order
retirement of instructions contributes to reduce the issue waste by avoiding frequent

xi

xii Abstract

pipeline stalls due to a full ROB. The evaluation of the VB architecture on multi-
threaded processors shows again significant performance gains and/or a reduction of
complexity. For example, the number of supported hardware threads can be reduced,
or the multithreading paradigm can be simplified, without affecting performance.

Finally, the Multicore Validation Buffer architecture is presented as an out-of-
order retirement approach on multicore processors, which define the dominant trend
in the current market. Wide instruction windows are very beneficial to multiproces-
sors that implement a strict memory model, especially when both loads and stores
encounter long latencies due to cache misses, and whose stalls must be overlapped
with instruction execution to overcome the memory gap. The extension of the VB
architecture to work on a multiprocessor environment allows core pipelines tore-
tire instructions out of program order, while still enforcing sequential consistency.
This proposal provides similar performance to ROB-based multiprocessorarchitec-
tures implementing a relaxed memory model, and it outperforms in-order retirement,
sequentially consistent multiprocessors.

Resumen

Los procesadores superescalares actuales utilizan unreorder buffer (ROB) para
contabilizar las instrucciones en vuelo. El ROB se implementa como una cola
FIFO (first in first out) en la que las instrucciones se insertan en orden de programa
despúes de ser decodificadas, y de la que se extraen también en orden de programa
en la etapacommit. El uso de esta estructura proporciona un soporte simple
para la especulación, las excepciones precisas y la reclamación de registros. Sin
embargo, el hecho de retirar instrucciones en orden puede degradarlas prestaciones
si una operación de alta latencia está bloqueando la cabecera del ROB. Varias
propuestas se han publicado atacando este problema. La mayorı́a utiliza retirada
de instrucciones fuera de orden de forma especulativa, requiriendo almacenar puntos
de recuperación (checkpoints) para restaurar un estado válido del procesador ante un
fallo de especulación. Normalmente, loscheckpointsnecesitan implementarse con
estructuras hardware costosas, y además requieren un crecimiento de otras estructuras
del procesador, lo cual a su vez puede impactar en el tiempo de ciclo de reloj. Este
problema afecta a muchos tipos de procesadores actuales, independientemente del
número de hilos hardware (threads) y del ńumero de ńucleos de ćomputo (cores) que
incluyan. Esta tesis abarca el estudio de la retirada no especulativa de instrucciones
fuera de orden en procesadores superescalares,multithready multicore.

En primer lugar, la arquitecturaValidation Buffersuperescalar se propone como
un disẽno novedoso del procesador en el que las instrucciones se retiran fuera de
orden de manera no especulativa y, por tanto, prescindiendo decheckpoints. El ROB
se remplaza por una cola FIFO de menor tamaño, llamadavalidation buffer(VB), que
las instrucciones pueden abandonar en cuanto sean clasificadas como correctamente
o incorrectamente especuladas, sea cual sea el estado de su ejecución. La gestíon
de la estructura VB se complementa con una estrategia agresiva de renombrado de
registros, que desacopla la liberación de registros fı́sicos de la etapacommit. La
arquitectura VB alivia sensiblemente el cuello de botella impuesto por un ROB y
reduce la complejidad de otras estructuras del procesador. Por ejemplo,un VB puede
mejorar las prestaciones de un ROB con el doble de entradas, reduciendo por tanto el
coste de su implementación.

xiii

xiv Resumen

En segundo lugar, la arquitecturaValidation Buffer Multithreadse propone y
evaĺua sobre procesadoresmultithreadde grano grueso (coarse-grain), multithread
de grano fino (fine-grain) y multithreadsimult́aneo. Los procesadoresmultithreadse
popularizaron como una evolución de los procesadores superescalares para aumentar
la utilización del ancho de banda de la etapaissue. Asimismo, la retirada de
instrucciones fuera de orden contribuye a reducir el desperdicio de este ancho de
banda impidiendo que instrucciones de alta latencia bloqueen el flujo de instrucciones
cuando se llena el ROB. La evaluación de la arquitectura VB en procesadores
multithreadmuestra de nuevo un incremento de las prestaciones y una reducción
de la complejidad hardware. Por ejemplo, el número de hilos hardware soportados
puede reducirse, o el paradigma demultithreadingpuede simplificarse, provocando
en ambos casos una reducción del coste que no afecta a las prestaciones.

Por último, la arquitecturaValidation Buffer Multicorese presenta como un
entorno multiprocesador en el que las instrucciones se retiran fuera de orden. Los
multiprocesadores, y en particular los chipsmulticore, constituyen la tendencia
actual en el mercado de procesadores. Los multiprocesadores que implementan
un modelo de memoria estricto se benefician sensiblemente de la incorporación
de ventanas de instrucciones muy largas, especialmente en aquellas ocasiones en
que las instrucciones de lectura o escritura en memoria producen fallos decache,
y cuyo tiempo de acceso es deseable solapar con otras instrucciones de cómputo.
La extensíon de la arquitectura VB a un entorno multiprocesador contribuye a este
objetivo permitiendo que cada núcleo de ćomputo retire sus instrucciones fuera de
orden, mientras se continúa garantizando la consistencia secuencial en el acceso a
memoria. Esta propuesta exhibe prestaciones similares a un multiprocesador basado
en un ROB cuando estéultimo implementa un modelo de memoria relajado, y las
mejora siéste implementa un modelo de memoria estricto.

Resum

Els processadors superescalars actuals utilitzen unreorder buffer (ROB) per a
comptabilitzar les instruccions en vol. El ROB s’implementa com una cua FIFO
(first in first out) en la que les instruccions s’insereixen en ordre de programa després
de ser descodificades, i de la que s’extrauen també en ordre de programa en l’etapa
commit. L’ ús d’aquesta estructura proporciona un suport simple per a l’especulació,
les excepcions precises i la reclamació de registres. No obstant això, el fet de retirar
instruccions en ordre pot degradar les prestacions si una operació d’alta lat̀encia est̀a
bloquejant la capçalera del ROB. Diverses propostes s’han publicat atacant aquest
problema. La majoria utilitza retirada d’instruccions de forma especulativa, requerint
emmagatzemar punts de recuperació (checkpoints) per a restaurar un estat vàlid
del processador davant d’una fallada d’especulació. Normalment, elscheckpoints
necessiten implementar-se amb estructures hardware costoses, i a més requereixen
el creixement d’altres estructures del processador, la qual cosa pot impactar en el
temps de cicle de rellotge. Aquest problema afecta molts tipus de processadors
actuals, independentment del nombre de fils hardware (threads) i del nombre de
nuclis de c̀omput (cores) que incloguen. Aquesta tesi comprèn l’estudi de la retirada
no especulativa d’instruccions en processadors superescalars,multithreadi multicore.

En primer lloc, l’arquitecturaValidation Buffersuperescalar es proposa com un
disseny del processador en què les instruccions es retiren fora d’orde de manera
no especulativa i, per tant, prescindint decheckpoints. El ROB es reemplaça per
una cua FIFO ḿes petita, anomenadavalidation buffer(VB), que les instruccions
poden abandonar en quant siguen classificades com correctament o incorrectament
especulades, siga quin siga l’estat de la seua execució. La gestío de l’estructura
VB es complementa amb una estratègia agressiva de nomenament de registres, que
desacobla l’alliberament de registres fı́sics de l’etapacommit. L’arquitectura VB
alleuja sensiblement el coll de botella imposat per un ROB i redueix la complexitat
d’altres estructures del processador. Per exemple, un VB pot millorar les prestacions
d’un ROB amb el doble d’entrades, reduint per tant el cost de la seua implementacío.

En segon lloc, l’arquitecturaValidation Buffer Multithreades proposa i avalua
sobre processadorsmultithread de gra gros (coarse-grain), multithread de gra fi
(fine-grain) i multithreadsimultani. Els processadorsmultithreades van popularitzar

xv

xvi Resum

com una evolucío dels processadors superescalars per a augmentar la utilització de
l’ample de banda de l’etapaissue. Aixı́ mateix, la retirada d’instruccions fora d’ordre
contribueix a reduir el malgaste d’aquest ample de banda impedint que instruccions
d’alta lat̀encia bloquegen el flux d’instruccions quan s’ompli el ROB. L’avaluació
de l’arquitectura VB en processadorsmultithreadmostra de nou un increment de les
prestacions i una reducció de la complexitat hardware. Per exemple, el nombre de fils
hardware suportats pot reduir-se, o el paradigma demultithreadingpot simplificar-se,
provocant en els dos casos una reducció del cost que no afecta les prestacions.

Finalment, l’arquitecturaValidation Buffer Multicore es presenta com un
entorn multiprocessador en què les instruccions es retiren fora d’ordre. Els
multiprocessadors, i en particular els xipsmulticore, constitueixen la tend̀encia
actual en el mercat de processadors. Els multiprocessadors que implementen
un model de mem̀oria estricte es beneficien sensiblement de la incorporació de
finestres d’instruccions molt llargues, especialment en aquelles ocasionsen qùe les
instruccions de lectura o escriptura en memòria produeixen fallades decache, i
el temps d’acćes de les qualśes desitjable sobreposar amb altres instruccions de
còmput. L’extensío de l’arquitectura VB a un entorn multiprocessador contribueix a
aquest objectiu permetent que cada nucli de còmput retire les seues instruccions fora
d’orde, mentre es continua garantint la consistència seq̈uencial en l’acćes a mem̀oria.
Aquesta proposta exhibeix prestacions semblants a un multiprocessador basat en un
ROB quan aquest́ultim implementa un model de memòria relaxat, i les millora si
aquest implementa un model de memòria estricte.

Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation for the work de-
veloped in this thesis. First, some basic notions about superscalar, multithreaded, and
multicore processors are given. Then, it is shown how these architectures are affected
by the problem of long-latency instructions stalling the processor pipeline. Finally, it
is summarized how the rest of this dissertation deals with this problem by means of
the Validation Buffer architecture proposal.

1

2 Chapter 1. Introduction

1.1 Background

1.1.1 Superscalar Processors

In the mid-to-late 1980s, superscalar processors began to appear as an attempt to
break the bottleneck of executing a single instruction per cycle [1]. By initiating
more than one instruction at a time, these processors can exploit the instruction-level
parallelism (ILP) present in applications. The superscalar processingmodel has been
implemented in commercial chips with different pipeline organizations, instruction
queues, or storage structures. A possible block diagram of a superscalar architecture
is shown in Figure 1.1. This model is used along this thesis as the baseline design,
and its components are described next.

The processor front-end consists of an instruction cache from which instructions
are fetched and placed into the fetch queue. The memory address of the instructions
to be fetched is provided by the branch predictor fed by a program counter. Instruc-
tions at the head of the fetch queue are decoded, and name dependences introduced
by the compiler are removed by a register renaming mechanism (detailed below).
This mechanism is supported by the front and retirement register alias tables(FRAT
and RRAT, respectively), as well as by the physical register file.

After decoded, instructions are dispatched into several queues, depending on the
instruction kind. All instructions allocate an entry in the reorder buffer (ROB). This
is a FIFO queue where instructions stay until the end of their lifetime in the pro-
cessor pipeline. After the instruction at the head of the ROB is completed and its
execution is confirmed, it leaves this structure and commits its result to the defini-
tive machine state. Arithmetic operations allocate an entry in the instruction queue
(IQ), from where they can be chosen for execution in the functional units at any time
after their source operands become available. Memory instructions allocatean en-
try in the load-store queue (LSQ), from where they access the data cache when the
memory address (and operand in the case of stores) is ready. Both the IQand LSQ
are associative queues, that is, entries are allocated and deallocated in random or-

Figure 1.1: Block diagram of a superscalar processor pipeline (ROB =reorder buffer,
IQ = instruction queue, LSQ =load-store queue, FU = functional units, FRAT = front
register alias table, RRAT = retirement register alias table).

1.1. Background 3

der. Arithmetic instructions finishing execution in a functional unit, as well as load
instructions finishing the cache access, dump the obtained result into the physical
register file.

Data dependences among instructions are tracked by a register renaming mech-
anism. Register renaming techniques distinguish two kinds of registers: logical and
physical registers. Logical or architected registers refer to those used by the com-
piler, while physical registers are those actually implemented in the machine within
the physical register file. Typically, the number of physical registers is quite larger
than the number of logical registers. When an instruction that produces a result is
decoded, the renaming logic allocates a free physical register, which is thereafter
said to be mapped to the destination logical register of the instruction. After that,
subsequent data dependent instructions rename their source logical registers so as to
read this physical register. The logical-to-physical register mappings are stored in the
FRAT. This table has as many entries as logical registers, and is accessedat the re-
name stage to obtain the current register mappings. Additionally, the RRAT contains
a delayed copy of the FRAT, which is only updated by non-speculative instructions
at the commit stage.

Control dependences are speculated by the branch predictor. The processor front-
end provides the pipeline with a constant flow of instructions which are likely tobe-
long to the correct path. However, speculation may fail, which is detected after a
branch condition and target address are computed and any of them differ from the
speculated value. On mispeculation, the processor state must be recovered to a pre-
vious consistent state, for example, just before the branch instruction was executed.

Processor recovery can be implemented either at the commit or at the writeback
stage. In the first case, the processor waits for the mispeculated branchto reach the
ROB head. At this time, the ROB contains only mispeculated instructions, whose
state is exclusively held in the pipeline structures. Thus, all the processorhas to do is
squash the contents of the queues, and copy the RRAT into the FRAT to restore the
valid mapping tables. Then, subsequent instructions start to be fetched from the cor-
rect path. Recovering mispeculation at the commit stage is a simple but not efficient
approach, since mispeculation recovery might start a long time after its detection.

In the second case, recovery starts at the writeback stage as soon as mispecula-
tion is detected just after the offending branch is resolved. Since the contents of the
ROB, the FRAT, and other queues are only partially invalid, specific hardware must
be devoted to selectively recover a valid processor state, by discardingmispeculated
changes and maintaining correct in-flight instructions. Thus, recovering mispecula-
tion at the writeback stage is more efficient and more costly at the same time. Since
the proposal in this thesis changes the behavior of the commit stage, the recovery at
writeback approach will be used for the baseline superscalar design for fair compari-
son purposes.

4 Chapter 1. Introduction

Figure 1.2: Issue bandwidth utilization in superscalar and multithreaded processors.

1.1.2 Multithreaded Processors

Until the early 1990s, a vast variety of sophisticated microarchitectural techniques
were proposed to extract ILP. A higher integration scale allowed for wider proces-
sors with out of order execution [2], higher clock frequencies [3], or larger pipeline
queues (IQ, LSQ). However, these techniques entailed an increasing complexity and
power consumption, and the growing processor-memory gap made them lessand less
appealing. Consequently, researchers tried to develop new techniquesbased on the
exploitation of the parallelism across multiple threads of control, or thread-level par-
allelism (TLP). Multithreaded architectures hold the state of different execution con-
texts in the same CPU. The key to increase processor performance is to increase the
utilization of a shared pool of functional units (adders, multipliers, etc.), byproviding
them with a higher availability of instructions ready to be executed. Differentmulti-
threading paradigms can be distinguished depending on how execution resources are
assigned to threads, namely, coarse-grain (CGMT), fine-grain (FGMT), and simulta-
neous multithreading (SMT).

To illustrate how each multithreading paradigm contributes to increase perfor-
mance, Figure 1.2 plots the utilization of the issue bandwidth for a 4-way processor
executing 4 threads. A white square represents a wasted issue slot, while acolored
square represents an instruction issued from a specific thread’s instruction queue. As
observed in Figure 1.2a, a superscalar processor can incur two kindsof issue band-
width waste, calledvertical waste, which occurs in those cycles with all issue slots
unused, andhorizontal waste, which is incurred in those cycles when only a subset
of the total issue bandwidth is used.

CGMT processors can only fetch and execute instructions from a single thread
at a time. They partially alleviate the vertical waste by performing a thread switch

1.1. Background 5

Figure 1.3: Example of a multicore processor.

whenever a long-latency event takes place, such as a cache miss. Whenthis occurs,
a not stalled thread starts to be fetched. The thread switch usually involves apenalty
of some cycles until the stalled thread’s instructions are drained from the processor.
Thus, the vertical waste is not completely removed, as shown in Figure 1.2b.

FGMT processors fetch and issue instructions from a different threadin each
cycle. The fetch logic usually works in a round-robin fashion among the available
threads, skipping those stalled in a cache miss. The issue stage always works round-
robin, skipping those threads in whose instruction queues no instruction is found
ready to be executed. As observed in Figure 1.2c, the vertical waste is completely
removed by avoiding thread switch penalties.

SMT processors increase the complexity of the issue stage by enabling instruc-
tions from different threads to be scheduled to the functional units in the same cycle.
While a single thread may not have enough ready instructions to fill up the issue
bandwidth in a given cycle, the ability to pick up instructions from different threads
makes it more likely to take advantage of all issue slots. As Figure 1.2d shows,si-
multaneous multithreading mitigates both the vertical and horizontal waste.

1.1.3 Multicore Processors

After the success of multithreaded processors, technology of the 2000skept on evolv-
ing and provided computer architects with a higher integration scale. Yet the power
constraints remained, and the memory gap still needed to be bridged with the overlap
of memory accesses and computations. Though a multithreaded processor allowed
explicit parallelism to be exploited without requiring costly resources to hold long
instruction windows, a scalable increase of the number of supported threads was no
longer affordable to boost performance. This caused totally independent processing
units (i.e., cores) to be integrated in a single chip.

In a homogeneous multicore processor, all elements of a superscalar processor
pipeline are replicated per core. Each core usually owns its private L1 cache, and
lower level caches may be shared or private among cores. When several caches are

6 Chapter 1. Introduction

present in the same level of the memory hierarchy, a cache coherence protocol is
implemented to handle correct concurrent accesses to the same memory locations
by different threads. Likewise, interconnection networks need to be introduced in
the same die to communicate cores or caches sharing data. The topology of these
interconnects may range from a simple bus to a complex point-to-point network,
depending on the number of nodes they are giving service to and the traffic patterns
observed among them. Figure 1.3 shows a block diagram of a possible multicore
architecture with four embedded processing nodes with superscalar pipelines, private
L1 caches, and a shared L2 cache.

1.2 Motivation and Challenges

Current high-performance microprocessors execute instructions outof order to ex-
ploit instruction level parallelism (ILP). In order to support speculativeexecution,
provide precise exceptions, and register reclamation, a reorder buffer (ROB) is used
[4]. After being decoded, instructions are inserted in program order inthe ROB,
where they are kept while being executed and until retired at the commit stage. The
key to support speculation and precise exceptions is that instructions leave the ROB
also in program order, that is, when they are the oldest ones in the pipeline. When a
branch is mispredicted or an exception is raised, and the offending instruction reaches
the commit stage, there is a guarantee that all previous instructions have already been
retired, and no subsequent instruction has done it yet. At this time, all the processor
has to do to recover a valid state is abort all instructions in flight.

However, this behavior is conservative. When the ROB head is blocked by a long-
latency instruction (e.g., a load that misses in the L2 cache), subsequent instructions
cannot release their ROB entries. This happens even if these instructionsare inde-
pendent from the long-latency one and they have been completed. In such a case,
since instruction decoding continues, the ROB may eventually fill up, thus stalling
the processor for a valuable number of cycles. Register reclamation is alsohandled
in a conservative way, because physical registers are mapped for longer than their
useful lifetime. In summary, both the advantages and the shortcomings of the ROB
come from the fact that instructions are committed in program order.

A naive solution to address this problem is to enlarge the ROB size to accommo-
date more in-flight instructions. However, as ROB-based microarchitectures serialize
the release of some critical resources at the commit stage (e.g., physical registers or
store queue entries), these resources should be also enlarged. This resizing increases
the cost in terms of area and power, and it might also impact the processor cycle [5].

To overcome this drawback, instructions can be committed out of program or-
der, releasing resources early and causing a more efficient use of them. This ap-
proach raises a variety of challenges depending on the processor model considered.

1.2. Motivation and Challenges 7

These challenges are analyzed next for the three main processor architectures in the
chronological order they showed up in research and industry, namely superscalar,
multithreaded, and multicore processors.

1.2.1 Challenges in Superscalar Processors

Some solutions that commit instructions out of order have been published. These
proposals can be classified in two approaches depending on whether instructions are
speculatively retired or not. Some proposals falling into the first approach, like [6],
allow the retirement of instructions obstructing the ROB head by providing a specula-
tive value. Others, like [7] or [8], replace the normal ROB with alternativestructures
to speculatively retire instructions out of order. As speculation may fail, these pro-
posals need to provide a mechanism to recover the processor to a correct state. To
this end, the architectural state of the machine is checkpointed. Again, this implies
the enlargement of some major microprocessor structures, for instance, the register
file [8] or the load-store queue [7], because completed instructions cannot free some
critical resources until their associated checkpoint is released.

Regarding the non-speculative approach, Bell and Lipasti [9] propose to scan a
few entries of the ROB, as many as allowed by the commit bandwidth, and those
instructions satisfying certain conditions are allowed to be retired. None of these
conditions imposes an instruction to be the oldest one in the pipeline to be retired.
Thus, instructions can be retired out of program order. In this scenario, empty in-
termingled slots may appear in the ROB after commit, so a defragmentation process
is required to preserve its FIFO structure. Collapsing a large structure is costly in
time and might adversely impact the microprocessor cycle, which makes this pro-
posal unsuitable for large ROB sizes. In addition, the performance achieved by this
proposal is constrained by the limited number of instructions that can be scanned at
the commit stage.

Given the existing out-of-order retirement approaches, it remains a challenge to
design an architecture that aggressively releases processor resources by neither per-
forming checkpoints of the machine state nor collapsing a FIFO structure. Inother
words, we are looking for a non-speculative, out-of-order retirement approach where
a sequential release of entries in hardware structures is decoupled from the commit
stage.

1.2.2 Challenges in Multithreaded Processors

Multithreaded architectures represent an important segment in the industry. For in-
stance, the Alpha 21464, the Intel Pentium 4 [3], the IBM Power 5 [10], the Sun
Niagara [11], and the Intel Montecito [12] are commercial microprocessors included
in this group. The utilization of processor resources is increased in multithreaded

8 Chapter 1. Introduction

processors by exploiting both instruction- and thread-level parallelism. While both
coarse-grain and fine-grain multithreading contribute to reduce the vertical issue
waste, only simultaneous multithreading tackles the horizontal waste, by issuingin-
structions from multiple threads in the same cycle. Nevertheless, this is done atthe
expense of adding considerable complexity to the issue logic, which is a critical stage
in the processor pipeline.

On the other hand, the reduction of ROB stalls in an out-of-order retirementar-
chitecture allows instructions to pass more fluently through the processor pipeline.
Specifically, the issue stage is affected with an income of instructions at a higher rate.
Thus, these architectures mainly attack the vertical waste, although horizontal waste
is indirectly also improved. Out-of-order retirement and multithreading orthogonally
contribute reducing the issue waste, so it is a research opportunity to integrate these
techniques and evaluate their joint behavior.

1.2.3 Challenges in Multicore Processors

Multicore processors are now the current norm in both the general purpose and em-
bedded system processor markets. The move to multicore has mainly been prompted
by the thermal issues associated with superscalar architectures and the difficulty of
high frequency designs to exploit limited amounts of instruction-level parallelism. To
address some of these issues, very wide instruction windows are neededto hide mem-
ory latency with computation, which in turn requires large non-scalable microarchi-
tectural structures (e.g., reorder buffers). Thus, further sources of concurrency must
be obtained with the help of explicit parallelism.

There are still many factors present in single-thread performance that remain
challenges in multicore designs. In this sense, the continued growth in chip integra-
tion density allows complex designs to be considered that better balance the trade-off
between the number of cores and increased core complexity. On the other hand, the
intrinsic difficulties of parallel programming and the sequential nature of manyexist-
ing applications limit the potential of parallel architectures that sacrifice single-thread
performance.

Out-of-order retirement of instructions can increase processor performance by
providing larger instruction windows, without the necessity of increasing the com-
plexity of the major microprocessor structures, such as the ROB or the register file.
With a suitable implementation, a cost-effective solution might be achieved, which
would be of great interest in the multicore field, where energy dissipation is amajor
concern. New challenges arise when out-of-order retirement is introduced in a multi-
processor environment, specifically in terms of the memory consistency modelused
on parallel architectures.

A memory consistency model defines ordering of memory operations on shared
memory multiprocessor and multicore systems. Sequential consistency (SC) is the

1.3. Objectives of the Thesis 9

most restrictive memory consistency model. SC forces memory operations to be
viewed by all processors in the same overall global order, which easesthe intuitive-
ness of the programming interface. This model is widely accepted and has been
implemented in some commercial microprocessors, such as MIPS R10000, butthe
implementation of an efficient, sequentially consistent, out-of-order retirement mul-
ticore architecture is still an open problem.

1.3 Objectives of the Thesis

The main objective of this thesis is to tackle the challenges highlighted in the previous
section. Regarding superscalar processors, a non-speculative, out-of-order retirement
architecture is pursued, which at the same time avoids costly operations on thema-
jor microprocessor structures, such as ROB collapsing, or checkpointsmanagement.
In the field of multithreaded processors, an integration of multithreading paradigms,
resource-to-thread allocation policies, and out-of-order retirement is sought, which
are three techniques that potentially increase the issue bandwidth utilization. And
regarding multicore processors, we intend to design a multiprocessor architecture
composed by several out-of-order retirement cores that enforces the well-known and
widely accepted global sequential order of memory operations (i.e., sequential con-
sistency).

1.4 Contributions of the Thesis

In this dissertation, the Validation Buffer (VB) architecture is proposed asa process-
ing model where instructions are retired out of program order. This proposal is shown
to behave efficiently in the processor organizations currently dominating themarket,
that is, it improves performance at a lower hardware cost. The contributions of this
thesis can be summarized as follows:

• An energy-efficient out-of-order retirement architecture is devised,which, un-
like previous proposals, needs no checkpoints to handle speculation.

• It is shown that the architecture of multithreaded processors can be extended to
implement out-of-order retirement, causing an orthogonal increase of thetotal
issue bandwidth utilization.

• Although out-of-order retirement makes a strict memory model hard to im-
plement, an extension of the proposed architecture is devised, which enforces
sequential consistency while releasing pipeline resources out of program order.

The VB architecture uses a FIFO structure analogous to the ROB, called Vali-
dation Buffer (VB), where instruction retirement conditions are relaxed.The aim of

10 Chapter 1. Introduction

this structure is to provide support for speculative execution, exceptions, and regis-
ter reclamation. While in the VB, instructions are speculatively executed. Once all
previous branches and previous exceptions are resolved, the execution mode of an
instruction changes either to non-speculative or mispeculated. At that point, instruc-
tions are allowed to leave the VB. Instructions leave the VB in program orderbut,
unlike in ROB-based designs, they may not be held in the VB until they are retired
from the processor pipeline (i.e., functional units, instruction queues, etc.). Instead,
instructions remain in the VB only until their speculative state is resolved, so they
can leave this structure while being in any state (completed, issued, or just decoded
and not issued). For example, a long-latency memory instruction can leave the VB
as soon as its memory address is computed without having raised a page fault.

Superscalar processors implement register renaming based on the fact that in-
structions leave the processor pipeline in program order [13][14][3]. Since the VB
architecture does not track in-flight instructions as traditionally, an aggressive regis-
ter renaming strategy and reclamation method are devised, which do not rely on a se-
quential release of pipeline resources at the commit stage. As evaluated in Chapter 3,
the superscalar VB microarchitecture further exploits the available instruction-level
parallelism, while requiring less complexity in some major critical resources, such
as the register file or the load-store queue. It is also shown that the VB architecture
can outperform in-order retirement architectures even when using narrower pipelines.
This has important implications, since the pipeline width has a strong impact on the
processor complexity.

Regarding multithreaded processors, the impact of out-of-order retirement of in-
structions is analyzed for three main models of multithreading, namely fine-grain
(FGMT), coarse-grain (CGMT), and simultaneous multithreading (SMT). Apipeline
design is proposed with proper resource sharing strategies, and existing allocation
policies of shared resources are evaluated on top of it. As shown in the evaluation in
Chapter 4, three important conclusions arise. First, an out-of-order retirement SMT
processor requires in most cases half of the hardware threads than a ROB-based SMT
processor to achieve similar performance. In other words, performance can be main-
tained in VB-based SMT when reducing the number of hardware threads,thus sav-
ing all hardware resources to track their status. Second, an out-of-order retirement
FGMT processor outperforms a ROB-based SMT processor. In this case, perfor-
mance can be sustained while simplifying the issue logic, which can be translatedin
shorter issue delays or lower power consumption of instruction schedulers. Third,
existing fetch policies for SMT processors provide complementary advantages to the
out-of-order retirement benefits, by orthogonally contributing to increase the issue
bandwidth utilization. An SMT design can implement both techniques to provide
higher performance if area, power consumption, and hardware constraints allow it.

In the multicore field, an implementation of an out-of-order retirement, sequen-
tially consistent multiprocessor architecture is proposed, based on the speculative

1.5. Thesis Outline 11

retirement of load instructions. While the resulting architecture enforces strict global
ordering of memory operations, it relaxes conditions to release pipeline resources,
providing wider instruction windows that lead to performance gains over ROB-based
multiprocessors. The experimental evaluation presented in Chapter 5 shows impor-
tant speedups for a sequentially consistent VB-based multiprocessor withrespect to
its ROB-based homologous. Likewise, an evaluation of the VB-based design with a
relaxed memory consistency model is performed, showing higher speedups for large
ROB sizes.

Finally, the work involved in this thesis includes the development of a simulation
framework, called Multi2Sim, on top of which all performance evaluations have been
carried out. This simulator models in a cycle-accurate manner the architectureof a su-
perscalar, multithreaded, and multicore processor, as well as the underlying memory
hierarchy and interconnection networks. The construction of this tool started with
the necessity of modeling these complex systems working as a whole, and the un-
availability of free and efficient simulators providing these characteristics.Currently,
Multi2Sim has evolved into a formal open-source project aimed at being exploited
by the research community in further works.

1.5 Thesis Outline

The rest of this dissertation is structured as follows. Chapter 2 presents the Multi2Sim
simulator and the experimental framework. Chapter 3 describes and evaluates the
Validation Buffer architecture for superscalar processors. This proposal is extended
and evaluated for multithreaded and multicore processors in Chapters 4 and5, re-
spectively. Chapter 6 summarizes some published works related with this thesis, and
finally, Chapter 7 presents some concluding remarks.

Chapter 2

The Multi2Sim Simulation
Framework

Current microprocessors are based in complex designs, integrating different com-
ponents on a single chip, such as processor cores with several hardware threads, a
memory hierarchy with several cache levels, and interconnection networks. Com-
plex simulation tools are required to model these systems, and to evaluate the global
impact on performance of alternative designs in specific components. At the time this
work started, there was no publicly available tool fulfilling the simulation necessities
for the evaluation of the proposed techniques. The Multi2Sim simulation framework
has been developed as an open-source project, with the aim of overcoming the draw-
backs of existing simulation tools, and evaluating the proposals of this thesis. In this
chapter, the simulation environment is described, including Multi2Sim’s structure
and main features, as well as the benchmarks run on top of it.

13

14 Chapter 2. The Multi2Sim Simulation Framework

2.1 Overview

The evolution of microprocessors, mainly enabled by technology advances, has led
to complex designs that combine multiple physical processing units in a single chip.
These designs provide for the operating system the view of having multiple proces-
sors, and thus, different software processes can be scheduled atthe same time. This
processor model consists of three major components: the microprocessorcores, the
cache hierarchy, and the interconnection network. A design modification on any of
these components can affect the rest of them, and cause specific globalbehaviors.
Therefore, the entire system should be modeled in a single tool that tracks the inter-
action between components.

An important part of the work of this thesis has focused on the developmentof
the Multi2Sim simulation framework, which covers the limitations of other existing
multiprocessor simulators. Multi2Sim integrates a model of the processor cores, the
memory hierarchy, and the interconnection networks in a tool that enables their joint
evaluation. Next, a brief comparative study is presented, focusing on Multi2Sim and
other state-of-the-art simulation frameworks.

2.1.1 Existing Simulation Tools

Multiple simulation environments aimed at evaluating computer architecture pro-
posals have been developed. The most widely used simulator in recent years has
been SimpleScalar [15], which models an out-of-order superscalar processor. A vast
amount of extensions has been applied on top of SimpleScalar to model in a moreac-
curate manner certain aspects of superscalar processors. For example, the HotLeak-
age simulator [16] quantifies leakage energy consumption. SimpleScalar is quite
difficult to extend to model new parallel microarchitectures without significantly
changing its structure. In spite of this, various SimpleScalar extensions to support
multithreading have been implemented, e.g. SSMT [17], M-Sim [18], or SMTSim
[19], but they have the limitation of only executing a set of sequential workloads and
implementing a fixed resource sharing strategy among threads.

Multithread and multicore extensions have been also applied on top of the Tu-
randot simulator [20] [21], which models a PowerPC architecture. This tool has also
been used with power measurement aims in an implementation called PowerTimer
[22]. Some publications cite the use of Turandot extensions to model parallel archi-
tectures (e.g. [23]), but they are not publicly available.

Both SimpleScalar and Turandot are application-only tools, which directly sim-
ulate the behavior of an application without first running an operating system. Such
tools have the advantage of isolating the workload execution, so statistics arenot
affected by the simulation of additional software. Moreover, the simulation time
required to run benchmarks can decrease by about two orders of magnitude, in-

2.1. Overview 15

creasing the simulation capabilities and flexibility. Multi2Sim is also classified as
an application-only simulator.

In contrast to the application-only simulators, a set of so-called full-systemsim-
ulators are available. Similarly to virtual machines, these tools boot an unmodified
operating system, on top of which applications are then run. Although this model
provides higher simulation power, it involves a huge computational load and,de-
pending on the goal of the study, unnecessary simulation accuracy. Simics[24] is an
example of a generic full-system simulator, commonly used for multiprocessor sys-
tems simulation, but unfortunately not freely available. A variety of Simics derived
tools has been implemented for specific research purposes in this area. This is the
case of GEMS [25], which introduces a timing simulation module to model a com-
plete processor pipeline, a memory hierarchy, and cache coherence. However, GEMS
provides low flexibility to model multithreaded designs and does not integrate anin-
terconnection network model, while still adding a sensible amount of computational
overhead and sometimes prohibitive simulation times.

An important feature included in some processor simulators is thetiming-firstap-
proach, provided by GEMS and adopted by Multi2Sim. In such a scheme, a timing
module traces the state of the processor pipeline while instructions traverse it,pos-
sibly in a speculative state. Then, a functional module is called to actually execute
the instructions, so the correct execution paths are always guaranteedby a previously
developed robust functional simulator. Thetiming-first approach confers efficiency,
robustness, and the possibility of performing simulations on different levelsof detail.
Multi2Sim adopts thetiming-first simulation with a functional support that, unlike
GEMS, need not simulate a whole operating system, but is still capable of executing
parallel workloads, with dynamic threads creation.

The last cited simulator is M5 [26], which provides support for out-of-order SMT-
capable CPUs, multiprocessors and cache coherence, and runs in bothfull-system and
application-only modes. The limitations lie in the low flexibility of multithreaded
pipeline designs. The next sections focus on the design and implementation ofsome
components of the baseline Multi2Sim tool, and it is discussed how the architectural
techniques proposed in this thesis are modeled on top of it.

2.1.2 The Multi2Sim Project

Three subprojects have been started and are currently maintained relatedwith the
Multi2Sim simulation framework: the Multi2Sim web site [27], the simulator source
code, and the tool documentation. The web page is organized as awiki page, and the
rest of the projects reside in a publicly accessible SVN server. Anybodyis allowed
and encouraged to join any of these subprojects, and their format is intended to allow
and manage access of concurrent developers. These are some properties of each
subproject:

16 Chapter 2. The Multi2Sim Simulation Framework

• Multi2Sim web site. This web site provides general information about the
simulator, and includes links for interesting downloads. On one hand, both the
simulator source code project and the documentation project can be directly
downloaded. On the other hand, several sets of precompiled benchmarks are
available. The provided binaries have been tested and their execution hasbeen
validated with Multi2Sim. Finally, a mailing list service is available for any-
body to freely subscribe or unsubscribe, to share or ask for information to other
users of the tool. The web site can be improved by anybody after requesting an
account to the administrator.

• Multi2Sim source code. Contained in an SVN tree, the simulator source code
is available for read-only access straightforwardly, and for read-write access
for anybody who requests it by contacting the administrator. The code tree
contains three first-level directories. The directorytrunk holds the most recent
copy of the simulator, which is usually unstable and in progress. The directory
tagscontains checkpoints of released versions. Finally, the directorybranches
contains copies of the trunk for different purposes, such as marginalmodifica-
tions that are not intended to affect the central version.

• Multi2Sim documentation. The documentation is a PDF file, generated from
a set of Latex source files, intended to be a user’s and programmer’s guide for
Multi2Sim. It is currently in its first phase, and the structure and access modes
of this subproject are the same as for the source code subproject.

In the following sections, the simulator structure and the processor model are
described, including the superscalar architecture, the implementation of parallel ar-
chitectures, and the memory subsystem. For each component, the associatedset of
Multi2Sim command-line options for its configuration is given.

2.2 The Superscalar Pipeline Model

Multi2Sim models a pipelined superscalar processor, capable of fetching,decoding,
and executing Intel x86 instructions. In this model, a high-speed fetch stage is sup-
ported by a branch prediction mechanism, and a register renaming strategy isem-
ployed to track data dependences among instructions. Both the branch prediction
and register renaming schemes are detailed in this section, followed by a description
of the implemented pipeline stages.

2.2.1 Branch Predition

There are two different components involved in branch prediction: thebranch target
buffer (BTB) and thebranch direction predictor(or simplybranch predictor). The

2.2. The Superscalar Pipeline Model 17

BTB is a set-associative cache indexed by a macroinstruction address. Abranch ad-
dress is present in the BTB if any entry in the corresponding set containsa tag match-
ing the address. In this case, the associated BTB entry contains the targetaddress of
the branch and the type of branch (conditional branch, inconditional jump, function
call, or function return). The command-line option to specify the BTB organization
is -bpred:btb <sets>:<assoc>. The argumentsets is a power of 2 indicating the
number of sets of the BTB, whileassoc refers to the number of ways or associativity
of the BTB, also a power of 2.

On the other hand, the branch predictor provides the direction of a branch
located at a given address, i.e., whether it is taken or not. The branch
predictor kinds modeled in Multi2Sim areperfect, taken, not-taken, bimodal,
two level adaptive, and combined, which can be selected with option-bpred
<perfect>|<taken>|<nottaken>|<bimod>|<twolevel>|<comb>. Each predictor
type is described next.

• Perfect branch predictor. Theperfectpredictor (option-bpred perfect) is
an ideal implementation that provides a totally accurate prediction. Accesses
to an ideal BTB always return the correct target address even if the branch
address was not inserted before, and accesses to the branch predictor always
return the right direction. This implementation is unfeasible in hardware, but
provides a useful upper bound for the performance achieved by other branch
predictors.

• Taken branch predictor. The takenpredictor (option-bpred taken) as-
sumes that branches are always taken. However, instructions at the front-end
are not decoded yet, and branches are identified as such only when their ad-
dress is present in the BTB (see Section 2.2.3). Thus, a branch absentin the
BTB is considered as a regular instruction, and is assumed not to jump, even
with thetakenbranch predictor.

• Not-taken branch predictor. The not-taken predictor (option -bpred

nottaken) assumes that conditional branches are never taken. However, it
still predicts as taken those branches that are certainly known as such, that is,
inconditional branches, function calls, and returns whose address is contained
in the BTB.

• Bimodal branch predictor . A bimodalpredictor (option-bpred bimod) is a
table indexed by the least significant bits of the instruction address. The entries
of the table are 2-bit up-down saturating counters. A counter represents the
current prediction for a given branch. Values of 0 and 1 representa not-taken
prediction, while values 2 and 3 mean that the branch is taken. The number of
entries in the table is a power of 2 given by options-bpred:bimod <size>.

18 Chapter 2. The Multi2Sim Simulation Framework

Figure 2.1: Two-level adaptive branch predictor.

• Two-level adaptive predictor. A two-level adaptivepredictor (option
-bpred twolevel) contains two tables, each corresponding to one predic-
tion level. The additional command-line option involved with this predictor is
-bpred:twolevel <level1 size> <level2 size> <hist size>, which de-
fines specific parameters for each predictor component.

As shown in Figure 2.1, the first accessed table is the Branch History Table
(BHT). This table is indexed by the least significant bits of the branch instruc-
tion address, and containslevel1 size entries (power of 2). Each entry con-
sists of a branch history register ofhist size bits that indicates the behavior
of the lasthist size occurrences of the branch. Every time a branch com-
mits, this register is shifted left, and the least significant bit is set or cleared
according to whether the branch was actually taken or not.

The content of the history register obtained from the BHT is used to index
the row of a second two-dimensional table called Pattern History Table (PHT).
Because the history register hashist size bits, the PHT is forced to have
2ˆhist size entries. The column of the PHT is also indexed by the least sig-
nificant bits of the branch instruction address. The number of columns in the
PHT is given by thelevel2 size parameter. Each entry in the PHT contains a
2-bit up-down saturating counter that gives the final prediction for the inquired
branch.

By properly tunning the parameters of option-bpred:twolevel, one can form
the four two-level adaptive configurations commonly known as GAg, GAp,
PAg, and PAp. See [28] for a more detailed description about these predic-
tors. The table shown on the right of Figure 2.1 lists the restrictions that the
predictor parameters should fulfill in order to be classified as each of the cited
configurations.

2.2. The Superscalar Pipeline Model 19

Figure 2.2: Register renaming.

• Combined predictor. The combinedpredictor (option-bpred comb) com-
bines the bimodal and the two-level adaptive predictors. On an inquiry, both
components are looked up, and their corresponding predictions are temporar-
ily stored. Then, an additional table, calledchoice predictor, is accessed to
decide whether to obey the bimodal predictor statement or the two-level pre-
dictor statement. Option-bpred:choice specifies the number of entries in the
choice predictor (power of 2).

Each entry contains a 2-bit saturating counter. If its value is 0 or 1, the state-
ment of the bimodal predictor is considered. If its value is 2 or 3, the two-level
predictor is used to give the final prediction. The choice predictor counters are
updated at the commit stage only in the case that the bimodal and the two-level
predictors gave a contradicting prediction.

2.2.2 Register Renaming

The register renaming mechanism implemented in Multi2Sim uses a simplification of
the x86 logical registers. There are 22 possible name dependences between microin-
structions, which are listed in Figure 2.2a. Logical registerseax...edx are general
purpose registers used for computations and intermediate results. Registersesp...edi
are specific purpose registers implicitly or explicitly modified by some microinstruc-
tions, such as the stack pointer or base pointer for array accesses. Registerses...gs
are segment registers, whileaux1...data are internally used by the macroinstruction
decoder to communicate the generated microinstructions with one another.

The status of an x86-based processor includes a set of flags, which are written
by some arithmetic instructions, and later consumed mainly by conditional branches
to decide whether to jump or not. Flagsof, cf, anddf are the overflow, carry, and
direction flags, respectively, and are tracked as separate dependences among instruc-
tions. On the other hand, flagszf, pf, andsf are the zero, parity, and sign flags,

20 Chapter 2. The Multi2Sim Simulation Framework

Figure 2.3: Multi2Sim model of the superscalar processor pipeline.

respectively, and any x86 instruction modifying any of these three flags ismodifying
all of them. Thus, they are tracked as a single dependence, calledzps.

The value associated with each logical register, i.e., each potential input depen-
dence for an instruction, is stored in the physical register file. As represented in
Figure 2.2b, the register file (RF) consists of a set of physical registersthat store op-
eration results. Each physical register is formed of a 32-bit value, jointly with a 6-bit
field storing the x86 flags. The number of physical registers can be established with
the-phregs size option.

At a given point, each logical register is mapped to a given physical register in
the register file, containing the associated value. In the Multi2Sim renaming model,
logical register and flags renaming works independently. This means, forexample,
that registereax and flagcf can be mapped to the same register file entry. In this case,
thevaluefield stores the contents ofeax, while a specific bit in theflagsfield contains
the value forcf. Each logical register is mapped to a different physical register, but
x86 flags can be mapped all to the same physical register, even if the latter already
has an associated logical register.

A Register Aliasing Table (RAT) holds the current mappings for each logical
register. Its initial state is shown in Figure 2.2a. Additionally, a Free Register Queue
(FRQ) contains the identifiers corresponding to free (not allocated) physical registers.
When a new instruction writing into logical registerl is renamed, a new physical
register is taken from the FRQ and the new mapping forl is stored in the RAT. The
previous mappingp′ of logical registerl will be needed later, and is stored in the
ROB entry associated with the renamed instruction. When subsequent instructions
consumingl are renamed, the RAT will make them consume the contests inp, where
they will find the associated value.

When the instruction writing onl commits, it releases the previous mapping of
l, i.e., physical registerp′, returning it to the FRQ if necessary. Notice that, unlike a
classical renaming implementation ignoring flags, a physical register can have several
entries in the RAT pointing to it (the maximum is the number of flags plus one logical
register). Thus, a counter is associated with each physical register, which will only
be freed and sent back to the FRQ in case this counter is 0.

2.2. The Superscalar Pipeline Model 21

Figure 2.4: Block diagram of the fetch stage.

2.2.3 Pipeline Stages

Figure 2.3 shows a block diagram of the processor pipeline modeled in Multi2Sim.
The gray-painted boxes represent hardware structures, whereasthe round shapes rep-
resent pipeline stages. Six stages are modeled in Multi2Sim, namedfetch, decode,
dispatch, issue, writeback, andcommit. The actions performed in each stage are
described next.

• The Fetch Stage. The fetch stage is the first pipeline stage modeled in
Multi2Sim. It is in charge of fetching instructions from the corresponding in-
struction cache at the addresses provided by the branch predictor. Then, these
instructions are placed into the fetch queue. The instruction cache containsx86
macroinstructions, whose variable size is not known at this stage yet. Thus, the
fetch queue is just a buffer of uninterpreted bytes, whose size can be specified
with the-fetchq size option. Figure 2.4 shows a block diagram of the fetch
stage.

The fetch stage is divided into two main sections, as shown in the figure, called
branch predictionand instruction cache fetching, respectively. The branch
prediction section provides information about the branches located within the
fetched line. This information is then consumed by the instruction cache sec-
tion. The modeled fetching mechanism works as follows:

(i) First, the BTB is accessed with the current instruction pointer (eip regis-
ter). As pointed out in Section 2.2.1, the BTB organization (capacity and
associativity) can be configured by means of a specific command-line
option. However, the BTB has a fixed number of banks (or interleaved

22 Chapter 2. The Multi2Sim Simulation Framework

ways), namely as many as the size of the instruction cache block in bytes.
In Figure 2.4, this value is set to 16. This means that 16 concurrent ac-
cesses to the BTB can be performed in parallel, as long as no pair of
accesses matches the same interleaved way. This condition is true in the
branch prediction section, as only contiguous addresses belonging to the
same block are looked up.

(ii) The concurrent accesses to the BTB provide a mask of those instructions
known to be branches, jointly with their corresponding target addresses.
The branch predictor is next looked up to obtain the predicted direction
for the branches, that is, whether they are taken or not. Since the BTB
also provides the type of the branch (conditional branch, function call,
etc.), the branch predictor will consider this information for its output.
This means that an inconditional branch will always provide a predict-
taken output, and function calls and returns will access a Return Address
Stack (RAS) to obtain the actual target addresses. After the access to the
branch predictor, the input mask is converted to an output mask that only
tracks those taken branches.

(iii) In parallel with (i), the instruction cache is accessed in the instruction
cache fetching section (right block in Figure 2.4). After a variable la-
tency, dependent on whether there was a cache hit or miss, the cache
block becomes available, and the mask provided by the branch prediction
section is used to select the useful bytes. Specifically, a selection logic
takes those bytes ranging from the address contained in registereip until
the address of the first predict-taken branch, or until the end of the block
if there is none.

The filtered bytes are then placed into the fetch queue, which communi-
cates the fetch stage with the next pipeline stage. After fetching, theeip

register is set either to the starting address of the next block if no predict-
taken branch was found, or to the target address of the first taken branch,
as provided by the BTB.

• The Decode Stage. In the decode stage, macroinstructions are taken from the
fetch queue and decoded into the corresponding sequence of uops, which are
then placed into the uop queue. In a single cycle, the decode stage can decode
as many x86 instructions from the fetch queue as the decode bandwidth allows
(option-decode width).

• The Dispatch Stage. In the dispatch stage, a sequence of uops are taken
from the uop queue. For each dispatched uop, register renaming is carried
out by looking up the RAT for the current source and previous destination
mappings, and allocating a new physical register for the current destination

2.2. The Superscalar Pipeline Model 23

operand. Then, the uop is inserted in the ROB, and either in the LSQ or the IQ,
depending on whether the uop is or is not a memory instruction, respectively.

The number of instructions dispatched per cycle is specified with the
-dispatch width option. Instruction dispatching can get stalled for several
reasons, such as the unavailability of physical registers, a lack of space in the
ROB, or an empty uop queue. Since the dispatch stage acts as a bridge be-
tween the processor front- and back-end, a stall in this stage is a symptom of
some processor bottleneck constraining performance. For each dispatch slot
(i.e., for each uop susceptible of being dispatched in each cycle), the reasons
for dispatch stalls are recorded, and shown after the simulation finishes in the
di.stall statistics (di.stall[rob], di.stall[iq], etc.).

• The Issue Stage. The issue stage operates on the IQ and the LSQ. The uops
placed in these queues are instructions waiting for their source operandsto be
ready, or for their associated processor resource to be available. The issue stage
implements the so-calledwakeup logic, which is in charge of selecting from
each queue at the mostissue width uops that can be scheduled for execution.
After selecting the proper candidates, instructions from the IQ are sent tothe
corresponding functional unit to be executed, whereasload instructions placed
in the LSQ are sent to the data cache.

Sincestoreinstructions irreversibly modify the machine state, they are handled
in an exceptional manner both in the issue and the commit stage. On one hand,
storesare allowed to access the data cache only after they are known to be
non-speculative, which can be ensured after they have safely reached the ROB
head. On the other hand,storeshave no destination operand, so they need not
perform any renaming action at the commit stage. Thus, they are allowed to
leave the ROB as soon as they have been issued to the cache, without waiting
for the cache access to complete.

• The Writeback Stage. The writeback stage is in charge of taking the results
produced by the functional units or by a read access to the data cache, and
store them into the physical register mapped to the logical destination of the
executed instruction. If the executed instruction is a mispeculated branch, this
is when mispeculation is detected, since both the branch condition and the
target address are resolved at this time.

Processor recovery on mispeculation can be performed either at the writeback
or at the commit stage, as specified in parameter-recover kind. If recovery
is performed at the writeback stage, instructions following the mispeculated
branch are drained from the ROB, IQ, and LSQ, the RAT is returned to a previ-
ous valid state, and instruction fetching is delayed as many cycles as specified
by parameter-recover penalty.

24 Chapter 2. The Multi2Sim Simulation Framework

• The Commit Stage. The commit stage is the last stage in a superscalar pro-
cessor pipeline, in which instructions commit their results into the architected
machine state in program order. The oldest instruction in the pipeline is located
at the head of the ROB. The condition for astore instruction to be extracted
from the ROB is that it be issued to the cache, while the rest of instructions
must be completed before committing.

If the instruction at the head of the ROB is a mispeculated branch and the
recovery process is specified to be triggered at the commit stage, the contents of
the ROB, IQ, and LSQ are completely drained (only mispeculated instructions
following the branch remain in the pipeline at this time), the RAT is recovered
to a valid state, andrecover penalty cycles go by before instruction fetch
resumes.

When a completed, non-speculative uop commits, the register renaming mech-
anism frees the physical registers corresponding to the previous mappings of
the uop’s destination logical registers (see Section 2.2.2). Then, the branch pre-
diction mechanism updates the appropriate tables, according to the observed
behavior of the committed uop if it is a branch.

2.3 Support for Parallel Architectures

Multi2Sim provides a model for multicore and multithreaded processors. In order
to evaluate these parallel architectures, they must be stressed with multiple tasks,
which can be formed either by several applications with sequential code running in
parallel, or by one parallel program spawning child tasks at runtime. To describe
how a parallel architecture is modeled and evaluated in Multi2Sim, the following
definitions are first given.

• A contextis a software task (sometimes referred to assoftware thread) whose
state is defined by a virtual memory image and a logical register file. Logi-
cal register values are exclusive for a context, whereas the memory map can
be either exclusive or shared with other contexts. If an application contains se-
quential code, its state is represented by one single context. On the contrary, an
application can also spawn child contexts at runtime when it contains parallel
code, for example by using the OpenMP or POSIX threads libraries.

• A (hardware) threadis a hardware entity capable of storing the status of a
single context and executing it. In order to store the logical register values, a
thread has its own register aliasing table (RAT), which maps the logical regis-
ters into a physical register file. To store the state of a private memory image,
a thread has its own memory map cached in a private translation look-aside

2.3. Support for Parallel Architectures 25

Figure 2.5: Parallel architecture scheme.

buffer (TLB), which maps virtual memory locations into physical memory
pages. Functional units (adders, multipliers, FP execution unit...) are shared
among threads, while other pipeline structures, stages, and queues (such as
ROB, IQ, LSQ) can be private or shared.

• A (processor) coreis formed of one or more threads. It does not share any
pipeline structure, execution resource, or queue with other cores, andthe only
communication and contention point among cores is the memory hierarchy.

• A processing nodeis the minimum hardware entity required to store and run
one context. In a multithreaded processor, each thread is one processing node.
Likewise, each core in a multicore (and not multithreaded) processor is con-
sidered one processing node. Finally, anc-core,t-threaded processor (meaning
that each core hast threads) hasc × t processing nodes, since it can store and
run c × t contexts simultaneously. Each processing node can have its own en-
try point to the memory hierarchy to fetch instructions or read/write data. The
number of processing nodes limits the maximum number of contexts that can
be concurrently executed in Multi2Sim. If an application spawns new con-
texts and this limit is exceeded at runtime, the simulation stops with an error
message.

Based on these definitions, Figure 2.5 represents the structure of the parallel ar-
chitecture modeled in Multi2Sim. The figure is an example of a processor with 2
cores and 2 threads per core, forming 4 processing nodes with independent entry
points to the memory hierarchy.

26 Chapter 2. The Multi2Sim Simulation Framework

2.3.1 Multithreading

A multithreaded processor is modeled in Multi2Sim using option-threads, and as-
signing a value greater than 1. In a multithreaded design, most execution resources
can be either private or shared among threads. These resources canbe classified as
storage resourcesandbandwidth resources. The former refer to pipeline structures
(such as the ROB or IQ), while the latter refer to the uops that a pipeline stagecan
handle in a single cycle (such as dispatch slots, issue slots, etc.). Multi2Sim options
to configure each of these resources are given next.

• Storage resources. Regarding the configuration of storage resources, options
-rob kind, -iq kind, -lsq kind, and-phregs kind specify the sharing strat-
egy of the ROB, IQ, LSQ, and register file, respectively. The possible values
for these options areprivate andshared. The parameter specifying the size
of each structure always refers to the number of entries per thread. For exam-
ple, when the ROB is shared in ann-threaded processor, the total number of
ROB entries that can be occupied by a single thread isn×rob size.

The fact of sharing a storage resource among threads has several implications
in performance and hardware cost. On one hand, private storage resources con-
strain the number of structure entries devoted to each thread, but they imple-
ment in a natural manner a guarantee for a fair distribution of available entries
among threads. On the other hand, a shared resource allows an active thread to
occupy resource entries not used by other threads, but a greedy thread stalled
in a long-latency operation may penalize other active threads by hundredsof
cycles if it is holding resource entries for too long.

• Bandwidth resourcesThe options to specify how pipeline stages divide their
slots among threads are-fetch kind, -dispatch kind, -issue kind, and
-commit kind. The values that these options can take aretimeslice and
shared. The former means that a stage is devoted to a single thread in each
cycle, alternating them in a round-robin fashion, while the latter means that
multiple threads can be handled in a single cycle. The stage bandwidth always
refers to the total number of slots devoted to threads. For example, a value
of 4 for issue width means that at the most 4 uops will be issued per cycle,
regardless of whether the issue stage is shared or not.

The fetch stage can be additionally configured withlong termthread switches,
by assigning the valueswitchonevent for the -fetch kind option. In this
case, instructions are fetched from one single thread either until a quantum
expires or until the current thread issues a long-latency operation, such as a
load instruction incurring a cache miss.

2.4. The Memory Hierarchy 27

Option Coarse-Grain MT Fine-Grain MT Simultaneous MT

-fetch kind switchonevent timeslice timeslice/shared
-dispatch kind timeslice timeslice timeslice/shared
-issue kind timeslice timeslice shared

-commit kind timeslice timeslice timeslice/shared

Table 2.1: Classification of multithreading paradigms depending on Multi2Sim op-
tions.

Depending on the combination of sharing strategies for pipeline stages, a multi-
threaded design can be classified as coarse-grain (CGMT), fine-grain (FGMT),
and simultaneous multithreading (SMT). The combination of parameters for
each stage and its classification are listed in Table 2.1. The main enhancement
of FGMT with respect to CGMT is a round-robin fetch stage, which feeds the
rest of the pipeline with uops from a different thread every cycle, thus increas-
ing thread-level parallelism. The key improvement of SMT with respect to
FGMT is the shared issue stage, which feeds functional units at higher rate
with ready instructions, regardless of the thread they belong to.

2.3.2 Multicore Architectures

In Multi2Sim, a multicore architecture is modeled by assigning a value greater than
1 to option-cores. Since processor cores do not share any pipeline structure, there
is no other option related with the multicore processor configuration. When thenum-
ber of cores is greater than 1, all processor pipelines and their associated structures
are simply replicated, and they work simultaneously in every execution cycle.As
mentioned above, the only common entity for cores is the memory hierarchy.

2.4 The Memory Hierarchy

Multi2Sim provides a very flexible configuration of the memory hierarchy. Any num-
ber of cache levels can be used, and caches can be unified or separate for data and in-
structions, and they can be private or shared per groups of cores/threads. In this chap-
ter, it is shown how the memory hierarchy is modeled, configured and implemented
in Multi2Sim, including caches, main memory, and interconnection networks.

2.4.1 Memory Hierarchy Configuration

The configuration of the memory hierarchy is specified in an independent text file. If
the file name is<name>, Multi2Sim is notified to use it as memory hierarchy config-

28 Chapter 2. The Multi2Sim Simulation Framework

Figure 2.6: Example of a memory hierarchy configuration.

uration file with option-cacheconfig <name>. The configuration file is formed of
sections and fields. Each section represents a component of the memory hierarchy,
and is specified with a name enclosed in brackets (for example[MainMemory]). After
the section header, a set of fields formed of pairs<key>=<value> follows, specifying
the properties of the specific component.

The format of the memory hierarchy configuration file is illustrated by means of
an example modeling the memory hierarchy represented in Figure 2.6. This example
corresponds to a processor with one single core and one single thread,using two
levels of cache, where L1 caches are separated for instructions and data, and an L2
cache is unified. The contents of the associated configuration file is listed in Table
2.2.

In this code, a set of sections named[CacheTopology <name>] defines cache
organizations, that is, a set of characteristics used to later create caches. Two cache
organizations are defined first, namedl1topo and l2topo, which will be used to
create the L1 and L2 caches, respectively. The former is defined with 8 sets, 2 ways,
and 64-byte blocks (1KB of storage capacity in total), while the latter defines32 sets,
4 ways, and 64-byte blocks (8KB in total). The total capacity of the cache inbytes is
the product of the number of sets, the associativity, and the block size.

The next two sections[Net <name>] define the interconnection networks. In this
case, two of them are created, callednet-0 andnet-1, respectively. Both intercon-
nects are defined with a bus topology and a link width of 32 bytes per cycle. Thus, a
64-byte cache block is transfered in two cycles.

The sections entitled[Cache <name>] create cache memories. The L1 cache
is nameddl1, has the topologyl1topo, and is connected to the next cache level
by means of thenet-0 network. The cacheil1 is the instruction cache, also with
topologyl1topo, and connected to networknet-0 below. Finally, the unified L2

2.4. The Memory Hierarchy 29

——————————————————————————————
[CacheTopology l1topo]
Sets = 8
Assoc = 2
BlockSize = 64
Latency = 2

[CacheTopology l2topo]
Sets = 32
Assoc = 4
BlockSize = 64
Latency = 20

[Net net-0]
Topology = Bus
LinkWidth = 32

[Net net-1]
Topology = Bus
LinkWidth = 32

[Cache dl1]
Topology = l1topo
LoNet = net-0

[Cache il1]
Topology = l1topo
LoNet = net-0

[Cache l2]
Topology = l2topo
HiNet = net-0
LoNet = net-1

[MainMemory]
HiNet = net-1
BlockSize = 64
Latency = 200

[Node 0]
Core = 0
Thread = 0
DCache = dl1
ICache = il1

——————————————————————————————
Table 2.2: Example of a memory hierarchy configuration file.

Section Variable Meaning

Topology <name>

Sets Number of sets.
Assoc Associativity (number of ways).
BlockSize Block size in bytes.
Latency Access time in cycles.
Policy Block replacement policy (LRU, FIFO, or Random).

Net <name>
LinkWidth Link bandwidth in bytes per cycle.
Topology Network topology (Bus or P2P).

Cache <name>

Topology Cache topology name, as defined in section
[Topology <name>].

HiNet Name of the network connected above, as defined
in section[Net <name>].

LoNet Name of the network connected below.

MainMemory

HiNet Name of the network connected above.
Latency Access latency.
BlockSize Memory block size in bytes.

Node <num>

Core Core identifier of the processing node.
Thread Thread identifier.
DCache Name of the cache for data access, as defined in

section[Cache <name>].
ICache Name of the cache for instruction fetch.

Table 2.3: Sections and variables in the memory hierarchy configuration file.

30 Chapter 2. The Multi2Sim Simulation Framework

cache is namedl2, has the topologyl2topo, is connected tonet-0 above, and to
net-1 below.

Section[MainMemory] defines the main memory parameters. In this case, the
main memory is connected to networknet-1 above, has a 64-byte block size, and a
200-cycle access time.

Finally, section[Node 0] specifies which is the entry point to the memory hi-
erarchy for the computational node 0, corresponding to thread 0 in core0. With
the cache names assigned to variablesDCache andICache, it is stated that the node
should access cachedl1 when requesting data, and it should fetch code from cache
il1. Table 2.3 lists all possible variables that can be used in each section of the
memory hierarchy configuration file, including a brief description of their meaning.

2.4.2 Cache Coherence

Multi2Sim models a cache hierarchy with any number of cache levels, among which
cache coherence is maintained. Coherence is enforced with the directory-based
MOESI protocol at all caches connected to the upper link of an interconnect with
respect to the single allowed cache connected to the lower link (see Figure 2.6). The
upper level caches can belong to different threads, different cores, or a group of them,
and they can contain instructions, data, or both. Even if one instruction cache and one
data cache are connected to a unified cache at the lower level, coherence is maintained
among them (which is required in the case of, for example, self-modifying code).

Figure 2.7 represents an example of four coherent L1 caches with respect to an
inclusive L2 cache. Each block in the L2 cache, and in general each block in any
lower level cache, contains the fields listed in the figure. Besides the data, tag, and
status, a block has a directory entry containing two fields: the first one is anidentifier
of the single possible upper level cache being the owner of the block (i.e., an L1
cache with the block in stateexclusive, modified, or owned). There is a specific value
for this identifier to express that there is no owner in the upper level. The second
field is a bitmap with as many bits as upper level caches, with those bits set to one
corresponding to the caches having a copy of the block.

In fact, a single block can contain several directory entries in case the block size
of an upper level cache is smaller. For example, two L1 caches with 16 and 32-
byte block size connected to an L2 cache with 64-byte blocks, require 4 directory
entries per L2 block. The reason is that there can be at the most 4 block portions or
subblocksin an L2 cache block split among different cache lines in the L1 cache with
the smallest block size.

2.5. Experimental Environment 31

Figure 2.7: Enforcement of cache coherence.

2.5 Experimental Environment

The experiments in this thesis have been carried out on top of the Multi2Sim simula-
tion framework. First, this section describes how the simulator is extended to model
the proposed techniques. Then, the rest of the simulation environment andmethodol-
ogy is presented, including a brief description of the executed benchmarksuites, and
the performance metrics extracted from the simulation reports.

2.5.1 Multi2Sim Extensions

Version 2.1 of the Multi2Sim framework has been used to carry out the experiments in
this thesis. The baseline simulator has been instrumented to implement the proposed
techniques on top of the superscalar, multithreaded, and multicore processor models.
The following extensions have been applied in each case:

• Superscalar model. The implementation of the out-of-order retirement ar-
chitecture proposed in this thesis, referred to as Validation Buffer (VB) archi-
tecture, mainly involves an alternative management of the reorder buffer,and
an aggressive register renaming mechanism. First, the commit stage has been
modified to enforce a different set of retirement conditions for instructions.
Then, the physical register file and the renaming tables have been redesigned
to implement the new renaming scheme. Finally, the simulator has been instru-
mented with an additional option to switch between the ROB and VB architec-
tures.

• Multithreaded model. The baseline simulator provides support for differ-
ent multithreading paradigms and sharing strategies for the major processor
structures. For the evaluation of out-of-order retirement in a multithreaded
processor with shared structures, these resources have been instrumented with
specific allocation policies that manage the assignment of their entries to active
threads.

32 Chapter 2. The Multi2Sim Simulation Framework

Table 2.4: Classification and command-line arguments for the SPEC2000 bench-
marks.

• Multicore model. For a configuration using multiple cores, the simulator has
been instrumented to support the release and sequential memory consistency
models. The sequential consistency model is based on speculative retirement
of loads [29]. This implementation uses a history buffer, where instructions
are inserted after leaving the reorder buffer. Additionally, L1 caches are instru-
mented to monitor memory blocks that are accessed by instructions located in
the history buffer.

2.5.2 Benchmarks and Methodology

The benchmark suites executed on top of Multi2Sim in the experimental evaluations
are SPEC2000 [30] and SPLASH2 [31]. A brief description of these programs is
given next, including their combinations for multithreaded designs, and citing the
command-line arguments for each benchmark.

• SPEC2000. This suite is formed of 26 single-threaded benchmarks, classified
as integer (Int) or floating-point (FP). Integer benchmarks are written inC or
C++, and include compression, compilation, artificial intelligence algorithms,
or FPGA routing and placing, among others. Floating-point benchmarks are
written in C, Fortran77, or Fortran90, and deal with physics simulation, image
processing, numeric algorithms, etc. For each benchmark, three input data sets
with different sizes are provided, namedtest, train, andref.

The SPEC2000 suite is used in this thesis to evaluate the baseline and proposed
superscalar and multithreaded architectures. In the case of a superscalar model,

2.5. Experimental Environment 33

Table 2.5: Command-line arguments for the SPLASH2 benchmarks.

one single benchmark is run at a time to obtain one performance result, whereas
multithreaded models use a mix of at least two benchmarks, each allocated to
a hardware thread. To form these mixes, benchmarks are classified as CPU- or
memory-intensive applications, depending on the amount of instruction level
parallelism (ILP) they exhibit. Then, they are combined to build mixes with
only CPU-intensive programs, only memory-intensive ones, or both kinds to-
gether. The specific configuration of SPEC2000 benchmark mixes is detailed
in Section 4.2, where experiments with multithreaded architectures are shown.

As done in some previous works using this benchmark suite [6][9], most ex-
periments are run by initially performing a functional simulation of the initial
code, using here 500M x86 macroinstructions, and then running a detailedsim-
ulation until the next 500M uops commit. The objective is to skip programs
initialization with fast simulation speed, which does not contribute to the com-
putation of the final statistics. The files for the input data are taken from theref
set. For each benchmark, Table 2.4 lists the numerical computation kind (Int
of FP), the classification as per ILP (CPU or MEM), and the command-line
arguments used for its execution.

• SPLASH2. This suite consists of 11 parallel benchmarks, classified as kernels
or applications. All of them provide command-line arguments or configuration
files to specify the input data size. SPLASH2 benchmarks perform computa-
tions, synchronizations, and communication, stressing processor cores, mem-
ory hierarchy, and interconnection networks. Thus, they are used for the eval-
uation of the baseline and proposed multicore architectures presented in this
thesis. Additionally, SPLASH2 benchmarks provide arguments to specify the
number of contexts created at runtime, which allows the evaluation of systems

34 Chapter 2. The Multi2Sim Simulation Framework

with different number of cores. Table 2.5 shows the arguments used for each
benchmark.

The initialization code is not skipped in the SPLASH2 suite. Parallel programs
do not necessarily execute the same instructions for the same input parame-
ters and different hardware designs, because synchronization points may be
reached at different times, causing threads to stop at different waiting loops.
Thus, a fixed amount of assembler instruction has no direct correspondence
with the same amount of job. Since SPLASH2 benchmarks can flexibly tune
the problem size to provide reasonable simulation times, programs are run until
completion, including initialization and finalization code.

2.5.3 Performance Metrics

After carrying out a simulation, Multi2Sim dumps a report with simulation statistics.
In the experiments presented in this thesis, results of several simulations varying one
or more input parameters are usually filtered and represented graphicallyso as to
show a specific performance trend. By default, Multi2Sim provides a set of standard
performance metrics, such as the number of committed instructions, the IPC (com-
mitted instructions per cycle), the branch prediction accuracy, cache hit ratio, etc.
Although the default statistics suffice for most exhaustive evaluations, thesimulator
has been instrumented to provide the following additional performance metricsfor a
deeper comprehension of the modeled out-of-order retirement architectures.

• Used dispatch slots. The number of used dispatch slots in a cycle, which
ranges from 0 up to the dispatch bandwidth, is the number of uops taken from
the uop queue and placed into the ROB, among other structures. If the number
of dispatched uops does not reach the dispatch bandwidth, it means eitherthat
the uop queue is empty, or that no additional uop could be placed into some
other full structure. The specific reasons for dispatch stalls are recorded every
cycle, and the final average values are considered in our experiments as a useful
metric to analyze performance bottlenecks.

• Used issue slots. The number of issued uops, which ranges from 0 up to the
issue bandwidth, is stored every cycle to form a probability distribution. This
statistic is especially useful for the evaluation of multithreaded designs, where
an improvement of the multithreading paradigm is usually reflected in a higher
issue rate.

• Resource occupancy. This metric gives the fraction of busy entries for a given
resource, either as an average value, or as a probability distribution. The sim-
ulator is instrumented to measure the occupancy of the reorder buffer (ROB),
instruction queue (IQ), load-store queue (LSQ), and register file (RF). With the

2.6. Summary 35

obtained statistics, it may be possible to identify which processor structure is
causing performance bottlenecks in a given scenario. For example, a simula-
tion showing a fraction of 0.96 occupied entries in the ROB is suggesting that
a slight increase of this structure will provide important performance gains.

2.6 Summary

This chapter has presented the simulation environment used in the remainder of this
thesis for evaluation purposes. First, its main features have been cited andcompared
with other existing simulation tools. The modeled architecture for superscalar,multi-
threaded, and multicore processors has been detailed, including the branch prediction
mechanism, register renaming scheme, and memory hierarchy configuration.Then,
the SPEC2000 and SPLASH2 benchmark suites have been briefly presented, includ-
ing the command-line arguments for their execution, and the simulation methodol-
ogy. Finally, the main performance metrics have been cited and described.

Chapter 3

The Superscalar Validation Buffer
Architecture

The commit stage is typically the latest in the processor pipeline. At this stage, a com-
pleted, non-speculative instruction updates the architectural machine state, frees the
used resources, and exits the ROB. On the contrary, the Validation Buffer architecture
implements a FIFO structure similar to the ROB, but instructions can leave it as soon
as they are known to be non-speculative, and even though they are notcompleted yet.
Once they complete, they update the machine state and free the used resources, hence
exiting the processor pipeline in an out-of-order fashion. This chapter presents the
Validation Buffer architecture for single-threaded superscalar processors.

37

38 Chapter 3. The Superscalar Validation Buffer Architecture

3.1 Proposed Architecture

The necessary conditions to allow an instruction to be committed out-of-order are [9]:
i) the instruction is completed;ii) WAR hazards are solved (i.e., a write to a partic-
ular register cannot be permitted to commit before all prior reads of that architected
register have completed);iii) previous branches are successfully predicted;iv) none
of the previous instructions is going to raise an exception, andv) the instruction is
not involved in memory replay traps. The first condition is straightforwardlymet by
any proposal at the writeback stage. The last three conditions are handled by the Val-
idation Buffer (VB) structure, which replaces the ROB and contains the instructions
whose conditions are not known yet. The second condition is fulfilled by thedevised
register reclamation method (see Section 3.1.1).

The VB deals with the speculation-related conditions (iii, iv andv) by decom-
posing code into fragments orepochs. The epoch boundaries are defined by instruc-
tions that may initiate speculative execution, referred to asepoch initiators(e.g.,
branches or potential exception raiser instructions). Only those instructions whose
previous epoch initiators have completed and confirmed their prediction are allowed
to modify the machine state. We refer to these instructions asvalidated instructions.

Instructions reserve an entry in the VB when they are dispatched, and thus, they
enter this structure in program order. Epoch initiator instructions are marked as such
in the VB. When an epoch initiator detects a mispeculation, all the following instruc-
tions must be canceled. Therefore, an epoch initiator reaching the VB head must
wait for its execution to be completed before leaving the VB. After completion, it
is allowed to update the machine state and release its entry at the head of the VB.
Instructions other than epoch initiators reaching the VB head can leave it regardless
of their execution state. That is, they can be either dispatched, issued, orcompleted.
However, only those validated (i.e., not canceled) instructions update the machine
state. On the other hand, canceled instructions are drained and free the resources
they occupy (see Section 3.1.2).

Like in a ROB-based approach, a completed instruction that leaves the VB is not
consuming any other execution resource in the pipeline. In contrast, an incomplete
but validated instruction leaves the VB, but remains in the processor pipelineuntil it
completes. Since execution time is variable among instructions, the VB architecture
is said to retire instructions from the processor pipeline out of program order. In
other words, the proposal in this thesis can be classified as an out-of-order retirement
architecture.

The VB architecture allows a flexible set of epoch initiators to be established.
At least, those epoch initiators are supported corresponding to the three speculation-
related aforementioned conditions (iii, iv, andv). Therefore, branches and memory
reference instructions (specifically its address computation) necessarilyact as epoch
initiators. This means that branch speculation, memory replay traps (see Section

3.1. Proposed Architecture 39

Figure 3.1: Vector product example.

3.1.3) and exceptions related with address calculation (e.g., page faults or invalid
addresses) are supported by design.

It is possible to include more instructions in the set of epoch initiators. For in-
stance, floating-point instructions should belong to this set in order to support precise
floating-point arithmetic exceptions. However, as instructions are allowed toleave
the VB only after the preceding epoch initiators validate their epoch, a large amount
of epoch initiators might constrain the VB-based processor performance. To solve
this, a user modifiable flag can be introduced in the ISA to dynamically switch the
support for precise exceptions. This flag could be handled by the compiler, by being
disabled in those program sections where exceptions are known not to beraised, or
in which their precise handling is not required.

Hardware interrupts can be handled like in a ROB-based processor, without fur-
ther modifications. In particular, the occurrence of such an event should cancel all
instructions located in the VB. The recovery mechanism (see Section 3.1.2) will then
automatically recover valid register mappings, squash canceled instructionsfrom the
pipeline, and resume execution at the interrupt service routine.

Figure 3.1 presents a typical scenario where the benefits of out-of-order retire-
ment are clearly illustrated. A portion of source code (Figure 3.1a) and its corre-
sponding sequence of MIPS assembler instructions (Figure 3.1b) are listed as a pos-
sible implementation of the product of vectorsv 1 andv 2. When this code is run in
a ROB-based microprocessor, the first load missing in the data cache clogsthe ROB
head, and later stalls instruction dispatching when the ROB eventually fills up. When
this occurs, the ROB contains plenty of memory instructions, namely two loads and
one store per iteration, which are a potential source of additional cache misses aggra-

40 Chapter 3. The Superscalar Validation Buffer Architecture

Figure 3.2: VB architecture block diagram.

vating the problem. A modern microprocessor running this code (see Section3.3) is
stalled during about 77% of the execution cycles. In contrast, this percentage is nearly
negligible (about 0.02%) when the program runs in a VB-based processor, where the
pressure is moved into the instruction queue and load-store queue. As morerelaxed
conditions are required to release these resources, IPC rises from 0.70 to 1.05.

3.1.1 Register Reclamation

Typically, modern microprocessors free a physical register when the instruction that
renames the corresponding logical register commits [1]. Then, the physical register
index is placed in the list that contains the free physical registers available for new
producers.

Waiting until the commit stage to free a physical register is easy to implement,
but conforms to a conservative approach; a sufficient condition is thatall consumers
have read the corresponding value. Therefore, this method does not efficiently use
registers, as they might be mapped for longer than their useful lifetime. In addition,
this method requires to keep track of the oldest instruction in the pipeline. As this
instruction may have already left the VB, this method is unsuitable for our proposal.

For these reasons, an alternative register reclamation strategy has beendesigned,
based on the counter method [32][1], and targeted to the VB microarchitecture. The
hardware components used in this scheme, as shown in Figure 3.2, are:

• Front Register Alias Table (FRAT). This table maintains the current mapping
for each logical register and is accessed at the renaming stage. It is indexed by a
logical register to obtain the corresponding mapped physical register identifier.
Whenever a new physical register is mapped to a destination logical register,
the FRAT is updated.

• Retirement Register Alias Table (RRAT). The RRAT is updated whenever
an instruction exits the VB. This table contains a precise state of the register
mappings, as only those validated instructions leaving the VB are allowed to
update it.

3.1. Proposed Architecture 41

• Register Status Table (RST). The RST is indexed by a physical register iden-
tifier. It contains three fields:pending, unmappedandcompleted. Thepending
field tracks the number of decoded instructions that consume the correspond-
ing physical register, but have not read it yet. This value is incremented when
consumers enter the decode stage, and decremented when they are issued to
the execution units. The second and third fields are composed each of a sin-
gle bit. Theunmappedbit is set when the associated logical register has been
definitivelyremapped to a new physical register, that is, when the instruction
that remapped the logical register has left the VB as validated. Finally, the
completedbit indicates that the instruction producing its value has completed
execution, dumping its result into the corresponding physical register.

With this representation, a free physical registerp can be easily identified when
the corresponding entry in the RST contains the triplet{0,1,1}. A 0 in pending
guarantees that no instruction within the pipeline is going to read the contents
of p. Next, a 1 inunmappedimplies that no new instruction will enter the
pipeline (i.e., therenamestage) and read the contents ofp, becausep has been
unmapped by a valid instruction. Finally, a 1 in thecompletedfield denotes
that no instruction within the pipeline is going to write onp again. These
conditions ensure that a specific physical register can be safely reallocated on
a subsequent renaming. On the other hand, a triplet{0,0,1} denotes a busy
register, with no pending readers, not unmapped by a valid instruction, and
appearing as the result of a completed (and valid) operation.

Table 3.1 shows different situations which illustrate the dynamic operation of
the proposed register reclamation strategy in a non-speculative mode, as well as the
updating mechanism of the RST, FRAT and RRAT.

Table 3.1: Renaming actions for different pipeline events.

42 Chapter 3. The Superscalar Validation Buffer Architecture

3.1.2 Recovery Mechanism

The recovery mechanism is triggered after a mispeculated branch finishesits execu-
tion, resolving its target address and branch direction. Among other actions, proces-
sor recovery involves restoring a previous valid state of both the FRAT and the RST
structures.

Regarding the recovery of the mappings in the FRAT, different methods are em-
ployed in current microprocessors. The method presented in this work uses both
FRAT and RRAT, similarly to the Pentium 4 processor [3]. The RRAT containsa
delayed copy of avalidatedFRAT. That is, it matches the FRAT at the time the exit-
ing (as valid) instruction was renamed. A simple method to implement the recovery
mechanism (restoring the mapping to a precise state) is waiting until the offending
instruction reaches the VB head, and then copying the RRAT contents into theFRAT.
Alternative implementations can be found in [7].

On the other hand, the recovery mechanism must restore the RST by undoing
the modifications performed by mispeculated instructions in any of its three fields.
Concerning theunmappedfield, two possible techniques are proposed to restore its
values. The first technique squashes from the VB those entries corresponding to
instructions younger than the offending one after the latter reaches the VBhead.
At that point, the RRAT contains the physical register identifiers used to restore the
correct mapping. The remaining physical registers must be freed. To thisend, all
unmappedentries are initially set to 1, and the RRAT is scanned for physical registers
whoseunmappedentry must be cleared in the RST.

The second technique relies on the following observation: only those physical
registers allocated by instructions younger than the offending one must befreed.
Canceled instructions can leave the VB normally without being squashed, but they
are processed differently by the validation logic. Specifically, these instructions must
set to 1 theunmappedentry of their current mapping. Unlike validated instructions,
mispeculated ones update theunmappedentry corresponding to the currently mapped
destination physical register, instead of accessing the previous mapping,as done in
non-speculative mode. While canceled instructions are being drained, new instruc-
tions can enter the pipeline, provided that the FRAT has been already recovered.
Therefore, the VB draining can be overlapped with subsequent new processor opera-
tions.

Thependingfield cannot be just reset, because there might already be valid pend-
ing readers in the issue queue. Thus, eachpendingentry must be decremented as
many times as the number of canceled pending readers for the corresponding physi-
cal register. To this end, the issue logic must allow the detection of those instructions
younger than the offending instruction, that is, the canceled pending readers. This
can be implemented by using a bit mask in the issue queue to identify which instruc-
tions are younger than a given branch [2]. The canceled instructions must be drained

3.1. Proposed Architecture 43

from the issue queue to correctly handle (i.e. decrement) theirpendingentries. This
logic can be also reused to handle thecompletedfield, by enabling a canceled in-
struction to set the entry of its destination physical register. Alternatively, itis also
possible to simply let the canceled instructions follow their normal execution path
to correctly handle thependingandcompletedfields, which avoids the previously
described recovery logic.

3.1.3 Uniprocessor Memory Model

To correctly follow the uniprocessor memory model, it must be ensured that aload
instruction read the data produced by the youngest previous store matching its mem-
ory address. A key component to improve performance in this model is the load-store
queue (LSQ).

In the VB microarchitecture, as done in some current microprocessors, memory
reference instructions are internally split by the decoder into two uops: thememory
address calculation, which is considered an epoch initiator, and the memory operation
itself. When dispatched, the former reserves one IQ entry, the latter reserves an entry
in the LSQ, and both occupy one entry each in the VB. A load can be issued tothe
data cache as soon as its effective address is ready. On the other hand, a store is issued
to the data cache and retired from the VB when both the effective addressand source
operand are ready, and it is the last write access to memory in the pipeline. The latter
condition is enforced by issuing stores only when they are placed at the head of the
VB. Finally, any memory instruction frees its corresponding LSQ entry at thetime it
is issued to the data cache.

Load bypassingis an aggressive, widely used speculation technique applied on
the LSQ to improve processor performance. This technique permits early execution
of loads by making them advance previous stores, even though the address of any of
the latter is not known yet. As speculation may fail, a mechanism must be provided
to detect and recover from a load mispeculation. As proposed in [33], speculatively
issued loads can be placed in a special buffer calledfinished load buffer(FLB). The
entry of this buffer is released when the load commits. When a store commits, the
FLB is looked up for aliasing loads (note that all loads in the buffer are younger than
the store). If an address match is detected, the load in the FLB and all subsequent
instructions must be canceled and re-executed.

An FLB is straightforwardly adapted into the VB architecture with no additional
complexity. In this case, a load instruction releases its entry in the FLB when it
leaves the VB. When a store is issued and retired from the VB, the addresses of all
previous memory instructions and its own address have been resolved. Thus, it can
already search the FLB for aliasing loads that were speculatively issued. As in a
ROB-based implementation, all loads in the buffer are younger than the store. On a

44 Chapter 3. The Superscalar Validation Buffer Architecture

hit, the recovery mechanism is triggered as soon as the mispeculated load exitsthe
VB. Notice that this implementation allows mispeculation to be early detected.

Load forwardingis another optimization for the LSQ. This technique is applied
whenever a load address matches a previous store address, and thereis no unresolved
nor matching store address between them. In this case, the load data is obtained from
the previous store, and the cache access is avoided. This technique is also compatible
with the VB architecture, and the hardware devoted to it is no different from a ROB-
based processor.

3.1.4 Potential Benefits in Performance

The VB architecture improves the management of instructions in the ROB architec-
ture by means of an early retirement of instructions from the VB and an earlyrelease
of unused physical registers. These features provide two main sources of potential
benefits in performance, which can be described as follows:

• On one hand, an instruction placed at the VB head is only retained if it is an
unresolved branch, an uncompleted memory address computation, or an in-
struction susceptible of raising an exception. The rest of instructions canleave
the VB regardless of their execution state. Thus, the number of entries in the
VB does not constrain the number of in-flight instructions in the processor
pipeline. The potential benefit provided by the relaxation of retirement condi-
tions is referred to hereafter asextended instruction window.

• On the other hand, an instruction leaving the VB tries to release the previous
mapping of its destination logical register. If the associated physical register
has moreover already been written, and there is no pending consumer in the
pipeline, the register is indeed freed, even if older incomplete instructions are
still in flight. The potential benefit that the register renaming technique pro-
vides will be referred to asenhanced register usage.

3.2 Working Example

Figure 3.3 illustrates a VB-based processor pipeline with four in-flight instructions,
each in a different state. The table on the left (Figure 3.3a) lists these instructions,
labeled fromi1 to i4, with their source (src), destination (dst), and previous desti-
nation physical register (prev) —prev refers to the physical register mapped to the
logical destination of an instruction before it was renamed. Though most instructions
consume two source operands, they are assumed to have only one for thesake of
simplicity. Instructionsi1, i2 andi4 are arithmetic operations that generate a result,
while instructioni3 is a branch. This means that instructioni3 must be completed
before the speculative state of the following instructions (i4) is resolved.

3.2. Working Example 45

Figure 3.3: Working example for superscalar processors.

Figure 3.3b shows the VB, the IQ, and the functional units, while Figure 3.3clists
the contents of the RST in its current state. The circled identifiers correspond to those
values affected by at least one of the four instructions. The following observations
can be made:

• Instructioni1 has completed execution and left the pipeline as validated. This
makes both RST[5].completedand RST[1].unmappedbe set, causing physical
register 1 to become free.

• Instructioni2 has exited the VB as validated, but it remains in execution in
the corresponding functional unit. Thus, RST[6].completedis still clear, but
RST[2].unmappedis already set, causing physical register 2 (the previous des-
tination mapping) to be freed, even before the instruction completes. Likewise,
RST[5].pendingis set to 0, since no instruction in the IQ is going to read its
contents.

• Instructioni3 has also exited the VB as validated. However, it remains in the
IQ because its source operand, which is produced byi2, is not ready yet. Since
both i3 andi4 will read register 6 in the future and they are located in the IQ,
RST[6].pendingis equals to 2.

• Finally, instructioni4 has an unknown speculative state, sincei3 is an incom-
plete branch. Thus, it cannot leave the VB, and the RST[3].unmappedfield
remains clear. Sincei4 has not been issued yet, it is obviously not completed,
and RST[7].completedis clear.

Based on this pipeline state, let us consider the two possible actions depending
on the resolution of branchi3. A correct prediction of the branch makes instruction
i4 non-speculative, and the RST management should continue normally. In contrast,
a branch misprediction causes the following instructions to be squashed, and the re-
naming actions performed byi4 should be undone. In the example, the final state after

46 Chapter 3. The Superscalar Validation Buffer Architecture

all instruction have been issued, completed, and (in)validated would be the following
depending on the prediction correctness:

• Correct prediction. All physical registers would be free (i.e., RST[i] = {0, 1,
1}), except register 5, 6, and 7 (i.e., RST[j] = {0, 0, 1}). The action performed
by i4 after leaving the VB is to set the RST[3].unmappedbit.

• Misprediction of branchi3. All physical register would be free, except reg-
isters 3, 5, and 6. The action carried out byi4 after leaving the VB is to
undo its changes by setting the RST[7].unmappedbit. When i4 completes,
RST[7].completedis set, and physical register 7 becomes free.

3.3 Performance Evaluation

For comparison purposes, two ROB-based proposals without checkpointing have
been modeled, one retiring instructions in program order (hereafter the IOC pro-
cessor) and the other implementing the out-of-order retirement technique proposed
in [9] (from now on, the Scan processor). To perform a fair comparison, the recovery
mechanism for the ROB-based architectures is triggered at the writeback stage (see
Section 1.1), to make it independent from the time instructions are retired. In addi-
tion, the recovery penalty has been assumed to take a constant value of 10cycles for
all simulated microarchitectures, regardless of the ROB/VB size. Notice that this is
a conservative assumption for the VB, since it will usually have a smaller number of
entries, which helps decrease the real recovery penalty [7].

Table 3.2 summarizes the architectural parameters of the baseline modeled ma-
chine. Experiments have been performed by running the SPEC2000 benchmark suite,
following the methodology described in Section 2.5.2. The experimental study pur-
sues two main goals: first, it quantifies the potential of the proposed architecture,
by modeling an unlimited number of entries for some structures, and making perfor-
mance be limited only by the size of other specific storage elements; second, thestudy
spans performance and complexity issues with realistic structure sizes, resembling a
real commercial processor.

3.3.1 Quantifying the Performance Potential

The first step in our performance study is the evaluation of the maximum benefits that
can be achieved by out-of-order retirement of instructions. For this aim, the size of the
major processor structures other than the ROB/VB are assumed unbounded. These
structures include the instruction queue (IQ), load-store queue (LSQ),and register
file (RF). Figure 3.4 shows the average IPC for SpecFP and SpecInt when varying
the ROB/VB size.

3.3. Performance Evaluation 47

Processor Core

Machine width (decode,
4 uops/cycledispatch, issue, commit/

validate)
Storage resources 40-entry IQ, 20-entry LSQ, 64-entry ROB, 64-entry RF
Functional units and 4 Int. add (2/1), 1 Int. mult. (5/2), 1 Int. div (20/10)
latency (total/issue) 2 FP add (5/2), 1 FP mult. (10/5), 1 FP. div. (30/15)

Branch predictor type

Hybrid (2-level + bimodal)
2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.
Choice pred.: 1K entries.

Memory Hierarchy

L1 cache 32KB, 4-way, 64-byte block, 2-cycle latency.
L2 cache 512KB, 8-way, 64-byte block, 20-cycle latency.
Main memory 200-cycle access time.

Table 3.2: Baseline superscalar processor parameters.

Figure 3.4: Average potential performance for SpecFP and SpecInt benchmarks with
unbounded IQ, LSQ, and RF.

As observed, performance improvements provided by the VB microarchitecture
are much higher for floating-point benchmarks. The reason is that the ROB size is not
the main performance bottleneck in integer applications, partially due to a higherper-
centage of mispredicted branches—this result complies with the observationsmade
in [6] and [9]. Thus, performance analysis will focus on SpecFP hereafter. Concern-
ing the latter, the highest IPC difference appears for the smallest VB/ROB size (i.e.,
32 entries), and this difference gets smaller as the VB/ROB size increases.In spite
of this, a large 1024-entry ROB is required for the IOC and Scan processors to match
the performance achieved by the VB microarchitecture.

Figure 3.5 presents the IPC achieved by each individual benchmark fora 32-
entry ROB/VB. Loads and floating-point instructions are the main sources of IPC
differences, since instructions taking long time to complete are the ones most likely

48 Chapter 3. The Superscalar Validation Buffer Architecture

Figure 3.5: Potential performance for SpecFP benchmarks with a 32-entry ROB/VB
and unbounded IQ, LSQ, and RF.

to be stalling the ROB head. To provide more insight into this fact, the specific
impact on performance of long-latency instructions has been explored. Figure 3.6
shows the distribution of cycles where the decode stage was stalled due to a lack of
space in the ROB. Stalled cycles are classified according to the type of the instruction
that was blocking the ROB (memory, floating-point, and others). The category None
represents those cycles where no stalls occurred (i.e., the fetched instructions were
effectively decoded). Finally, decode stalls due to an absence of instructions to be
consumed from the fetch queue (IFQ) are also quantified. Notice that the sum of all
categories represents the total execution time of each benchmark.

As observed, memory instructions are the main cause for stalls. The second,
though much more infrequent, cause of ROB blocking are floating-point instructions.
Notice that the VB microarchitecture effectively deals with both causes in mostof
the benchmarks (e.g.,art). In contrast, the VB provides minor benefits for those
benchmarks where dispatching is stalled neither by memory nor by floating-point
instructions (e.g.,apsi).

Figure 3.6: Execution time categorized at the dispatch stage in a machine with un-
bounded IQ, LSQ, and RF.

3.3. Performance Evaluation 49

3.3.2 Exploring the Behavior in a Modern Microprocessor

Figure 3.7: Performance for SpecFP in a modern microprocessor.

This section explores the behavior of the VB architecture with the major micro-
processor structures closely resembling those implemented in the Intel Pentium4
microprocessor, as specified in Table 3.2. The size of the VB has been ranged from
8 to 128 entries, and IPC values are shown in Figure 3.7 for SpecFP benchmarks.
Results show that the VB microarchitecture is much more efficient, achieving with
only 16 entries higher IPC than its counterparts, on average. On the otherhand, VBs
larger than 32 entries provide minor benefits on performance.

Although the VB microarchitecture does not stand out to the same extent for
integer as for floating-point benchmarks, simulations for SpecInt have also been per-
formed, showing that a 32-entry VB performs as well as a 128-entry ROB. Thus, it
can be concluded that performance of integer benchmarks is not significantly affected
when reducing the VB size.

To explore the complexity requirements of the four major microprocessor struc-
tures in the VB microarchitecture, their occupancy in number of entries has been
measured. As shown in Figure 3.8, the VB architecture tends to reduce it, in general,
regardless of the VB/ROB size, and with the exception of the instruction queue. An
increase in the latter’s occupancy is explained by the reduction in dispatch stalls due
to a lack of space in the ROB, which shifts the pressure of the instruction flowinto
the instruction queue (see Section 3.4.1).

The VB occupancy is about one third of the ROB occupancy on average. The
highest IPC benefits appear in those applications whose VB requirements are smaller
than the IQ demand (e.g.,swimor mgrid, Figures 3.8a and 3.8b). In these cases,
the VB microarchitecture effectively increases ILP by enlarging the instruction win-
dow size, and allowing more instructions to be concurrently executed. Results also
show the effectiveness of the proposed register reclamation mechanism (Figure 3.8c),
which leads to a lower number of required registers. Finally, the LSQ occupancy is
also lower in the VB microarchitecture (Figure 3.8d). The reason is that an LSQ
entry cannot be released in ROB-based schemes until all previous instructions have

50 Chapter 3. The Superscalar Validation Buffer Architecture

a) ROB and VB.

b) Instruction queue.

c) Register file.

d) Load-store queue.

Figure 3.8: Resources occupancy.

3.3. Performance Evaluation 51

Figure 3.9: Performance with an unbounded RF.

L1

L2

MEM

1,0

1,1

1,2

1,3

1,4

1,5

1 3 1 3 1 3 1 3 1 3 1 3

10 18 10 18 10 18

100 200 400

S
p

e
e
d

u
p

a) Speedup over
IOC.

L1

L2

MEM

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1 3 1 3 1 3 1 3 1 3 1 3

10 18 10 18 10 18

100 200 400

S
p

e
e
d

u
p

IOC 1,10, 200

IOC 1,10, 100

b) Speedup over IOC with{1, 10, 100}
memory configuration.

Figure 3.10: Impact on performance of memory latencies.

committed. In contrast, the VB microarchitecture can free an LSQ entry as soon as
all previous instructions have been validated, which is a weaker condition.

The proposed architecture benefits both from out-of-order retirementand aggres-
sive register reclamation. To distinguish the isolated contribution of out-of-order
retirement, a set of simulations has been run by modeling a processor with an un-
bounded register file. As observed in Figure 3.9, the register renaming mechanism
itself slightly affects the overall performance of the VB microarchitecture, so most
benefits come from the fact that instructions are retired out of order. Incontrast, IOC
and Scan improve their performance with an unbounded amount of physical registers,
yet these configurations are outperformed by a 16-entry VB.

3.3.3 Impact on Performance of Memory Latencies

To analyze the impact on performance of the access time of the memory hierarchy
components, this section explores different realistic access times for L1 (i.e., 1 and
3 cycles), L2 (10 and 18 cycles) and main memory (100, 200, and 400 cycles). The
processor core parameters remain as specified in Table 3.2. Each bar in Figure 3.10a
shows the speedup achieved by the VB over the IOC architecture with exactly the
same memory configuration. As observed, the main impact on performance comes

52 Chapter 3. The Superscalar Validation Buffer Architecture

Figure 3.11: Performance with precise floating-point exceptions support.

from the main memory latency. When the latter increases, the wider instruction win-
dow provided by the VB architecture makes the speedup grow.

Figure 3.10b shows a cross-comparison version of the previous results. This
figure plots relative speedups over the IOC processor with the fastest memory config-
uration (1, 10, 100). For the same main memory latency, the VB achieves a speedup
of about 27%. When comparing the VB-based system with a 200-cycle memory la-
tency against the IOC processor with the fastest main memory, performanceis shown
to drop by about 8%, while an IOC processor with the same memory latency makes
it drop by about 43%.

3.3.4 Supporting Precise Floating-Point Exceptions

The VB architecture can support precise floating-point exceptions by including
within the set of epoch initiators those instructions susceptible of raising them. How-
ever, the inclusion of all floating-point instructions damages performance, as many of
them take tens of cycles to complete. In this section, an epoch initiated by a floating-
point operation is assumed to be resolved when the instruction completes. Notice that
this is a conservative approach, since some floating-point exceptions can be early de-
tected by comparing the operator exponents (e.g., overflow) or checkingone of the
operands (e.g., division by zero).

Figure 3.11 shows the impact on performance of the precise floating-pointex-
ceptions support, compared with VB architecture with imprecise exceptions. As ex-
pected, the VB architecture performance is damaged, even though a 32-entry VB still
behaves similarly to the IOC processor with a 128-entry ROB. Also, a 64-entry VB
achieves performance close to the Scan and IOC models with a ROB twice as large.

Although precise floating-point exceptions are encouraged by the IEEE-754
floating-point standard, the performance penalty is considerable in many microar-
chitectures. As a matter of fact, most processors enable the deactivation of floating-
point exceptions by software. In some of them (e.g., Alpha 21164), theseexceptions
are even imprecise by default [34], and the help of the compiler is requiredto de-

3.4. Hardware Complexity 53

tect which instruction raised an exception [35]. This behavior is desirablefor the
proposed architecture to sustain the benefits provided by out-of-orderretirement.

3.4 Hardware Complexity

Superscalar processors exploit instruction level parallelism by keepinglong chains of
instructions in flight. Usually, this requires an increase of complexity in some major
hardware structures, which can in turn adversely impact the clock cycle.With this
tradeoff in mind, this section shows how hardware complexity, in terms of structure
sizes and pipeline width, varies for a given performance.

3.4.1 Size of the Major Processor Components

The microprocessor design involves correctly dimensioning hardware structures. If
one component is too small, it becomes a bottleneck that incurs performance degra-
dation. In contrast, an unnecessarily large component incurs power and area waste.
The goal of this section is to identify the least complex configuration to reach agiven
performance level. To this end, a wide range of sizes for the major processor struc-
tures has been analyzed: 64, 128, and 256 entries for the register file (RF); 16, 32, 64,
128, and 256 entries for the instruction queue (IQ); 16, 32, 64, 128, and 256 entries
for the load-store queue (LSQ); and 16, 32, 64, 128, and 256 entriesfor the ROB/VB.
The rest of the parameters remain as specified in Table 3.2.

The combination of all tested structure sizes provides an amount of53 × 3 =
375 configurations for each modeled architecture, which multiplied by the number
of executed benchmarks represents an important number of simulations. Toease
this analysis, results have been first ordered by increasing performance. Then, those
configurations providing very similar performance have been filtered by discarding
those with higher complexity.

Figure 3.12 shows the filtered results for both the in-order and the out-of-order
retirement processor. In general, the RF presents itself as the main performance
bottleneck in both architectures. The second bottleneck differs for eachcase, though.
In the IOC processor, it is imposed by the ROB, while in the VB architecture it is
the IQ. A complexity comparison is performed by selecting four performancelevels,
labeled from A to D.

Based on the lowest performance level (label D), it can be observed that the IOC
processor requires a minimum complexity of a 128-entry RF, a 128-entry ROB, a
64-entry IQ, and a 64-entry LSQ, while the VB-based processor reaches similar per-
formance with half the size of the IQ, and both a VB and an LSQ four times smaller.
Regarding the highest labeled performance level (label A), the IOC processor requires
a complexity of at least 256 RF entries, a 256-entry ROB, a 128-entry IQ,and a 128-
entry LSQ, while the VB-based processor reaches similar performance with half the

54 Chapter 3. The Superscalar Validation Buffer Architecture

a) ROB-based processor.

b) VB microarchitecture.

Figure 3.12: Performance for different RF, IQ, ROB/VB, and LSQ sizes.

size of the IQ, and a VB four times smaller. Performance levels B and C represent
other intermediate IPC values in both architectures. For any given performance level,
it is possible to find a hardware configuration in the VB architecture with much less
complexity than that required for the IOC processor.

3.4.2 Impact of the Pipeline Width

In this section, several values for the pipeline width (i.e., fetch, decode, issue, and
commit/validation bandwidth) are explored on top of the IOC and VB-based pro-
cessor models with the baseline core parameters. A reduction of the pipeline width
has important implications in complexity, which is usually more aggressive than just
resizing a hardware structure. For example, the hardware cost incurred by the de-
pendence check logic in the instruction queue depends over-linearly on the issue

3.5. Summary 55

Figure 3.13: Performance for different pipeline widths.

bandwidth. Also, the number of ports in the register file is directly affected bythe
renaming logic, among others. More details on complexity issues can be foundin
[5].

Figure 3.13 represents the performance achieved by pipeline widths ranging from
1 to 4 instructions per cycle for the compared architectures. A remarkable result is
the performance equivalence of a 4-way IOC design with a 128-entry ROB and a
2-way VB-based design with an 8-entry VB. Also, a VB-based processor with a
pipeline width of 1 instruction per cycle reaches performance close to a muchmore
complex IOC processor with a 2-way pipeline and a 64-entry ROB. In summary,
experimental results evidence that the VB microarchitecture can not only outperform
existing in-order and out-of-order retirement architectures, but also requires much
lower hardware complexity.

3.5 Summary

In this chapter, the VB microarchitecture has been proposed for superscalar proces-
sors. This architecture retires instructions out of order, while providingsupport for
speculation and precise exceptions. Moreover, checkpoints are not needed due to
the non-speculative nature of the out-of-order retirement proposal. Aperformance
evaluation study has been presented, where the VB architecture has been compared
against a typical ROB-based processor and a previously proposed out-of-order retire-
ment approach.

From this study, two significant results are highlighted:i) a 32-entry VB achieves
performance similar to a 256-entry ROB, andii) other major processor structures,
or even the pipeline width, can be reduced, simplifying their hardware costwhile
sustaining performance. In summary, a VB-based superscalar processor has been
shown to behave as a complexity-effective microarchitecture, since it canbe viewed
as a design aimed either at improving performance or at reducing complexity.

Chapter 4

The Multithreaded Validation
Buffer Architecture

Multithreaded processors in their different organizations (simultaneous,coarse grain
and fine grain) have been shown as effective architectures to reducethe issue waste.
On the other hand, out-of-order retirement of instructions helps unclog the ROB when
a long-latency instruction reaches its head, which further contributes to increase the
utilization of the available issue bandwidth. In this chapter, a performance and com-
plexity evaluation of a multithreaded, out-of-order retirement architecture iscarried
out, where different multithreading models and instruction fetch policies are ana-
lyzed.

57

58 Chapter 4. The Multithreaded Validation Buffer Architecture

4.1 Out-of-Order Retirement Multithreaded Architecture

As any multithreaded processor, the multithreaded Validation Buffer (VB) architec-
ture provides for the operating system the illusion of having multiple logical proces-
sors working in parallel. The key idea behind multithreading is sharing a common
functional unit pool to increase its utilization by feeding it with independent instruc-
tions from different threads. The main design issue when extending a single-threaded
processor to support multithreading is deciding whether hardware components other
than functional units should be private or shared among threads [9]. This aspect will
be tackled in the following sections, ending with a discussion about sharing the VB
structure.

4.1.1 Execution of Multiple Contexts

A multithreaded processor contains hardware to store the state of severalsoftware
contexts and, optionally, execute them at the same time. As detailed in Section 2.3,
the state of a context is represented by a virtual memory image and a logical register
file, which are designed as follows:

• Virtual memory image. Hardware threads in a multithreaded processor access
a common main memory pool with a shared physical address space, which is
split among threads by the MMU (Memory Management Unit). The MMU
includes a page table managed by the operating system (OS), which is indexed
by a process identifier and a virtual address, and returns the associated physical
address. To avoid a memory access for each address translation, a Translation
Look-aside Buffer (TLB) is used within the processor as a cache for the page
table, which is flushed every time a context switch is triggered by the OS.

Since there are multiple active contexts in a multithreaded processor, the page
table must be cached independently for each context using one of the following
options. On one hand, a TLB shared among threads can be adapted to be
indexed by a virtual address and a thread identifier. On the other hand, TLBs
can be simply private per thread and indexed only by a virtual address. The
advantage of a private approach is that no selective TLB flush needs tobe
implemented to support context switches; the whole private TLB is reset in
this case. Even though no context switch is required in a model where the
number of contexts matches the number of hardware threads, the private TLB
approach is used for our simulations.

• Logical register file. The values associated with logical registers and status
flags are stored in entries of the physical register file. This structure canbe
shared or private per thread. In both designs, it is guaranteed that thesubset

4.1. Out-of-Order Retirement Multithreaded Architecture 59

of physical registers bound to specific threads are always disjoint, thatis, no
physical register is mapped to two logical registers of different contexts.

To keep disjoint register mappings for each context in a multithreaded proces-
sor, the register alias table (RAT) can be implemented in the following man-
ners. On one hand, a common RAT can be modified to be indexed by a logical
register and a thread identifier, returning the associated physical register. On
the other hand, one private RAT can be used per thread, indexed just by a log-
ical register. The latter approach is used for our simulations, since it avoids a
selective RAT recovery after a branch mispeculation.

4.1.2 Resources Sharing

A straightforward way to extend a single-threaded processor to implement multi-
threading consists in replicating all hardware structures per thread, such as the re-
order buffer (ROB), the instruction queue (IQ), the load-store queue(LSQ), or the
register file (RF), while maintaining a common pool of functional units. In the op-
posite approach, hardware structures can be shared among threads,using policies
that dynamically allocate resource slots. Between these limits, there is a gradient of
solutions to be explored in order to find the optimal sharing strategy for resources.

Shared resources are often more costly than private ones due to a higher hardware
complexity devoted for allocation or deallocation of individual entries. Moreover,
shared resources need to increase read/write ports in order to enable parallel access
from various threads, which may increase both their area and latency. Incontrast, the
potential advantage of shared resources is that one single thread can compete for all
its entries. For example, if only one thread has instructions in its uop queue ready
to be dispatched, it can use all entries of a shared IQ to dump them. If the IQ is
private per thread, the active context is restricted to its assigned IQ portion, while the
remaining IQs are unused.

But this does not mean that a shared approach performs always better.As pointed
out in [36], shared storage resources can cause a performance degradation if they are
abusively occupied by inactive threads. For example, if a thread is able toallocate all
entries of a shared RF and then it stalls in a long-latency operation, no otherthread
can be dispatched until this operation finishes. This case is a sample of an unfair
assignment of resources to a thread that cannot make an effective useof them.

The problem of fairly assigning resources to threads is solved with two differ-
ent approaches, evaluated in this chapter. On one hand, a simple privateapproach
provides a fair distribution of resources among threads, with simple hardware imple-
mentation but poor single-thread performance (Section 4.2.1). On the otherhand, a
shared approach can be instrumented with wise resource allocation policiesto prevent
stalled threads from greedily occupying resources (Section 4.2.4).

60 Chapter 4. The Multithreaded Validation Buffer Architecture

4.1.3 Resource Allocation Policies

To exploit the advantages of shared structures in a multithreaded design, several re-
source allocation policies have been proposed in other works. The aim ofresource
allocation policies is to make proper decisions about the assignment of structure en-
tries to threads requesting them. In general, these decisions are based onthe current
distribution of resource entries and the recent history of running threads. The alloca-
tion policies used in our evaluated multithreaded architectures with shared structures
are briefly described next.

• Round-Robin (RR). This is a straightforward allocation policy, which con-
sists in assigning resource entries to threads in a rotative way each cycle.If
one thread has no ready instructions in a given cycle, it is skipped without
consuming its allocation time slot.

• Instruction Count (ICOUNT) . This is a fetch policy proposed by Tullsen et
al. [37], which assigns fetch priority to those threads with less instructions in
the decode, rename, and issue stages. The notation ICOUNT.nt.ni means that
at mostnt threads can be handled at the fetch stage in the same cycle, taking at
mostni instructions from each. Experiments shown later use an ICOUNT.2.8
configuration, which provides the best results for the ROB-SMT architecture.

• Predictive Data Gating (PDG). This policy was proposed by El-Moursy et al.
[38], and can be classified as a fetch policy, too. This technique is aimed at
avoiding a long permanence of non-ready instructions in the issue queue (IQ)
due to data dependences with long-latency instructions, long data dependence
chains, or contention for functional units or cache. To early detect long-latency
events, a load miss predictor is placed in the processor front-end, and a per-
thread specific counter tracks the estimated number of pending cache misses.
The values of these counters are used to stop instruction fetch when a certain
threshold is exceeded.

As suggested in [38], experiments assume a load miss predictor of 4K entries
with 2-bit saturating counters. The predictor is indexed by the PC of the load
instruction, and the prediction is given by the most significant bit of the satu-
rating counter. Whenever a load incurs a data cache miss, the corresponding
counter is reset, whereas it is incremented when the associated load hits in the
cache.

• Dynamically Controlled Resource Allocation (DCRA). This policy was pro-
posed by Cazorla et al. [39]. Unlike ICOUNT and PDG, DCRA does not only
control the fetch bandwidth fraction granted to each thread, but also manages
the allocation of other shared resources. DCRA classifies threads according to

4.1. Out-of-Order Retirement Multithreaded Architecture 61

two criteria. First, a thread is considered slow or fast, depending on whether it
has or not pending L1 cache misses. Second, a thread is considered active or
inactive for a given resource depending on whether it has recently (e.g., in the
last 256 cycles) requested its allocation.

The authors propose a mathematical formula to limit the number of entries in
a shared resource that a thread can allocate depending on the thread classifica-
tion. The additional hardware consists of resource occupancy counters and a
lookup table to efficiently implement the formula.

4.1.4 Using Out-of-Order Retirement

A multithreaded processor can implement the proposed out-of-order retirement ar-
chitecture by using a validation buffer (VB) and the aggressive registerrenaming
technique presented in Section 3.1.1. Since it is a FIFO queue, the VB is a special
case when it is designed as a structure shared among thread. Two mechanisms are
devised to manage the assignment of VB entries to threads, referred to asdynamic
VB partitionsandunified VB. Both approaches enjoy the advantages of a shared re-
source, namely that one single thread can flexibly use any number of entries, and
both of them can implement a resource allocation policy to avoid thread starvation.
However, there are additional issues to be considered when sharing a FIFO queue.
These are the discussed alternatives:

• Dynamic VB partitions. Similarly to the sharing strategy for the ROB pro-
posed in [40], this mechanism consists in assigning disjoint VB portions to
threads, whose size hinges upon the threads demand. Each portion is handled
as an independent VB, where instructions are inserted and extracted in the lo-
cal thread’s FIFO order. The main drawback of this design is that VB portions
cannot grow arbitrarily to fill the whole VB size. Specifically, a portion size
is constrained by the position of the contiguous portions, and VB portions can
only be shifted when the associatedheadandtail pointers are properly aligned.

• Unified VB. An alternative approach consists in inserting instructions in global
FIFO order into a unified VB, as tough all of them belonged to the same thread.
As a consequence, instructions are forced to be retired in the same globalorder.
The problem presented by this implementation is that instructions from differ-
ent threads are intermingled throughout the VB; if an instruction at the unified
VB head cannot be validated, it will prevent instructions from other threads
from leaving the VB, incurring unnecessary head-of-line blocking. Moreover,
the recovery process should cancel instructions selectively, forcinginterleaved
gaps to remain in the VB until they are drained.

62 Chapter 4. The Multithreaded Validation Buffer Architecture

In a previous work [41], we have tackled the problem of sharing a ROB ina
multithreaded, in-order retirement processor, where an efficient solution is proposed
to trade off the advantages and drawbacks of each sharing strategy. However, this
study is out of the scope of this thesis. For all experiments presented in this chapter,
private ROBs and VBs have been assumed, eluding the problem of sharing a FIFO
queue.

4.2 Performance Evaluation

Performance and complexity issues have been addressed on a multithreaded proces-
sor implementing the VB architecture. The main characteristics of the modeled ma-
chines are listed in Table 4.1. For those experiments running more than one bench-
mark simultaneously, the following criterion, based on previous works [40], has been
used to construct workload mixes. First, SPEC2000 benchmarks have been char-
acterized as memory- or CPU-bound, as described in Section 2.5.2, and then three
different groups are created according to this classification. Two additional groups
are analyzed including only integer or floating-point benchmarks, respectively. The
specific benchmark mixes are listed in Table 4.2.

Processor Core / Hardware Threads

Machine width (decode,
8 uops/cycledispatch, issue, commit/

validate)

Storage resources
40-entry IQ, 20-entry LSQ, 64-entry ROB,
64-entry RF, all private per thread.

Functional units and 8 Int. add (2/1), 2 Int. mult. (5/2), 2 Int. div (20/10)
latency (total/issue) 4 FP add (5/2), 2 FP mult. (10/5), 2 FP. div. (30/15)

Branch predictor type

Hybrid (2-level + bimodal)
2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.
Choice pred.: 1K entries.

Memory Hierarchy

L1 cache
32KB, 4-way, 64-byte block, 2-cycle latency,
private per thread.

L2 cache
1MB, 8-way, 64-byte block, 20-cycle latency,
shared among threads.

Main memory 200-cycle access time.

Table 4.1: Baseline multithreaded processor parameters.

4.2. Performance Evaluation 63

Table 4.2: Benchmark mixes.

Sha
re

d
Cac

he

Sha
re

d
IF

Q

Sha
re

d
IQ

Sha
re

d
Ph.

Reg
s.

1.7

1.75

1.8

1.85

1.9

IP
C

ROB VB

ROB Baseline

VB Baseline

Figure 4.1: Storage resources sharing for the multithreaded ROB and VB architec-
tures. Baseline IPCs refer to processors with no shared storage resource.

4.2.1 Sharing Strategies of Hardware Structures

This section studies the effect of sharing some storage resources amonghardware
threads, focusing on the L1 caches, the fetch queue (IFQ), the instruction queue (IQ),
and the register file (RF). In Figure 4.1, the performance achieved by each design is
plotted for both the ROB and the VB multithreaded architectures. In each configu-
ration, only one storage resource (X-axis) is shared among threads. In all cases, an
SMT processor with a round-robin fetch policy is simulated, and each performance
value is computed as the average IPC for the execution of all benchmark mixes. Ad-
ditionally, the performance obtained with a ROB-based and a VB-based processor
with all resources set as private is represented with two horizontal lines,labeled as
ROB baselineandVB baseline, respectively.

Coherently with conclusions stated in [36] for a ROB-based processor,Figure 4.1
reveals that there is a performance loss when sharing any storage resource without
a proper allocation policy. Out-of-order retirement does not affect slow or stalled
threads, which continue to abuse of shared resources by reserving their entries for a
long time and preventing other threads from using them fruitfully.

64 Chapter 4. The Multithreaded Validation Buffer Architecture

Figure 4.2: Performance for different multithreading paradigms in the ROB/VB ar-
chitectures.

4.2.2 Comparison of Multithreading Paradigms

The VB architecture has been evaluated on top of the three major multithread-
ing paradigms, namely coarse-grain (CGMT), fine-grain (FGMT), and simultaneous
multithreading (SMT). The FGMT design is modeled with a timeslice issue policy,
while the SMT issue stage takes instructions from different threads in the same cy-
cle (shared issue). Both FGMT and SMT are modeled with either a timeslice or a
round-robin instruction fetch policy. The CGMT design uses a thread quantum of
1000 cycles, and the thread switch penalty is equal to the number of cycles needed to
drain all instructions of the previous thread from the processor pipeline [9].

Performance results are represented in Figure 4.2. Comparing the behavior of the
multithreaded VB architecture in its different variants (i.e., VB-CGMT, VB-FGMT,
and VB-SMT) with the ROB-SMT processor, it can be observed that the latter is
outperformed by VB-FGMT and VB-SMT by about 16.4% and 19.7%, respectively,
while only VB-CGMT performs worse with a 5% slowdown. Mixes 2 and 6 show
a flat behavior both when substituting the ROB by the VB and when improving the
multithreading paradigm. As observed in previous works [9][42], specific bench-
marks, most of them integer benchmarks, do not obtain benefits from enlarging the
ROB, nor from retiring instructions out of order. This situation is caused by a scarce
instruction level parallelism, aggravated by a high L1 miss rate, as well as by ahigh
branch misprediction rate. Thread level parallelism is also affected by this fact, pre-
venting SMT from outperforming CGMT and FGMT.

An interesting observation is the average performance improvement of VB-
FGMT over ROB-SMT. The former is a simple multithreading paradigm with
lightweight additional hardware devoted to bandwidth resources, while thelatter in-
troduces more complex hardware in the issue stage to schedule instructions from
different threads in the same cycle. The reason is that the benefits obtained by filling
empty issue slots with instructions from various threads in ROB-SMT is compensated

4.2. Performance Evaluation 65

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

IP
C

)

Number of Threads

Benchmark gcc

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

IP
C

)

Number of Threads

Benchmark mgrid

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

IP
C

)

Number of Threads

Benchmark wupwise

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

IP
C

)

Number of Threads

Benchmark art

Figure 4.3: Scalability of different multithreading paradigms for ROB/VB architec-
tures.

in VB-FGMT with the extra performance gained from the efficient management of
the VB structure, which makes the pipeline stall less often.

4.2.3 Impact of the Number of Hardware Threads

The complexity of a multithreaded processor varies across multithreading models, as
well as with the numbern of supported hardware threads. This section trades off
performance and complexity, by exploring how different multithreaded VB architec-
tures behave whenn ranges from 1 to 8. In each experiment, a specific benchmark is
launched with as many instances as architected hardware threads.

Figure 4.3 shows results for four different benchmarks running on theROB and
VB architectures with FGMT, CGMT and SMT. The top left plot represents bench-
mark gcc, which shows a characteristic behavior of integer applications. As men-
tioned before, out-of-order retirement of instructions provides scarce performance
benefits for integer workloads, so the rest of this section will focus on floating-

66 Chapter 4. The Multithreaded Validation Buffer Architecture

point benchmarks. The remaining plots correspond to the floating-point benchmarks
mgrid, wupwiseandart, and show extremely contrasting results compared togcc.

Themgridplot shows an important effect whenn increases. On one hand, CGMT
provides neither gain nor loss of performance up to 3 threads. In a realsystem, the
benefits of CGMT in this case would come from the fact of avoiding softwarecontext
switches by the operating system. However, this effect is not appreciatedin an n

threaded processor runningn contexts. It can be observed that a further increase
of n has even negative effects on the global IPC, shown clearly in the case of VB-
CGMT. The reason is that the impact of the thread switch penalty grows faster than
the benefits of a higher utilization of functional units whenn is overly large.

The FGMT and SMT curves belonging to the ROB architecture show well known
effects of multithreading. A fine grain design reaches better performanceup to 4
threads, while an SMT design is capable of exploiting thread level parallelismin a
more scalable manner. Notice that this trend differs when instructions are retired out
of order. In the VB architecture, performance grows abruptly for up to4 threads on
an SMT organization, and it stabilizes after this point. The reason is that a lower
congestion in the VB with respect to the ROB allows other processor structures (e.g.,
issue queue or functional units) to be fed more aggressively, so higherperformance
is reached with a lowern, and thus, a lower hardware overhead.

An interesting result can be observed in themgrid and wupwisecurves: VB-
FGMT provides better performance than ROB-SMT up to 4 threads. In other words,
the fact of retiring instructions out of order makes a simple fine grain multithreaded
organization outperform the simultaneous multithreading model with a complex issue
logic in a ROB-based architecture. Although the ROB-SMT scalability is slightly
imposed for values ofn higher than 4, the simpler VB-FGMT implementation still
reaches higher performance up to approximately 4 threads.

4.2.4 Impact of Resource Allocation Policies on SMT processors

In this section, different fetch policies are evaluated on top of the ROB- and VB-
based architectures. Except for those processors using the DCRA fetch policy, all of
them are based on the parameters shown in Table 4.1. The DCRA model includes
a shared instruction fetch queue, a shared issue queue and a shared load-store queue
among hardware threads. The reason is that DCRA does not only assigndifferent and
variable fetch slots to threads, but also obtains benefits from dynamically assigning
different number of entries of shared resources to threads.

Results plotted in 4.4 show, on one hand, the pronounced advantage of a sophis-
ticated instruction fetch policy in SMT processors. Any fetch policy other than RR
provides higher benefits than the replacement of a ROB by a VB. On the other hand,
Figure 4.4 illustrates that the benefits of fetch policies also apply to the VB archi-
tecture. Comparing the advanced fetch policies (the three right bars of theAverage

4.2. Performance Evaluation 67

Figure 4.4: Evaluation of fetch policies for the ROB and VB architectures.

group) against the naive VB-RR policy, we obtain on average 28.4%, 32.9% and
40.2% benefits for VB-ICOUNT, VB-PDG and VB-DCRA, respectively.Comparing
these three policies with the ROB-DCRA policy (the best ROB-based policy),the
performance speedup reaches 12%, 15.6% and 21.9%, respectively.

Although an improved fetch policy is needed in the VB microarchitecture to out-
perform a ROB-DCRA architecture, there is no need to implement the most effective
one (VB-DCRA), which requires more complex hardware. Instead, the instruction
counters added by ICOUNT are sufficient to make the simple VB-based approach
behave better than the best fetch policy for a ROB-based processor (ROB-DCRA).
However, it can be appreciated that out-of-order retirement can be combined with the
most effective fetch policy, contributing orthogonally to improve performance with
respect to the remaining designs.

4.2.5 Resources Occupancy in SMT Designs

SMT processors pursue to reduce the waste of issue slots by issuing moreinstructions
into the functional units, and thus providing a higher throughput in the execution
stage. This section deals in depth with the reason why a VB-SMT design with a
simple fetch policy outperforms a ROB-SMT with a complex one. To this end, it has
been quantified how these architectures stress the issue queue and functional units,
by measuring the average issue slots used in each cycle.

Figure 4.5 represents the issue bandwidth utilization as a percentage of execution
cycles in which a specific number of issue slots has been filled. Results showhow the
VB architecture reduces the horizontal waste, since plotted regions corresponding to
less than 7-8 issue slots are significantly smaller for VB-SMT. Vertical wasteis also
diminished for VB-SMT, which can be observed in the solid black regions slightly
smaller for the VB architecture. These results corroborate the relationshipbetween
filled issue slots and the multithreaded processor performance, when comparing Fig-

68 Chapter 4. The Multithreaded Validation Buffer Architecture

ROB-R
R

ROB-IC
OUNT

ROB-P
DG

ROB-D
CRA

VB-R
R

VB-IC
OUNT

VB-P
DG

VB-D
CRA

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 C

yc
le

s

Fetch Policy

8/7 Issue Slots
6/5 Issue Slots

4/3 Issue Slots
2/1 Issue Slots

0 Issue Slots

Figure 4.5: Issue slots for different SMT architectures and fetch policies.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
ro

ba
bi

lit
y

Fraction of Instruction Queue Entries

a) Instruction Queue Occupancy

ROB-DCRA
VB-ICOUNT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Fraction of Load-Store Queue Entries

b) Load-Store Queue Occupancy

ROB-DCRA
VB-ICOUNT

Figure 4.6: Storage resources occupancy for ROB-DCRA and VB-ICOUNT.

ures 4.4 and 4.5. The highest occupancy is achieved with VB-DCRA, which fills 7
or 8 issue slots in more than 40% of the execution time.

Let us compare the bars corresponding to the ROB-DCRA and VB-ICOUNT
designs, both in Figures 4.4 and 4.5. Figure 4.4 points ROB-DCRA as the most
performance-effective ROB design, while Figure 4.5 shows that it exploits most ef-
ficiently the issue bandwidth. On the other hand, it is shown that a simple ICOUNT
policy suffices to make VB-ICOUNT outperform ROB-DCRA (a naive RR fetch pol-
icy is not enough). This fact makes VB-ICOUNT a cost-effective solution, reaching
higher performance than the most complex fetch policy for ROB-SMT, while imple-
menting a simple fetch policy in VB-SMT.

The occupancy of storage resources has also been measured, focusing on the most
efficient ROB design (ROB-DCRA) and the design with the simplest efficientfetch
policy on the VB (VB-ICOUNT). Figure 4.6 shows the occupancy of the instruction
queue (IQ) and the load-store queue (LSQ) for these designs. The curves in the

4.3. Summary 69

figures should be interpreted as the probability (Y-axis) for a resourceof having an
occupancy equal or greater than a specific fraction of its entries (X-axis).

As observed, VB-ICOUNT causes a lower occupancy both in the IQ andthe
LSQ. In the case of the IQ (Figure 4.6a), only 50% of the IQ entries are being used
in ROB-DCRA, which means that the IQ is over-dimensioned. However, the unused
fraction of the IQ grows up to almost 70% in the case of VB-ICOUNT. Something
similar occurs in the LSQ, which could be implemented with 20% less entries without
practically affecting performance. As a consequence, VB-ICOUNT does not only
outperform ROB-DCRA with a simpler fetch policy, but also allows for a reduction
of the main storage resources size, maintaining performance gains.

4.3 Summary

In this chapter, the VB architecture has been extended for multithreaded processors
with different multithreading paradigms, sharing strategies of hardware resources,
fetch policies, and resource allocation techniques. An exhaustive experimental evalu-
ation has been performed, where multithreaded executions have been simulated using
several mixes of single-threaded benchmarks.

The obtained results provide three main conclusions:i) a fine-grain multithreaded
VB-based processor outperforms, on average, a simultaneous multithreaded ROB-
based processor;ii) a simultaneous multithreaded VB-based processor reaches the
maximum performance with about half of the hardware threads than a simultane-
ous multithreaded ROB-based processor; andiii) benefits of fetch policies (such as
DCRA) are orthogonal to those provided by the transition to the VB architecture.
These contributions justify the viability and cost-effectiveness of an out-of-order re-
tirement, multithreaded processor microarchitecture.

Chapter 5

The Multicore Validation Buffer
Architecture

Multicore processors are now the current norm in the processor market, ranging from
the general purpose to the embedded systems sectors. In these architectures, fur-
ther sources of concurrency are obtained with explicit parallelism in the applications.
Multicore systems provide a shared memory hierarchy whose access order is defined
by the memory consistency model. In this sense, sequential consistency is themost
convenient model, since it eases the system programming interface. However, it im-
poses ordering restrictions that may interfere with out-of-order retirement of instruc-
tions. In this chapter, an implementation of an out-of-order retirement, sequentially
consistent, multiprocessor system is proposed, based on the Validation Buffer archi-
tecture.

71

72 Chapter 5. The Multicore Validation Buffer Architecture

5.1 Dealing with Sequential Consistency

Due to optimizations in the load-store queue, memory accesses, as seen by other pro-
cessors in a multiprocessor system, can be reordered in the VB architecture. This
means that the originally proposed VB architecture is suitable when only a relaxed
memory consistency model (RC) is imposed. In contrast, parallel programmers in-
tuitively assume stricter models, like the sequential memory consistency model (SC)
[43], which, by definition, precludes the freedom of the system to arbitrarily alter the
order of memory accesses. This conflict is solved in the RC models by providing
programmers with mechanisms that can override the reordering of memory accesses
when the semantic of the parallel program is compromised by this reordering.For
example, it is known that if a parallel program isdata-race-free[44] andcorrectly
labeled[45] by synchronization operations, any reordering is allowed betweensyn-
chronizations without affecting the semantics of the parallel program.

Nevertheless, supporting the SC model is encouraged, since it allows us torea-
son about parallel programs assuming a simple behavior where memory operations
are executed atomically one at a time and in program order, which is what mostpro-
grammers expect. Therefore, aggressive implementations of this consistency model
have been devised. Below, we present a formal description of the SC model and the
aggressive implementation used in this thesis as a baseline.

In a multiprocessor environment, astoreis globally performedif no load to the
same address in the system can return a value prior to it. Aload is globally per-
formedwhen its value is bound (it can be used by consumers of the same thread) and
the storeproducing it is globally performed. Based on these definitions, two suffi-
cient conditions have been presented [46] for a system to be sequentiallyconsistent:
i) every thread must issue memory accesses in program order,ii) after a memory
instruction (load or store) is issued, the issuing thread waits for it to be globally per-
formed before issuing its subsequent access. In-order (i) and atomic (ii) execution of
memory instructions prevents from hiding the memory latency, and strongly damages
performance.

Several techniques have been proposed to improve the performance ofsequential
consistency implementations (see Chapter 6). In this thesis, thespeculative retire-
ment of loadstechnique [29] is used as baseline implementation. This technique is
based on the fact that both conditions just discussed can be speculatively ignored as
long as the results of the speculative computations appear as if they were obtained by
obeying them. In a modern multiprocessor system, a simple way to prevent remote
processors from observing a local speculative computation is to monitor thestate of
the speculatively accessed cache blocks, and trigger a rollback whenever one of these
blocks receives a remote invalidation (assuming an invalidation-based coherence pro-
tocol) or is evicted. In such a case, the processor must be able to recover its state prior
to the offending memory instruction.

5.2. Out-of-Order Retirement Multiprocessor Architecture 73

Therefore, speculative memory instructions and subsequent ones mustbe recov-
erable until they are globally performed. A straightforward solution is to holdthe
ROB entries of the memory instructions until they are globally performed. This so-
lution holds critical resources of the execution pipeline for recovering from memory
consistency mispeculations. For instance, traditional register renaming does not al-
low physical registers to be released until instructions leave the ROB. However, as
shown in Section 5.2, these mispeculation events are rare. Moreover, critical re-
sources are kept busy for long periods of time, since globally performinga memory
instruction may involve long latency coherence actions.

Speculative retirement of loadsalleviates this waste by splitting the instruction
window into two FIFO queues: the ROB and the History Buffer (HB). In this scheme,
memory instructions and following ones can commit (releasing execution resources
as they leave the ROB) even if they are still subject to memory consistency violations.
After committed, instructions enter the HB, where they stay until they are globally
performed.

Each entry of the HB contains information to undo the modifications performed
on the processor state by its corresponding instruction. To do so, any instruction re-
naming (i.e., writing to) a given logical register holds in its HB entry two values. On
one hand, it stores the identifierl of its destination logical register; on the other, it
attaches the value ofl before it was rewritten, that is, the contents of physical reg-
isterp′ (i.e., RF [p′]) that were produced by the nearest previous (in program order)
instruction renamingl, beingp′ the previous mapping ofl. Notice that in a ROB-
based multiprocessor, the latter value is always available after the commit stage. With
this implementation, whenever a cache block accessed by a non-globally performed
memory instruction is being remotely accessed or evicted, execution is recovered
from mispeculation by squashing the contents of the ROB and undoing the changes
logged in the HB.

Finally, store instructions need not be inserted into the HB, because they donot
modify the processor state, and they are forbidden to write to the cache untilthey
can be globally performed, that is, until the next instruction in program order is lo-
cated at the HB head. Nevertheless, to prevent long-latency stores (i.e.,those that
involve remote block invalidations) from blocking the HB, the baseline SC imple-
mentation also includesstore prefetching[47]. This technique allows stores to per-
form aread-exclusive prefetchbefore they are globally performed, thus reducing the
odds of needing to invalidate remote copies when they exit the HB.

74 Chapter 5. The Multicore Validation Buffer Architecture

Committed instructions Branch mispredictions Arithmetic exceptions
4 041 943 035 33 498 322 (0.8%) 0

Page faults Load replay traps Memory consistency
57 425 (< 0.01%) 331 180 (< 0.01%) 561 070 (0.01%)

Table 5.1: Frequency of misprediction events.

5.2 Out-of-Order Retirement Multiprocessor Architecture

5.2.1 Architecture Description

The condition to extract an instruction from the VB in a single-core environment is
that its speculative state is resolved, that is, it is a completed branch, or an instruction
that is already known not to raise an exception. Table 5.1 lists different causes of mis-
prediction that should be checked before an instruction’s speculative state is consid-
ered resolved.Branch mispredictionrefers to the resolution of a branch target address
and direction that does not match the branch predictor statement.Arithmetic excep-
tion andpage faultrefer to the resolution of the respective traps.Load replay trap
refers to the resolution of the address of astorewhich was bypassed by a localload
to the same address. Finally,memory consistencyrefers to the eviction/invalidation
of an L1 cache block accessed by an in-flight memory instruction.

Table 5.1 also attaches the total frequency of occurrence of each misprediction
event during the execution of the SPLASH2 benchmark suite on a machine with
the configuration shown in Section 5.4, as well as the number of total committed
instructions. As observed, the frequency of occurrence is negligible —or even null
for correctly written programs— relative to the number of committed instructions,
except for branch mispredictions. Based on these results, the following sequentially
consistent out-of-order retirement architecture is proposed.

After being dispatched, instructions enter the VB. This structure allows fast re-
covery on mispeculation, but it prevents critical resources such as physical registers
from being released by those instructions holding their VB entry. For this reason,
the VB is responsible for resolving only those mispeculations that are likely to oc-
cur, that is, branch mispredictions. After exiting the VB in any of their possible
execution states, instructions enter the HB. This structure provides a less efficient
recovery mechanism, but it is decoupled from any other processor structure, such as
the register file. Thus, the infrequent misprediction events, that is, all except branch
mispredictions, can be resolved in the HB.

With this specification, the conditions to retire instructions from the ROB/VB and
HB queues become the ones listed in Figure 5.1. As observed, the difference between
the ROB and VB architectures is the relaxation of the conditions for instructions
to leave both the ROB/VB and the HB. As specified in Section 3.1.4, the sources
of potential benefits in a VB-based single processor can be classified asextended

5.2. Out-of-Order Retirement Multiprocessor Architecture 75

Figure 5.1: Conditions for instructions to be retired from the ROB/VB and HB.

instruction windowandenhanced register usage. These features are maintained in
the multicore VB architecture using the additional HB, as justified next:

• First, the only reason to stall an instruction at the VB head is that it is an uncom-
pleted branch. This relaxation makes the VB alleviate most of its head-of-line
blocking effects, enabling physical registers to be released much faster. Thus,
theenhanced register usageeffect is not only maintained, but also intensified
with respect to the superscalar VB architecture, where validation conditions
were slightly stricter.

• Second, instructions other than branches,loads, andstorescan leave the HB in
the VB architecture as soon as their speculative state is resolved, even if they
are not completed or issued. As a consequence, the sum of the VB and theHB
sizes does not limit the number of instructions in flight, which maintains the
effect previously referred to asextended instruction window.

5.2.2 Hardware Support

As instructions can leave the VB uncompleted, the contents of the physical register
p′ corresponding to the previous mapping ofl (also RF[p′]) may not be available
to be copied to the HB. This problem can be solved either by blocking the VB exit
until the contents to be copied are ready (thus adding an additional conditionfor
instructions to leave the VB), or by allocating an entry in the HB whose contents
will be written later. We choose the second option because it only requires little
additional hardware support (explained below) to handle delayed writebacks to the
HB. Likewise, instructions may leave the HB uncompleted, so this mechanism must

76 Chapter 5. The Multicore Validation Buffer Architecture

consider that the writebacks should only occur as long as the corresponding HB entry
is valid.

Figure 5.2: Implementation of delayed writebacks.

Figure 5.2 shows a possible implementation of the supporting hardware, which
uses a small CAM calledCopy-on-Writeback(CoW) table. Each valid entry in this
table contains a pair{p′, HB entry}, which indicates that any result generated by the
functional units for physical registerp′ should be forwarded to the corresponding HB
entry. Considering that VB entries contain by design the fieldsl andp′ (previous
mapping ofl) for each instruction, the mechanism works as follows.

If the contents ofp′ are ready when an instruction enters the HB (i.e.,
RST[p′].completed=1), they are straightforwardly copied to the allocated HB entry,
with the same procedure as in the baseline architecture. Otherwise, a new entry in the
CoW table is created, usingp′ and the index of the next free HB entry. When a func-
tional unit generates a value for a destination physical register, the identifier of this
register is associatively searched in the CoW. On hit, the value is also written back in
the corresponding HB entry. Instructions that leave the HB remove their associated
entries in the CoW if present, avoiding overly delayed writebacks to affectthe HB.

When recovering from a mispeculation at an instruction in the HB, a sufficient
condition to retrieve all the recovery information is to wait until the CoW table is
empty, that is, all delayed writebacks have been performed. Alternatively, the recov-
ery process could only wait for the contents of the HB entries of canceledinstructions.
Finally, although the CoW table can be implemented as a direct-mapped table, an as-
sociative implementation is chosen, since a small CoW table suffices to preventit
from becoming a bottleneck for performance (see Section 5.4).

5.2.3 Working Example

Figure 5.3 represents the pipeline of a single processing unit of a VB-based multipro-
cessor in three consecutive cycles, focusing on the VB, the HB, and theCoW table.
A piece of code formed of four instructions is listed in Figure 5.3a. Instructions i1
and i2 are exception-free arithmetic instructions, whilei3 and i4 are long-latency
memory instructions. Each instruction attaches its physical destination register(dst)

5.2. Out-of-Order Retirement Multiprocessor Architecture 77

Figure 5.3: Working example for multiprocessors.

and its status, which is assumed invariant during the three cycles. When an instruc-
tion is labeled incomplete, it can be either not issued in the IQ, or issued into the
corresponding functional unit. These are the observations for each cycle:

• Cycle 1 (Figure 5.3b). All four instruction are located at the head of the VB,
and are currently processed by the validation logic. No branch is found among
them, so they are ready to be placed into the HB. The CoW table is empty so
far.

• Cycle 2 (Figure 5.3c). The four instructions are placed into the HB, and
their completion is verified by the commit logic by testing the correspond-
ing completed bits in the RST. Completed instructions (i1) copy the value of
their destination physical register into the HB. For each incomplete instruction
(i2, i3, andi4), a delayed writeback into the HB is scheduled by allocating a
new entry in the CoW. For example,i2 records the identifier of its destination
physical register (2), jointly with the HB position where the instruction was
inserted.

• Cycle 3 (Figure 5.3d). Instructionsi1 and i2 exit the HB, because they are
known to be free of exception, mispeculation, or memory consistency viola-
tion. However,i3 andi4 are long-latency loads that must remain in the HB.
Instructioni2 has released its HB entry while being still incomplete. Since
there remains no HB entry associated with it, its eventual completion should
no longer be propagated into the HB. Thus, the CoW entry holding the identi-
fier 2 is removed to prevent an undesired delayed writeback.

After cycle 3, the completion of either instructioni3 or i4 will cause the CoW
table to be looked up, and it will provide the indexes of the HB where the contents of
physical registers 3 and 4 should be copied. In contrast, the CoW table willprovide no
valid position when searching physical register 2 after the completion of instruction
i2, and its result will be silently copied into the register file.

78 Chapter 5. The Multicore Validation Buffer Architecture

5.3 Analysis of Single-Thread Performance

This section evaluates the impact of theenhanced register usageandextended in-
struction windoweffects provided by a single VB-based processing node. Notice
that the main difference between this study and the study of potential presented in
Section 3.3.1 lies in the fact that the architecture now under evaluation includes the
HB implementation shown in Figure 5.2, that is, it is a processor model suscepti-
ble of being integrated into a multiprocessor environment. However, single-threaded
benchmarks from the SPEC2000 suite [30] are used for the moment to avoidproces-
sor stalls due to synchronization and communication delays. To avoid mispeculation
in the control flow stream, a perfect branch predictor is utilized, and, unless explicitly
stated, the remaining machine parameters match the baseline configuration shown in
Table 5.2.

5.3.1 Enhanced Register Usage

The VB architecture uses an aggressive register renaming strategy. Asin traditional
renaming mechanisms, instructions reclaim registers at the decode/rename stage.
However, register release is decoupled from the withdrawal of instructions from the
VB, which entails a more efficient management of the register file. The following
experiment illustrates this advantage.

When an instruction is dispatched (i.e., enters the VB), it allocates a physical
registerp as its destination mapping; when the instruction exits the VB, it may be
ready to release the physical registerp′ corresponding to the previous mapping of
its destination logical register (this is a necessary, but not sufficient condition). We
have measured the average register allocation time as the number of cycles between
the time an instruction allocates physical registerp and the time that physical register
p′ is released. Notice that in the ROB architecture this time is equals to the time
spent by the mapping instruction in the ROB, whereas these times differ in the VB
architecture.

Figure 5.4 presents differences in register allocation time between the ROB and
VB architectures. The bars represent the ratio between the allocation time ofphysical
registers in the ROB and the VB architecture. As observed, this ratio variesconsid-
erably for different benchmarks, with an average value of 6.5%. This means that,
for the modeled machine with an ideal branch predictor, instructions take 6.5%more
time (the absolute value is roughly 2.5 cycles) in the ROB architecture to release
a physical register since they were dispatched, increasing the probabilityof decode
stalls due to a full register file.

5.3. Analysis of Single-Thread Performance 79

16
4.

gz
ip

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
6.

cr
af

ty

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

luc
as

19
1.

fm
a3

d

19
7.

pa
rs

er

20
0.

six
tra

ck

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olf

30
1.

ap
si

1

1.05

1.1

1.15

1.67636

A
llo

ca
tio

n
tim

e
ra

tio

Figure 5.4: Register allocation time ratio between the ROB and the VB architecture,
measured with an ideal branch predictor.

5.3.2 Extended Instruction Window

Sequentially consistent multiprocessors need to maintain very wide instruction win-
dows to support long-latency loads and stores. Byinstruction window size, we refer
to the decode distance between the youngest and the oldest instruction in thepipeline
(assuming no squashed mispeculated instructions). A ROB-based processor usually
limits this width to a fixed number of instructions, which is equal to the sum of the
entries in the ROB and the HB for our baseline ROB-based multiprocessor architec-
ture.

The second source of potential speedup in the proposed VB-based multiprocessor
is that, unlike ROB-based architectures, the number of entries in the VB and HB
does not constrain (in general) the instruction window size. Specifically, very wide
instruction windows can occur when long chains of instructions other than memory
accesses and branches enter the pipeline. To explore the potential benefits of this
effect, a machine with an unbounded instruction queue, load-store queue, and register
file is modeled, using the baseline sizes for the ROB/VB and HB. A perfect branch
predictor is used again to avoid gaps of squashed instructions that affect the true
occupancy of the instruction window.

The instruction window sizes are plotted in Figure 5.5, where a group of two
bars represents a single SPEC2000 benchmark run on a ROB-based architecture (left
bar) and VB-based architecture (right bar). The bar height represents the number of
in-flight instructions. In the case of the ROB architecture, instructions in flight are
located either in the ROB or in the HB. However, notice that instructions in the VB
architecture may not be allocated in either of them, since they might leave the HB
without being completed. Each bar in the figure has two parts. The lower part shows
the average number of in-flight instructions, while the upper part shows the maximum
width of the instruction window.

80 Chapter 5. The Multicore Validation Buffer Architecture

16
4.

gz
ip

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
6.

cr
af

ty

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

luc
as

19
1.

fm
a3

d

19
7.

pa
rs

er

20
0.

six
tra

ck

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olf

30
1.

ap
si

0

50

100

150

200 795 842
In

st
ru

ct
io

n
w

in
do

w
 s

iz
e

ROB-Arch.Average VB-Arch.Average ROB-Arch.Max VB-Arch.Max

128

Figure 5.5: Instruction window size, measured with an ideal branch predictor and
unbounded IQ, LSQ, and RF.

Results show that, while the maximum window size in the ROB architecture is
limited to 128 (ROB size + HB size), the window size in the VB architecture exceeds
this value for most applications. The average window size also increases,so there are
more chances during program execution to further exploit ILP. This potential can be
especially observed, for instance, in benchmarksappluor art, which contain portions
of code with long chains of arithmetic instructions that allow instructions to leave the
HB without being completed.

Processor Cores

Machine width (decode,
4 uops/cycledispatch, issue, commit/

validate)

Storage resources
40-entry IQ, 20-entry LSQ, 64-entry RF,
64-entry ROB, 64-entry HB

Functional units and 4 Int. add (2/1), 1 Int. mult. (5/2), 1 Int. div (20/10)
latency (total/issue) 2 FP add (5/2), 1 FP mult. (10/5), 1 FP. div. (30/15)

Branch predictor type

Hybrid (2-level + bimodal)
2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.
Choice pred.: 1K entries.

Memory Hierarchy

L1 caches 32KB, 2-way, 64-byte block, 2-cycle latency.
L2 caches 512KB, 8-way, 64-byte block, 10-cycle latency.
L3 caches 8MB, 16-way, 64-byte block, 50-cycle latency.
Main memory 200-cycle access time.

Table 5.2: Baseline multicore processor parameters.

5.4. Performance Evaluation 81

Figure 5.6: Block diagram of the modeled multicore system.

5.4 Performance Evaluation

A realistic multicore processor with 8 cores has been modeled to evaluate the pro-
posed architecture. Figure 5.6 shows a block diagram of the modeled system, whose
characteristics are summarized in Table 5.2. The memory subsystem consists of three
levels of cache, where coherence adheres to the MOESI protocol. Separate L1 in-
struction and data caches are modeled, whereas L2 and L3 caches are unified (i.e.,
contain both code and data). This memory hierarchy and core interconnect is in-
spired on the recent commercial quad-core AMD Opteron 8350 processor [48]. In
the figure, the gray boxes represent replicas of this same chip. Parallelworkloads
with shared data, i.e., the SPLASH2 benchmark suite [31], have been usedfor our
performance evaluations to stress shared components involved by coherence actions
and long-latency memory operations. Programs have been run until completion.

5.4.1 Out-of-Order Retirement and Memory Consistency Model

This section presents performance results for the VB multiprocessor architecture im-
plementing both relaxed and sequential consistency (referred to as VB-RC, and VB-
SC, respectively), and compares them to ROB-based multiprocessors (ROB-RC and
ROB-SC). In Figures 5.7a, 5.7b and 5.7c, the results are presented as performance
speedups over the ROB-SC architecture for 2-, 4-, and 8-core systems, respectively.
The bar height represents the speedup achieved by VB-SC, whereasthe circle- and
triangle-ended lines represent the ROB-RC, and VB-RC architectures,respectively.
Each bar/line in a group belongs to a different ROB/VB size, ranging from8 to 128
entries, both for the represented architecture and the baseline. The implementation

82 Chapter 5. The Multicore Validation Buffer Architecture

a) 2 processors

b) 4 processors

c) 8 processors

lu fft radix cholesky barnes fmm ocean radiosity raytrace waternsq watersp Average

1

1.2

1.4

1.6
S

pe
ed

up

lu fft radix cholesky barnes fmm ocean radiosity raytrace waternsq watersp Average

1

1.2

1.4

1.6

S
pe

ed
up

lu fft radix cholesky barnes fmm ocean radiosity raytrace waternsq watersp Average

1

1.2

1.4

1.6

S
pe

ed
up

Figure 5.7: Performance speedups relative to ROB-SC.

of the RC designs is modeled with the absence of an HB, as the order of memory
operations can be safely altered.

The following observations can be made from the average results shown inthe
last groups of bars. Performance speedups are especially high in the VB architecture
for small VB sizes, regardless of the memory consistency model used. Thereason
is that an 8 or 16-entry ROB is a very restrictive bottleneck in most applications,
and is the main source of pipeline stalls, which are effectively avoided by theVB
architecture.

Regarding the memory consistency model, results show that VB-SC outperforms
both the ROB-SC and the ROB-RC in most cases (exceptions are when we consider
large 64 and 128-entry ROBs for 8 processors). Compared to ROB-RC, the VB-SC
architecture introduces the history buffer, which can serve as an additional bottleneck;
nevertheless, VB-SC speeds up the instruction flow from the VB into the HB,and
allows instructions to be extracted early from the HB. As results show, this fact allows
SC to be enforced while maintaining better performance.

5.4. Performance Evaluation 83

Used

Empty FQ

ROB/VB

HB
Other

A: ROB-8
B: ROB-16
C: ROB-32
D: ROB-64

E: VB-8
F: VB-16
G: VB-32
H: VB-64

lu fft radix cholesky barnes fmm
0

0.2

0.4

0.6

0.8

1

D
is

pa
tc

h
sl

ot
s

fr
ac

tio
n

A B CD E F GH A B CD E F GH A B CD E F GH A B CD E F GH A B CD E F GH A B CD E F GH

ocean radiosity raytrace waternsq watersp
0

0.2

0.4

0.6

0.8

1

D
is

pa
tc

h
sl

ot
s

fr
ac

tio
n

A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H

Figure 5.8: Processor bottlenecks at the dispatch stage.

Finally, given the simulation results, the VB-RC model is the best approach,
reaching speedups of about 5% for large VB sizes, and up to 25% for small VB sizes.
In this architecture, both loads and stores can leave the processor pipeline without be-
ing globally performed. Since these instructions are the main source of pipeline stalls,
significant speedups are achieved, especially in memory-intensive applications.

5.4.2 Performance Bottlenecks

To observe how bottlenecks shift when the ROB/VB size varies in both architectures,
the dispatch stage has been instrumented in the following experiment. In a 4-way
processor, four instructions are potentially dispatched in each cycle, soeach of the
four available dispatch slots can be either used or wasted, depending on the avail-
ability of processor resources. Figure 5.8 plots the amount of dispatch slots for the
execution of the SPLASH2 benchmarks in the baseline 8-core processor, normalized
with respect to the total number of dispatch slots, which is equal to the number of ex-
ecution cycles multiplied by the dispatch width and the number of cores. A dispatch
slot can be classified in the following categories:

• Used: a microinstruction located at the head of the fetch queue has been dis-
patched. The instruction can either belong to the correct execution path orbe
mispeculated.

• Empty FQ: the fetch queue is empty and the dispatch slot is wasted. As dispatch
slots are tracked for all cores, this case is only considered while there is a
running task in the core.

• ROB/VB: the ROB or VB is full and the dispatch slot cannot be used.

84 Chapter 5. The Multicore Validation Buffer Architecture

lu fft
ra

dix

ch
ole

sk
y

ba
rn

es
fm

m
oc

ea
n

ra
dio

sit
y

ra
ytr

ac
e

wat
er

ns
q

wat
er

sp
0

10

20

30

40

50

60

In
st

ru
ct

io
ns

Maximum Average

a) CoW table occupancy.

 1.7

 1.8

 1.9

 2

 0 5 10 15 20

IP
C

Number of entries

Inf.

b) CoW table size.

Figure 5.9: Delayed writebacks and the CoW table.

• HB: the HB is full, and has caused the ROB/VB to become full as well, pre-
venting the dispatch slot from being used.

• Other: the register file, instruction queue or load-store queue is full.

Let us focus on benchmarkwatersp, which shows a representative trend for the
rest of the benchmarks. The bars labeled fromA to D represent the ROB architecture
with different ROB sizes. For an 8-entry ROB, a lack of space in this structure is the
cause for most stalls at the dispatch stage. When its size is doubled, a bottleneck
shift into the HB can be observed. Then, a 32-entry ROB makes the dispatch stalls
be balanced among all processor structures, while a 64-entry ROB suffices to totally
prevent this structure from causing pipeline stalls.

In the VB architecture, represented by the bars labeled fromE to H, the same
trend is observed. However, a balance of reasons for pipeline stalls is achieved with a
smaller VB. As observed, an 8-entry VB is large enough to make other queues (or the
register file) become the processor bottleneck in some cases. For 16- and32-entry
VBs, the fraction of wasted dispatch slots due to a full VB decreases with respect to
the ROB architecture, while a 64-entry VB completely shifts the bottleneck away.

5.4.3 Impact of Delayed Writebacks

Two experiments have been carried out on top of the baseline 8-core processor to
evaluate how delayed writebacks to the HB affect performance of the VB architec-
ture. On one hand, we have measured the occupancy of the CoW table cycle by cycle,
and average and maximum values are shown in Figure 5.9a. The height of the bars
represents the number of instructions in the HB that have been issued but have not
written back their result yet, and thus, occupy an entry in the CoW. Results show that
the number of busy entries is variable depending on the benchmark, but theaverage
is low with respect to the number of entries in the HB.

5.4. Performance Evaluation 85

 1.5

 1.6

 1.7

 1.8

 1.9

 2

8 16 32 48 64 128
IP

C

Number of entries

a) ROB/VB

 1.7

 1.8

 1.9

 2

 2.1

8 16 32 64 128 Inf.

IP
C

Number of entries

b) History Buffer

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

30 40 50 60 70 80

IP
C

Number of entries

c) Register File

ROB arch.

VB arch.

Figure 5.10: Performance scaling for different resource sizes. Each point represents
average values for all SPLASH2 benchmarks.

On the other hand, we have tuned the CoW table size by looking for the point
where a reduction of the number of entries prevents incomplete instructions from en-
tering the HB and causes pipeline stalls. Figure 5.9b shows average performance for
the whole benchmark suite and different table sizes. A 5-entry table makes perfor-
mance drop by only 2.3% relative to an unbounded CoW table (representedwith the
dashed line labeledInf), whereas a 15-entry table provides a negligible impact.

5.4.4 Impact of the Resources Size

This section explores the impact on performance of varying the size of the three
main processor structures affected by our proposal —ROB/VB, HB, and register file
(RF)— focusing on both ROB- and VB-based, sequentially consistent, 8-core pro-
cessors. Performance values are shown in Figure 5.10, computed as theaverage of
single IPC values obtained from the execution of the SPLASH2 benchmarks.

• ROB/VB. Figure 5.10a shows the results obtained when changing the ROB/VB
size from 8 to 128 entries, with the remaining parameters matching the base-
line configuration. The VB efficacy can be analyzed either from a cost or a
performance point of view. On one hand, a 16-entry VB provides similar per-
formance to a 64-entry ROB. This makes the VB a cost-effective solution that
sustains performance, while reducing its size by a factor of 4. A smaller VB
not only saves hardware devoted to storage, but also reduces the amount of
logic (decoders/encoders) required to implement access to a larger structure.

86 Chapter 5. The Multicore Validation Buffer Architecture

lu fft
ra

dix

ch
ole

sk
y

ba
rn

es
fm

m
oc

ea
n

ra
dio

sit
y

ra
ytr

ac
e

wat
er

ns
q

wat
er

sp
0

20

40

60

80

100

120

140

160

C
yc

le
s

ROB VB HB Neither

Figure 5.11: Lifetime of instructions classified as per the structure they are placed in
(ROB/VB, HB, or neither of them).

On the other hand, VB sizes of 8, 16, and 32 entries outperform their similarly
sized ROB-based designs by 17.7%, 7.8%, and 3%, respectively.

• History Buffer. We evaluated HB sizes from 8 to 128, including an infinite
HB (Figure 5.10b). A ROB-based architecture provides a modest performance
boost when the HB size is increased beyond 64 entries. The reason is that
the ROB is a restrictive bottleneck, where instructions spend the bulk of their
lifetime. The only instruction that can advance to the HB without being com-
pleted is astore, so the HB only causes a machine stall when a long-latency
storeblocks the head and propagates the stall until the ROB tail. On the other
hand, a VB-based system alleviates the ROB bottleneck, and makes the HB
a more critical structure. In this case, an increase of the HB size results in
nice performance gains. The VB-based processor with a 64-entry HB outper-
forms its homologous ROB-based design by 7.1%, and behaves similarly to
the in-order retirement processor with an infinite HB.

The effects of addressing the ROB bottleneck can be seen in Figure 5.11.This
figure plots the number of cycles that instructions spend on average in the
ROB/VB, in the HB, or in neither of them. The case where instructions are
still in the pipeline without being either in the ROB/VB or in the HB can only
occur in the VB architecture. As observed, the lifetime portion of instructions
in the VB decreases with respect to the ROB. In contrast, instructions remain
longer in the HB in the VB architecture, causing a higher occupancy of this
structure, and thus explaining the observed performance improvements due to
increased HB sizes.

• Physical Register File. The register file (RF) is a critical resource in aw-
way superscalar processor, since it is potentially accessed2w times for reading

5.4. Performance Evaluation 87

 0.8

 0.9

 1

 1.1

 1.2

100 200 300 400 500

S
pe

ed
up

Latency (cycles)

ROB-RC
VB-SC
VB-RC

Figure 5.12: Impact of main memory latency.

andw times for writing (assuming instructions with 2 source and 1 destination
operand). The register renaming strategy used in the VB architecture provides
for the management of the register mapping tables and is able to release unused
registers even if younger instructions have not finished execution. A shorter
allocation time of physical registers provides two main benefits: on one hand,
a higher number of in-flight instructions can be supported; on the other hand, a
lower occupancy of the RF enables hardware complexity to be reduced without
adversely impacting performance.

Experiments model RF sizes of 40 to 80 physical registers. As shown in Figure
5.10c, a 40-entry RF on a VB-based multiprocessor behaves similarly to a 60-
entry RF on a ROB-based design. A difference of 20 physical registers can
entail notable hardware and energy overhead due to the high number of read
and write ports implemented in this structure. From a performance point of
view, the VB architecture improves the ROB-based approach by about 15.3%
and 7.7% for RF sizes of 40 and 80, respectively.

5.4.5 Main Memory Latency

Different latencies for main memory have been simulated to test their impact on the
performance of the multicore VB architecture. Figure 5.12 shows the performance
speedup with respect to the baseline sequentially consistent, 8-core, ROB-based mul-
tiprocessor with a memory access time of 200 cycles. The plot includes memory
latencies ranging from 100 to 500 cycles both for ROB- and VB-based, relaxed and
sequentially consistent machines.

A longer access time makes speedups decrease for the different architectures and
consistency models. However, the ROB-based system implementing release consis-
tency is less affected than the VB-based systems. Specifically, the ROB-RCcurve
touches the VB-SC plot at a short latency, and tends to shorten the gap withthe
VB-RC curve for higher latencies. When the main memory latency increases,the
amount of information created by speculative overlapped computations grows, and it

88 Chapter 5. The Multicore Validation Buffer Architecture

becomes harder to enforce sequential consistency. This makes any SC implementa-
tion perform worse than RC for very large memory access times. However,the VB
is especially appealing for systems with low memory access times, where an imple-
mentation of sequential consistency performs similarly to relaxed consistencyfor the
ROB.

When observing the interpolated curve for VB-SC between the memory latency
values 200 and 300, it can be appreciated that a speedup of 1 is achieved with a mem-
ory latency of about 230 cycles (this interpolated value has been confirmed by further
experiments using 230 cycles as memory latency). In this case, one can conclude that
the VB architecture tolerates higher memory access delays (caused, for example, by
the reduction of the cache size), while still sustaining performance of the baseline
processor.

5.5 Hardware Complexity

5.5.1 Size of the Major Processor Components

Several combinations of structure sizes have been modeled to compare hardware
complexity of the ROB and VB architectures with similar performance levels. To
this aim, the HB, the ROB (or VB), and the RF size have been varied between 32
and 128, between 16 and 64, and between 40 and 80, respectively. Allthese com-
binations have been evaluated for 1-, 2-, 4-, and 8-core, sequentiallyconsistent pro-
cessors. Likewise, all considered benchmarks have been run for each configuration.
Due to the high number of simulations, only average performance results forthe
whole benchmark suite are shown, and some of them are filtered with the following
criterion.

Twenty performance results are shown in Figure 5.13 both for the ROB (5.13a)
and VB (5.13b) architectures. They have been picked out from the totalityof ex-
periments by grouping similar performance values and discarding those with higher
complexity. Each bar represents the average performance for a specific combination
of simulation parameters specified at the bottom of each plot.

The performance levels of interest are labeled as A, B, and C. Each of them is
plotted for both architectures for comparison purposes. Performance level A cor-
responds to an IPC of 1.11. It is achieved by a 2-core, ROB-based processor with
80 physical registers, a 32-entry ROB, and a 128-entry HB, but also by a VB-based
processor with 20 registers less, a VB 2 times smaller than the ROB, and a 2 times
less complex HB. For an 8-core processor, performance level B shows that the VB
architecture provides an average IPC of 2.02 with 20 registers less, anda VB twice as
small as for the analogous ROB-based processor. Finally, performance level C (IPC
of 1.7) is provided by a VB-based processor that doubles the RF and VBsize of a

5.5. Hardware Complexity 89

Figure 5.13: Performance for different hardware complexity levels.

ROB-based machine, and also uses an HB 4 times as large, but halves the number of
processor cores.

5.5.2 Impact of the Pipeline Width

Different values between 1 and 8 have been tested for the pipeline width (decode, dis-
patch, issue, and commit/validate bandwidth) for the baseline ROB- and VB-based,
8-core, sequentially consistent architectures. Figure 5.14 shows performance results
for the ROB (light gray) and VB (dark gray) systems. Notice that performance is
computed globally for all cores, which is the reason why the IPC value can exceed
the number of ways.

90 Chapter 5. The Multicore Validation Buffer Architecture

Figure 5.14: Pipeline width.

Results show that the pipeline width especially constrains performance of 1-way
processors. In this case, the transition from the ROB into the VB architecture is less
beneficial (6% for 16 entries) than for wider pipelines, which sustain a speedup of
at least 8.3%. Though 2-way cores clearly outperform 1-way cores,wider pipelines
provide a moderate performance boost. The following comparisons are highlighted.

A 2-way, VB-based processor with 16-entry VBs outperforms an 8-way, ROB-
based processor with the same number of ROB entries. Likewise, a 4-way,VB-based
processor with 64-entry VBs performs better than an 8-way, ROB-based processor
with similar ROBs. An increase of the pipeline width involves more instruction cache
ports (fetch stage), register file ports (rename stage), and associativesearch ports in
the IQ (issue stage), as well as an increase of complexity of other hardware structures.
Thus, it is preferable to transition to the VB architecture rather than introducing more
pipeline ways in the above cited cases.

5.6 Summary

In this chapter, the VB multicore architecture has been presented as a sequentially
consistent, out-of-order retirement, multiprocessor approach. Sequential consistency
is based on speculatively retiring load instructions using a history buffer (HB), while
maintaining a non-speculative approach for retiring the rest of instructions. This
approach relies on the introduction of a small table (CoW) to support delayed desti-
nation operands to be written into the HB.

An extensive evaluation has been carried out dealing with single-thread poten-
tial, performance on multicore processors with different number of cores, impact of
the resources size, and memory consistency models. Experimental results show that
the multicore VB architecture can speed up both relaxed and sequentially consis-

5.6. Summary 91

tent in-order retirement in future multiprocessor systems by between 3% and20%,
depending on the ROB size.

Chapter 6

Related Work

In this chapter, some work related with this thesis is discussed. The cited approaches
are classified in two sections, depending on whether they address uniprocessor or
multiprocessor environments. For both of them, previously proposed out-of-order
retirement architectures are briefly described. The summary of the previous work
dealing with multiprocessors includes memory consistency implementations.

93

94 Chapter 6. Related Work

6.1 Proposals Based on Uniprocessors

Long-latency operations constrain the output rate of the ROB, and thus, micropro-
cessor performance. Many microprocessor mechanisms have been recently proposed
dealing with this problem. Some of them try to alleviate this bottleneck by aggres-
sively and carelessly releasing some resources out of program order, using check-
points to return to a previous valid state on mispeculation. Others release pipeline
resources non-speculatively and also out of program order, avoiding checkpoints by
carefully taking retirement decisions. And others reduce the impact of long-latency
operations by enlarging some processor structures that constrain the instruction win-
dow size. In what follows, some proposals related with this thesis and basedon
uniprocessors are classified into these three categories and summarized.

6.1.1 Speculative Out-of-Order Retirement with Checkpoints

Proposals in this category permit the retirement of instructions in a speculative mode
when a long-latency operation blocks the ROB head. These solutions introduce spe-
cific hardware to periodically checkpoint the architectural state and guarantee correct
execution. When a misprediction occurs, the processor rolls back to the last check-
point, discarding all intermediate computations.

In [49], Mutlu et al. propose the run-ahead architecture. The state of the architec-
tural register file is checkpointed each time a long-latency memory operation blocks
the ROB head. When a checkpoint is performed, the processor enters inthe run-
ahead mode until the long-latency instruction finishes. Meanwhile, a bogus value is
distributed among dependent instructions to enable them to continue. However, this
execution mode does not allow instructions to update the architectural state. When
the long-latency operation finishes, the processor rolls back to the checkpoint and
re-executes the instructions in normal mode, discarding previous results.The run-
ahead execution provides useful prefetching requests (both for instructions and data),
as well as effective train for branch predictors.

In [6], Kirman et al. propose the checkpointed early load retirement mechanism,
which has certain similarities with the previous one. To unclog the ROB when a
long-latency load instruction blocks the ROB head, a predicted value is provided for
those dependent instructions to allow them to continue. When the value of the load
is fetched from memory, it is compared against the predicted one. On misprediction,
the processor rolls back to the checkpoint.

In [8], Cristal et al. propose to replace the ROB with a set of checkpointsat
specific instructions. This mechanism uses a CAM structure for register mapping
purposes, which is also in charge of freeing physical registers. Stores wait at the
commit stage to modify the machine state until the closest previous checkpoint has
committed. In addition, instructions taking a long time to issue (e.g., instructions

6.1. Proposals Based on Uniprocessors 95

dependent on a load) are moved from the instruction queue to a secondary buffer,
freeing resources that can be used by other instructions. These instructions are re-
inserted into the instruction queue when the instruction they are dependent on has
completed (e.g., the load data has been fetched). This problem has also been tackled
by Akkary et al. in [7].

In [50], Mart́ınez et al. propose an in-order retirement mechanism which identi-
fies irreversible instructions for early release of resources. Unlike theVB microar-
chitecture, this proposal retires instructions in order from the processor pipeline, and,
like the works discussed above, checkpoints are required to eventually roll back to a
previous machine state.

6.1.2 Non-Speculative Out-of-Order Retirement Without Checkpoints

In [9], Bell and Lipasti present a checkpoint-free approach. A ROBis still used,
into which instructions are inserted in order, but from which they are extracted out of
program order. To this end, a specific number of entries is scanned at the ROB head
in the commit stage, and the empty slots caused by instructions withdrawn out of
order are removed by collapsing the remaining entries. Unfortunately, this proposal
is unsuitable for large ROB sizes, and resources are handled like in a typical ROB-
based processor, without any focus on improving resources usage.

6.1.3 Enlargement of the Major Processor Structures

Some proposals alleviate the performance degradation caused by ROB stallsby en-
larging the major microprocessor structures or managing them more efficiently. In
the case of non-scalable structures, such as the load-store queue, theregister file,
or the instruction queue, alternative designs allow an increase in number ofentries
compensated by a limited functionality, which still provides a global performance
gain.

In [51], Raasch et al. propose a segmented instruction queue (IQ) fordynam-
ically scheduled processors. Though a larger IQ increases the exposed instruction
level parallelism (ILP), it also slows down its access time, and might impact on the
clock speed. The authors of this work propose to divide the IQ into small segments
among which instructions are promoted until they reach a small issue buffer,from
which they can be actually scheduled into the corresponding functional unit. This
allows the global IQ complexity to be reduced for a given total number of entries, or
performance to be increased for a specific complexity and higher number of entries.

In [52], Balasubramonian et al. deal with the complexity of the register file (RF).
While a large multiported RF improves ILP, the same side effects occur as in the IQ,
namely that the access latency rises, and the system clock might be forced toslow
down. First, the authors reduce the global number of RF entries by designing a two-

96 Chapter 6. Related Work

level RF. Physical registers are assigned to each level by being hierarchically divided
into those with active consumers and those waiting for specific conditions. Second, a
banked organization of the RF is proposed to reduce the port requirements. Similarly
to banked data caches, the RF is able to provide high read/write bandwidth while still
being minimally ported.

Finally, in [53], Park et al. overcome the scarce scalability of the load-store queue
(LSQ), motivated by an increasing pressure on this structure in terms of capacity and
search bandwidth. As an associative structure, the LSQ presents similar problems
to the IQ when its size tries to be straightforwardly increased. First, the authors of
this work present two techniques to reduce the required search bandwidth. On one
hand, they introduce a store-load aliasing predictor. On the other, speculatively issued
loads are stored in a separate load buffer, so the store-load order violation detection
is moved off the LSQ. Second, the authors propose a segmentation of the LSQ to
scale its size. In the resulting design, the LSQ is divided into segments connected in
a chain.

Since the previous proposals focus on structures other than the ROB andthe
renaming tables, they are orthogonal with the VB architecture proposed in this thesis.
With the joint implementation of these techniques, a very aggressive processor could
support a very large instruction window by alleviating the bottlenecks imposedby the
traditional management of the main pipeline structures in conventional superscalar
processors.

6.2 Proposals Based on Multiprocessors

Regarding multiprocessor environments, two mainstream research topics have been
merged in this thesis. On one hand, sequential consistency (SC) implementations
have been studied to investigate their compatibility with out-of-order retirement in
multiprocessors. On the other hand, some proposals dealing with out-of-order retire-
ment of instructions in multiprocessors have been examined.

6.2.1 Sequential Consistency Implementations

There is a significant body of previous work in sequentially consistent multiproces-
sors. Performance enhancements such asstore prefetching, andspeculative execu-
tion of loadsare considered in [47], andspeculative retirement of loadsis discussed
in [29]; both features have been detailed in Section 5.1 and are implemented in the
baseline multicore architecture used for simulations due to their low complexity and
effectiveness.

More sophisticated SC implementations can be found in the literature. In [54],
speculative retirement of loads is improved by also retiring stores before their specu-
lative state is confirmed. The fact that stores may commit stale values to the memory

6.2. Proposals Based on Multiprocessors 97

hierarchy forces ahistory buffer(in this context calledSHiQ) to store the previous
value at the written memory address. To get this value, SC++ requires stores to be
implemented as read-modify-write operations in the cache. On mispeculation, SC++
performs a burst of cache writes to roll back to a previous valid state. In contrast, this
work avoids to impose these complexities in the cache hierarchy.

SC++lite [55] is an improvement of SC++, based on the observation that the
SHiQ is usually underutilized, although its storage is fully required during small
periods of execution. To avoid its hardware overhead, the SHiQ is implemented
directly in the memory hierarchy. On mispeculation, SC++lite recovers at a slower
rate than SC++, but consistency mispeculations are rare enough to afford it.

Finally, BulkSC [56] is another SC implementation where memory instructions
are grouped in chunks, and appear to execute atomically and in isolation. The hard-
ware enforces SC at a coarser grain (i.e., chunks), obtaining performance close to
relaxed consistency implementations, by enabling optimizations in the execution of
memory instructions.

6.2.2 Out-of-Order Retirement in Multiprocessors

A number of key papers have addressed the subject of out-of-orderretirement in mul-
tiprocessors. In the Cherry-MP architecture [57], resources (e.g.,physical registers)
are released speculatively, entering into the so-calledcherrymode by checkpointing
previous valid machine states, which processors roll back to on future mispeculations.
A Cherry-MP system supports both release and sequential consistencyby setting up
the conditions to release processor resources. Unfortunately, Cherry-MP involves
modifications in the cache hierarchy, such as the adaptation of the MOESI protocol,
and also needs storage history about data shared among processors incherrymode.
This reduces its adaptability to generic memory systems, and checkpoints needed for
managing speculation involve a considerable amount of hardware to be added to the
processor pipeline.

The Kilo-Instruction Multiprocessor (or KIMP) [58] was also proposedas an out-
of-order retirement multiprocessor architecture. A KIMP enables many instructions
to be in-flight by checkpointing the processor state when long-latency instructions
block the pipeline and requires an aggressive register renaming mechanism. These
checkpoints commit globally by locking a shared snoopy bus and broadcasting mem-
ory write accesses. SC is enforced by making remote processors roll back to previous
checkpoints when an address match is snooped on the shared bus. This architecture
imposes harsh restrictions on the system architecture, such as the presence of a shared
bus (constraining scalability) and again the cost of several checkpointsin the proces-
sor pipelines.

98 Chapter 6. Related Work

6.3 Summary

In this chapter, some previous work pursuing similar aims to the VB architecture
has been presented. They range from alternative ways to retire instructions out of
order from the processor pipeline, to memory consistency implementation in multi-
core environments. The novelties of the work proposed in this thesis with respect to
the cited works reside ini) the design and evaluation of a low-cost, non-speculative,
out-of-order retirement architecture,ii) an evaluation and integration of out-of-order
retirement in multithreaded environments, andiii) the design and evaluation of a
checkpoint-free, out-of-order retirement multiprocessor design.

Chapter 7

Conclusions

The Validation Buffer (VB) architecture has been proposed in this dissertation as
an alternative design where instructions are retired out of program order from the
processor pipeline. This technique has been implemented and evaluated on top of the
three major processing models available in the microprocessor market roughly for the
last two decades, namely, superscalar, multithreaded, and multicore processors. In
this chapter, the main contributions on each of these fields are summarized, followed
by a discussion about future working directions and an enumeration of thescientific
publications related with this thesis.

99

100 Chapter 7. Conclusions

7.1 Contributions

In Chapter 3, the baseline VB architecture has been proposed for superscalar proces-
sor. First, the potential of this proposal has been evaluated by assuming the major
microprocessor structures unbounded, namely the register file, the instruction queue,
and the load-store queue, showing that current applications, and especially floating-
point benchmarks, can be considerably benefited from out-of-orderretirement. Then,
a realistic VB-based machine has been modeled and compared against two ROB-
based proposals, one retiring instructions in order and the other out of order. Results
show that a 32-entry VB provides performance similar to a 256-entry ROB.These
performance benefits are accompanied by a reduction in the occupancy of the re-
maining structures, which has further implications in terms of hardware cost or power
consumption.

In a study trading off complexity and performance, results show that a given per-
formance level is achieved in the VB architecture with simpler hardware costfor the
major microprocessor structures than for in-order retirement processor. Moreover,
the pipeline width can be narrowed in a VB-based processor, drastically reducing the
cost of a superscalar pipeline, while sustaining performance of a ROB-based design
with the same structure sizes. This might be of special interest in those architectures
where complexity is a crucial issue, such as power-aware or embedded systems.

In Chapter 4, the VB architecture has been extended for multithreaded archi-
tectures, including coarse-grain, fine-grain and simultaneous multithreading. The
behavior of different thread selection policies at the fetch stage has been explored,
showing that out-of-order retirement and both multithreading and fetch policies are
techniques that orthogonally contribute to increase the issue bandwidth utilization
and processor performance.

Performance results provide three main conclusions:i) a fine-grain multithreaded
VB-based processor outperforms, on average, a simultaneous multithreaded ROB-
based processor;ii) a simultaneous multithreaded VB-based processor reaches the
maximum performance with about half of the hardware threads than a simultane-
ous multithreaded ROB-based processor;iii) benefits of fetch policies are orthog-
onal to the ones provided by the VB. These contributions justify the viability and
cost-effectiveness of an out-of-order retirement multithreaded processor microarchi-
tecture.

Finally, Chapter 5 has shown the extension of the VB architecture for multi-
core/multiprocessor environments, where instructions are retired out of order in dif-
ferent processing nodes, while sequential consistency is still enforced. This strict
memory model is enforced by using thespeculative retirement of loadstechnique
with an additional hardware structure, called History Buffer (HB). Out-of-order re-
tirement in multiprocessors is implemented by focusing on three centralized compo-
nents. First, conditions for instructions to leave both the VB and HB are relaxed,

7.2. Future Work 101

with no additional hardware cost. Second, renaming tables are handled withan alter-
native register renaming strategy, which decouples register release from the commit
stage by means of little additional storage per physical register. Finally, a small table
(CoW) is introduced to support a delayed write back of destination operands into the
HB. Since no loss of generality is incurred regarding memory hierarchy orintercon-
nects, the VB multiprocessor architecture remains highly scalable with the number
of processors.

Results provide three main conclusions:i) a sequentially consistent VB-based
multiprocessor outperforms, in general, a ROB-based system implementing release
consistency, regardless of the number of processors,ii) ROB, register file, and HB
sizes can be reduced in the VB multiprocessor architecture, maintaining performance
and lowering complexity, andiii) relaxation of instruction retirement conditions and
memory model strictness can coexist without significantly impacting the performance
of the VB architecture.

An additional contribution of this thesis is the development of the Multi2Sim sim-
ulation framework, presented in Chapter 2. This tool integrates important features of
existing simulators and extends them to provide additional functionality. The main
characteristics of Multi2Sim are a model of superscalar, multithreaded and multicore
processors, a cache coherence protocol, interconnection networks, and the exten-
sions to support the VB architecture with different memory consistency models. The
Multi2Sim simulation framework has been made publicly available and researchers
are encouraged to contribute to its further development through SVN (subversion)
access and mailing lists.

7.2 Future Work

More research is planned as for future work on the topic of out-of-order retirement of
instructions. Specifically, we intend to design a superscalar processor pipeline where
neither a reorder buffer nor an alternative FIFO structure (like the validation buffer)
is present. In the VB architecture proposed in this thesis, the characteristichead-of-
line blocking effect caused by the ROB is largely alleviated. However, instructions
are still extracted in program order from the VB (albeit with less restrictivecondi-
tions), and this may still be a cause for pipeline stalls, especially for very smallVBs.
The key observation that allows the removal of this bottleneck is that the validation
of correctly speculated instructions, as well as the discard of mispeculatedones, is
performed in form of instruction bursts embraced by epoch initiators. Thus, the only
information about sequentiality that needs to be kept track of is the programorder of
epoch initiators.

In this proposal, an alternative register renaming strategy needs to be designed
again to handle register reclamation by itself, without the information about register

102 Chapter 7. Conclusions

mappings that was stored both in the ROB and the VB. Specifically, a hybrid renam-
ing scheme has been already proposed and published [59], which combines a content
addressable memory (CAM) and a random access memory (RAM) in order toper-
form efficient checkpoints of the aliasing table at specific execution points, recover
the machine state in constant time after mispeculation, and provide the pipeline with
register mappings at full decode bandwidth, while even reducing power consumption
and increasing performance of traditional register renaming.

The removal of a FIFO structure holding instructions in flight opens new opportu-
nities when pipeline resources are shared by instructions among which no sequential
order needs to be enforced, such as those that belong to different tasks. This is the
case of multithreaded processors, which decode instructions from different threads
that share some processor structures. As discussed in [60], sharingthe ROB among
threads is preferable when a multithreaded processor is loaded with a low number of
tasks, because a single task can compete for all its entries. However, a shared FIFO
structure has other pernicious effects when highly loaded, such as inter-thread block-
ing, thread starvation, and holes at recovery. All these effects automatically vanish
in an architecture without ROB or VB, and the benefits of a shared resource are kept
when the proposed non-FIFO (i.e., associative) structure storing epoch initiators is
shared among threads.

New challenges are also posed by this proposal when introduced in a multipro-
cessor environment. Existing techniques to enforce sequential consistency, as cited
in this thesis, may not be straightforwardly applicable to architectures that alter the
order in which instructions leave the processor pipeline. Even speculative retirement
of loads using a history buffer (HB), as adapted in this thesis for the VB architecture,
is not suitable in this case, since the income of instructions into the HB needs to be
provided in sequential order by some other structure in the rest of the pipeline. Thus,
it becomes a research opportunity to design an efficient implementation of SC that
is again transparent to the memory hierarchy and interconnects in a system where
processor pipelines lack a ROB or VB.

In summary, out-of-order retirement of instructions is still a hot topic that can
increase processor performance in state-of-the-art systems, by removing head-of-
line blocking effects on FIFO structures and increasing the number of instructions
in flight.

7.3 Publications Related with This Work

The following list enumerates the papers related with this dissertation that havebeen
published, or are under review process, in specialized conferencesor journals.

7.3. Publications Related with This Work 103

• R. Ubal, J. Sahuquillo, S. Petit, P. López, and J. Duato, “The Validation Buffer
Microarchitecture for Multithreaded Processors”,ACACES Summer School,
L’Aquila (Italy), Jul. 2007.

• R. Ubal, J. Sahuquillo, S. Petit, P. López, and J. Duato, “VB-MT: Design Issues
and Performance of the Validation Buffer Microarchitecture for Multithreaded
Processors”, inProc. of the 16th International Conference on Parallel Archi-
tectures and Compilation Techniques, Brasov (Romania), Sept. 2007.

• R. Ubal, J. Sahuquillo, S. Petit, and P. López, “A Simulation Framework to
Evaluate Multicore-Multithreaded Processors”, inProc. of the 19th Interna-
tional Symposium on Computer Architecture and High Performance Comput-
ing, Gramado (Brazil), Oct. 2007.

• R. Ubal, S. Petit, J. Sahuquillo, P. López, and J. Duato, “A First Approach
to Non-Speculative Out-of-Order Instructions Retirement”,XVIII Jornadas de
Paralelismo, Zaragoza (Spain), Sept. 2007.

• R. Ubal, J. Sahuquillo, S. Petit, and P. López, “The Impact of Out-of-Order
Commit in Coarse-Grain, Fine-Grain and Simultaneous Multithreaded Archi-
tectures”, inProc. of the 22nd International Parallel and Distributed Process-
ing Symposium, Miami (Florida, USA), Apr. 2008.

• R. Ubal, J. Sahuquillo, S. Petit, and P. López, “An Experimental Framework to
Simulate Sequential and Parallel Workloads in Multicore-Multithreaded Pro-
cessors”,XIX Jornadas de Paralelismo, Castellón (Spain), Sept. 2008.

• S. Petit, R. Ubal, J. Sahuquillo, P. López, and J. Duato, “An Efficient Low-
Complexity Alternative to the ROB for Out-of-Order Retirement of Instruc-
tions”, in Proc. of the 12th Euromicro Conference on Digital System Design,
Patras (Greece), Aug. 2009.

• S. Petit, J. Sahuquillo, P. López, R. Ubal, and J. Duato, “A Complexity-
Effective Out-of-Order Retirement Microarchitecture”,IEEE Transactions on
Computers, Vol. 58 No. 12, Dec. 2009.

• R. Ubal, J. Sahuquillo, S. Petit, P. López, and D. Kaeli, “A Sequentially Consis-
tent Multiprocessor Architecture for Out-of-Order Retirement of Instructions”,
IEEE Transactions on Parallel and Distributed Systems, submitted.

All published works listed above are exclusively related with this thesis, andnone
of them are or will be used as supporting material for other theses. The specific con-
tributions of the PhD candidate reside mostly in the implementation of the proposed
techniques (including the complete code of the Multi2Sim simulation framework, as

104 Chapter 7. Conclusions

well as the necessary modifications for the VB architecture), the setup andexecution
of most simulation experiments, and the writing of the paper drafts and technical
reports describing the work. Along these processes, the coauthors have repeatedly
provided useful hints and advices, which the PhD candidate has then applied to make
the work evolve into its final version.

References

[1] J. E. Smith and G. Sohi. The Microarchitecture of Superscalar Processors.Proc.
of the IEE, 83(2), Dec. 1995.

[2] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.IEEE Micro,
Apr. 1996.

[3] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyler, and P. Rous-
sel. The microarchitecture of the Pentium 4 processor.Intel Technology Journal.
Q1, Feb. 2001.

[4] J. E. Smith and A. R. Pleszkun. Implementation of Precise Interrupts in
Pipelined Processors. InProc. of the 12th Int’l Symposium on Computer Ar-
chitecture, June 1985.

[5] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-Effective Superscalar
Processors. InProc. of the 24th Int’l Symposium on Computer Architecture,
June 1997.

[6] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martı́nez. Checkpointed Early
Load Retirement. InProc. of the Int’l Symposium on High Performance Archi-
tecture, Feb. 2005.

[7] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recov-
ery: Towards Scalable Large Instruction Window Processors. InProc. of the
36th Int’l Symposium on Microarchitecture, Dec. 2003.

[8] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order Commit Proces-
sors. InProc. of the Int’l Symposium on High Performance Architecture, Feb.
2004.

[9] G. B. Bell and M. H. Lipasti. Deconstructing Commit. InProc. of the The Int’l
Symposium on Performance Analysis of Systems and Software, Mar. 2004.

[10] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 Chip: a Dual-Core
Multithreaded Processor.IEEE Micro, 24(2), 2004.

[11] P. Kongetira and K. Aingaran and K. Olukotun. Niagara: a 32-wayMulti-
threaded Sparc Processor.IEEE Micro, March-April 2005.

[12] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium

105

106 References

Processor.IEEE Micro, 25(2), 2005.

[13] R. E. Kessler. The Alpha 21264 Microprocessor.IEEE Micro, 19(2), Mar.
1999.

[14] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. Power4 System
Microarchitecture, Technical white paper.IBM Server Group, Oct. 2001.

[15] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Tech-
nical Report CS-TR-1997-1342, 1997.

[16] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. HotLeak-
age: A Temperature-Aware Model of Subthreshold and Gate Leakage for Ar-
chitects. Univ. of Virginia Dept. of Computer Science Technical Report CS-
2003-05, 2003.

[17] D. Madon, E. Sanchez, and S. Monnier. A Study of a Simultaneous Multi-
threaded Processor Implementation. InEuropean Conference on Parallel Pro-
cessing, 1999.

[18] J. Sharkey. M-Sim: A Flexible, Multithreaded Architectural Simulation Envi-
ronment.Technical Report CS-TR-05-DP01, Department of Computer Science,
State University of New York at Binghamton, 2005.

[19] D. M. Tullsen. Simulation and Modeling of a Simultaneous Multithreading
Processor.22nd Annual Computer Measurement Group Conference, Dec. 1996.

[20] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot, a Fast Processor
Model for Microarchitecture Exploration.IEEE Int’l Performance, Computing,
and Communications Conference, 1999.

[21] M. Moudgill, J. Wellman, and J. Moreno. Environment for PowerPC Microar-
chitecture Exploration.IEEE Micro, pages 15–25, 1999.

[22] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, and M. Rosen-
field. Microarchitecture-Level Power-Performance Analysis: The PowerTimer
Approach.IBM J. Research and Development, 47(5/6), 2003.

[23] B. Lee and D. Brooks. Effects of Pipeline Complexity on SMT/CMP Power-
Performance Efficiency.Workshop on Complexity Effective Design, 2005.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform.IEEE Computer, 35(2), 2002.

[25] M. R. Marty, B. Beckmann, L. Yen, A. R. Alameldeen, M. Xu, and K.Moore.
GEMS: Multifacet’s General Execution-driven Multiprocessor Simulator.Int’l
Symposium on Computer Architecture, 2006.

[26] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-Oriented Full-
System Simulation Using M5.6th Workshop on Computer Architecture Evalu-
ation using Commercial Workloads (CAECW), Feb. 2003.

References 107

[27] The Multi2Sim Simulation Framework.http://www.multi2sim.org.

[28] T. Y. Yeh and Y. N. Patt. A Comparison of Dynamic Branch Predictorsthat
Use Two Levels of Branch History. InProc. of the 20th Int’l Symposium on
Computer Architecture, 1993.

[29] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap between Memory
Consistency Models. InProc. of the 9th ACM Symposium on Parallel Algo-
rithms and Architectures, June 1997.

[30] Standard Performance Evaluation Corporation.http://www.spec.org/cpu2000/.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. InProc. of
the 22nd Int’l Symposium on Computer Architecture, June 1995.

[32] M. Moudgill, K. Pingali, and S. Vassiliadis. Register Renaming and Dynamic
Speculation: an Alternative Approach. InProc. of the 26th Int’l Symposium on
Microarchitecture, Dec. 1993.

[33] J. P. Shen and M. H. Lipasti.Modern Processor Design: Fundamentals of
Superscalar Processors. July 2004.

[34] J. H. Edmondson, P. Rubinfeld, and R. Preston. Superscalar Instruction Execu-
tion in the 21164 Alpha Microprocessor.IEEE Micro, 15(2), 1995.

[35] Free Software Foundation,http://www.gnu.org/software/gcc/onlinedocs/, GCC
Online Documentation. 2006.

[36] S. E. Raasch and S. K. Reinhardt. The Impact of Resource Partitioning on SMT
Processors. InProc. of the 12th Int’l Conference on Parallel Architectures and
Compilation Techniques, 2003.

[37] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.
Exploiting Choice: Instruction Fetch and Issue on an Implementable Simul-
taneous Multithreading Processor. InProc. of the 23rd Int’l Symposium on
Computer Architecture, May 1996.

[38] A. El-Moursy and D. H. Albonesi. Front-End Policies for ImprovedIssue Effi-
ciency in SMT Processors. InProc. of the 9th Int’l Conference on High Perfor-
mance Computer Architecture, Feb. 2003.

[39] F. J. Cazorla, A. Raḿırez, M. Valero, and E. Fernández. Dynamically Con-
trolled Resource Allocation in SMT Processors. InProc. of the 37th Int’l Sym-
posium on Microarchitecture, 2004.

[40] J. Sharkey, D. Balkan, and D. Ponomarev. Adaptive Reorder Buffers for SMT
Processors. InProc. of the 15 Int’l Conference on Parallel Architectures and
Compilation Techniques, 2006.

[41] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Paired ROBs: A Cost-Effective

108 References

Reorder Buffer Sharing Strategy for SMT Processors. InProc. of the Euro-Par
Conference, Aug. 2009.

[42] M. Perićas, A. Cristal, R. Gonźalez, D. A. Jiḿenez, and M. Valero. A Decou-
pled Kilo-Instruction Processor. InProc. of the 11th Int’l Conference on High
Performance Computer Architecture, Feb. 2006.

[43] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs.IEEE Transactions on Computers, Sept. 1979.

[44] S. V. Adve.Designing Memory Consistency Models for Shared-Memory Multi-
processors. PhD thesis, Madison, WI, USA, 1993.

[45] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors. InProc. of the 17th Int’l Symposium on Computer Architec-
ture, May 1990.

[46] C. Scheurich and M. Dubois. Correct Memory Operation of Cache-Based Mul-
tiprocessors. InProc. of the 14th Int’l Symposium on Computer Architecture,
June 1987.

[47] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniquesto Enhance the
Performance of Memory Consistency Models. InProc. of the Int’l Conference
on Parallel Processing, Aug. 1991.

[48] AMD Opteron 8350 Quad-Core Processor – http://multicore.amd.com/us-
en/quadcore/.

[49] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Execution:An Alter-
native to Very Large Instruction Window for Out-of-Order Processors. InProc.
of the 9th Int’l Symposium on High Performance Architecture, Feb. 2003.

[50] J. F. Mart́ınez, J. Renau, MC. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed Early Resource Recycling in Out-of-Order Processors. In Proc.
of the 35th Int’l Symposium on Microarchitecture, Nov. 2002.

[51] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A Scalable Instruction Queue
Design Using Dependence Chains. InProc. of the 29th Int’l Symposium on
Computer Architecture, May 2002.

[52] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Reducing the Com-
plexity of the Register File in Dynamic Superscalar Processors. InProc. of the
34th Int’l Symposium on Microarchitecture, Dec. 2001.

[53] I. Park, C. L. Ooi, and T. N. Vijaykumar. Reducing Design Complexityof the
Load-Store Queue. InProc. of the 36th Int’l Symposium on Microarchitecture,
Dec. 2003.

[54] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? InProc. of the
26th Int’l Symposium on Computer Architecture, 1999.

References 109

[55] C. Gniady and B. Falsafi. Speculative Sequential Consistency with Little Cus-
tom Storage. InProc. of the Int’l Conference on Parallel Architectures and
Compilation Techniques, Sept. 2002.

[56] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: BulkEnforcement
of Sequential Consistency. InProc. of the 34th Int’l Symposium on Computer
Architecture, 2007.

[57] M. Kirman, N. Kirman, and J. F. Martı́nez. Cherry-MP: Correctly Integrating
Checkpointed Early Resource Recycling in Chip Multiprocessors. InProc. of
the Int’l Symposium on Microarchitecture, Nov. 2005.

[58] E.Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom, J. E.
Smith, and M. Valero. Implementing Kilo-Instruction Multiprocessors. InProc.
of the IEEE Int’l Conference on Pervasive Services, July 2005.

[59] S. Petit, R. Ubal, J. Sahuquillo, and P. López. A Power-Aware Hybrid RAM-
CAM Renaming Mechanism for Fast Recovery. InProc. of the 27th Int’l Con-
ference on Computer Design, Oct. 2009.

[60] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Paired ROBs: a Cost-Effective
Reorder Buffer Sharing Strategy for SMT Processors. InProc. of the 2009
Euro-Par Conference, Aug. 2009.

