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Abstract Control architectures based on Emotions are becoming promising solutions for the 

implementation of future robotic agents. The basic controllers of the architecture are the emotional 

processes that decide which behaviors of the robot must activate to fulfill the objectives. The 

number of emotional processes increases (hundreds of millions/s) with the complexity level of the 

application, limiting the processing capacity of the main processor to solve complex problems 

(millions of decisions in a given instant). However, the potential parallelism of the emotional 

processes permits their execution in parallel on FPGAs or Multicores, thus enabling slack 

computing in the main processor to tackle more complex dynamic problems. In this paper, an 

emotional architecture for mobile robotic agents is presented. The workload of the emotional 

processes is evaluated. Then, the main processor is extended with FPGA co-processors, which are 

in charged of the parallel execution of the emotional processes. Different Stratix FPGAs are 

compared to analyze their suitability to cope with the proposed mobile robotic agent applications. 

The applications are set-up taking into account different environmental conditions, robot dynamics 

and emotional states. Moreover, the applications are run also on Multicore processors to compare 

their performance in relation to the FPGAs. Experimental results show that, Stratix IV FPGA 

increases the performance in about one order of magnitude over the main processor and solves all 

the considered problems. Quad-Core increases the performance in 3.64 times, allowing to tackle 

about 89% of the considered problems. Stratix III could be applied to solve problems with around 

the double of the requirements that the main processor could support and a Dual-Core provides 

slightly better performance than stratix III and it is relatively cheaper. 
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1 Introduction 

Many research works [1, 2, 3, 4] predict a growth of the number of intelligent robots in the 
industry and in our lives in the two next decades. They state that advanced robots capable of 
making decisions on their own as humans do are still under development and the first prototypes 
will not start to appear until 2030. Some researches [2, 6] state that we are seeing the emergence of 
the first generation of robots such as the demining robot Warrior manufactured by iRobot [7], 
which are only able to solve simple tasks with little ability to adapt to the changing environment, 
and running their program code on a single-core processor. However, more intelligent features that 
robots would include, such as decision-making, are not yet developed in real robotic agents. It is 
expected that by 2050, these agents will be implemented in advanced computers capable of 
running hundreds of billions of instructions (i.e., 4th. generation). These robots would rival human 
intelligence and would be able to perform operations of abstraction and generalization, medical 
diagnostics, planning and decision-making [5, 24, 25]. 

These kinds of applications involve high complexity, such as the proposed multi-purpose 
mobile robotic agent performing transportation, diagnosis, cleaning, and surveillance services 
simultaneously in uncertain and unpredictable environments. Each service problem is decomposed 
in a set of sub-problems and possible alternatives to be assessed (e. g., observation, path planning 
and object handling sub-problems for the transportation service). In the same way, each of the sub-
problems is decomposed in simpler tasks (e. g., the path planning sub-problem generates a full tree 
of path alternatives that must be assessed to select one path). As this decomposition is performed 
for each of the sub-problems of all the simultaneous services, it arises that in a given instant the 
total number of decision alternatives that the agent has to manage are significantly high (e. g., 1M 
decisions). 

On the other hand, control architectures based on emotions are inspired on emotional natural 
agents. They are becoming promising solutions for the implementation of advanced robotic 
systems [8, 9, 10] because they facilitate the process of decision-making [17, 18]. They use the 
mechanism of emotions to organize the behaviors, which has the following advantages: (i) allow 
the robot to be autonomous to focus its attention on the most promising behavior, (ii) provide a 
bounded response time which helps organizing the deliberative processes, (iii) sort the problems 
based on the expectations of success, (iv) autonomously adapt the computational load to the 
available processor capacity allowing solving problems of increasing complexity, (v) separate the 
decision from the action processes and the use of subjective appraisal of the situation permit find 
always an alternative solution. In this paper, an emotional robotic architecture for the control of 
complex mobile robot applications is used. In this programming model, there coexist two main 
types of processes: behavior and emotion processes. The formers solve the application problems 
(e. g., surveillance) while the latter use an emotional mechanism to motivate the robot behaviors. 

Originally, all the processes of the emotional architecture, including the behaviors and the 
emotions were executed on a single-core computer (e. g., AMD 3.3 GHz). The emotion processes 
must be applied to all problems/subproblems of the agent agenda at every cycle of attention (e. g., 
0.1 s) to decide which behaviours to execute. As the number of problems grows in the agenda, the 
emotional workload increases significantly as well. For instance, the proposed multipurpose 
robotic agent, to tackle complex problems, will need a high computational workload of about 200 
Millions emotion Operations per Second (MOPS), as will be shown in the experiments section. 
Where an Operation is a Dot-Product function involving: a hyperbolic tangent function, a 
multiplication by a weight and a sum of up to 6 other functions computed in parallel. However, the 
single-core computer cannot support this workload because it can only execute 25 MOPS. 
Moreover, the implementation of the emotion processes on an MCU or low-medium performance 
DSP is discarded also because these devices provides even less power computation (i. e., between 
10 MOPS and 20 MOPS). Therefore, the most suitable solutions that provide the performance 
required by the above-mentioned applications are high performance FPGA and Multicore 
processors. To this end, we transfer the execution of the emotion processes to the FPGA, thus the 
single-core computer gets slack time to solve more complex applications by: (i) improving the 
productivity of the simultaneously number of problems, or (ii) tackling more time critical dynamic 
problems (e. g., solve the problems at highest speed). 

Regarding the FPGA processors, the communication between the FPGA and the Control 
Computer (CC) is performed through Ethernet. The CC sends, at each attention cycle, the 
parameters of the emotions through an Ethernet connection. The FPGA performs the calculation 
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and sends back the results of the behaviors' motivation to the CC. As will be presented in section 
3.2, the emotional process has an accumulative phase. Thus, in order to optimize the use of the 
processing resources of the FPGA-based coprocessor, the CC arranges the parameters of the 
emotions over the data flow in a specific order. The latencies of each of the phases in the 
processing pipeline of the FPGA require this optimal order. Different FPGA models have been 
analyzed. Low performance FPGA are not sufficient to tackle the execution of the emotion 
processes due to their limited computational power (e.g., Stratix EP1S20F484I6 performs only 15 
MOPS). Therefore, high performance FPGA Stratix III and Stratix IV [12, 13] are selected. To 
undertake the implementation, the potential parallelism of the emotion processes is identified and 
characterized. The Dot-Product functions based on hyperbolic tangent that are computed in 
parallel are optimized based on the A3 methodology [19] to use the optimal number of emotion 
operators. Finally, the emotional processor is designed in VHDL for both FPGA models. 

A second implementation of the emotional architecture is carried out using Multicore processors 
in order to compare the performance of the FPGA's and the Multicore, depending on the number 
of dedicated cores. In this case, a six-Core Intel i7 processor is used [14]. Four of the cores are 
dedicated to the emotion processes, one for the application processes and one for the attention 
system. The emotion processes are allocated to the different cores using the Worst Fit algorithm, 
which allows balancing the total workload among the cores. Each core implements a local Rate 
Monotonic Scheduler to support the execution of the processes [20]. 

In the experimental evaluations, different application problems of varying complexity levels 
(simple, normal, complex), under distinct environmental conditions and robot agent dynamics 
(safe, normal, risky), and different emotional states (relaxed, normal, stressed), are implemented 
using the FPGAs. The obtained performance results are compared with the execution of the same 
applications on the multicore processor. Experimental results show that, Stratix IV FPGA 
increases the performance in about one order of magnitude over the main processor and solves all 
the considered problems. Quad-Core increases the performance in 3.64 times, allowing to tackle 
about 89% of the considered problems. Stratix III could be applied to solve problems with around 
the double of the requirements that the main processor could support and a Dual-Core provides 
slightly better performance than stratix III and it is relatively cheaper.The rest of the paper is 
organized as follows: section 2 reviews the state of the art of emotional architectures and their 
implementations; section 3 describes the general characteristics of the emotional control 
architecture and details the emotional system; section 4 describes the multipurpose robotic agent 
application and the FPGA and Multicore based emotional processor designs; experimental 
evaluation and results are discussed in section 5; finally, conclusions are sum-up in section 6. 

2 Related work 

Different control architectures based on emotions are found in the bibliography. Arkin et al. [17] 
develop algorithms based on the emotion of deception to control robotic agents. The authors are 
inspired on the behavior of deception observed in animals or humans. In the simulations they show 
that robots including this emotion are more effective. Salichs [18] proposes a decision-making 
system based on drives and motivations, but also emotions and self-learning. The agent's goal is to 
learn to behave through interaction with the environment, using reinforcement learning, and 
maximizing their welfare. Lee-Johnson et al. [8] develop a hybrid architecture reactive/deliberative 
that incorporates artificial emotions to improve decision-making and actions of mobile robotic 
agents. Emotions are active at different levels of the architecture and serve to modulate the 
decisions and actions of the agent. Damiano [2] presents a model where decision-making is based 
on a motivational system. The motivations are dependent on the value of the need that have to be 
satisfied and a stimulus incentive. Once they calculate all the values, the highest motivation 
activates and organizes the behavior so as to satisfy the most urgent need. On the other hand, 
intelligent agents have been implemented using different SoC technologies. In [11] a neuro–fuzzy 
agent for ambient-intelligence environments is proposed. The agent has been implemented as a 
system-on-chip (SoC) on a FPGA around a MicroBlaze processor and a set of parallel intellectual 
property cores for neuro–fuzzy modeling. The SoC is an autonomous electronic device able to 
perform real-time control of the environment in a personalized and adaptive way, anticipating the 
desires and needs of its inhabitants. In [15] authors present a parallel genetic programming (PGP) 
Boolean synthesis implementation based on a cluster of Virtex5 FPGAs using parallel 
programming and hardware/software co-design techniques. The performance of the cluster of 
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FPGAs implementation has been compared with an HPC implementation resulting in an 
improvement of the speed up and in terms of solving the scalability problems of this algorithm. A 
practical implementation of a neural network based estimator of the load machine speed for a drive 
system with elastic coupling, using an FPGA placed inside the NI CompactRIO controller is 
presented in [16]. The algorithm code for the neural estimator implemented in C-RIO was 
performed using the LabVIEW software. The focus is on the minimization of the used 
programmable blocks of the FPGA matrix. Tests of the load machine estimator implementation are 
performed and results show high-quality state variable estimation of the two-mass drive system.  
The aforementioned papers present very interesting implementations of complex control 
applications, however, regarding the implementation of emotional models, this is for the best of 
our knowledge, the first proposal of a parallel implementation of emotional architectures on FPGA 
and Multicores. Moreover, this paper differs from the above ones in the sense that it tackles the 
NP-hard problem of decision making in multi-objective intelligent agent applications, where 
different high-level complexity problems are simultaneously solved using an emotional system. In 
the proposed system, the computational power of the applications is higher compared to the 
previously commented papers, due to the high number of problems and decision alternatives to 
undertake. These types of problems are very different from the above ones, which are more 
focused in a specific well-defined task (i. e., robot manipulator) where the number of solution 
alternatives is small. Likewise, the paper uses high performance FPGAs: Stratix III and IV to 
tackle the implementation of the emotional robotic architecture and provides a discussion of the 
experimental results regarding the convenience of implementing the emotional model whether on 
an FPGA or on a Multicore processors. 

Some ASICs have been developed to give processing support in different areas of artificial 
intelligence. A remarkable example is the SyNAPSE project [26, 27] lead by IBM, where 
thousands of neural cores integrated in a single chip offer a processing layer for the emulation of 
natural neural processes. The model of the emotion process in our agent architecture, however, 
differs from the artificial neural network model; therefore, the emotions have been implemented 
on a specific processor. The development of an ASIC for emotional purposes would require 
considerable financing resources. The initial design phases of a new processing approach typically 
benefits of the availability and flexibility of the FPGA technology, which is an affordable platform 
for prototypes and small production series. 
 

3 Emotional control architecture 

In this section, the complexity of the emotional control architecture is described and the 
computational requirements of the emotional system and the exhibited potential parallelization are 
discussed. 

3.1 Real-time emotional control architecture overview 

An emotional control architecture has been developed in the group of Industrial Informatics at 
Universitat  Politecnica de Valencia. This architecture (see Fig. 1) is composed of five modules: 
Belief, Behavior, Emotion, Attention and Relation sub-systems. The Belief and Behavior systems 
represent the application processes, while Emotion and Attention systems are in charged of the 
execution of the operational processes. 

 

 

Fig. 1 Emotional control architecture block diagram 
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A behavior of the emotional control architecture is based on a problem resolution process. A 

problem appears when the agent desires a new situation. Every new desire starts an associated 
behavior, which defines a context for the execution of observation, decision and action processes 
related to the problem to be solved. These problem-domain processes are the application 
processes. On the other hand, the system implements operational processes that use an emotional 
mechanism to motivate the application processes. Fig. 2 shows the information flow in the 
emotional control architecture. Ellipses represent concepts and squares represent processes. The 
bold arrows represent the main paths. The (a) path connects sensors and motors devices, from the 
perception to the action. The application processes in (a) flow through two subways, the 
deliberative-way (b) and the reactive-way (c). Reactive processes have a guaranteed response time, 
which is usually short. The response time of deliberative processes however is usually longer. The 
rest of the paths are used by the operational emotional processes, which generate new desire-
behavior (d) and execute motivated behaviors (e). 
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Fig. 2 Information flow in the emotional control architecture 

Initially, the architecture was running on a main computer (single-core) as shown in Fig. 3, 
where the Input/Output is managed by a DAQ. However, as the complexity of the applications 
increases the emotional workload raises significantly, reducing the capacity of the single-core to 
solve the problems. This paper proposes the implementation of the emotional and attention 
processes on FPGA/Multicore processors to allow the single-core focus in solving more complex 
problems with high dynamic requirements. 
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Fig. 3 Original system 

To show how to perform the distribution of the different types of processes among the single-
core and the FPGA/Multicore processors, the structure of the emotional architecture is described. 

3.2 Emotional processes specification 

An emotion is the process of appraising an observed situation and motivating a robotic agent 
behavior to undertake this situation (see Fig. 4). 
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Fig. 4 Emotional process 

 
During its attention cycle, the agent evaluates the set of active emotions. This set of emotions 
grows and decreases dynamically as new problems are registered/unregistered in the agent agenda. 
Two subsets comprise the emotions set: (1) the set of intrinsic emotions and (2) the set of non-
intrinsic emotions. 
 
(1) Intrinsic Emotions - application independent 
One intrinsic emotion is associated to each of the problem instances in the agenda, and its 
emotional response consists in the motivation of the process in charged of resolving the problem. 
The structure of the intrinsic emotions (the number, nature and weight of their emotional 
contributions) is the same for each instance; that is, it is independent of the problem. The agent 
builder however, defines this general structure accordingly with the situational factors that are 
relevant to motivate the problem resolution’s process, no matter the specific nature of the problem. 
These intrinsic emotion structure definitions define and name different agent characters. 
- Example of Intrinsic Emotions 
In the case of the mobile robot’s application presented in paragraph 4.1, the Importance, 
Confidence, Urgency and Opportunity situation appraisals, contribute to the intrinsic emotions. 
The Importance emotional contribution comes from the appraisal of the benefits that would be 
obtained if the problem is resolved, meanwhile the remainder emotional contributions come from 
the appraisal of the success’ expectative on the problem being solved. The Confidence emotional 
contribution has different dimensions: Confidence on the situational observations, Confidence on 
the problem solving method, and Confidence on the processor availability. The Urgency and 
Opportunity contributions distortion the importance of the problem, and contribute to the 
motivation of each problem, at least partially, in an inter-problem basis, causing motivation 
inversions; the Urgency dealing with the deadlines and the adverse effects of not meeting them; 
and the Opportunity dealing with the benefit-effort balance at each time. 
 
(2) Non-intrinsic Emotions - application dependent 
The methods that the problem-solving processes apply follow a sub-problem decomposition 
strategy with a sequence-and-alternative schema. 
Every new sub-problem built and registered in the agenda is the result of an emotional decision. 
When a method is defined, either during the agent initial building or during a later learning 
process, non-intrinsic emotions are defined and linked to key emotional decision points in the 
method. These non-intrinsic emotions are application dependent, so their structure (the situation 
appraisals that contribute to the emotion activation, the contribution functions, and their weights) 
are specific for the type (not at instance level) of problem. The agent builds and registers the non-
intrinsic emotions when the method reaches their specific emotional decision points. After that, the 
emotions are evaluated every attention cycle, and their response consists of building (or 
destructing) new sub-problem resolution processes, giving them an importance level (applying an 
importance appraisal propagation mechanism), and building and registering their intrinsic 
emotions. 
A key design decision of the agent builder is the level of granularity of the decomposition of the 
problem. The agent builder explicitly expose this decomposition to the emotional motivation 
mechanism. Beyond it, the methods applied in the final steps of the problem decomposition look 
like black boxes to the emotional system. 
- Example of Non-Intrinsic Emotions 
The mobile robot application presented in paragraph 4.1 defines a wide set of problem types, 
resolution methods and emotional decisions. As an illustrative example, consider the Robot 
Displacement Problem. Since most of the services require the robot to get to some spatial 
locations, the displacement problem arises often, and several, or even many, instances of the Robot 
Displacement Problem usually populate the agent agenda at a time. The Displacement Problem 
decomposes in several sub-problems: path-planning, physical trajectory-planning and motor 
action. For a path-planning problem, the agent could apply an algorithm to obtain the optimum 
path on a spaces-accesses’ graph representing the robot navigation environment. However, since 
the navigation space is not fully observable from any current robot location, the displacement 
plans would usually need to be recalculated while the robot applies them and gets new 
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environmental observations. The emotional approach instead, decomposes the spaces-accesses 
graph in levels of confidence, e.g. by considering spaces-accesses defined by objects with different 
location volatility: static objects (e.g. architectural elements), moveable objects (e.g. furniture and 
machines), and mobile objects (e.g. people and other robots). Then it applies the path finding for 
each of the subspaces and keeps open different path alternatives while the robot is already moving. 
The agent searches the spaces-accesses’ graph hierarchically. The path-planning problems 
generate new path-planning sub-problems while their respective sub-plans can be refined. A non-
intrinsic emotion (Generate New Path) in the problem resolution method is in charged of this 
process. When the path’s refinement has gotten at an end, a different non-intrinsic emotion 
(Generate Trajectory) creates a new trajectory-planning problem. Furthermore, the trajectory-
planning problems create motor-action-planning problems. 
The full set of problems in the agenda is arranged on a tree-structure. 

 
Although the agent currently attends only the most motivated problems (until the processing 
resources get to saturation) the agent must periodically evaluate the full set of emotions to 
motivate all the problems in the agenda. Thus, the emotional processes cause an extra workload in 
this architecture. The size of the agenda however, is partially auto-controlled, because in order to 
create new sub-problems, the parent problems need to get the attention of the processor to reach 
the emotional decision points, where the new sub-problems are created. Additionally, a proper 
definition of the agent character permits the control of the emotional sensitivity and limits the 
emotional state parameter ae Tt /=ε  (see paragraph 3.3) 
Despite the extra workload, this emotional approach presents some important benefits. The 
benefits consist of the explicit separation of the attention process, and the use of an emotional 
motivation mechanism, which explicitly shows its decision criteria and is configured in a 
centralized way (defining the agent character). To minimize the impact of the emotional workload 
the architecture defines a simple reactive model for the emotional motivation processes. This 
model permits its sequential or parallel execution. 

 
 
Fig. 5 and Fig. 6 detail the emotional motivation process. Fig. 5 shows the appraisal of the 

observed situation. 
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Fig. 5 Situation appraisal process 

 
Situations (3) are generated by observation processes (1) and are represented as real properties 

(4). The appraisal process (2) depends on the agent character. The character dynamically adjusts 
the parameters of this process. To calculate the appraisal of the situation (8) the agent ponders and 
adds (7) a set of appraisal contributions (6), which are evaluated using contribution functions (5). 
The number of situation appraisals for the type of applications considered in the experiments on 
average is 2M. Equation 1 represents the ith situation appraisal 

     (1) 

Where:  is the kth property of the situation,  is the kth contribution function, 

                            

 is the 
weight of the function and l is the number of appraisal contribution  in the range [1, 6]. 

Fig. 6 shows the emotional motivation process. This process has two phases: first, an emotional 
activation (9) sets an emotional state (10), and second, an emotional response builds and motivates 
a behavior (11). The emotional contributions (13), evaluated with contribution functions (12), are 
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pondered and added (14) to finally give an emotional state (15). The emotional contributions 
functions are defined in the real range [-1,+1] and the emotional state in [0, +1]. Every emotional 
state is labeled in the robotic agent navigation problem (e.g., “fear of collision”), a 0 level would 
mean “no fear”, while a 1 level would be “afraid”. The emotional response generates new desires 
(16, 17), and motivates the behavior to accomplish the desire (18, 19). The number of emotions 
involved in the proposed robotic applications on average is 0.5 M. 
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Fig. 6 Emotional motivation process 

 
The emotion is expressed in equation 2. 

     (2) 

Where:  is the state of the jth emotion,  is the ith contribution function, 

                            

 is the weight 
of the function. 

The emotion contribution functions, , have properties such as slight variations at the ends of 
the range that tend to asymptotic values and abrupt variations around an inflection point in the 
center of the range. These properties are found in the hyperbolic tangent functions, which are used 
to represent the contribution functions as shown in equation 3. 

     (3) 

Where x is the appraisal value  when calculating the emotion. To allow adjusting the 
hyperbolic function, equation 3 is transformed in the function shown in equation 4, where the 
parameters x0, y0, δx and δy permit to translate and scale the contribution function. 

    (4) 

These emotions are grouped in the emotional system shown in Fig. 7. The emotional system 
gets, in a given instant, inputs from a set of N situation appraisals (e. g., 2M) and produces a set of 
K motivations (e. g., 0.5M). Each emotion can be composed of up to 6 different contributions 
functions. These contributions have the structure of the Dot-Product functions, each of them 
consists of: a hyperbolic tangent, a multiplication by the weight, a sum of the different 
contributions and the identity function. The total number of these Dot-Product functions in the 
emotional system depends on the complexity of the problem, the environment conditions and the 
robotic agent dynamics. In the experiments section, applying the multi-objective robotic agent, this 
number reaches a value of about 200 Million contribution Operations per Second (MOPS). 
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Fig. 7 Emotional system structure 

 
These Dot-Product functions can be computed in parallel since they are independent in the sense 

that they perceive the situation and have to evaluate it and generate an emotional state. However, 
in the initial implementation they were executed sequentially in a main computer but due to their 
highly computational requirements, they surpass the capacity of the main processor, leading to the 
impossibility of executing the rest of the process applications and hence unfulfilling the robotic 
agent objectives. This situation is analyzed in the next subsection to propose a parallel 
implementation of the emotional system. 

3.3 Emotional system computational requirements 

The robotic agent executes observation, decision, and action application processes periodically. 
A period is called the attention cycle and is represented by aT  (see Fig. 8). aT  depends on the 
problem dynamics (e. g., robot speed). Besides of the application processes, the system must 
execute the operational processes of the emotional system of Fig. 7. The temporal cost, et , of 
executing the emotion processes is represented in grey color in Fig. 8 while the application 
processes are represented in white color. The agent needs to balance between the costs of the 
execution of the application processes and the emotional processes. 

 
 

Fig. 8 Attention cycle 

 
The workload of the emotional processes strongly depends on the application problem: the 
definition of the type of services, the complexity of the navigation and operation environment, and 
the amount of allowed simultaneous service requests. 
 
Firstly, the emotional workload depends on the number of problems in the agenda, which is 
variable over time. Since the type of the problem defines the number of emotional decision points 
in the method that resolves the problem, the nature of those problems also affects the workload. 
The model of the emotional motivation process lets a variable number of emotional contributions, 
so, the Number of Emotional Contributions, identified as O (for Operations), or MO (for Millions 
of Operations), is a better choice for estimating the workload than just the Number of Emotions. 
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Equation 5 estimates the workload of the emotional processes in Number of Operations. 
 

( )( )niceicp nnnnOO ⋅+=     (5) 
 
being: 

• pn  is the number of problems in the agenda. 

• en  is the mean of the number of non-intrinsic emotions per problem. 

• icn  is the number of emotional contributions of the intrinsic emotions, which is a 
constant value specified by the agent character. 

• nicn  is the mean of the number of emotional contributions of non-intrinsic emotions, 
which is variable with the type of problems and the distribution over type) 

 
In order to estimate the necessary processor throughput however, it is necessary to calculate the 

Number of Operations per second. Equation 6 estimates the workload of the emotional processes 
in OPS, being Ta the Attention Cycle Period in seconds. 
 

aT
OOPS =       (6) 

 
Arbitrarily, we have defined three complexity problem levels: Simple, Normal and Complex, 

related to the number of problems to be processed, which stablish different service performance of 
the robotic platform, and three risk of robot collision levels: Safe, Normal and Risky, related to the 
robot navigation speed. 

 
 
The computational costs of the emotional contributions vary depending on the complexity of the 

application problems. In the worst case, the number of millions of contributions functions per 
second is about 200. This growth of the emotional workload can put in danger the accomplishment 
of the objectives of the application. That is, if the time et  dedicated to the emotional computation 

is too high, then the remaining time ( aT  - et ) will not be enough to execute the applications 

processes. Therefore, the goal is to minimize et  as much as possible, hence the robotic agent can 
dedicate more time to solve practical problems and less time to the emotional processing. To this 
end, this paper proposes the design of the emotional system in hardware processors. 

 
The selection of the hardware architecture to implement the emotional system will depend on 

the nature and the volume of the emotional processes. As shown before, the emotions have the 
Dot-Product functions structure computed iteratively in each attention cycle. This structure is very 
suitable for its implementation on FPGA processors. On the other hand, the volume of these 
operations is significantly high (200 MOPS) and cannot be tackled by low-medium performance 
FPGA. For instance, Stratix EP1S20F484I6 provides only 15 MOPS, which is not enough to cope 
with the application requirements. These low cost FPGA are used to implement reactive 
controllers (e. g., manipulators) where the required computational power is low, but they are not 
adequate in deliberative decision-making processes where millions of alternatives have to be 
computed in a given instant. Therefore, in this work, Stratix III and IV are used for the 
implementation of the emotional system. The available resources of Stratix FPGAs permit the 
synthesis of the communication IP cores necessary to communicate the emotional coprocessor 
with the main processor, which has been an additional reason for selecting this FPGA family. 

A second implementation alternative is the use of Multicore processors. This architecture is also 
adequate because it permits the distribution of the emotional processes among the cores and their 
execution in parallel. The high throughput of the multicore will allow reducing substantially the et  
time. A six-core i-7 processor is used to implement the whole architecture. Both implementations 
are compared to show their performance when undertaking the different robotic agent application 
problems.  
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4 Emotional Processor Architecture Design 

4.1 Robotic agent application 

The FPGA/Multicore emotional processor is designed to tackle robotic agent applications as 
shown in Fig. 9. The multipurpose robotic agent performs activities such as diagnosis, 
transportation, cleaning, and surveillance simultaneously. Initially, the single-core (control 
computer) was executing the whole workload of the robotic agent (i. e., application processes and 
emotional processes). In the proposed design, the emotional processes are transferred to the 
FPGA/Multicore to allow the single core solve more complex problems. 

 

Fig. 9 FPGA Stratix III based robotic agent architecture 

To define the emotional computational workload of the applications, a simulator of the agent 
environment is used (see Fig. 10). This simulator allows defining different scenarios where the 
aforementioned activities are tackled (e. g., surveillance). 

 

Fig. 10 Agent solving a crash in the operating area 

 
The robot speed, the number of objects in the operation area, and the collision risk factors are 

used to define the attention cycle of the robotic agent, Ta, which is defined in the range of [0.1s , 
0.5s]. Table 1 shows the robotic agent speed values used in the experiments. 

 

Table 1 Robot speed 

Safe Normal Risky 
0.1 m/s 1 m/s 2 m/s 

 
Table 2 shows the values of the complexity of three types of applications, measured in millions 

of emotion operations per attention cycle (Mopc). To obtain these values, applications of different 
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complexities are run in the simulator environment and the number of emotions involved in each of 
the applications is calculated. A simple problem requires the execution of about 0.5Mopc, while a 
complex application involves the execution of 2Mopc. 

 

Table 2 Complexity of application problems 

Number of Emotional Operations per Attention Cycle 

Simple Normal Complex 
0.5 Mopc 1 Mopc 2 Mopc 

 
The emotional state of the robotic agent represents the ratio between the time spent to execute 

the emotional processes and the time of the attention cycle as shown in equation (7). 
 

ae Tt /=ε      (7) 

Where, et  is the processing time of the emotions. 
Three robotic agent emotional states are considered in the experiments (i. e., relaxed, normal 

and stressed). In the ideal situation, the emotional computational time, et , in the relaxed mode is 

less than 10% of aT , in the normal mode it is between 10% and 25%, and in the stressed mode it 
is between 25% and 40% as shown in Fig. 11. A workload higher than 40% is not be acceptable 
because the process applications are stalled and the robotic agent cannot fulfill the objectives. 

 

 

Fig. 11 Emotional workload limits 

 
In the relaxed mode, the robot dedicates less time to the emotional processing and more time to 

solve application problems. That is, using the FPGA, this device will have less than 10% of aT  to 
compute the emotional processes. In the opposite, for the stressed mode, the robotic agent 
dedicates more time to the emotional processing and hence the FPGA will have between 25% and 
40% of aT  to process the emotions. This means that the throughput of the FPGA in the relaxed 
mode is much higher than in the stressed mode. Table 3 shows the three emotional states used in 
the experiments, when the robotic agent undertakes the resolution of the different problems. 

 

Table 3 Agent global emotional state ε  

Relaxed Normal Stressed 
< 0.1 [0.1, 0.25] [0.25, 0.4] 

 
The environment simulator (see Fig. 10) has been programmed with different robotic 

applications where the different combinations of the complexities of the problems, the robot 
speeds, and the emotional states are applied in order to calculate the emotional computational 
costs. Table 4 summarizes the obtained emotional costs, measured in MOPS, for each of the 
robotic scenarios. 

 

Table 4 Emotional processing cost for robotic agent applications (MOPS) 
Robot speed 
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Problem Robotic agent state 0.1 m/s 1m/s 2m/s 
Simple Stressed 3 5 11 
 Normal 4 8 17 
 Relaxed 13 25 51 
Normal Stressed 6 11 19 
 Normal 8 17 33 
 Relaxed 26 49 99 
Complex Stressed 9 21 39 
 Normal 17 33 68 
 Relaxed 51 99 200 

 
The emotional computational requirements shown in Table 4 have to be fulfilled by the FPGA 

processor in order to allow tackling the corresponding type of problem. For instance, a simple 
problem using a relaxed robot running at the maximum speed (see Table 4) will require an FPGA 
that can process at least 51MOPS. If the FPGA is not able to support this throughput the robot will 
fail to solve this problem. 

 

4.2 FPGA based emotional system design 

In this section, the implementation of the emotional system presented in section 3 is developed 
using Stratix III and IV FPGA's. 

4.2.1 Emotional processor design 

Fig. 12 shows a block diagram of the FPGA based agent control system. The single-core 
executes the application processes of the behavior system, while the FPGA implements the 
operational processes of the emotional system. 

 

 

Fig. 12 Emotional processor 

 
The Megafunction operators block implements the emotional processes and contribution 

functions. The Nios II is a software processor (IP by Altera) used to communicate the FPGA 
emotional processor with the main server of the robotic agent controller. Operators of the Altera 
Megafunction floating point library work synchronously and are implemented on a segmented 
basis. This makes it possible to process a continuous stream of data (pipeline) at the operating 
frequency of the FPGA device. The latency of each operator is due to its internal structure and the 
algorithm in which it is based. FIFO buffers are used to synchronize the operations according to 
their latencies. 

The proposed design is based on A3 methodology to exploit the parallelism of the emotional 
processes so as to find the potential factorization with the aim of using the minimum number of 
operators to process the maximum number of operations. The emotional system is based on Dot-
Product functions (contributions), which are applied to the appraisal data. Since emotions can have 
a variable number of contributions, the emotional processor is designed around an emotion 
operator, which processes a sequence of contributions and adds them to the emotional state.  

The Data Flow Graph of an emotion operator is shown in Fig. 13, where an example of the 
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execution sequence of two emotions is shown. The data input is performed through the FIFO-in 
and the emotional states are obtained through the FIFO-out. The flow rate of the obtained 
emotional states at the output is lower than the flow rate of the input parameters (6 parameters * 
number of emotional contributions). The first emotion, with two contributions, completes its 
evaluation at t4. The second one has 4 contributions and finishes at t8. Emotional contributions are 
based on hyperbolic tangent functions (th) and each contribution has a weight (w). Although Fig. 
13 shows the temporal separation between the processing of each contribution on the same 
operator in a simplified way, in the pipeline each operator processes several contributions 
overlapped in time (as many as the size of the pipeline). 

 

 

Fig. 13 Data flow graph for two emotions 

 
The pipelined-processing of the emotional contributions can reach a frequency in between 

200MHz and 300MHz depending on the design synthesized on the FPGA. However, the 
accumulation phase of the contributions in an emotional state must be performed with a feedback 
adder, so that the processing rate must be reduced depending on the latency of the addition 
operator (14 cycles). To avoid this latency, the main processor, when it sends the data to the 
emotional processor, it interleaves the contribution parameters of groups of emotions (14 
emotions) in order to accommodate the data flow to the latency of the accumulation phase. 

Using ordered IN and OUT data flows a performance of 265 millions of emotional contributions 
per second (MOPS) can be achieved. In addition to the pipelined processing, the emotion operator 
has been also replicated to process in parallel. FPGA devices used in the experiment have 
sufficient resources to implement multiple emotion operator replicas (7 in Stratix III and 8 in 
Stratix IV). In this case, multiplexers are used to distribute the data to the emotion operator 
replicas as shown in Fig. 14. 
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Fig. 14 Two replicas of the emotion operator 

 
The input stream receives the parameters: x0, dx, y0, dy, w, app (appraisal) and new_e (start 

new emotion), then the multiplexers send the parameters to the emotion operators. Finally, the 
output stream sends the emotional state, es, and the new_es signal, indicating its availability. 

To implement the emotion, a modular design is followed. First, the hyperbolic tangent is 
implemented using the available megafunctions. The latency of this function is 56 clock cycles. 
Fig. 15 shows the implementation of the parameterized hyperbolic tangent. FIFO queues are used 
to adjust the latencies and synchronize the parameters. The total latency of this process is 106 
clock cycles. 

 

Fig. 15 Parameterized hyperbolic tangent 

 
The parameterized hyperbolic tangent is multiplied by the weight w to obtain an emotional 

contribution; this process has a latency of 117 clock cycles. Finally, an accumulation phase 
completes the emotion operator with a latency of 131 clock cycles (see Fig. 16). 

 

 

Fig. 16 Emotion operator 

The emotion operator (see Fig. 16) is replicated in the selected FPGAs (Stratix III and IV) to 
process emotions in parallel. This replication will allow increase the throughput to calculate the 
millions of emotions composing the emotional system. 
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4.2.2 Design synthesis of the emotional system 

The emotional system is simulated on Stratix III and Stratix IV and synthesized on Stratix III. 
The EP3SL150F1152C2N device is implemented on a Stratix III EP3SL150N development board, 
which is the available system in our laboratory. Likewise, the processor is simulated on a Stratix 
IV, implementing the EP4SGX230KF40C2 device, since it is a FPGA family widely available in 
the industry. The type of resource that has limited the design is the number of integrated DSPs 
(Stratix III: 112, Stratix IV: 161). 

Quartus II software, which allows structural design, is used together with Megafunction library. 
This library defines arithmetic operators for real floating point numbers IEEE-754, with simple 
(32-bits) or double (64-bits) precisions. The developer can define other formats, since the exponent 
and mantissa fields are configurable. Instead of codifying the basic processing resources directly in 
VHDL the Altera Megafunction library has been chosen because its functions are optimized for 
Altera devices and most of them let the developer to choose the optimization criteria (speed or 
area). In the proposed design, floating point real numbers are used as simple precision. Integer or 
fixed point real number representations were discarded in front of the floating point, because this 
representation has the following advantages for our design:  

(i) provides a direct interface with the processes in the main processor avoiding the time spent in 
the process of transformation of the real numbers represented in main processor and FPGA.  

(ii) facilitates the performance analysis between FPGA and Multicore since the same 
representation in both systems is used.  

(iii) and allows flexibility to adjust the bit-widths of the operators which allows us to modify the 
range and accuracy of the values to suit different types of emotional sensitivity. These are 
important features of the research, and the use of this representation is not an excessive penalty, as 
we have enough resources in the considered Stratix FPGA devices. 

The Megafunctions listed in Table 5 are used, and the option to optimize the area is selected. 
The latency, when there are different function versions is set to maximize the clock frequency 
allowed for a specific function. Table 5 shows the parameters for the Stratix III device (ALUT – 
Adaptive Look-Up Table, DLR – Dedicated Logic Register, ALM – Adaptive Logic Module and 
DSP is an 18-bit DSP). 

 

Table 5 Megafunctions used in the emotional processor design 
ALTFP Function Latency (clock cycles) fMAX (MHz) ALUT DLR ALM DSP 

ADD_SUB 14 (high latency) 416 599 603 427 - 

DIV 14 (low) 296 295 331 262 16 

MULT 11 (high) 466 195 301 206 4 

EXP 17 (low) 275 631 521 445 19 

 
Table 6 shows the resource utilizations of Stratix III and Stratix IV, summarized for the 

designed process emotion block. The values of the Stratix IV are represented in brackets. The 
utilization is represented as a percentage of the available resources, which permits to have an 
initial estimation of the number of replicas of every synthesizable emotional operator on each 
device. 

 

Table 6 Resources utilization using Stratix III and Stratix IV 
Type of Resources Total Resources Emotion 5% (4%) 

Combinational ALUTs 113,600 (182,400) 4,091-4% (3,699 - 2%) 

Memory ALUTs 56,800 (91,200) 662-1% (0 - 0%) 

Dedicated Logic Registers 113,600 (182,400) 5,640-5% (6,867 - 4%) 

Total Block Memory Bits 5,630,976 (14,625,792) 17,536 -< 1% (17,536 -< 1%) 

DSP Block 18-bit Elements 384 (1288) 51-13% (51-4%) 

 
Table 7 shows the maximum operation clock frequency for the emotional processor depending 

on the selected device. TimeQuest Static Timing Analyzer is used to obtain these values. 
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Table 7 FPGA frequency 
Device clock - FMax (MHz) 

Stratix III 265.67 
Stratix IV 311.53 

 
The maximum frequency, Fmax, is shown for a single instance of the emotional process. So, it 

is possible to maintain an in-flow (situation appraisals) at Fmax frequency, then the emotional 
processor would be able to evaluate 265MOPS and 311MOPS, respectively. This means that after 
a latency of 131 clock cycles, a constant output flow (emotional states) at 265MOPS or 311MOPS, 
depending on the device, can be obtained. 

Table 8 shows the effect on the Fmax when the emotion operator is replicated into the emotional 
processor. This table shows the maximum number of replicas implemented in the FPGA devices 
due to the limitation of their available resources (the number of DSPs in the proposed design). 

 

Table 8 Fmax with emotion replication 
Device Number of replicas clock - FMax (MHz) 

Stratix III 4 253.42 (x0.95) 
 7 209.64 (x0.79) 

Stratix IV 4 269.54 (x0.86) 
 8 230.47 (x0.74) 

 
 
 
When dealing with the emotion operator replication in the FPGA, a key point is the bottleneck 

of the communication between the FPGA and the single-core. In the proposed design, 24 bytes 
(six simple floating point parameters x0i, y0i, δxi, δyi, wi, ai) per contribution function are sent 
over the input flow. In a complex problem (highest speed and relaxed robotic agent) where 2M 
emotional contributions are executed per attention cycle, the number of bytes transmitted is 24 
bytes x 200 Millions functions/s, which means 38.4GB/s. To transmit this data flow, a PCIe 3.0 
interface at 40Gb/s is suitable. 

Table 9 shows the performance of the communication IP cores currently available for Altera 
FPGA devices. The selected communication interfaces of each device are selected to maximize the 
throughput: Ethernet for Straix III and PCIexpress for Stratix IV. As shown in Table 9, the 
performance of the emotional processor in this case is limited to 40MOPS using Stratix III, and to 
208MOPS with Stratix IV. 

 

Table 9 FPGA performance for the available IP communication cores 
Bus performance (Gb/s) Processor performance (Mops) 

PCIe 3.0 40 Stratix IV 208 
USB 3.0 4.8 S. III-E, S. IV-GX, S. IV-GT 25 

HyperTransport 3.1 10 S. IV 40 

Ethernet 10 
40 

S. III, S. IV 
S. IV-GT 

40 
160 

4.3 Partitioned Multicore based emotional system design 

Regarding the implementation on a Multicore, the robotic agent architecture including the 
belief, behavior, attention and emotional sub-systems is implemented as a partitioned system [22] 
on a six-Core processor; the Intel Core i7-980X at 3.33GHz per core. The i7 based computer has 
8MB cache memory, 12 GB DDR3 RAM. One of the cores is dedicated to the attention system, a 
second core is used for the behavior-belief systems and the remaining 4 cores implement the 
emotional system. The number of active cores for the emotional system can be configured by the 
operating system, using the sched_setaffinity() system call in Linux. For evaluations purposes, the 
emotional processor is run as Single-core mode, Dual-core and Quad-core in order to assess which 
is the sufficient number of cores to tackle the robotic applications. In the Single-core mode, all the 
emotional processes are assigned to one processor. In the Dual and Quad core modes, the 
processes are distributed evenly among the different cores. To this end, the Worst Fit algorithm is 
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used to refill the cores [20]. The system model implemented is shown in Fig. 17. 
 

 

 

Fig. 17 Multicore architecture 

 
Initially, the WF replenishes the core with the emotional processes. The policy of this strategy is 

to assign the process to the less loaded core until all the processes are assigned to their 
corresponding core. Each core implements a Rate Monotonic Scheduler to execute the processes 
belonging to that core [21]. That is, the process with the shortest period has the highest priority for 
execution in the core. The schedulers and the processes are implemented as real-time tasks in the 
rt-linux kernel. The real-time processes are executed using the main memory without accessing the 
disk device.  

The cores share a memory structure called blackboard [23]. Through this memory the processes 
read and write the important data as the appraisals, emotional states and motivations. Also it 
allows, using shared variables to synchronize the different processes. The attention core, at each 
attention cycle, activates the Belief processes that write in the blackboard the appraisal 
information. The emotional processes then read the appraisals and calculate the emotions to update 
the motivations in the memory. Finally, the Behavior processes read the motivations and execute 
the actions prioritizing the behaviors with highest motivations. These operations are repeated 
periodically at each attention cycle. 

5 Experimental evaluation 

In this section, the implementations of the emotional architecture in FPGAs Altera Stratix III, 
IV and Multicore processors are compared. The comparison is performed by executing on each of 
the platforms different complexity levels applications of the robotic agent. The evaluation is 
focused on the analysis of the performance, measured on MOPS, that FPGAs Stratix III and IV, 
and multicore provide to solve the agent problems. 

Figures 18 to 26 show the results of evaluating the different implementation alternatives, 
considering 3 complexity problems (Simple, Normal and Complex) and 3 robotic agent emotional 
state levels (Stressed, Normal and Relaxed) for 3 different values of the robot speeds (0.1m/s, 1m/s 
and 2m/s). In each Figure, the bars represent the maximum computation capacity in MOPS that 
each processor or FPGA can provide (e. g., Fig. 18 shows that a Stratix IV allows 208MOPS, a 
Quad-core performs 91MOPS while a Dual-Core reaches 46MOPS). 

For each pair (complexity problem, robotic agent emotional state), the speed of the agent limits 
the computational capacity (horizontal lines) required for each processor to solve a specific 
problem. For instance, in the case of a (simple problem, relaxed robot), if the speed is 2m/s the 
minimum required computation capacity to solve the problem is 51MOPS, while at 0.1m/s it is 
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13MOPS (see Fig. 18). This is because the attention cycle increases as the speed is reduced and 
hence more time is available to solve the same problem, then less computation MOPS are required. 
At the former speed, only Quad-Core and Stratix IV can solve this kind of problems, while at the 
latter speed all the considered processors can tackle the problem. In general, for the same type of 
problems, at higher speeds, the computational requirements of the processors increase. 

On the other hand, as the complexity of the problem increases, the processor computation 
requirements also increase. For instance, for a normal problem and relaxed robot at 1m/s the 
required MOPS are 49 (see Fig. 21), while a complex problem with the same relaxed robot at the 
same speed, requires 99 MOPS (see Fig. 24). Moreover, for the same kind of problems, if the 
robot emotional state is becoming more stressed, then the FPGA/Multicore computational 
requirements decrease because the execution time of the emotions is higher, and hence less 
computing power is required from the FPGA-Multicore processors. For instance, Fig. 24 shows 
that for a complex problem and relaxed robot at 2m/s, 200MOPS are required, while Fig 26 shows 
that the same problem with a stressed robot at the same speed requires only 39MOPS. This is due 
to the fact that if a relaxed robot is desired then more throughput is required from the 
FPGA/Multicore. 

 

Fig. 18 Simple problem – Relaxed robotic agent 

 

 

Fig. 19 Simple problem – Normal robotic agent 
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Fig. 20 Simple problem – Stressed robotic agent 

 
Analyzing the results in more details, it is noted that all the platforms (single-core, Stratix III, 

Dual-Core, Quad-Core, Stratix IV) can solve simple problems with a stressed or normal agent at 
any speed. However, with a relaxed agent, single-core can only support the application if the agent 
runs at the lowest speed (0.1m/s), Stratix III and Dual-Core solve the problem at low and medium 
speeds, while Stratix IV can afford it even at the maximum speed. 

For the normal defined problems, when the agent is stressed all the evaluated processors can 
solve the applications at any speed. Using a normal agent, only the single-core fails to solve the 
problems at the maximum speed. A relaxed agent can solve the applications by using Stratix III, 
Dual-Core, Quad-Core and Stratix IV at 0.1 m/s. If the spped is increased at 1 m/s only Quad-Core 
and Stratix 4 can solve the problems. Finally, at 2m/s only Stratix IV can tackle the situation.  

 

 

Fig. 21 Normal problem – Relaxed robotic agent 

 

0

50

100

150

200

250

One-Core Stratix 3 Dual-Core Quad-Core Stratix 4

M
O

PS

FPGA-Multicore

0,1m/s

1m/s

2m/s

0

50

100

150

200

250

One-Core Stratix 3 Dual-Core Quad-Core Stratix 4

M
O

PS

FPGA-Multicore

0,1m/s

1m/s

2m/s

20 



 

Fig. 22 Normal problem – Normal robotic agent 

 

 

Fig. 23 Normal problem – Stressed robotic agent 

 
Regarding complex problems, using a stressed agent at low and medium speeds, all solutions 

solve the applications. At the maximum speed, only Dual-core, Quad-core and Stratix IV are 
applicable. For a normal agent, at the minimum speed all solutions are valid. At 1m/s a single-core 
cannot solve the situation. Increasing the speed at 2m/s only Quad-Core and Stratix IV can solve 
the applications. If the agent is relaxed, at the minimum speed, only Quad-core and Stratix IV are 
adequate solutions. Increasing the speed more than 1m/s causes that only Stratix IV is a valid 
solution to solve the application. 
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Fig. 24 Complex problem – Relaxed robotic agent 

 

 

Fig. 25 Complex problem – Normal robotic agent 

 

 

Fig. 26 Complex problem – Stressed robotic agent 
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As a summary of the evaluation, it can be pointed out that the obtained performance of the 

Stratix IV implementation of the emotional processor increases the performance of the initial 
implementation of the architecture in about one order of magnitude. As a consequence, all the 
complex applications that could never be executed using the initial version using a single-core 
(max. 25MOPS) now they can be undertaken (e.g., complex problem and relaxed robot -min. 
50MOPS).  

The study shows also that other less expensive solutions using Stratix III could be applied to 
solve problems (e.g., complex problem and normal agent at 1m/s -38MOPS) with around the 
double of the requirements that a single-core could support. Dual-Core provides slightly better 
performance than stratix III, so it can be used to solve some problems that Stratix III cannot solve, 
such as the complex problem and normal agent at 1m/s (33MOPS). Moreover, Dual-core is 
relatively cheaper so it is a better choice than Stratix III. 

Using Quad-Core, the performance of the architecture is increased in 3.64 times in relation to 
the first implementation. Thus, from the 27 proposed applications about 89% can be solved. 
However, using the original implementation only 55 % can be tackled. Furthermore, Quad-Core 
has a lower cost than a Stratix IV, so more adequate solution but only if the type of applications to 
carry out is not the most complex one. 

 

6 Conclusions 

An FPGA based emotional control architecture to implement future robotic agents has been 
presented. The emotional processes of the architecture have high computational requirements, 
which consumes the computational power of the main processor. To reduce this consumption, the 
parallel capabilities of the emotional processes of the architecture have been exploited and the 
implementation of the emotional processes on high performance FPGA processors has been 
tackled. An industrial mobile robotic agent application (under different environmental, dynamic 
and emotional robot state conditions), implementing the emotional based FPGA architecture has 
been proposed. The performances have been evaluated for FPGAs Altera Stratix III and IV, and 
the results are compared with the implemented emotional system in a Single-Core, Dual-Core and 
Quad-Core. Results show that Stratix IV implementation of the emotional processor increases the 
performance of the initial implementation of the architecture in about one order of magnitude. 
Stratix III could be applied to solve problems with around the double of the requirements that a 
single-core could support. Dual-Core provides slightly better performance than stratix III and it is 
relatively cheaper so it is a better choice than Stratix III. Using Quad-Core, the performance of the 
architecture is increased in 3.64 times in relation to the first implementation. Thus, about 89% of 
the proposed applications can be solved. Quad-Core has a lower cost than a Stratix IV, so more 
adequate solution but only if the type of applications to carry out is not the most complex one. 

 
Acknowledgements  
This work was supported in part under Spanish Grant PAID/2012/325 of "Programa de Apoyo a 

la Investigación y Desarrollo. Proyectos multidisciplinares", Universitat Politécnica de Valencia, 
Spain. 

 

References 

1. Malfaz M, Salichs MA (2010) Using MUDs as an experimental platform for testing a decision making system for 
self-motivated autonomous agents. Artificial Intelligence and the Simulation of Behaviour Journal. 2(1): 21-44 

2. Damiano L, Cañamero L (2010) Constructing Emotions. Epistemological groundings and applications in robotics for 
a synthetic approach to emotions. Proceedings of AI-Inspired Biology Symposium (AIIB’2010): 20-28 

3. Hawes N, Wyatt J, Sloman A (2009) Exploring design space for an integrated intelligent system. Knowledge Based 
Systems 22(7): 509-515 

4. Sloman A (2009) Some Requirements for Human-Like Robots: Why the Recent Over-Emphasis on Embodiment Has 
Held Up Progress. Creating Brain-Like Intelligence 2009: 248-277 

5. Moravec H (2009) Rise of the Robots. The Future of Artificial Intelligence. Scientific American. 23 March 2009. 
6. Moshkina L, Arkin RC (2009) Beyond Humanoid Emotions: Incorporating Traits, Attitudes and Moods. IEEE 

International Conference on Robotics and Automation (ICRA’2009) 
7. iRobot industrial robots website. http://www.irobot.com/gi/ground/. Access 22 September 2014 
8. Lee-Johnson CP, Carnegie DA (2010) Mobile Robot Navigation Modulated by Artificial Emotions. IEEE 

Transactions On Systems, Man, And Cybernetics - Part B. 40(2): 469-480 

23 

http://www.irobot.com/gi/ground/


9. Daglarli E, Temeltas H, Yesilogly M (2009) Behavioral task processing for cognitive robots using artificial emotions. 
Neurocomputing 2009 

10. Ventura R, Pinto-Ferreira C (2009) Responding efficiently to relevant stimuli using an emotion-based agent 
architecture. Neurocomputing 2009 

11. Del Campo I, Basterretxea K, Echanobe J, Bosque G, Doctor F (2012) A System-on-Chip Development of a Neuro–
Fuzzy Embedded Agent for Ambient-Intelligence Environments. IEEE Transactions on Systems, Man, and 
Cybernetics - Part B. 42(2): 501-512 

12. Altera Corporation (2010) Stratix III Device Handbook vol. 1 
13. Altera Corporation (2012) Stratix IV Device Handbook vol. 1 
14. Intel Corporation (2014) Desktop 4th Generation Intel Core Processor Family, Desktop Intel Pentium Processor 

Family, and Desktop Intel Celeron Processor Family – Datasheet vol. 1 and 2 
15. Pedraza C, Castillo J, Martínez JI, Huerta P, Bosque JL, Cano J (2011) Genetic Algorithm for Boolean minimization 

in an FPGA cluster. The Journal of Supercomputing. 58(2): 244-252 
16. Orlowska-Kowalska T, Kaminski M (2011) FPGA Implementation of the Multilayer Neural Network for the Speed 

Estimation of the Two-Mass Drive System. IEEE Transactions on Industrial Informatics. 7(3): 436-445 
17. Arkin RC, Ulam P, Wagner AR (2012) Moral Decision-making in Autonomous Systems: Enforcement, Moral 

Emotions, Dignity, Trust and Deception. Proceedings of the IEEE. 100(3): 571-589 
18. Salichs MA, Malfaz M (2012) A new approach to modelling emotions and their use on a decision making system for 

artificial agent. IEEE Transactions on affective computing. In Press. 3(1): 56-68 
19. Naouar MW, Monmasson E, Naassani AA, Slama-Belkhodja I, Patin N (2007) FPGA-based current controllers for 

AC machine drives - A review. IEEE Transactions on Industrial Electronics. 54(4): 1907–1925 
20. March JL, Sahuquillo J, Hassan H, Petit S, Duato J (2011) A New Energy-Aware Dynamic Task Set Partitioning 

Algorithm for Soft and Hard Embedded Real-Time Systems. The Computer Journal. 54(8):1282-1294 
21. Lehoczky J, Sha, L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and average case 

behavior. IEEE Real-Time Systems Symposium, Santa Monica, Dec. 1989: 166–171 
22. Seo E, Jeong J, Park S, Lee J (2008) Energy efficient scheduling of real-time tasks on multicore processors. IEEE 

Transactions on Parallel and Distributed Systems. 19(11): 1540–1552. 
23. Ng-Thow-Hing V, Lim J, Wormer J, Sarvadevabhatla RK, Rocha C, Sakagami Y (2008) The memory game: Creating 

a human robot interactive scenario for ASIMO. IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS’2008): 779–786. 

24. Thu Bui L, Abbass HA, Barlow M, Bender A (2012) Robustness Against the Decision-Maker's Attitude to Risk in 
Problems With Conflicting Objectives. IEEE Transactions on Evolutionary Computation. 16(1): 1-19 

25. Pedrycz W, Song M (2011) Analytic Hierarchy Process (AHP) in Group Decision Making and its Optimization with 
an Allocation of Information Granularity. IEEE Transactions on Fuzzy Systems. 19(3): 527-539 

26. Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-icaza R, Datta P, Sawada J, Wong TM, Feldman V, 
Amir A, Ben-dayan D, Mcquinn E, Risk WP, Modha DS (2013) Cognitive computing building block: A versatile and 
efficient digital neuron model for neurosynaptic cores. IEEE International Joint Conference on Neural Networks 
(IJCNN’2013). 

27. IBM Cognitive Computing and Neurosynaptic chips website. http://www.research.ibm.com/cognitive-
computing/neurosynaptic-chips.shtml. Access 22 September 2014 

24 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sarvadevabhatla,%20R.K..QT.&searchWithin=p_Author_Ids:38270426100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rocha,%20C..QT.&searchWithin=p_Author_Ids:37874098100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sakagami,%20Y..QT.&searchWithin=p_Author_Ids:37329981000&newsearch=true
http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml
http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml

