Cancellation of 3-Point Topological Spaces

S. Carter and F. J. Craveiro de Carvalho*

Abstract

The cancellation problem, which goes back to S. Ulam [2], is formulated as follows: Given topological spaces X, Y, Z, under what circumstances does $X \times$ $Z \approx Y \times Z(\approx$ meaning homeomorphic to $)$ imply $X \approx Y$? In [1] it is proved that, for T_{0} topological spaces and denoting by S the Sierpinski space, if $X \times S \approx Y \times S$ then $X \approx Y$. This note concerns all nine (up to homeomorphism) 3-point spaces, which are given in [4].

2000 AMS Classification: 54B10
Keywords: Homeomorphism, Cancellation problem, 3 -point spaces.

1. Two cancellation results

Below X and Y denote T_{1} topological spaces.
Proposition 1.1. Let S be a topological space with a unique closed singleton $\{p\}$. If there is a homeomorphism $\phi: X \times S \rightarrow Y \times S$ then $\phi(X \times\{p\})=Y \times\{p\}$.

Proof. We shall show that $\phi(X \times\{p\}) \subset Y \times\{p\}$ which, using similar arguments, will be enough to prove that $\phi(X \times\{p\})=Y \times\{p\}$ and, consequently, that $X \approx Y$.

Let us suppose that for some $x \in X, y \in Y$ and $q \in S \backslash\{p\}$ we have $\phi(x, p)=(y, q)$. Then $\{(y, q)\}$ is closed and, therefore, $(Y \times S) \backslash\{(y, q)\}$ is open.

Let r belong to the topological closure of $\{q\}, r \neq q$. Then $(y, r) \in(Y \times S) \backslash$ $\{(y, q)\}$ and we must have open sets U_{y}, U_{r}, containing y and r, respectively, such that $U_{y} \times U_{r} \subset(Y \times S) \backslash\{(y, q)\}$. We reach a contradiction since (y, q) belongs to $U_{y} \times U_{r}$.

[^0]An example of such an S is obtained as follows. Let S be a set with 4 elements at least. Let $a, b \in S$ and denote by S_{1} the complement of the subset they form. Take then as basis for a topology on S the set $\left\{\{a\},\{a, b\}, S_{1}\right\}$. If S happens to have just 4 points then it is the only minimal, universal space with such a number of elements [3].

Proposition 1.2. Let S be a topological space with a dense, open singleton $\{p\}$ and such that, for every $q \in S \backslash\{p\}$, the topological closure of $\{q\}$ is finite. If there is a homeomorphism $\phi: X \times S \rightarrow Y \times S$ then $\phi(X \times\{p\})=Y \times\{p\}$.

Proof. Let $\{p\}$ be an open, dense singleton in S. We will show that $\phi(X \times$ $\{p\})=Y \times\{p\}$ which, as observed before, is enough to conclude that $X \approx Y$.

Assume that for some $x \in X, y \in Y$ and $q \neq p$ we have $\phi(x, p)=(y, q)$. Consider the closed set $\{y\} \times \overline{\{q\}}$, the bar denoting closure, its image $\phi^{-1}(\{y\} \times$ $\overline{\{q\}})$, which is also closed, and suppose that $\overline{\{q\}}$ has s elements. Also, observe that $p \notin \overline{\{q\}}$.

Since (x, p) belongs to $\phi^{-1}(\{y\} \times \overline{\{q\}})$ and this set has s elements, there is an r in $\overline{\{q\}}$ such that (x, r) does not belong to this set. There are then open sets U_{x}, U_{r}, containing x and r, respectively, with $U_{x} \times U_{r} \subset(X \times S) \backslash \phi^{-1}(\{y\} \times \overline{\{q\}})$. We have a contradiction since $(x, p) \in U_{x} \times U_{r}$.

An example for S can be the following Door space. Let S be a set and fix $p \in S$. Define $U \subset S$ to be open if it is empty or contains p.

2. 3-POINT SPACES

We go on assuming that X, Y are T_{1} topological spaces though such assumption is not used in Propositions 2.1 and 2.2 below.

If we now consider $S=\{a, b, c\}$ to be one of the 3 -point spaces [4], we see that Propositions 1.1 and 1.2 of $\S 1$ allow us to deduce immediately that S can be cancelled except in the following cases

- S is discrete,
- S has $\{\{a\},\{b\},\{a, c\}\}$ as a topological basis,
- S is trivial.

If S is discrete the situation is not as simple as one might be led to think.
Let us take the following example. Let $S=Z$, here Z stands for the integers with the discrete topology, and consider the discrete spaces $X=\{0,1, \ldots, n-$ $1\}, n \geq 2, Y=\{0\}$. Now define $\phi:\{0,1, \ldots, n-1\} \times Z \rightarrow\{0\} \times Z$ by $\phi(x, r)=(0, n r+x)$. This map is a homeomorphism and however Z cannot be cancelled.

We can say something when the spaces X, Y have a finite number of connected components.

Proposition 2.1. Let S be a finite discrete space and assume that X has a finite number of connected components. If $X \times S \approx Y \times S$ then $X \approx Y$.

Proof. The connected components of $X \times S$ or $Y \times S$ are of the type $X^{\prime} \times$ $\{x\}, Y^{\prime} \times\{y\}$, where X^{\prime}, Y^{\prime} are components of X and Y, respectively. It follows that Y has the same number of components as X.

Let us consider in the sets of connected components of X and connected components of Y the homeomorphism equivalence relation and take an equivalence class of components of X, say $\left\{X_{1}, \ldots, X_{k}\right\}$. The subspace $\bigcup_{i=1}^{k} X_{i} \times S$ has $k n$ components, where n is the cardinal of S. The same happens with $\phi\left(\bigcup_{i=1}^{k} X_{i} \times S\right)$, where ϕ is a homeomorphism between $X \times S$ and $Y \times S$.

Let $p \in S$. For every $i=1, \ldots, k, \phi\left(X_{i} \times\{p\}\right)=Y_{i} \times\left\{q_{i}\right\}$, where the q_{i} 's belong to S and the Y_{i} 's are components of Y homeomorphic to the X_{i} 's. Assume that the equivalence class to which the Y_{i} 's belong is $\left\{Y_{1}, \ldots, Y_{l}\right\}$. Then $\phi\left(\bigcup_{i=1}^{k} X_{i} \times\{p\}\right) \subset \bigcup_{j=1}^{l} Y_{j} \times S$. Consequently, also $\phi\left(\bigcup_{i=1}^{k} X_{i} \times S\right) \subset \bigcup_{j=1}^{l} Y_{j} \times S$.

Using the inverse homeomorphism ϕ^{-1}, we are led to conclude that the reverse inclusion holds and, therefore, $\phi\left(\bigcup_{i=1}^{k} X_{i} \times S\right)=\bigcup_{j=1}^{l} Y_{j} \times S$. So $\bigcup_{i=1}^{k} X_{i} \times S$ and $\bigcup_{j=1}^{l} Y_{j} \times S$ have the same number of components and it follows that $k=l$. From each component class in X choose a representative and use ϕ to establish a homeomorphism between that representative and a component in Y. These homeomorphisms can then be used to conclude that every component of X is homeomorphic to a component of Y. Since components are closed and finite in number, X is homeomorphic to Y.

Proposition 2.2. Let X and Y be topological spaces with the same finite number of connected components and S be a discrete space. Assume, moreover, that neither space has two homeomorphic components. If $X \times S \approx Y \times S$ then $X \approx Y$.

Proof. Let $X_{i}, i=1, \ldots, n$, be the components of X and fix $p \in S$.
If ϕ is a homeomorphism between $X \times S$ and $Y \times S$ then there are $q_{i} \in$ $S, i=1, \ldots, n$, such that $\phi\left(X_{i} \times\{p\}\right)=Y_{i} \times\left\{q_{i}\right\}, i=1, \ldots, n$, where, due to our assumption on the non-existence of homeomorphic components, the Y_{i} 's are the components of Y. Hence ϕ induces a homeomorphism $\phi_{i}: X_{i} \rightarrow Y_{i}, i=$ $1, \ldots, n$.

Again, since the number of components is finite and they are closed, the ϕ_{i} 's can be used to obtain a homeomorphism between X and Y.

Proposition 2.3. Let S have $\{\{a\},\{b\},\{a, c\}\}$ as basis. If $\phi: X \times S \rightarrow Y \times S$ is a homeomorphism then $\phi(X \times\{b\})=Y \times\{b\}$.

Proof. Let $\pi_{S}: Y \times S \rightarrow S$ denote the standard projection. The image $\pi_{S}(\phi(X \times\{b\}))$ is open and, therefore, it is either $\{b\}$ or contains a.

Assume that for some $x \in X, y \in Y$ we have $\phi(x, b)=(y, a)$. The subset $\{(x, b)\}$ is closed and, consequently, the same happens with $\{(y, a)\}$. Hence $(Y \times S) \backslash\{(y, a)\}$ is open and contains (y, c). We must then have an open neighbourhood U_{y} of y such that $U_{y} \times\{a, c\} \subset(Y \times S) \backslash\{(y, a)\}$. Again we have a contradiction and $\phi(X \times\{b\})=Y \times\{b\}$.

To conclude the proof that a non-discrete 3-point space can be cancelled it only remains to deal with the case where S is trivial.

Above we have an example of a homeomorphism $\phi: X \times S \rightarrow Y \times S$ which does take a slice $X \times\{x\}$ onto a slice $Y \times\{y\}$. More examples can be obtained.

Take $X=Y$, with at least 2 elements, a trivial space S with also, at least, 2 elements and let $\psi: S \rightarrow S$ be a fixed point free bijection. Fix $x_{0} \in X$ and define $\phi: X \times S \rightarrow X \times S$ by $\phi(x, s)=(x, s)$, for $x \neq x_{0}$, and $\phi\left(x_{0}, s\right)=$ $\left(x_{0}, \psi(s)\right)$.

Then ϕ is a bijection and $\phi(\{x\} \times S)=\{x\} \times S$, for $x \in X$. Since open sets in $X \times S$ are of the form $U \times S, U$ open in X, and $\phi(U \times S)=U \times S, \phi$ is a homeomorphism. Obviously no slice $X \times\{x\}$ is mapped onto a similar slice.

Proposition 2.4. Let S be a finite trivial space. If $X \times S \approx Y \times S$ then $X \approx Y$.

Proof. Open (closed) sets in $X \times S$ and $Y \times S$ are of the form $U \times S$, where U is open (closed).

We are going to define $f: X \rightarrow Y$ as follows. Let $x \in X$. Then $\{x\}$ is closed and so are $\{x\} \times S$ and $\phi(\{x\} \times S)$, where $\phi: X \times S \rightarrow Y \times S$ is a homeomorphism. Hence $\phi(\{x\} \times S)=C \times S$, for some closed set C in Y. Since S is finite, C is a singleton and we make $\{f(x)\}=C$.

This way we obtain an f which is a bijection since we began with a bijective ϕ.

If C is closed in $X, \phi(C \times S)=f(C) \times S$ is closed in $Y \times S$. Consequently $f(C)$ is closed in Y. Therefore f is closed and f^{-1} is continuous.

Taking ϕ^{-1}, we would conclude that f is continuous the same way.
We can now state.
Theorem 2.5. For X and $Y T_{1}$ topological spaces and S a non-discrete 3-point topological space, if $X \times S \approx Y \times S$ then $X \approx Y$.

3. A particular case

We will no longer assume X, Y to be T_{1} and will suppose that S has a unique isolated point a. Moreover, the singleton $\{a\}$ will be assumed to be closed. That is, for instance, the case where $S=\{a, b, c\}$ and $\{\{a\},\{b, c\}\}$ is an open basis.

Proposition 3.1. Let S have a unique isolated point a. Assume that $\{a\}$ is closed. For X, Y connected with, at least, an isolated point each, if $\phi: X \times S \rightarrow$ $Y \times S$ is a homeomorphism then $\phi(X \times\{a\})=Y \times\{a\}$.

Proof. Let $\pi_{S}: Y \times S \rightarrow S$ denote the standard projection, as before.
The image $\pi_{S}(\phi(X \times\{a\}))$ is open and connected. Therefore it is either $\{a\}$ or some open, connected subset of S, which naturally does not contain a.

Let the latter be the case. If $x \in X$ is an isolated point then $\{(x, a)\}$ is open and the same happens to its image under $\pi_{S} \circ \phi$. This is impossible because $\{a\}$ is the unique open singleton of S.

Examples of spaces satisfying the conditions of Proposition 3.1 are, again, some Door spaces.

Let Z be a set. Fix $p \in Z$ and define $U \subset Z$ to be open if $U=Z$ or $p \notin U$.

References

[1] B. Banaschewski and R. Lowen, A cancellation law for partially ordered sets and T_{0} spaces, Proc. Amer. Math. Soc. 132 (2004).
[2] R. H. Fox, On a problem of S. Ulam concerning cartesian products, Fund. Math. 27 (1947).
[3] K. D. Magill Jr, Universal topological spaces, Amer. Math. Monthly 95 (1988).
[4] J. R. Munkres, Topology, a first course, Prentice-Hall, Inc., 1975.

Received July 2006
Accepted November 2006

S. CARTER (s.carter@leeds.ac.uk)
School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

F. J. Craveiro de Carvalho (fjcc@mat.uc.pt)

Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, PORTUGAL

[^0]: *The second named author gratefully acknowledges financial support from Fundação para a Ciência e Tecnologia, Lisboa, Portugal.

