Applied General Topology

The Čech number of $C_{p}(X)$ when X is an ordinal space

Ofelia T. Alas and Ángel Tamariz-Mascarúa*

Abstract

The Čech number of a space $Z, \check{C}(Z)$, is the pseudocharacter of Z in βZ. In this article we obtain, in $Z F C$ and assuming $S C H$, some upper and lower bounds of the Čech number of spaces $C_{p}(X)$ of realvalued continuous functions defined on an ordinal space X with the pointwise convergence topology.

2000 AMS Classification: $54 \mathrm{C} 35,54 \mathrm{~A} 25,54 \mathrm{~F} 05$
Keywords: Spaces of continuous functions, topology of pointwise convergence, Čech number, ordinal space

1. Notations and Basic results

In this article, every space X is a Tychonoff space. The symbols ω (or \mathbb{N}), \mathbb{R}, I, \mathbb{Q} and \mathbb{P} stand for the set of natural numbers, the real numbers, the closed interval $[0,1]$, the rational numbers and the irrational numbers, respectively. Given two spaces X and Y, we denote by $C(X, Y)$ the set of all continuous functions from X to Y, and $C_{p}(X, Y)$ stands for $C(X, Y)$ equipped with the topology of pointwise convergence, that is, the topology in $C(X, Y)$ of subspace of the Tychonoff product Y^{X}. The space $C_{p}(X, \mathbb{R})$ is denoted by $C_{p}(X)$. The restriction of a function f with domain X to $A \subset X$ is denoted by $f \upharpoonright A$. For a space $X, \beta X$ is its Stone-Čech compactification.

Recall that for $X \subset Y$, the pseudocharacter of X in Y is defined as

$$
\Psi(X, Y)=\min \{|\mathcal{U}|: \mathcal{U} \text { is a family of open sets in } Y \text { and } X=\bigcap \mathcal{U}\}
$$

Definition 1.1.

(1) The Čech number of a space Z is $\check{C}(Z)=\Psi(Z, \beta Z)$.
(2) The k-covering number of a space Z is $k \operatorname{cov}(Z)=\min \{|\mathcal{K}|: \mathcal{K}$ is a compact cover of $Z\}$.

[^0]We have that (see Section 1 in [8]): $\check{C}(Z)=1$ if and only if Z is locally compact; $\check{C}(Z) \leq \omega$ if and only if Z is Čech-complete; $\check{C}(Z)=k \operatorname{cov}(\beta Z \backslash Z)$; if Y is a closed subset of Z, then $k \operatorname{cov}(Y) \leq k \operatorname{cov}(Z)$ and $\check{C}(Y) \leq \check{C}(Z)$; if $f: Z \rightarrow Y$ is an onto continuous function, then $k \operatorname{cov}(Y) \leq k \operatorname{cov}(Z)$; if $f: Z \rightarrow Y$ is perfect and onto, then $k \operatorname{cov}(Y)=k \operatorname{cov}(Z)$ and $\check{C}(Y)=\check{C}(Z)$; if $b Z$ is a compactification of Z, then $\check{C}(Z)=\Psi(Z, b Z)$.

We know that $\check{C}\left(C_{p}(X)\right) \leq \aleph_{0}$ if and only if X is countable and discrete $([7])$, and $\check{C}\left(C_{p}(X, I)\right) \leq \aleph_{0}$ if and only if X is discrete ([9]).

For a space $X, e c(X)$ (the essential cardinality of X) is the smallest cardinality of a closed and open subspace Y of X such that $X \backslash Y$ is discrete. Observe that, for such a subspace Y of $X, \check{C}\left(C_{p}(X, I)\right)=\check{C}\left(C_{p}(Y, I)\right)$. In [8] it was pointed out that $e c(X) \leq \check{C}\left(C_{p}(X, I)\right)$ and $\check{C}\left(C_{p}(X)\right)=|X| \cdot \check{C}\left(C_{p}(X, I)\right)$ always hold. So, if X is discrete, $\check{C}\left(C_{p}(X)\right)=|X|$, and if $|X|=e c(X)$, $\check{C}\left(C_{p}(X)\right)=\check{C}\left(C_{p}(X, I)\right)$.

Consider in the set of functions from ω to $\omega,{ }^{\omega} \omega$, the partial order \leq^{*} defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. A collection D of $\left({ }^{\omega} \omega, \leq^{*}\right)$ is dominating if for every $h \in{ }^{\omega} \omega$ there is $f \in D$ such that $h \leq^{*} f$. As usual, we denote by \mathfrak{d} the cardinal number $\min \{|D|: D$ is a dominating subset of $\left.{ }^{\omega} \omega\right\}$. It is known that $\mathfrak{d}=k \operatorname{cov}(\mathbb{P})($ see $[3]) ;$ so $\mathfrak{d}=\check{C}(\mathbb{Q})$. Moreover, $\omega_{1} \leq \mathfrak{d} \leq \mathfrak{c}$, where \mathfrak{c} denotes the cardinality of \mathbb{R}.

We will denote a cardinal number τ with the discrete topology simply as τ; so, the space τ^{κ} is the Tychonoff product of κ copies of the discrete space τ. The cardinal number τ with the order topology will be symbolized by $[0, \tau)$.

In this article we will obtain some upper and lower bounds of $\check{C}\left(C_{p}(X, I)\right)$ when X is an ordinal space; so this article continues the efforts made in [1] and [8] in order to clarify the behavior of the number $\check{C}\left(C_{p}(X, I)\right)$ for several classes of spaces X.

For notions and concepts not defined here the reader can consult [2] and [4].

2. The Čech number of $C_{p}(X)$ when X is an ordinal space

For an ordinal number α, let us denote by $[0, \alpha)$ and $[0, \alpha]$ the set of ordinals $<\alpha$ and the set of ordinals $\leq \alpha$, respectively, with its order topology. Observe that for every ordinal number $\alpha \leq \omega,[0, \alpha)$ is a discrete space, so, in this case, $\check{C}\left(C_{p}([0, \alpha), I)\right)=1$. If $\omega<\alpha<\omega_{1}$, then $[0, \alpha)$ is a countable metrizable space, hence, by Theorem 7.4 in $[1], \check{C}\left(C_{p}([0, \alpha), I)\right)=\mathfrak{d}$. We will analyze the number $\check{C}\left(C_{p}([0, \alpha), I)\right)$ for an arbitrary ordinal number α.

We are going to use the following symbols:
Notations 2.1. For each $n<\omega$, we will denote as \mathcal{E}_{n} the collection of intervals

$$
\begin{aligned}
& {\left[0,1 / 2^{n+1}\right),\left(1 / 2^{n+2}, 3 / 2^{n+2}\right),\left(1 / 2^{n+1}, 2 / 2^{n+1}\right),\left(3 / 2^{n+2}, 5 / 2^{n+2}\right), \ldots} \\
& \quad \ldots,\left(\left(2^{n+2}-2\right) / 2^{n+2},\left(2^{n+2}-1\right) / 2^{n+2}\right),\left(\left(2^{n+1}-1\right) / 2^{n+1}, 1\right]
\end{aligned}
$$

Observe that \mathcal{E}_{n} is an irreducible open cover of $[0,1]$ and each element in \mathcal{E}_{n} has diameter $=1 / 2^{n+1}$. For a set S and a point $y \in S$, we will use the symbol $[y S]^{<\omega}$ in order to denote the collection of finite subsets of S containing y.

Moreover, if γ and α are ordinal numbers with $\gamma \leq \alpha,[\gamma, \alpha]$ is the set of ordinal numbers λ which satisfy $\gamma \leq \lambda \leq \alpha$. The expression $\alpha_{0}<\alpha_{1}<\ldots<$ $\alpha_{n}<\ldots \nearrow \gamma$ will mean that the sequence $\left(\alpha_{n}\right)_{n<\omega}$ of ordinal numbers is strictly increasing and converges to γ.

Lemma 2.2. Let γ be an ordinal number such that there is $\omega<\alpha_{0}<\alpha_{1}<$ $\ldots<\alpha_{n}<\ldots \nearrow \gamma$. Then $\check{C}\left(C_{p}([0, \gamma], I) \leq \check{C}\left(C_{p}([0, \gamma), I) \cdot k \operatorname{cov}\left(|\gamma|^{\omega}\right)\right.\right.$.
Proof. For $m<\omega, F \in\left[\gamma\left[\alpha_{m}, \gamma\right]\right]^{<\omega}=\left\{M \subset\left[\alpha_{m}, \gamma\right]:|M|<\aleph_{0}\right.$ and $\left.\gamma \in M\right\}$ and $n<\omega$, define

$$
B(m, F, n)=\bigcup_{E \in \mathcal{E}_{n}} B(m, F, E)
$$

where $B(m, F, E)=\prod_{x \in[0, \gamma]} J_{x}$ with $J_{x}=E$ if $x \in F$, and $J_{x}=I$ otherwise. (So, $B(m, F, n)$ is open in $I^{[0, \gamma]}$.) Define

$$
B(m, n)=\bigcap\left\{B(m, F, n): F \in\left[\gamma\left[\alpha_{m}, \gamma\right]\right]^{<\omega}\right\} .
$$

Observe that $B(m, n)$ is the intersection of at most $|\gamma|$ open sets $B(m, F, n)$.
Define $G(n)=\bigcup_{m<\omega} B(m, n)$, and $G=\bigcap_{n<\omega} G(n)$.
Claim: G is the set of all functions $g:[0, \gamma] \rightarrow[0,1]$ which are continuous at γ.
Proof of the claim: Let $g:[0, \gamma] \rightarrow[0,1]$ be continuous at γ. Given $n<\omega$ there is $E \in \mathcal{E}_{n}$ such that $g(\gamma) \in E$. Since g is continuous at γ, there is $\beta<\gamma$ so that $g(t) \in E$ if $t \in[\beta, \gamma]$. Fix $m<\omega$ so that $\beta<\alpha_{m}$. For every $F \in\left[\gamma\left[\alpha_{m}, \gamma\right]\right]<\omega$ we have that $g \in B(m, F, E) \subset B(m, F, n)$; hence, $g \in B(m, n) \subset G(n)$. We conclude that g belongs to G.

Now, let $h \in G$. We are going to prove that h is continuous at γ. Assume the contrary, that is, there exist $\epsilon>0$ and a sequence $t_{0}<t_{1}<\ldots<t_{n}<\ldots \nearrow \gamma$ such that

$$
\begin{equation*}
\left|f\left(t_{j}\right)-f(\gamma)\right| \geq \epsilon, \tag{1}
\end{equation*}
$$

for every $j<\omega$. Fix $n<\omega$ such that $1 / 2^{n+1}<\epsilon$.
Since $h \in G$, then $h \in G(n)$ and there is $m \geq 0$ such that $h \in B(m, n)$. Choose $t_{n_{p}}>\alpha_{m}$ and take $F=\left\{t_{n_{p}}, \gamma\right\}$. Thus $h \in B(m, F, n)$, but if $E \in \mathcal{E}_{n}$ and $h(\gamma) \in E$, then $h\left(t_{n_{p}}\right) \notin E$, which is a contradiction. So, the claim has been proved.

Now, we have $I^{[0, \gamma]} \backslash G=\bigcup_{n<\omega}\left(I^{[0, \gamma]} \backslash G(n)\right)$, and

$$
I^{[0, \gamma]} \backslash G(n)=\bigcap_{m<\omega} \bigcup_{F \in \gamma\left[\alpha_{m}, \gamma\right]^{\omega}}\left(I^{[0, \gamma]} \backslash B(m, F, n)\right)
$$

So $\left.I^{[0, \gamma]} \backslash G(n)\right)$ is an $F_{|\gamma| \delta^{-} \text {-set. By Corollary } 3.4 \text { in }[8], \operatorname{kcov}\left(I^{[0, \gamma]} \backslash G(n)\right) \leq, ~(\gamma) .}$ $k \operatorname{cov}\left(|\gamma|^{\omega}\right)$. Hence, $\check{C}(G)=k \operatorname{cov}\left(I^{[0, \gamma]} \backslash G\right) \leq \aleph_{0} \cdot k \operatorname{cov}\left(|\gamma|^{\omega}\right)$. Thus, it follows that

$$
\check{C}\left(C_{p}([0, \gamma], I) \leq \check{C}\left(C_{p}([0, \gamma), I) \cdot k \operatorname{cov}\left(|\gamma|^{\omega}\right)\right.\right.
$$

Lemma 2.3. If $\gamma<\alpha$, then $\check{C}\left(C_{p}([0, \gamma), I)\right) \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$.
Proof. First case: $\gamma=\beta+1$.
In this case, $[0, \gamma)=[0, \beta]$ and the function $\phi:[0, \alpha) \rightarrow[0, \beta]$ defined by $\phi(x)=x$ if $x \leq \beta$ and $\phi(x)=\beta$ if $x>\beta$ is a quotient. So, $\phi^{\#}: C_{p}([0, \beta], I) \rightarrow$ $C_{p}([0, \alpha), I)$ defined by $\phi^{\#}(f)=f \circ \phi$, is a homeomorphism between $C_{p}([0, \beta], I)$ and a closed subset of $C_{p}([0, \alpha), I)$ (see [2], pages 13,14). Then, in this case, $\check{C}\left(C_{p}([0, \gamma), I)\right) \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$.

Now, in order to finish the proof of this Lemma, it is enough to show that for every limit ordinal number $\alpha, \check{C}\left(C_{p}([0, \alpha), I)\right) \leq \check{C}\left(C_{p}([0, \alpha], I)\right)$.

Let $\kappa=\operatorname{cof}(\alpha)$, and $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{\lambda}<\ldots \nearrow \alpha$ with $\lambda<\kappa$. For each of these λ, we know, because of the proof of the first case, that $\kappa_{\lambda}=\check{C}\left(C_{p}\left(\left[0, \alpha_{\lambda}\right], I\right)\right) \leq \check{C}\left(C_{p}([0, \alpha], I)\right)$. Let, for each $\lambda<\kappa,\left\{V_{\xi}^{\lambda}: \xi<\kappa_{\lambda}\right\}$ be a collection of open subsets of $I^{\left[0, \alpha_{\lambda}\right]}$ such that $C_{p}\left(\left[0, \alpha_{\lambda}\right], I\right)=\bigcap_{\xi<\kappa_{\lambda}} V_{\xi}^{\lambda}$. For each $\lambda<\kappa$ and each $\xi<\kappa_{\lambda}$, we take $W_{\xi}^{\lambda}=V_{\xi}^{\lambda} \times I^{\left(\alpha_{\lambda}, \alpha\right)}$. Each W_{ξ}^{λ} is open in $I^{[0, \alpha)}$ and $\left.\bigcap_{\lambda<\kappa} \bigcap_{\xi<\kappa_{\lambda}} W_{\xi}^{\lambda}=C_{p}([0, \alpha), I)\right)$. Therefore, $\check{C}\left(C_{p}([0, \alpha), I)\right) \leq$ $\kappa \cdot \sup \left\{\kappa_{\lambda}: \lambda<\kappa\right\} \leq \kappa \cdot \check{C}\left(C_{p}([0, \alpha], I)\right)$. But $\kappa \leq|\alpha|=e c([0, \alpha]) \leq$ $\check{C}\left(C_{p}([0, \alpha], I)\right)$.

Then, $\check{C}\left(C_{p}([0, \alpha), I)\right) \leq \check{C}\left(C_{p}([0, \alpha], I)\right)$.
Lemma 2.4. Let α be a limit ordinal number $>\omega$. Then

$$
\check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha| \cdot \sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right)
$$

In particular, $\check{C}\left(C_{p}([0, \alpha), I)\right)=\sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right)$ if $\operatorname{cof}(\alpha)<\alpha$.
Proof. By Lemma 2.3, $\sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right) \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$, and, by Corollary 4.8 in $[8],|\alpha| \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$.

For each $\gamma<\alpha$, we write κ_{γ} instead of $\check{C}\left(C_{p}([0, \gamma), I)\right)$. Let $\left\{V_{\lambda}^{\gamma}: \lambda<\kappa_{\gamma}\right\}$ be a collection of open sets in I^{γ} such that $C_{p}([0, \gamma), I)=\bigcap_{\lambda<\kappa_{\gamma}} V_{\lambda}^{\gamma}$. Now we put $W_{\lambda}^{\gamma}=V_{\lambda}^{\gamma} \times I^{[\gamma, \alpha)]}$. We have that W_{λ}^{γ} is open for every $\gamma<\alpha$ and every $\lambda<\gamma$, and $C_{p}([0, \alpha), I)=\bigcap_{\gamma<\alpha} \bigcap_{\lambda<\kappa_{\gamma}} W_{\lambda}^{\gamma}$. So, $\check{C}\left(C_{p}([0, \alpha), I)\right)=$ $|\alpha| \cdot \sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right)$.

In order to prove the following result it is enough to mimic the prove of 5.12 .(c) in [5].

Lemma 2.5. If α is an ordinal number with $\operatorname{cof}(\alpha)>\omega$ and $\left.f \in C_{p}([0, \alpha), I)\right)$, then there is $\gamma_{0}<\alpha$ for which $f \upharpoonright\left[\gamma_{0}, \alpha\right)$ is a constant function.
Lemma 2.6. If α is an ordinal number with cofinality $>\omega$, then $\check{C}\left(C_{p}([0, \alpha], I)\right)=$ $\check{C}\left(C_{p}([0, \alpha), I)\right)$.
Proof. Let $\kappa=\check{C}\left(C_{p}([0, \alpha), I)\right)$. There are open sets $V_{\lambda}(\lambda<\kappa)$ in $I^{[0, \alpha)}$ such that $C_{p}([0, \alpha), I)=\bigcap_{\lambda<\kappa} V_{\lambda}$. For each $\lambda<\kappa$, we take $W_{\lambda}=V_{\lambda} \times I^{\{\alpha\}}$. Each W_{λ} is open in $I^{[0, \alpha]}$ and $\bigcap_{\lambda<\kappa} W_{\lambda}=\left\{f:[0, \alpha] \rightarrow I \mid f \upharpoonright[0, \alpha) \in C_{p}([0, \alpha), I)\right\}$.

For each $(\gamma, \xi, E) \in \alpha \times \alpha \times \mathcal{E}_{n}$, we take $B(\gamma, \xi, E)=\prod_{\lambda \leq \alpha} J_{\lambda}$ where $J_{\lambda}=E$ if $\lambda \in\{\xi+\gamma, \alpha\}$, and $J_{\lambda}=I$ otherwise. Let $B(\gamma, \xi, n)=\bigcup_{E \in \mathcal{E}_{n}} B(\gamma, \xi, E)$.

Finally, we define $B(\gamma)=\bigcup_{\xi<\alpha} B(\gamma, \xi, n)$, which is an open subset of $I^{[0, \alpha]}$. We denote by M the set $\bigcap_{\lambda<\kappa} W_{\lambda} \cap \bigcap_{\gamma<\alpha} B(\gamma)$. We are going to prove that $C_{p}([0, \alpha], I)=M$.

Let $f \in C_{p}([0, \alpha], I)$. We know that $f \in \bigcap_{\lambda<\kappa} W_{\lambda}$, so we only have to prove that $f \in \bigcap_{\gamma<\alpha} B(\gamma)$. For $n<\omega$, there is $E \in \mathcal{E}_{n}$ such that $f(\alpha) \in E$. Since $f \in C([0, \alpha], I)$, there are $\gamma_{0}<\alpha$ and $r_{0} \in I$ such that $f(\lambda)=r_{0}$ if $\gamma_{0} \leq \lambda<\alpha$. Let $\chi<\alpha$ such that $\chi+\gamma \geq \gamma_{0}$. Thus, $f \in B(\gamma, \chi, n) \subset B(\gamma)$. Therefore, $C_{p}([0, \alpha], I) \subset M$.

Take an element f of M. Since $f \in \bigcap_{\lambda<\alpha} W_{\lambda}, f$ is continuous at every $\gamma<\alpha$, thus $f \upharpoonright\left[\gamma_{0}, \alpha\right)=r_{0}$ for a $\gamma_{0}<\alpha$ and an $r_{0} \in I$.

For each $n<\omega$, and each $\gamma \geq \gamma_{0}, f \in B(\gamma, \xi, n)$ for some $\xi<\alpha$. Then, $\left|r_{0}-f(\alpha)\right|=|f(\gamma+\xi)-f(\alpha)|<1 / 2^{n}$. But, these relations hold for every n. So, $f(\alpha)$ must be equal to r_{0}, and this means that f is continuous at every point.

Therefore, $\check{C}\left(C_{p}([0, \alpha], I)\right) \leq|\alpha| \cdot \check{C}\left(C_{p}([0, \alpha), I)\right)$. Since $\check{C}\left(C_{p}([0, \alpha), I)\right) \geq$ $e c([0, \alpha))=|\alpha|, \check{C}\left(C_{p}([0, \alpha], I)\right) \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$. Finally, Lemma 2.3 gives us the inequality $\check{C}\left(C_{p}([0, \alpha), I)\right) \leq \check{C}\left(C_{p}([0, \alpha], I)\right)$.

Theorem 2.7. For every ordinal number $\alpha>\omega$,

$$
|\alpha| \cdot \mathfrak{d} \leq \check{C}\left(C_{p}([0, \alpha), I)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)
$$

Proof. Because of Theorem 7.4 in [1], Corollary 4.8 in [8] and Lemma 2.3 above, $|\alpha| \cdot \mathfrak{d} \leq \check{C}\left(C_{p}([0, \alpha), I)\right)$.

Now, if $\omega<\alpha<\omega_{1}$, we have that $\check{C}\left(C_{p}([0, \alpha), I)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)$ because of Corollary 4.2 in [1].

We are going to finish the proof by induction. Assume that the inequality $\check{C}\left(C_{p}([0, \gamma), I)\right) \leq k \operatorname{cov}\left(|\gamma|^{\omega}\right)$ holds for every $\omega<\gamma<\alpha$. By Lemma 2.4 and inductive hypothesis, if α is a limit ordinal, then

$$
\check{C}\left(C_{p}([0, \alpha), I)\right) \leq|\alpha| \cdot \sup _{\gamma<\alpha} k \operatorname{cov}\left(|\gamma|^{\omega}\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right) .
$$

If $\alpha=\gamma_{0}+2$, then $\check{C}\left(C_{p}([0, \alpha), I)\right)=\check{C}\left(C_{p}\left(\left[0, \gamma_{0}+1\right), I\right)\right) \leq k \operatorname{cov}\left(\left|\gamma_{0}+1\right|^{\omega}\right)=$ $k \operatorname{cov}\left(|\alpha|^{\omega}\right)$.

Now assume that $\alpha=\gamma_{0}+1, \gamma_{0}$ is a limit and $\operatorname{cof}\left(\gamma_{0}\right)=\omega$. We know by Lemma 2.2 that $\check{C}\left(C_{p}\left(\left[0, \gamma_{0}+1\right), I\right)\right) \leq \check{C}\left(C_{p}\left(\left[0, \gamma_{0}\right), I\right) \cdot k \operatorname{cov}\left(\left|\gamma_{0}\right|^{\omega}\right)\right.$. So, by inductive hypothesis we obtain what is required.

The last possible case: $\alpha=\gamma_{0}+1, \gamma_{0}$ is limit and $\operatorname{cof}\left(\gamma_{0}\right)>\omega$.
By Lemma 2.6, we have $\check{C}\left(C_{p}\left(\left[0, \gamma_{0}+1\right), I\right)\right)=|\alpha| \cdot \check{C}\left(C_{p}\left(\left[0, \gamma_{0}\right), I\right)\right.$. By inductive hypothesis, $\check{C}\left(C_{p}\left(\left[0, \gamma_{0}\right), I\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)\right.$. Since $|\alpha| \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)$, we conclude that $\check{C}\left(C_{p}([0, \alpha), I)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)$.

As a consequence of Proposition 3.6 in [8] (see Proposition 2.11, below) and the previous Theorem, we obtain:

Corollary 2.8. For an ordinal number $\omega<\alpha<\omega_{\omega}, \check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha| \cdot \mathfrak{d}$.

In particular, we have:
Corollary 2.9. $\check{C}\left(C_{p}\left(\left[0, \omega_{1}\right), I\right)\right)=\check{C}\left(C_{p}\left(\left[0, \omega_{1}\right], I\right)\right)=\mathfrak{d}$.
By using similar techniques to those used throughout this section we can also prove the following result.

Corollary 2.10. For every ordinal number $\alpha>\omega$ and every $1 \leq n<\omega$,

$$
|\alpha| \cdot \mathfrak{d} \leq \check{C}\left(C_{p}\left([0, \alpha)^{n}, I\right)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)
$$

For a generalized linearly ordered topological space $X, \chi(X) \leq e c(X)$, so $\chi(X) \leq \check{C}\left(C_{p}(X, I)\right)$, where $\chi(X)$ is the character of X. This is not the case for every topological space, even if X is a countable $E G$-space, as was pointed out by O. Okunev to the authors. Indeed, let X be a countable dense subset of $C_{p}(I)$. We have that $\chi(X)=\chi\left(C_{p}(I)\right)=\mathfrak{c}$ and $\check{C}\left(C_{p}(X, I)\right)=\mathfrak{d}$. So, it is consistent with $Z F C$ that there is a countable $E G$-space X with $\chi(X)>\check{C}\left(C_{p}(X, I)\right)$.

One is tempted to think that for every linearly ordered space X, the relation $\check{C}\left(C_{p}(X, I)\right) \leq k \operatorname{cov}\left(\chi(X)^{\omega}\right)$ is plausible. But this illusion vanishes quickly; in fact, when $\mathfrak{d}<2^{\omega}$ and X is the doble arrow, then X has countable character and $e c(X)=|X|=2^{\omega}$. Hence, $\check{C}\left(C_{p}(X, I)\right) \geq 2^{\omega}>\mathfrak{d}=k \operatorname{cov}\left(\chi(X)^{\omega}\right)$ (compare with Theorem 2.7, above, and Corollary 7.7 in [1]).

In [8] the following was remarked:

Proposition 2.11.

(1) For every cardinal number $\omega \leq \tau<\omega_{\omega}, k \operatorname{cov}\left(\tau^{\omega}\right)=\tau \cdot \mathfrak{d}$,
(2) for every cardinal $\tau \geq \lambda, k \operatorname{cov}\left(\left(\tau^{+}\right)^{\lambda}\right)=\tau^{+} \cdot k \operatorname{cov}\left(\tau^{\lambda}\right)$, and,
(3) if $c f(\tau)>\lambda$, then $k \operatorname{cov}\left(\tau^{\lambda}\right)=\tau \cdot \sup \left\{k \operatorname{cov}\left(\mu^{\lambda}\right): \mu<\tau\right\}$.

Lemma 2.12. For every cardinal number κ with $\operatorname{cof}(\kappa)=\omega$, we have that $k \operatorname{cov}\left(\kappa^{\omega}\right)>\kappa$.

Proof. Let $\left\{K_{\lambda}: \lambda<\kappa\right\}$ be a collection of compact subsets of κ^{ω}. Let $\alpha_{0}<$ $\alpha_{1}<\ldots<\alpha_{n}<\ldots$ be an strictly increasing sequence of cardinal numbers converging to κ. We are going to prove that $\bigcup_{\lambda<\kappa} K_{\lambda}$ is a proper subset of κ^{ω}. Denote by $\pi_{n}: \kappa^{\omega} \rightarrow \kappa$ the n-projection. Since π_{n} is continuous and K_{λ} is compact, $\pi_{n}\left(K_{\lambda}\right)$ is a compact subset of the discrete space κ, so, it is finite. Thus, we have that $\left|\bigcup_{\lambda<\alpha_{n}} \pi_{n}\left(K_{\lambda}\right)\right| \leq \alpha_{n}<\kappa$ for each $n<\omega$. Hence, for every $n<\omega$, we can take $\xi_{n} \in \kappa \backslash \bigcup_{\lambda<\alpha_{n}} \pi_{n}\left(K_{\lambda}\right)$. Consider the point $\xi=\left(\xi_{n}\right)_{n<\omega}$ of κ^{ω}. We claim that $\xi \notin \bigcup_{\lambda<\kappa} K_{\lambda}$. Indeed, assume that $\xi \in K_{\lambda_{0}}$. There is $n<\omega$ such that $\lambda_{0}<\alpha_{n}$. So, $\xi_{n} \in \bigcup_{\lambda<\alpha_{n}} \pi_{n}\left(K_{\lambda}\right)$ which is not possible.

Recall that the Singular Cardinals Hypothesis (SCH) is the assertion:
For every singular cardinal number κ, if $2^{\operatorname{cof(\kappa)}}<\kappa$, then $\kappa^{c o f(\kappa)}=\kappa^{+}$.
A proposition, apparently weaker than $S C H$, is: "for every cardinal number κ with $\operatorname{cof}(\kappa)=\omega$, if $2^{\omega}<\kappa$, then $\kappa^{\omega}=\kappa^{+}$." But this last assertion is equivalent to $S C H$ as was settled by Silver (see [6], Theorem 23).

Proposition 2.13. If we assume $S C H$ and $\mathfrak{c} \leq\left(\omega_{\omega}\right)^{+}$, and if τ is an infinite cardinal number, then

$$
k \operatorname{cov}\left(\tau^{\omega}\right)= \begin{cases}\tau \cdot \mathfrak{d} & \text { if } \omega \leq \tau<\omega_{\omega} \tag{*}\\ \tau & \text { if } \tau>\omega_{\omega} \text { and } \operatorname{cof}(\tau)>\omega \\ \tau^{+} & \text {if } \tau>\omega \text { and } \operatorname{cof}(\tau)=\omega\end{cases}
$$

Proof. Our proposition is true for every $\omega \leq \tau<\omega_{\omega}$ because of (1) in Proposition 2.11.

Assume now that $\kappa \geq \omega_{\omega}$ and that $(*)$ holds for every $\tau<\kappa$. We are going to prove the assertion for κ.

Case 1: $\operatorname{cof}(\kappa)=\omega$. By Lemma 2.12, $k \operatorname{cov}\left(\kappa^{\omega}\right)>\kappa$. On the other hand, $k \operatorname{cov}\left(\kappa^{\omega}\right) \leq \kappa^{\omega}$.

First two subcases: Either $\mathfrak{c}<\omega_{\omega}$ or $\kappa>\omega_{\omega}$. In both subcases, we can apply $S C H$ and conclude that $k \operatorname{cov}\left(\kappa^{\omega}\right)=\kappa^{+}$.

Third subcase: $\mathfrak{c}=\left(\omega_{\omega}\right)^{+}$and $\kappa=\omega_{\omega}$. In this case we have $k \operatorname{cov}\left(\left(\omega_{\omega}\right)^{\omega}\right) \leq$ $\left(\omega_{\omega}\right)^{\omega} \leq \mathfrak{c}^{\omega}=\mathfrak{c}=\left(\omega_{\omega}\right)^{+}$. Moreover, by Lemma 2.12, $\left(\omega_{\omega}\right)^{+} \leq k \operatorname{cov}\left(\left(\omega_{\omega}\right)^{\omega}\right)$. Therefore, $k \operatorname{cov}\left(\left(\omega_{\omega}\right)^{\omega}\right)=\left(\omega_{\omega}\right)^{+}$.

Case 2: $\operatorname{cof}(\kappa)>\omega$. By Proposition $2.11(3), k \operatorname{cov}\left(\kappa^{\omega}\right)=\kappa \cdot \sup \left\{k \operatorname{cov}\left(\mu^{\omega}\right):\right.$ $\omega \leq \mu<\kappa\}$. By inductive hypothesis we have that for each $\mu<\kappa$

$$
k \operatorname{cov}\left(\mu^{\omega}\right)= \begin{cases}\mu \cdot \mathfrak{d} & \text { if } \omega \leq \mu<\omega_{\omega} \tag{**}\\ \mu & \text { if } \mu>\omega_{\omega} \text { and } \operatorname{cof}(\mu)>\omega \\ \mu^{+} & \text {if } \mu>\omega \text { and } \operatorname{cof}(\mu)=\omega\end{cases}
$$

First subcase: κ is a limit cardinal. For every $\mu<\kappa, k \operatorname{cov}\left(\mu^{\omega}\right)<\kappa$ (because of $(* *)$ and because we assumed that $\left.\kappa>\left(\omega_{\omega}\right)^{+} \geq \mathfrak{c} \geq \mathfrak{d}\right)$; and so $\sup \left\{k \operatorname{cov}\left(\mu^{\omega}\right): \mu<\kappa\right\}=\kappa$. Thus, $k \operatorname{cov}\left(\kappa^{\omega}\right)=\kappa$.

Second subcase: Assume now that $\kappa=\mu_{0}^{+}$. In this case, by Proposition 2.11, $k \operatorname{cov}\left(\kappa^{\omega}\right)=\kappa \cdot k \operatorname{cov}\left(\mu_{0}^{\omega}\right)$. Because of $(* *)$ and because $\mu_{0} \geq \omega_{\omega}, k \operatorname{cov}\left(\mu_{0}\right)^{\omega} \leq \kappa$. We conclude that $k \operatorname{cov}\left(\kappa^{\omega}\right)=\kappa$.

Proposition 2.14. Let κ be a cardinal number with $\operatorname{cof}(\kappa)=\omega$. Then

$$
\check{C}\left(C_{p}([0, \kappa], I)\right)>\kappa .
$$

Proof. Let $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{n}<\ldots$ be a strictly increasing sequence of cardinal numbers converging to κ. Assume that $\left\{V_{\lambda}: \lambda<\kappa\right\}$ is a collection of open sets in $I^{[0, \kappa]}$ which satisfies $C_{p}([0, \kappa], I) \subset \bigcap_{\lambda<\kappa} V_{\lambda}$. We are going to prove that $\bigcap_{\lambda<\kappa} V_{\lambda}$ contains a function $h:[0, \kappa] \rightarrow I$ which is not continuous. In order to construct h, we are going to define, by induction, the following sequences:
(i) elements $t_{0}, \ldots, t_{n}, \ldots$ which belong to $[0, \kappa]$ such that
(1) $0=t_{0}<t_{1}<\cdots<t_{n}<\ldots$,
(2) $t_{i} \geq \alpha_{i}$ for each $0 \leq i<\omega$,
(3) each t_{i} is an isolated ordinal, and
(4) $\kappa=\lim \left(t_{n}\right)$;
(ii) subsets $G_{0}, \ldots, G_{n}, \ldots \subset[0, \kappa]$ with $\left|G_{i}\right| \leq \alpha_{i}$ for every $i<\omega$, and such that each function which equals 0 in G_{i} and 1 in $\left\{t_{0}, \ldots, t_{i}\right\}$ belongs to $\bigcap_{\lambda<\alpha_{i}} V_{\lambda}$ for every $0 \leq i<\omega$ and $\left(\bigcup_{n} G_{n}\right) \cap\left\{t_{0}, \ldots, t_{n}, \ldots\right\}=\varnothing$;
(iii) functions $f_{0}, f_{1}, \ldots, f_{n}, \ldots$ such that $f_{0} \equiv 0$, and f_{i} is the characteristic function defined by $\left\{t_{0}, \ldots, t_{i-1}\right\}$ for each $0<i<\omega$.

Let f_{0} be the constant function equal to 0 . Assume that we have already defined $t_{0}, \ldots, t_{s-1}, G_{0}, \ldots, G_{s-1}$ and f_{0}, \ldots, f_{s-1}. We now choose an isolated point $t_{s} \in\left[\alpha_{s}, \kappa\right] \backslash G_{0} \cup \ldots \cup G_{s-1}$ (this is possible because $\left|G_{0} \cup \ldots \cup G_{s-1}\right|<$ $\kappa)$. Consider the characteristic function defined by $\left\{t_{0}, \ldots, t_{s-1}, t_{s}\right\}, f_{s}$. This function is continuous, so it belongs to $\bigcap_{\lambda<\alpha_{s}} V_{\lambda}$. For each $\lambda<\alpha_{s}$, there is a canonical open set A_{λ}^{s} of the form $\left[f_{s} ; x_{1}^{s}, \ldots, x_{n^{s}(\lambda)}^{s} ; 1 / m^{s}(\lambda)\right]=\left\{f \in I^{[0, \kappa]}\right.$: $\left.\left|f_{s}\left(x_{i}^{s}\right)-f\left(x_{i}^{s}\right)\right|<1 / m^{s}(\lambda) \forall 1 \leq i \leq n^{s}(\lambda)\right\}$ satisfying $f_{s} \in A_{\lambda}^{s} \subset V_{\lambda}$. For each $\lambda<\alpha_{s}$ we take $F_{\lambda}^{s}=\left\{x_{1}^{s}, \ldots, x_{n^{s}(\lambda)}^{s}\right\}$. Put $G_{s}=\bigcup_{\lambda<\alpha_{s}} F_{\lambda}^{s} \backslash\left\{t_{0}, \ldots, t_{s}\right\}$. It happens that $\left\{f \in I^{[0, \kappa]}: f(x)=0 \forall x \in G_{s}\right.$ and $\left.f\left(t_{i}\right)=1 \forall 0 \leq i \leq s\right\}$ is a subset of $\bigcap_{\lambda<\alpha_{s}} V_{\lambda}$. This finishes the inductive construction of the required sequences.

Now, consider the function $h:[0, \kappa] \rightarrow[0,1]$ defined by $h(x)=0$ if $x \notin$ $\left\{t_{0}, \ldots, t_{n}, \ldots\right\}$, and $h\left(t_{n}\right)=1$ for every $n<\omega$. This function h is not continuous at κ because $h(\kappa)=0, \kappa=\lim \left(t_{n}\right)$, and $h\left(t_{n}\right)=1$ for all $n<\omega$.

Now, take $\lambda_{0} \in \kappa$. There exists $l<\omega$ such that $\lambda_{0}<\alpha_{l}$. Since h is equal to 0 in G_{l} and 1 in $\left\{t_{0}, \ldots, t_{l}\right\}$, then $h \in \bigcap_{\lambda<\alpha_{l}} V_{\lambda}$. Therefore, $h \in V_{\lambda_{0}}$. So, $C_{p}([0, \kappa], I)$ is not equal to $\bigcap_{\lambda<\kappa} V_{\lambda}$. This means that $\check{C}\left(C_{p}([0, \kappa], I)\right)>\kappa$.

Theorem 2.15. $S C H+\mathfrak{c} \leq\left(\omega_{\omega}\right)^{+}$implies:
$\check{C}\left(C_{p}([0, \alpha), I)\right)= \begin{cases}1 & \text { if } \alpha \leq \omega \\ |\alpha| \cdot \mathfrak{d} & \text { if } \alpha>\omega \text { and } \omega \leq|\alpha|<\omega_{\omega} \\ |\alpha| & \text { if }|\alpha|>\omega_{\omega} \text { and } \operatorname{cof}(|\alpha|)>\omega \\ |\alpha| & \text { if } \operatorname{cof}(|\alpha|)=\omega \text { and } \alpha \text { is a cardinal number }>\omega_{\omega} \\ |\alpha| & \text { if }|\alpha|=\omega_{\omega} \text { and } \mathfrak{d}<\left(\omega_{\omega}\right)^{+} \\ |\alpha|^{+} & \text {if } \operatorname{cof} f(|\alpha|)=\omega,|\alpha|>\omega_{\omega}, \alpha \text { is not a cardinal number } \\ |\alpha|^{+} & \text {if }|\alpha|=\omega_{\omega} \text { and } \mathfrak{d}=\left(\omega_{\omega}\right)^{+}\end{cases}$
Proof. If $\alpha \leq \omega, C_{p}([0, \alpha), I)=I^{[0, \alpha)}$, so $\check{C}\left(C_{p}([0, \alpha), I)\right)=1$.
If $\alpha>\omega$ and $\omega \leq|\alpha|<\omega_{\omega}$, we obtain our result because of Theorem 2.7 and Proposition 2.13.

If $|\alpha|>\omega_{\omega}$ and $\operatorname{cof}(|\alpha|)>\omega$, by Theorem 2.7 and Proposition 2.13,

$$
|\alpha| \cdot \mathfrak{d}=|\alpha| \leq \check{C}\left(C_{p}([0, \alpha), I)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)=|\alpha| .
$$

If $\operatorname{cof}(|\alpha|)=\omega$ and α is a cardinal number $>\omega_{\omega}$, by Lemma 2.4,

$$
\check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha| \cdot \sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right) .
$$

The number α is a limit ordinal and for every $\gamma<\alpha$,

$$
\check{C}\left(C_{p}([0, \gamma), I)\right) \leq|\gamma|^{+} \cdot \mathfrak{o}
$$

Since $\mathfrak{d} \leq\left(\omega_{\omega}\right)^{+}<|\alpha|$, then $\check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha|$.
By Lemma 2.4 and Theorem 2.7, if $|\alpha|=\omega_{\omega}$, then

$$
\omega_{\omega} \cdot \mathfrak{d} \leq \check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha| \cdot \sup _{\gamma<\alpha} \check{C}\left(C_{p}([0, \gamma), I)\right) \leq|\alpha| \cdot \sup _{\gamma<\alpha}\left(|\gamma|^{+} \cdot \mathfrak{d}\right)
$$

Thus, if $|\alpha|=\omega_{\omega}$ and $\mathfrak{d}<\left(\omega_{\omega}\right)^{+}, \check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha|$.
Assume now that $\operatorname{cof}(|\alpha|)=\omega,|\alpha|>\omega_{\omega}$ and α is not a cardinal number. There exists a cardinal number κ such that $\kappa=|\alpha|$ and $[0, \alpha)=[0, \kappa] \oplus[\kappa+1, \alpha)$. So, $\check{C}\left(C_{p}([0, \alpha), I)\right)=\check{C}\left(C_{p}([0, \kappa], I)\right) \cdot \check{C}\left(C_{p}([\kappa+1, \alpha), I)\right)=\check{C}\left(C_{p}([0, \kappa], I)\right)$ (see Proposition 1.10 in [8] and Lemma 2.3). By Theorem 2.7 and Proposition 2.14, $\kappa \cdot \mathfrak{d} \leq \check{C}\left(C_{p}([0, \kappa], I)\right) \leq \kappa^{+}$. Being κ a cardinal number $>\omega_{\omega}$ with cofinality ω, it must be $>\left(\omega_{\omega}\right)^{+}$; so $\kappa>\mathfrak{d}$ and, then, $\kappa \leq \check{C}\left(C_{p}([0, \kappa], I)\right) \leq \kappa^{+}$. Now we use Proposition 2.14, and conclude that $\check{C}\left(C_{p}([0, \alpha), I)\right)=\kappa^{+}=|\alpha|^{+}$.

Finally, assume that $|\alpha|=\omega_{\omega}$ and $\mathfrak{d}=\left(\omega_{\omega}\right)^{+}$. By Theorems 2.7 and Proposition 2.13 we have

$$
|\alpha| \cdot \mathfrak{d} \leq \check{C}\left(C_{p}([0, \alpha), I)\right) \leq k \operatorname{cov}\left(|\alpha|^{\omega}\right)=\left(\omega_{\omega}\right)^{+} .
$$

And we conclude: $\check{C}\left(C_{p}([0, \alpha), I)\right)=|\alpha|^{+}$.

References

[1] O. T. Alas and Á. Tamariz-Mascarúa, On the C̆ech number of $C_{p}(X), I I$ Q \& A in General Topology 24 (2006), 31-49.
[2] A. V. Arkhangel'skii, Topological Function Spaces, Kluwer Academic Publishers, 1992.
[3] E. van Douwen, The integers and topology, in Handbook of Set-Theoretic Topology, North-Holland, 1984, Amsterdam-New-York-Oxford, 111-167.
[4] R. Engelking, General topology, PWN, Warszawa, 1977.
[5] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New-York-Heidelberg-Berlin, 1976.
[6] T. Jech, Set Theory, Academic Press, New-York-San Francisco-London, 1978.
[7] D. J. Lutzer and R. A. McCoy, Category in function spaces, I, Pacific J. Math. 90 (1980), 145-168.
[8] O. Okunev and A. Tamariz-Mascarúa, On the C̆ech number of $C_{p}(X)$, Topology Appl. 137 (2004), 237-249.
[9] V. V. Tkachuk, Decomposition of $C_{p}(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_{p}(X)$, Trans. Moscow Math. Soc. 55 (1994), 239-248.

Ofelia T. Alas (alas@ime.usp.br)
Universidade de São Paulo, Caixa Postal 66281, CEP 05311-970, São Paulo, Brasil.

Ángel TAMARIZ-MASCARÚA (atamariz@servidor.unam.mx)
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, México.

[^0]: *Research supported by Fapesp, CONACyT and UNAM.

