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of Universitat Politècnica de València (UPV) for providing an extremely pleasant and

comfortable environment.

Last but not the least, I would like to finish by thanking my family and friends for their

unconscious and selfless support.

Thank you all so much.





Contents

Abstract xi

Resumen xiii

Resum xv

List of Figures xvii

List of Tables xxiii

1 Introduction 1

1.1 Preliminary Considerations and Background . . . . . . . . . . . . . . . . . 2

1.2 Remote GPU Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives and Contributions of the Thesis . . . . . . . . . . . . . . . . . 6

1.4 Technology Transfer: An Industry-driven Thesis . . . . . . . . . . . . . . 7

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 11

2.1 Existing Remote GPU Virtualization Solutions . . . . . . . . . . . . . . . 12

2.2 rCUDA: remote CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Bandwidth Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Improving the user experience of rCUDA 21

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 CU2rCU: A CUDA-to-rCUDA Converter . . . . . . . . . . . . . . . . . . 24

3.2.1 Need for a CUDA-to-rCUDA Converter . . . . . . . . . . . . . . . 24

3.2.2 Implementing the CU2rCU Converter . . . . . . . . . . . . . . . . . 27

3.2.2.1 Kernel Calls . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2.2 Kernel Names . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2.3 CUDA Symbols . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2.4 Textures and Surfaces . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Evaluation of the CU2rCU converter . . . . . . . . . . . . . . . . . . 30

3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Support for multithreaded applications and CUDA libraries . . . . . . . . 38

3.4.1 Support for Multithreaded Applications . . . . . . . . . . . . . . . 38

3.4.2 Support for CUDA Libraries . . . . . . . . . . . . . . . . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



viii Contents

4 Tuning rCUDA for InfiniBand Networks 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Influence of FDR InfiniBand on the Performance of rCUDA . . . . . . . . 47

4.2.1 Basic Performance Comparison of the Networks . . . . . . . . . . . 48

4.2.1.1 Testbed System . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1.2 Influence on Bandwidth . . . . . . . . . . . . . . . . . . . 49

4.2.1.3 Influence on Latency . . . . . . . . . . . . . . . . . . . . 50

4.2.2 NVIDIA CUDA Samples . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Influence of FDR InfiniBand on Production Applications . . . . . 54

4.2.3.1 CUDASW++ . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3.2 GPU-BLAST . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3.3 LAMMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Enhancing rCUDA with Support for InfiniBand Dual-port Adapters . . . 61

4.3.1 Adding Dual-port Support to rCUDA . . . . . . . . . . . . . . . . 62

4.3.2 Impact of Connect-IB on Remote GPU Usage . . . . . . . . . . . . 62

4.3.2.1 From Theoretical to Real Bandwidth and Latency Figures 63

4.3.2.2 Influence on the Bandwidth of rCUDA . . . . . . . . . . 67

4.3.2.3 Analyzing the Bandwidth of rCUDA . . . . . . . . . . . . 69

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 InfiniBand Verbs Optimizations for Remote GPU Virtualization . . . . . 71

4.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Bandwidth Optimizations . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2.1 Number of Queue Pairs per Port . . . . . . . . . . . . . . 74

4.4.2.2 Capacity of Send/Receive Queues . . . . . . . . . . . . . 76

4.4.2.3 Combining both Optimizations . . . . . . . . . . . . . . . 78

4.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3.1 Impact of the Optimizations on rCUDA . . . . . . . . . . 80

4.4.3.2 Impact of the Optimizations on Applications using
rCUDA with Single-port Adapters . . . . . . . . . . . . . 82

4.4.3.3 Impact of the Optimizations on Applications using
rCUDA with Dual-port Adapters . . . . . . . . . . . . . 84

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Influence of EDR InfiniBand on the Bandwidth of rCUDA . . . . . . . . . 90

4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.3.1 Bandwidth analysis . . . . . . . . . . . . . . . . . . . . . 95

4.5.3.2 The Rodinia Benchmark Suite . . . . . . . . . . . . . . . 95

4.5.3.3 Production Applications . . . . . . . . . . . . . . . . . . 99

4.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Peer to Peer Memory Copies between Remote GPUs 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Related Work on P2P Memory Copies . . . . . . . . . . . . . . . . . . . . 106

5.3 Implementing Efficient P2P Memory Copies within rCUDA . . . . . . . . 109



Contents ix

5.3.1 Version 1: Using GPUDirect RDMA . . . . . . . . . . . . . . . . . 110

5.3.2 Version 2: Pre-allocating Intermediate Buffers . . . . . . . . . . . . 111

5.3.3 Version 3: Using Multiple Intermediate Buffers . . . . . . . . . . . 114

5.3.4 Version 4: Adaptive Intermediate Buffer Size . . . . . . . . . . . . 115

5.3.5 Latency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.6 Final Version: Hybrid Approach . . . . . . . . . . . . . . . . . . . 121

5.4 Experiments with a Real Application . . . . . . . . . . . . . . . . . . . . . 122

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 schedGPU: Fine-Grain Dynamic and Adaptive Scheduling
for GPUs 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 GPU Scheduling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Implementation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4.2.1 Shared Memory Data . . . . . . . . . . . . . . . . . . . . 140

6.4.2.2 Synchronizing Access to Shared Memory . . . . . . . . . 141

6.5 The Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 Notification Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 Experimental Setup and Use-Cases . . . . . . . . . . . . . . . . . . . . . . 147

6.7.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7.2 Use-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8.1 Overhead of the approaches . . . . . . . . . . . . . . . . . . . . . . 150

6.8.2 Performance Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.8.2.1 Concurrent Execution of Individual Applications . . . . . 151

6.8.2.2 Workloads Comprising Multiple Applications . . . . . . . 156

6.8.3 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Conclusions 163

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References 173





Abstract

Graphics Processing Units (GPUs) are being adopted in many computing facilities given

their extraordinary computing power, which makes it possible to accelerate many general

purpose applications from different domains. However, GPUs also present several side

effects, such as increased acquisition costs as well as larger space requirements. They

also require more powerful energy supplies. Furthermore, GPUs still consume some

amount of energy while idle and their utilization is usually low for most workloads. In a

similar way to virtual machines, the use of virtual GPUs may address the aforementioned

concerns. In this regard, the remote GPU virtualization mechanism allows an application

being executed in a node of the cluster to transparently use the GPUs installed at other

nodes. Moreover, this technique allows to share the GPUs present in the computing

facility among the applications being executed in the cluster. In this way, several

applications being executed in different (or the same) cluster nodes can share one or

more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall

GPU utilization, thus reducing the negative impact of the side effects mentioned before.

Reducing the total amount of GPUs installed in the cluster may also be possible.

In this dissertation we enhance one framework offering remote GPU virtualization

capabilities, referred to as rCUDA, for its use in high-performance clusters. While

the initial prototype version of rCUDA demonstrated its functionality, it also revealed

concerns with respect to usability, performance, and support for new GPU features,

which prevented its use in production environments. These issues motivated this thesis,

in which all the research is primarily conducted with the aim of turning rCUDA into a

production-ready solution for eventually transferring it to industry. The new version of

rCUDA resulting from this work presents a reduction of up to 35% in execution time

of the applications analyzed with respect to the initial version. Compared to the use of

local GPUs, the overhead of this new version of rCUDA is below 5% for the applications

studied when using the latest high-performance computing networks available.
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Resumen

Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo

utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad

de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de

diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas,

como el aumento de los costos de adquisición, aśı como mayores requerimientos de

espacio. Asimismo, también requieren un suministro de enerǵıa más potente. Además,

las GPUs consumen una cierta cantidad de enerǵıa aún estando inactivas, y su utilización

suele ser baja para la mayoŕıa de las cargas de trabajo.

De manera similar a las máquinas virtuales, el uso de GPUs virtuales podŕıa hacer frente

a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota

de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de

forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta

técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se

ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes

nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros

nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo

aśı el impacto negativo de las desventajas anteriormente mencionadas. De igual forma,

este mecanismo también permite reducir la cantidad total de GPUs instaladas en el

clúster.

En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funciona-

lidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones.

Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también

reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas

caracteŕısticas de las GPUs, lo cual imped́ıa su uso en entornos de producción. Estas

consideraciones motivaron la presente tesis, en la que toda la investigación llevada a

cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso

entornos de producción, con la finalidad de transferirla eventualmente a la industria. La

nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el

35 % en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión

inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva ver-

sión de rCUDA es inferior al 5 % para las aplicaciones estudiadas cuando se utilizan las

últimas redes de computación de altas prestaciones disponibles.
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Resum

Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent

utilitzades en moltes instal·lacions de computació donada la seva extraordinària

capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general

de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges,

com l’augment dels costos d’adquisició, aix́ı com major requeriment d’espai. Aix́ı

mateix, també requereixen un subministrament d’energia més potent. A més, les GPUs

consumeixen una certa quantitat d’energia encara estant inactives, i la seua utilització

sol ser baixa per a la majoria de les càrregues de treball.

D’una manera semblant a les màquines virtuals, l’ús de GPUs virtuals podria fer front

als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota

de GPUs permet que una aplicació que s’executa en un node d’un clúster utilitze de

forma transparent les GPUs instal·lades en altres nodes d’aquest clúster. A més, aquesta

tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s’executen

en el mateix. D’aquesta manera, diverses aplicacions que s’executen en diferents nodes

de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes

del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint aix́ı

l’impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest

mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster.

En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix

funcionalitats de virtualització remota de GPUs per al seu ús en clústers d’altes

prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua

funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i

el suport per a noves caracteŕıstiques de les GPUs, la qual cosa impedia el seu ús

en entorns de producció. Aquestes consideracions van motivar la present tesi, en què

tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una

solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la

eventualment a la indústria. La nova versió de rCUDA resultant d’aquest treball presenta

una reducció de fins al 35% en el temps d’execució de les aplicacions analitzades respecte

a la versió inicial. En comparació amb l’ús de GPUs locals, la sobrecàrrega d’aquesta

nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s’utilitzen

les últimes xarxes de computació d’altes prestacions disponibles.
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Chapter 1

Introduction

This chapter introduces some preliminary considerations and the background required to

better understand the work developed in this thesis. Additionally, the main motivation

for this study is presented. The concept of Remote GPU Virtualization is also introduced

and motivated, presenting and discussing some of its benefits. Once the motivation for

this work is introduced, the objectives and contributions of this thesis are exposed.

Finally, an outline of the rest of this dissertation is provided.

1



2 Chapter 1. Introduction

1.1 Preliminary Considerations and Background

The market for servers is one of the fastest-growing segments of the information

technologies (IT) industry. This is mainly due to the current trends in production

and consumption, as described below.

On the one hand, the number of Internet-enabled devices (not only personal computers

and laptops, but also portable devices such as mobile phones, tablets and even gaming

consoles) continues to grow dramatically. Further, new services and applications are

being continuously introduced which, combined with both a reduction of Internet

connection fees and a continuous increase in the available bandwidth, have led to an

unprecedented growth in the number of transactions per time unit that must be serviced

by Internet servers. Google is the most representative example, but there are many

other companies that are experiencing very fast demand growth in the services they

offer. One of the trends that is booming and that consumes more server resources is

Cloud Computing. Cloud Computing allows, for instance, storing data in the cloud and

accessing them from any device. It is also possible to run applications directly on servers

using a web browser as interface. All these possibilities happen without the user being

aware where the data is actually stored or where the applications are being run.

On the other hand, during the last years there is also an increasing trend by large

corporations to outsource IT services to data centers. Typically, these services involve

the virtualization of large servers, which reduces the costs by sharing hardware resources

among many customers. Furthermore, there is a noticeably increment in the use

of simulation applications, such as risk estimation, stock market prediction, weather

forecast, seismic data search or simulations of vehicle collisions. This kind of applications

requires huge computing power to obtain results within an acceptable time period.

Additionally, databases used by these large corporations usually contain multimedia

material, such as images or videos. This type of contents requires processing and storage

capacities that are orders of magnitude larger than the ones needed only a few years

ago.

As a consequence of the previous trends, the demand for servers is growing very rapidly,

likewise the need to build increasingly larger and more powerful servers. The trend

followed during more than one decade to increase the power of the servers has been

to add more resources to the systems, such as processors, memory and storage, and

then interconnecting them to obtain large computing power at low cost. Notice that

this is the same approach followed in the case of supercomputers which are currently

based on connecting multiple individual mainstream computing servers together. In

addition, there has been also a notable technological evolution: higher number of cores in
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processors, higher memory and storage capacity, higher bandwidth in the interconnection

network. This has thereby fostered the emergence of new server formats much more

compact for assembly in cabinets, as for example 2U, 1U or blade. This compactness

not only reduces the space occupied by each server node, but also drastically reduces

the number of necessary cables and the number of auxiliary components, such as disk

players, power supplies or network interfaces, which are now shared by several nodes.

However, in spite of the remarkable technological evolution, there has been in general

little evolution in the system architecture, which is still based on the interconnection

of server nodes similar to personal computers. These interconnected server nodes are

usually grouped in what is referred to as computer cluster or just cluster. Among the few

changes in the architecture of such systems, it is possible to emphasize the one that has

occurred at the I/O level. In this way, the bandwidth has been increased with respect

to the one of personal computers achieving greater disk accessing speed.

Another remarkable architectural change is the evolution in the interconnection network

between processors, with the appearance of several technologies both standard, such as

InfiniBand [1], or proprietary, as for instance Cray Aries [2] or Quadrics [3]. These new

technologies offer message transfer rates significantly higher than those achieved with

traditional networks (i.e., Ethernet).

Finally, the most recent change introduced by server manufacturers has consisted in

taking advantage of the enormous computing power of the gaming graphics processing

units (GPUs). This approach consists in including in each server node one or more

accelerators based on these gaming GPUs. These devices are similar to the ones used

for gaming, but without graphic output, with a more robust design that allows many

more hours of operation, and incorporating mechanisms for detecting and correcting

GPU memory errors.

1.2 Remote GPU Virtualization

Currently, the massive parallel capabilities of GPUs are leveraged to accelerate specific

parts of applications. In this regard, programmers exploit GPU resources by off-loading

the computationally intensive parts of applications to them. To that end, although

programmers must specify which parts of the application are executed on the CPU

and which parts are off-loaded to the GPU, the existence of libraries and programming

models such as CUDA (Compute Unified Device Architecture) [4] noticeably ease this

task. In this context, GPUs significantly reduce the execution time of applications from
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domains as different as Big Data [5], chemical physics [6], computational algebra [7],

image analysis [8], finance [9], and biology [10], for instance.

Current computing facilities typically include one or more GPUs at every node of the

cluster. However, using GPUs in such a configuration is not exempt from side effects. For

example, let us consider the execution of a distributed MPI (Message Passing Interface)

application which does not require the use of GPUs. Typically, this application will

spread across several nodes of the cluster flooding the CPU cores available in them.

In this scenario, the GPUs in the nodes involved in the execution of such an MPI

application would become unavailable for other applications because all the CPU cores

in those nodes would be devoted to the non-accelerated MPI application. This would

force those GPUs to remain idle for some periods of time.

Another example of the concerns associated with the use of GPUs in clusters is related

to the way that job schedulers such as Slurm [11] perform the accounting of resources

in a cluster. These job schedulers use a fine granularity for resources such as CPUs or

memory, but not for GPUs. For instance, job schedulers can assign CPU resources in

a per-core basis, thus being able to share the CPU sockets present in a server among

several applications. In the case of memory, job schedulers can also assign, in a shared

approach, the memory present in a given node to the several applications that will be

concurrently executed in that server. However, in the case of GPUs, job schedulers

use a per-GPU granularity. In this regard, GPUs are assigned to applications in an

exclusive way. Hence, a GPU cannot be shared among several applications even when

it has enough resources to allow the concurrent execution of those applications, causing

that overall GPU utilization is, in general, low. This fact not only reduces the effective

computing power of computing facilities but also causes that a non-negligible amount of

energy is wasted, being both aspects key concerns in the context of the future exascale

computing.

In order to address the side effects related to the use of GPUs, the remote GPU

virtualization mechanism could be used. This software mechanism allows an application

being executed in a computer which does not own a GPU to transparently make use

of accelerators installed in other nodes of the cluster. In other words, the remote GPU

virtualization technique allows physical GPUs to be logically detached from nodes, thus

allowing that decoupled (or virtual) GPUs are concurrently shared by all the nodes of

the computing facility in a transparent way to applications. This not only increases

overall GPU utilization but also allows to create cluster configurations where not all the

nodes in the cluster own a GPU, thus reducing the costs associated with the acquisition

and later use of GPUs. In this regard, the total energy required to operate a computing
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facility would be decreased, thus loosening the energy concerns of current and future

computing facilities.

Several are the benefits that remote GPU virtualization presents [12–14], namely:

• More GPUs are available for a single application. An application being executed in

a single node can use all the GPUs in the cluster, thus boosting its performance.

In this case, the only limitation is the ability of the programmer to code the

application in the proper way so that it takes advantage of as many GPUs as they

are available.

• Increased cluster throughput. GPUs can be concurrently shared among several

applications as far as there are enough memory resources available in the GPUs

for the applications being executed. Additionally, given that a GPU can be used

by applications being executed in a node other than the one where the GPU is

installed, when all the CPU cores in the node owning the GPU are busy with a

non-accelerated application, the GPU can still be used from a remote node. These

features contribute to a higher GPU utilization, what translates into an increased

cluster throughput (i.e., more jobs per time unit), at the same time that energy

consumption is reduced.

• Cheaper cluster upgrade. Clusters which do not include GPUs can be easily and

cheaply updated for using GPUs just by attaching to them servers populated with

GPUs, and using remote GPU virtualization to accelerate applications running at

any of the nodes in the rest of the cluster.

• Virtual machines can easily access GPUs. Current solutions for providing GPU

acceleration to virtual machines environments present some issues, such as not

allowing simultaneously sharing a GPU among several virtual machines. With the

remote GPU virtualization mechanism, it is possible to concurrently assign a given

GPU to several virtual machines, so that the applications being executed inside

them can share the GPU resources.

• Migration of GPU jobs. Migrating jobs in a cluster is an effective way of reducing

overall energy consumption. In this manner, jobs running in servers with lower

workload are moved to other servers in order to switch off the former computers.

Migrating applications that make use of GPUs is a very complex task because it

is necessary to track the GPU resources used by the application and their status.

Remote GPU virtualization solutions store all this information, making it simple

to migrate GPU jobs.
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Notice, however, that using remote GPUs also presents some difficulties. In this regard,

probably the most important one is the overhead introduced by this approach, mainly

due to the virtualization framework and the network. The GPU virtualization framework

increases the latency to the real GPU, as requests must be forwarded to the remote GPU

and responses delivered back to the application demanding GPU services. Furthermore,

as GPUs are no longer located at the other end of a PCI Express (PCIe) link within

the host, but in a remote node, data have to traverse at least two PCIe links and two

network interfaces, as well as the entire network fabric between the node requesting GPU

services and the node where the actual GPU resides. Therefore, in addition to latency,

bandwidth also suffers, given that the PCIe bandwidth is usually noticeably larger than

network bandwidth, thus increasing the performance gap between the local and remote

uses of GPUs.

As it will be covered more thoroughly later in Chapter 2, at the beginning of this

thesis, there were several frameworks offering remote GPU virtualization capabilities.

As starting point for this dissertation, we used a framework called rCUDA [15]. It is

also a development of our group, the Parallel Architectures Group1 from Universitat

Politècnica de València2 (Spain). The initial version of rCUDA developed prior to this

dissertation was the result of a previous thesis [16]. As it will also be shown later

in Chapter 2, rCUDA was the framework presenting the best features both in terms

of performance and compatibility with applications developed for local GPUs. While

this initial prototype version of rCUDA demonstrated its functionality, it also revealed

concerns with respect to usability, performance, and support for new GPU features.

These issues motivated this thesis, as described in the following section.

1.3 Objectives and Contributions of the Thesis

Using the rCUDA remote GPU virtualization framework as the starting point for this

thesis, the main objective of this dissertation is to enhance it for its use in high-

performance clusters. In particular, the major contributions of this thesis are:

• Improving the user experience of the rCUDA framework. Initial versions of the

remote GPU virtualization solution used in this thesis required modifying the

source code for using it. This constraint has been removed and now existing

application codes can be used without any modification.

1http://www.gap.upv.es
2http://www.upv.es/index-en.html

http://www.gap.upv.es
http://www.upv.es/index-en.html
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• Tuning rCUDA for InfiniBand networks. Apart from providing for the first time a

performance analysis on real scenarios with real applications and production codes,

in this thesis we explore optimizations for improving the communications over

one of the most popular network fabrics in high performance computing (HPC)

environments: InfiniBand.

• Extending rCUDA with support for peer to peer memory copies between remote

GPUs. rCUDA, the remote GPU virtualization solution aim of this thesis, has

also been enhanced by allowing copies between remote GPUs located in different

nodes of the cluster.

• A fine-grain dynamic and adaptative scheduling for GPUs. The knowledge

acquired while doing this thesis has also been applied to develop a fine-grain intra-

node GPU scheduler, dynamically blocking and releasing GPUs, and capable of

adapting quickly to the changing requirements.

1.4 Technology Transfer: An Industry-driven Thesis

The link between industry and the research carried out at the university during the

implementation of this dissertation has been very strong. In this manner, all the research

is primarily conducted with the aim of turning rCUDA into a production-ready solution

for eventually transferring it to industry. Taking this goal in mind, chapters addressing

major contributions of this thesis include at their beginning a section entitled “Link

with Industry”, to put the chapter into a meaningful context for the reader. For

better understanding these opening sections, in some of them we will also refer to

Figure 1.1. This figure shows a time line highlighting each new version released by

CUDA and rCUDA, and also new InfiniBand products announced that are relevant to

this dissertation.

Notice that turning research into a product involves tasks beyond research, which are

not commonly done in a doctoral thesis, and which require important efforts. By way

of example, some of these tasks are:

• Technical support. Offering remote assistance for installing and using rCUDA.

Currently, more than 750 users worldwide have requested the software.

• Periodical software releases. Keeping the rCUDA software updated to support

the latest versions and features of CUDA. Since this thesis started in July 2012,

twelve new versions of rCUDA have been released (see Figure 1.1). More detailed

information in this regard will be shown in Chapter 2, Table 2.2.
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• Tutorials. Providing training on the use of rCUDA at international conferences.

Four tutorials have been given, as it will be detailed in Chapter 7.

• Demonstrations at exhibitions. rCUDA has been exhibited annually in the

two major events in the field, namely the International Conference for High

Performance Computing, Networking, Storage and Analysis (Supercomputing,

SC), and the International Supercomputing Conference (ISC). Refer to Chapter 7

for more details.

• Presence in social media. Keeping rCUDA website (www.rcuda.net) and its

account in the social media Twitter (http://twitter.com/rcuda_) up to date.

As of this writing, the research presented in this dissertation has turned the initial

prototype version of rCUDA into a commercial product, and the university has started

the process to spin off this research to a company3. In addition, other commercial

solutions providing remote GPU virtualization have also recently appeared in the

market [17], which demonstrates, from an industry point of view, the research addressed

in this thesis.

1.5 Thesis Outline

In order to properly address the objectives of this work, this dissertation is composed

of six additional chapters. Chapter 2 introduces and compares existing remote GPU

virtualization frameworks, reinforcing the motivation for using rCUDA in this thesis.

Next, Chapter 3 describes how the user experience of the rCUDA framework has been

improved. Afterwards, Chapter 4 details the performance analysis and optimizations

carried out for InfiniBand networks. Then, Chapter 5 shows the development done to

allow peer to peer memory copies between remote GPUs located in different nodes of

the cluster. Later, Chapter 6 presents the work concerning the fine-grain dynamic and

adaptative scheduling for GPUs. Finally, Chapter 7 summarizes this thesis, discusses

future work, and enumerates the related publications.

3Remote Libraries (rLIBs). More information at www.remotelibraries.com.

www.rcuda.net
http://twitter.com/rcuda_
www.remotelibraries.com




Chapter 2

Related Work

Currently, many different remote GPU virtualization frameworks exist, all of them

presenting very different characteristics. These differences among them may lead to

differences in performance. In this chapter a review of the virtualization frameworks

currently available is presented, placing particular emphasis on rCUDA. Additionally, we

show a performance comparison among the only three CUDA remote GPU virtualization

frameworks publicly available at no cost at the beginning of this thesis (July 2012).

Results show that performance greatly depends on the exact framework used, being the

rCUDA virtualization solution the one that stands out among them. The work presented

in this chapter has been published in [18].

11
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2.1 Existing Remote GPU Virtualization Solutions

The use of CUDA GPUs allows reducing the execution time of parallel applications and

presents several side-effects, as explained in the previous chapter. In this context, several

remote GPU virtualization frameworks have been created to overcome these drawbacks,

such as VGPU [19], GridCuda [20], DS-CUDA [21], GVirtuS [22], vCUDA [23],

GViM [24], rCUDA [15], and Shadowfax II [25].

Figure 2.1 depicts the architecture underlying most of these virtualization solutions,

which follow a client-server distributed approach. The client part of the middleware

is installed in the cluster node executing the application requesting GPU services,

whereas the server side runs in the computer owning the actual GPU. Generally, the

client middleware offers the same application programming interface (API) as does the

NVIDIA CUDA API [26]. In this manner, the client receives a CUDA request from the

accelerated application and appropriately processes and forwards it to the remote server.

In the server node, the middleware receives the request and interprets and forwards it

to the GPU, which completes the execution of the request and provides the execution

results to the server middleware. In turn, the server sends back the results to the client

middleware, which forwards them to the initial application, which is not aware that its

request has been serviced by a remote GPU instead of a local one.

Different virtualization frameworks provide different features, as shown in Table 2.1. For

example, the vCUDA technology supports the old CUDA 3.2 version and implements

an unspecified subset of the CUDA API. Moreover, its communication protocol presents

a considerable overhead. GViM is based on the old CUDA version 1.1 and does not

implement its entire API. The gVirtuS approach is based on the old CUDA version 2.3

Application

Client middleware
CUDA libraries 

Server
middleware

Hardware

Software

Client side Server side

Network

CUDA API

GPU

Figure 2.1: Architecture usually deployed by remote GPU virtualization frameworks.
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Table 2.1: Comparison of existing CUDA-based virtualization solutions at the
beginning of this thesis (July 2012) and current version of rCUDA (June 2017).

Feature Virtualization Solutions
(support) vCUDA GViM gVirtuS VGPU DS-CUDA GridCuda rCUDA

CUDA 3.2 1.1 2.3 4.0 4.1 3.2 8.0
version

Full
CUDA no no no N/A no N/A yes

API

Latest
activity 2012 2009 2010 2012 2012 2011 2017

year

Multi- N/A N/A N/A N/A yes yes yes
GPU

Multi- N/A N/A N/A N/A yes yes yes
thread

TCP/IP yes no yes yes yes yes yes

HPC no no no yes yes no yes
networks

and implements only a small portion of its API. VGPU is a tool supporting CUDA

4.0 although the information provided by its authors is fuzzy. GridCuda supports the

old CUDA 2.3 version. Regarding DS-CUDA, it integrates a more recent version of

CUDA (4.1) and includes specific communication support for InfiniBand. Shadowfax II

is still under development, not presenting a stable version yet and its public information

is not updated to reflect the current code status. In the case of rCUDA, its latest

version 16.11 supports CUDA 8.0, implementing specific communication modules for

different interconnects, namely, the general TCP/IP protocol stack and InfiniBand, as

it will be detailed in the next section. Note that as of this writing, other solutions have

appeared [17], but they are very recent ones and we were not able to include them in

this study.

In the rest of this chapter we first introduce rCUDA in more detail, and then we

present a performance comparison among the publicly available CUDA remote GPU

virtualization frameworks: gVirtuS, DS-CUDA, and rCUDA. The performance of CUDA

is also included for comparison purposes.
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Application

rCUDA client
CUDA

libraries 

rCUDA server

Hardware

Software

Client side Server side

Network

CUDA API

GPU

common communication API
TCP/IP

module
InfiniBand

module
Other

modules

common communication API
TCP/IP

module
InfiniBand

module
Other

modules

Figure 2.2: Overview of the rCUDA modular architecture, showing also the runtime-
loadable specific communication modules.

2.2 rCUDA: remote CUDA

The rCUDA framework1 grants applications transparent access to GPUs installed on

remote nodes, so that they are not aware of the use of an external device. This framework

is organized following a client-server architecture; see Figure 2.2. The client middleware

is used by the application demanding general-purpose computing on GPUs (GPGPU)

services and presents to the application the same interface as the regular NVIDIA CUDA

API does. Upon receiving a request from the application, the client middleware processes

it and forwards the corresponding requests to the rCUDA server middleware, running on

a remote node. The server interprets the requests and performs the required processing

by instructing the real GPU to execute the corresponding request. Once the GPU has

completed the execution of the requested command, the results are gathered by the

rCUDA server, which sends them back to the client middleware. There, the output is

forwarded to the demanding application.

The communication between rCUDA clients and remote GPU servers is carried out via a

customized application-level protocol tailored for the underlying network; see [27–29]. As

can be seen in Figure 2.2, it is based on a modular communication architecture which

supports runtime-loadable specific communication modules. Communication between

clients and servers has been improved by accommodating a pipelined approach, in order

to increase effective throughput and, therefore, squeeze as much bandwidth as possible

from the underlying interconnect. All this functionality, which is transparent to rCUDA

users, has been made possible by a carefully designed proprietary common internal

1The rCUDA framework can be requested for download from http://www.rcuda.net/index.php/

software-request-form.html

http://www.rcuda.net/index.php/software-request-form.html
http://www.rcuda.net/index.php/software-request-form.html
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API for rCUDA communications. That API enables rCUDA clients and servers to

(1) communicate through different underlying communication technologies (Ethernet,

InfiniBand, etc.) and (2) to do so efficiently, since the communication functionality can

be specifically implemented and tuned up for each different communication technology.

rCUDA currently supports efficient communication over Ethernet and InfiniBand and

opens the door to other interesting future network technologies as well as to virtual

machine environments such as Xen [30]. Furthermore, regardless of the specific

communication technology used, data transfers between rCUDA clients and servers are

pipelined in order to improve performance. For this purpose, rCUDA uses preallocated

buffers of pinned memory, exploiting the higher throughput that this kind of storage

provides. The reader can refer to [16] for a detailed analysis.

In general, the performance offered by rCUDA is lower than that of the original CUDA,

since with rCUDA the GPU is farther away from the invoking application than it is

with CUDA, thus introducing some overhead. Depending on the network bandwidth,

however, this penalty is very low for most applications, as it will be seen in later chapters.

Moreover, the performance of applications using rCUDA is still noticeably higher than

that provided by computations on regular CPUs. Taking into account the flexibility

provided by rCUDA, in addition to the reduction in energy and acquisition costs it

enables, the benefits of rCUDA outweigh the overhead it introduces, as will be shown in

later chapters. Figure 2.3 depicts different possibilities that the use of rCUDA provides,

showing the flexibility it introduces.

The first version of rCUDA was released in April, 2010. Since then, the rCUDA

framework has evolved to adapt to new CUDA features. Table 2.2 presents detailed

information about this evolution. The table shows all the versions published as of

writing. In addition, in order to better understand the context of this thesis, the table

also includes the major contributions of the dissertation, highlighted in bold type, as

well as the dates in which Carlos Reaño, the author of the thesis, joined the rCUDA

Team2.

2.3 Bandwidth Comparison

Figure 2.4 presents a performance comparison of the three GPU virtualization solutions

publicly available at no cost at the beginning of this thesis (July 2012), showing also

the performance of CUDA as the baseline reference. The well-known bandwidthTest

2The rCUDA Team includes the several students that contribute to the rCUDA technology. The
team, which is led by Federico Silla since it was created in 2008, has evolved over time trying to reach
a stable configuration, which will help transferring the rCUDA framework to industry
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Table 2.2: Evolution of rCUDA showing, for each version, the release date and the
main new features included in the version. Major contributions of this thesis are
highlighted in bold type, as well as the dates in which Carlos Reaño joined the rCUDA

Team.

Version Release date New features

16.11 Oct. 21, 2016 Support for CUDA 8.0
Support for peer to peer memory copies
between remote GPUs

16.06 June 10, 2016 Support for CUDA 7.5
InfiniBand optimizations

15.10 Oct. 3, 2015 InfiniBand optimizations

15.07 July 3, 2015 Support for CUDA 7.0
Support for dual-port InfiniBand cards
InfiniBand optimizations
Support for cuDNN

5.0 Oct. 28, 2014 Support for CUDA 6.5

4.2 May 31, 2014 Support for CUDA 6.0

4.1.1 Mar. 28, 2014 Bug fixes and enhancements

4.1 Feb. 25, 2014 Support for CUDA 5.5

4.0.1 Feb. 22, 2013 Support for CUDA mapped memory

4.0 Dec. 14, 2012 Support for CUDA 5.0

4.0b Nov. 24, 2012 Binary compatibility with CUDA

4.0a Aug. 6, 2012 Support for multi-thread applications
New communication architecture

3.2 Apr. 27, 2012 Support for CUDA 4.2

3.1.3 Apr. 17, 2012 Bug fixes and enhancements

3.1.2 Feb. 16, 2012 Support for CUDA 4.1

3.1.1 Jan. 18, 2012 Support for CUBLAS (simple precision)

3.1 Oct. 4, 2011 Support for Unified Virtual Addressing

3.0a Jul. 6, 2011 Support for CUDA 4.0
First version including Carlos Reaño developments

2.0.3a May 23, 2011 Bug fixes and enhancements

Feb. 17, 2011 - Carlos Reaño joins the rCUDA team

2.0.2 Jan. 26, 2011 Bug fixes and enhancements

2.0.1 Jan. 19, 2011 Bug fixes and enhancements

2.0 Nov. 19, 2010 Support for CUDA 3.1

1.0.3 June 2, 2010 Bug fixes and enhancements

1.0.2 May 24, 2010 Bug fixes and enhancements

1.0.1 Apr. 22, 2010 Bug fixes and enhancements

1.0 Apr. 1, 2010 Support for CUDA 3.0
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rCUDA serverInterconnectrCUDA client

(a) Typical configuration with one client and one server.

rCUDA client

rCUDA server

rCUDA server

rCUDA serverInterconnect

(b) Configuration where one rCUDA client makes use of three servers.

rCUDA client/server

(c) A single computer acting as both client and server. The local GPU is accessed through the rCUDA middleware.

Figure 2.3: Examples of possible rCUDA client-server combinations.

benchmark from the NVIDIA CUDA Samples [31] has been employed. The reason for

using bandwidth for comparing performance is that, when transferring data in CUDA

applications between main memory and GPU memory, data copy sizes are, in general,

large (in the order of MB). These large data transfers are mostly influenced by attained

bandwidth, which turns out to be the most limiting factor regarding the performance

of these solutions. Consequently, other metrics such as latency are less relevant in this

context.

The testbed used in the experiments consists of two servers featuring two Intel Xeon E5-

2620 processors (Sandy Bridge) operating at 2.00 GHz and 32 GB of DDR3 memory at

1333 MHz. The computers also include an FDR InfiniBand adapter. One of the nodes

owns an NVIDIA Tesla K20c GPU. Linux CentOS 6.3 was used along with NVIDIA

driver 285.05 and Mellanox OFED 1.5.3 (InfiniBand drivers and administrative tools).

Given that the FDR InfiniBand network technology was used to connect both computers,

both rCUDA and DS-CUDA made use of the InfiniBand Verbs API. In the case of

gVirtuS, TCP/IP over InfiniBand was used because it is not able to take advantage of

the InfiniBand Verbs API.

Notice that the three GPU virtualization solutions analyzed support different versions
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(a) Copies from host pinned memory to device memory.
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(b) Copies from device memory to host pinned memory.
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(c) Copies from host pageable memory to device mem-
ory.
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(d) Copies from device memory to host pageable mem-
ory.

Figure 2.4: Performance comparison among three publicly available CUDA GPU vir-
tualization solutions: gVirtuS, DS-CUDA, and rCUDA. The comparison is performed
in terms of attained bandwidth. The performance of CUDA is also depicted for com-

parison purposes.

of CUDA: DS-CUDA is compatible with CUDA 4.1, gVirtuS supports the old CUDA

2.3 version and rCUDA supports CUDA 4.2 at the time of the experiments (July 2012).

Thus, each of the frameworks has been analyzed with the respective version of CUDA

supported. In this regard, it is important to remark that, in order to avoid introducing

additional noise in this particular test, we have previously compared the bandwidth

achieved by the three versions of CUDA and the result is that differences in performance

for the bandwidth test are negligible from one CUDA version to another.

Regarding the bandwidthTest benchmark used in the experiments, it allows different

memory copy tests depending on the memory kind used and the copy direction. In

this way, it is possible to differentiate between main memory, also referred to as host

memory, and GPU memory, also referred to as device memory. With respect to the host

memory, it can be pageable memory or page-locked memory. The later is also referred

to as pinned memory, and offers a higher bandwidth than the pageable one.

Results in Figure 2.4 deserve some discussion. First, it can be seen in Figures 2.4(a)

and 2.4(b) that CUDA achieves the highest performance when pinned memory is

used, attaining a bandwidth around 6,000 MB/s. Notice that this bandwidth is

noticeably reduced for copies using pageable memory, as show in Figures 2.4(c) and

2.4(d). Second, Figure 2.4 shows that rCUDA outperforms the other two remote
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GPU virtualization solutions. Actually, for copies from host pageable memory to

device memory, Figure 2.4(c), using pageable memory rCUDA also performs better

than CUDA. This is a well-known effect thoroughly described in previous works on

rCUDA [15] and is due to the use of an efficient pipelined communication based on the

use of internal pre-allocated pinned memory buffers. On the other hand, notice that

both rCUDA and DS-CUDA make use of the InfiniBand Verbs API, thus having access

to the large bandwidth available in this interconnect. However, DS-CUDA presents a

very poor performance. Also, notice that DS-CUDA supports neither memory copies

larger than 32MB nor the use of pinned memory. Regarding gVirtuS, its performance is

extremely low. One may think that this is due to the fact that gVirtuS is using TCP/IP

over InfiniBand, which clearly achieves lower performance than the InfiniBand Verbs

API. However, according to our measurements with the iperf tool, TCP over InfiniBand

FDR provides around 1,190 MB/s, which is a noticeably larger bandwidth than the one

attained by gVirtuS. Hence, the low performance of this middleware is not due to the

use of TCP/IP over InfiniBand but to the way it internally manages communications.

2.4 Summary

In this chapter we have presented and compared the performance of the publicly available

CUDA remote GPU virtualization frameworks. Furthermore, their throughput has

been put into the context of the performance of CUDA. Results show that the rCUDA

framework outperforms the other two remote GPU virtualization solutions. Given that

rCUDA seems to be the current best solution, it has been selected as the starting point

for this thesis, in order to enhance it for its use in high-performance clusters.
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Improving the user experience of

rCUDA

While the initial prototype versions of rCUDA developed prior to this thesis already

demonstrated its functionality, they also revealed concerns with respect to usability and

support for new CUDA features. In response to these issues, in this chapter we present

the first of the rCUDA versions developed along this thesis. This version (1) improves

usability by including a new component that allows an automatic transformation of any

CUDA source code so that it conforms to the needs of the rCUDA framework, and (2)

supports multithreaded applications and CUDA libraries. As a result, rCUDA allowed

the use of remote GPUs within a cluster, for any CUDA-compatible program and in

a transparent way to the user. The work discussed in this chapter has been published

in [32, 33].

21
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Link with Industry

The initial prototype of rCUDA forced the source code of applications to meet very strict

requirements thus making rCUDA uncomfortable to use. In this way, the first step for

turning rCUDA into a production-ready solution was making it binary compatible with

CUDA, without requiring modification to the source code of applications.

This chapter makes a major contribution in this sense. It presents a CUDA-to-rCUDA

converter developed to automatically analyze the application source code in order to

find which parts must be modified and adapted to the requirements of rCUDA without

human intervention, thus making the use of rCUDA much more comfortable.

Nevertheless, the research and analysis carried out for the development of the converter

presented in this chapter finally derived, in subsequent versions of rCUDA, in the

binary compatibility of any CUDA application. This binary compatibility means that

applications can be executed with rCUDA without being necessary to modify their

source code (no conversion needed). In the following chapters, we will be using versions

of rCUDA including this binary compatibility.

3.1 Background

The rCUDA remote GPU virtualization framework grants access to GPUs installed

in remote nodes to CUDA-based applications. In this manner, applications remain

unaware that they deal with virtualized GPUs instead of real ones. The initial rCUDA

prototype [27–29] focused on demonstrating that the exploitation of remote CUDA

devices is feasible but revealed the following drawbacks:

• The usability of the rCUDA framework was limited by its lack of support for the

CUDA C extensions. As shown in Section 3.2, the reason is the use of the CUDA

runtime library, which includes several hidden and undocumented functions within

these extensions. Therefore, in order to avoid the use of these undocumented

functions, our framework offered support only for the plain CUDA C API, thus

making it necessary to rewrite those lines of the application source files that employ

the CUDA C extensions. For applications comprising large amounts of source code,

performing this process manually was cumbersome.

• Our rCUDA virtualization solution had to evolve to support the new versions of

CUDA being periodically released. In this regard, the initial rCUDA prototype

presented in [27–29] supported the now-obsolete CUDA 2 and 3 versions. After
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those initial versions of rCUDA, NVIDIA introduced support for multithreaded

applications in CUDA 4 and later a new way to internally manage CUDA

libraries in CUDA 5, resulting in significant changes with respect to prior versions.

Subsequent versions of CUDA also introduced additional changes.

Because of these drawbacks, the user’s experience with the rCUDA remote GPU

virtualization framework was far from ideal, where users can seamlessly access remote

GPUs without noticing any significant performance loss or having to adapt their

application codes to the requirements of the remote GPU virtualization framework.

Thus, when using the rCUDA prototype presented in [27–29] (rCUDA v3), the user’s

experience was relatively unsatisfactory. rCUDA users suffered from a hard limitation

about which CUDA programs they were able to remotely execute with rCUDA,

given that the CUDA C extensions were not supported by the rCUDA framework.

Additionally, the new features introduced in versions 4 and 5 of CUDA could not be

leveraged. The result was that rCUDA users had to manually modify the source code

of their programs, which was hardly acceptable.

In this chapter we present how we enriched rCUDA (creating rCUDA v4) by addressing

the concerns above, thus narrowing the distance between the actual user’s experience

and the ideal case. In this way, we improved rCUDA with the following additions:

• A complementary tool, CU2rCU, to automatically analyze and modify the applica-

tion source code in order to find which parts, containing CUDA C extensions, must

be modified and adapted to the requirements of rCUDA. This tool automatically

performs the required changes, without the manual intervention of a programmer.

Moreover, the CU2rCU tool has been integrated into the compilation flow, so that

rCUDA users can effectively replace the call to NVIDIA’s nvcc compiler with the

CU2rCU command, which will internally make use of the required backend compilers

after analyzing and adapting the source code files.

• Support for multithreaded applications and for all CUDA libraries, thus allowing

users to leverage all the new features included in CUDA versions 4 and 5.

Additionally, the new version of rCUDA is now able to offer a single application,

being executed in a single node, access to GPUs in many different nodes of the

cluster (multinode configuration). This is an important improvement over CUDA,

where the number of GPUs provided to an application running in a given node is

limited to the GPUs that can be attached to that single node (typically up to 4 and

usually never more than 8). In the new version, rCUDA enables an application

to directly access all the GPUs in the cluster, thus boosting its performance.
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Therefore, the only limit is imposed by the characteristics of the applications and

the ability of the programmer to extract parallelism.

In summary, this chapter presents a CUDA-compatible (supporting all CUDA libraries)

GPGPU virtualization solution that, in addition to promoting green computing, provides

applications access to a virtually unlimited number of GPUs, thus making the use of

GPU accelerators in the HPC context even more beneficial. This chapter also presents,

for the first time in the rCUDA project, a comprehensive performance evaluation and

analysis of the rCUDA framework. This performance analysis is essential to provide a

production ready solution.

The rest of the chapter is organized as follows. The CU2rCU tool is described and

analyzed in Section 3.2; a performance evaluation of different benchmarks is carried out

in Section 3.3; and the evolution of rCUDA to support multithreaded applications and

CUDA libraries is presented in Section 3.4. In Section 3.5 we summarize the conclusions

of this chapter.

3.2 CU2rCU: A CUDA-to-rCUDA Converter

This section motivates the need for a CUDA-to-rCUDA source-to-source converter;

presents CU2rCU, a tool developed for that purpose; and describes the experiments carried

out to evaluate the tool.

3.2.1 Need for a CUDA-to-rCUDA Converter

A CUDA program can be viewed as a regular C program where some of its functions

have to be executed by the GPU or device instead of the traditional CPU or host.

Programmers usually control the CPU-GPU interaction via the CUDA Runtime API

for GPGPU programming. This API includes CUDA extensions to the C language,

which are constructs that follow a specific syntax designed to make CUDA programming

more accessible, usually leading to fewer lines of source code than its plain C equivalent

(though both codes tend to look similar). The code in Listing 3.1 shows an example

of a “hello world” program in CUDA. In this example, the functions cudaMalloc (line

13), cudaMemcpy (lines 15 and 19), and cudaFree (line 21) belong to the plain C API

of CUDA, whereas the kernel launch sentence in line 17 uses the syntax provided by the

CUDA extensions.

CUDA programs are compiled with the NVIDIA nvcc compiler [34], which detects

fragments of GPU code within the program and compiles them separately from the
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1 #include <cuda . h>

2 #include <s t d i o . h>

4 // Device code

5 g l o b a l void hel loWorld (char∗ s t r ) {
6 // GPU ta s k s .

7 }

9 // Host code

10 int main ( int argc , char ∗∗ argv ) {
11 const char h s t r [ ] = ” He l lo World ! ” ;

12 // . . .

13 cudaMalloc ( ( void ∗∗)&d st r , s i z e ) ;

14 // copy the s t r i n g to the dev i ce

15 cudaMemcpy( d s t r , h s t r , s i z e , cudaMemcpyHostToDevice ) ;

16 // launch the ke rne l

17 helloWorld<<< BLOCKS, THREADS >>>(d s t r ) ;

18 // r e t r i e v e the r e s u l t s from the dev i ce

19 cudaMemcpy( h s t r , d s t r , s i z e , cudaMemcpyDeviceToHost ) ;

20 // . . .

21 cudaFree ( d s t r ) ;

22 p r i n t f ( ”%s \n” , h s t r ) ;

23 return 0 ;

24 }

Listing 3.1: “Hello world” program.

CPU code. During this compilation process, references to structures and functions not

made public in the CUDA documentation are automatically inserted into the CPU code.

These undocumented functions impair the creation of tools that need to replace the

original CUDA Runtime Library from NVIDIA. To overcome this problem, we initially

decided not to support these undocumented functions in rCUDA; instead, we offered a

compile-time work-around that avoids their use. Notice that doing so requires bypassing

nvcc for CPU code generation, since this compiler automatically inserts references to

them into this code. Therefore, the CPU code in a CUDA program should be directly

managed by a regular C compiler (e.g., GNU gcc). On the other hand, since a plain C

compiler cannot deal with the CUDA extensions to C, they should be unextended back

into plain C. Since manually performing these changes for large programs is a tedious,

sometimes error-prone task, we have developed an automatic tool that modifies a CUDA

source code with CUDA extensions and transforms it into its plain C equivalent. This

automatic tool is a major contributor to improving the experience of those using the

rCUDA framework. With this new tool, when a given CUDA source code is to be

compiled for execution within the rCUDA framework, it is split into two parts:

• Host code: processed with a backend compiler such as GNU gcc (for either C or

C++ languages), after being unextended, and executed on the host

• Device code: compiled with the nvcc compiler and executed on the device.
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#define ALIGN UP( o f f s e t , a l i g n ) ( o f f s e t ) = \
( ( o f f s e t ) + ( a l i g n ) − 1) & ˜( ( a l i g n ) − 1)

int main ( ) {
// . . .

// The f o l l ow i n g code l i n e s r ep l a ce l i n e 17 o f the prev ious

// p iece o f code , where ke rne l ” he l loWorld ” was launched :

cudaConf igureCal l (BLOCKS, THREADS) ;

int o f f s e t = 0 ;

ALIGN UP( o f f s e t , a l i g n o f ( d s t r ) ) ;

cudaSetupArgument(& d st r , s izeof ( d s t r ) , o f f s e t ) ;

cudaLaunch ( ” hel loWorld ” ) ;

// . . .

}

Listing 3.2: Unextending line 17 of “Hello world” program.

Revisiting the previous “hello world” CUDA example, the code snippet in Listing 3.2

shows the transformation into plain C of the kernel call in line 17 employing the extended

syntax.

To separately generate CPU and GPU code, we leverage a feature of nvcc that allows

one to extract and compile only the device code from a CUDA program and generate a

binary file containing only the GPU code. For the host code, once the CUDA extensions

to C have been transformed into code using only the plain C CUDA API, we generate the

corresponding binary file with a backend C compiler. Notice that prior to using a regular

C compiler, the GPU code should additionally be removed from the program code, since

regular C compilers cannot cope with such code. The separation and transformation

process is illustrated in Figure 3.1.

Notice that the code transformations we propose, along with the specific usage of

the compilers mentioned above, modify the compilation flow. In the original CUDA

compilation flow, the input program was separated into host code and device code.

During that process, the device code was transformed into binary code and embedded

into the previously separated host code. The host code with the binary device code

embedded was then compiled with gcc, generating an executable that had the binary

device code embedded. On the contrary, in the rCUDA compilation flow, the CU2rCU

converter is initially applied to the input program in order to obtain its equivalent source

CUDA 
Program 
(Device + 

Host Code) 

NVCC 

Converter 

Device 
Code 

Host Code 

Figure 3.1: CUDA-to-rCUDA conversion process.
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Figure 3.2: CUDA-to-rCUDA converter detailed view.

code using only plain C and without device code. From this converted code, the tool

produces an executable that has references to device code stored in an external repository

generated with nvcc by using the appropriate option.

3.2.2 Implementing the CU2rCU Converter

A source-to-source transformation framework was leveraged in order to implement the

automatic tool that transforms source code employing CUDA extensions into plain

C code. Different options for this class of source transformations are available, from

simple pattern string replacement tools to frameworks that parse the source code into

an abstract syntax tree (AST) and transform the code using that information. Since our

tool needs to do complex transformations involving semantic C++ code information, we

have selected the latter approach.

Several frameworks are available to tackling complex source transformations, for example

ROSE [35], GCC [36], and Clang [37]. We have chosen Clang because it is widely used

and explicitly supports programs written in CUDA. Moreover, some converters of CUDA

source code exist that are also based on Clang, such as CU2CL [38], which transforms

code from CUDA to OpenCL.

Clang, one of the primary subprojects of LLVM [39], is a C language family compiler

that aims at providing a platform for building source code level tools, including source-

to-source transformation frameworks.

Figure 3.2 shows how the developed converter interacts with Clang. The inputs to

the converter are CUDA source files containing device and host code with CUDA

extensions, as explained in the previous subsection. The Clang driver (a compiler

driver providing access to the Clang compiler and tools) parses those files generating
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an AST. The Clang plugin that we have developed, CU2rCU, then uses the information

provided by the AST and the libraries contained in the Clang framework to perform the

needed transformations, generating new source files that contain only host code with

the plain C syntax. During the conversion CU2rCU automatically analyzes user source

files included by the input files, converting them when necessary. Some of the most

important transformations are detailed next.

3.2.2.1 Kernel Calls

A kernel call employing CUDA C extensions, as for example:

1 kernelName <<< Dg, Db >>>(param 1 , . . . , param n ) ;

must be transformed in order to use the plain C API as follows:

1 cudaConf igureCal l (Dg , Db) ;

2 int o f f s e t = 0 ;

3 setupArgument ( param 1 , &o f f s e t ) ;

4 setupArgument ( . . . , &o f f s e t ) ;

5 setupArgument ( param n , &o f f s e t ) ;

6 cudaLaunch ( ”MangledkernelName” ) ;

The function setupArgument() is provided by the rCUDA framework. It is a wrapper

of the plain C API function cudaSetupArgument() and, therefore, it just simplifies the

inserted code by avoiding the need to explicitly handle argument offsets.

3.2.2.2 Kernel Names

In the cudaLaunch() call inserted in the previous transformation, the mangled kernel

name must be used if it is not a function with external C linkage. Otherwise, the kernel

name as written must be used. For instance, if we have the following kernel declaration:

1 g l o b a l void i n c r ement ke rne l ( int∗ x , int y ) ;

its mangled name may be used when launching this kernel:

1 cudaLaunch ( ” Z16 inc r ement ke rne lP i i ” ) ;

However, if the kernel is declared with external C linkage:

1 extern ”C”

2 g l o b a l void i n c r ement ke rne l ( int∗ x , int y ) ;

the original kernel name has to be used instead.

Determining the mangled kernel name becomes a complex task when there are kernel

template declarations with type dependent arguments. For example, for the kernel

template declaration:
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1 template<class TData> g l o b a l void t e s tKerne l (

2 TData ∗d odata , TData ∗ d idata , int numElements ) ;

the mangled kernel name used to launch it depends on the type of TData:

1 i f ( ( typeid (TData) == typeid (unsigned char ) ) ) {
2 cudaLaunch ( ” Z10testKerne l IhEvPT S1 i ” ) ;

3 } else i f ( ( typeid (TData) == typeid (unsigned short ) ) ) {
4 cudaLaunch ( ” Z10testKerne l I tEvPT S1 i ” ) ;

5 } else i f ( ( typeid (TData) == typeid (unsigned int ) ) ) {
6 cudaLaunch ( ” Z10tes tKerne l I jEvPT S1 i ” ) ;

7 }

3.2.2.3 CUDA Symbols

When using CUDA symbols as function arguments, they can be either a variable declared

in device code or a character string naming a variable that was declared in device code.

As the device code has been removed, only the second option becomes feasible. For this

reason, those occurrences that fall into the first category have to be transformed. For

instance, in the following function call:

1 c o n s t a n t f loat symbol [ 2 5 6 ] ;

2 f loat s r c [ 2 5 6 ] ;

3 cudaMemcpyToSymbol ( symbol , s rc , s izeof ( f loat ) ∗256) ;

the argument symbol has to be surrounded by quotation marks to transform it into a

character string:

1 cudaMemcpyToSymbol ( ”symbol” , src , s izeof ( f loat ) ∗256) ;

3.2.2.4 Textures and Surfaces

Similarly to CUDA C extensions, in order to use the C++ high level API functions from

the CUDA Runtime API, an application needs to be compiled with the nvcc compiler.

However, as within the rCUDA framework application source code needs to be compiled

with a GNU compiler, we need to transform these functions. This is the case of CUDA

textures and surfaces. Thus, textures declared using this API, like:

1 texture<f loat , 2> textureName ;

are transformed as follows:

1 t ex tu reRe f e r ence ∗ textureName ;

2 cudaGetTextureReference ( ( const t ex tu reRe f e r ence ∗∗) &textureName ,

” textureName” ) ;

A consequence of this transformation is that texture variables become pointers, and

access to their attributes such as:
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1 textureName . a t t r i b u t e = value ;

will now result in:

1 textureName−>a t t r i b u t e = value ;

The same transformations explained for CUDA textures apply to CUDA surfaces.

Finally, it is worth to mention that we have validated the correctness of the implemented

converter on several CUDA programs, as explained in next section, confirming that the

functionality of the original programs has been fully preserved.

3.2.3 Evaluation of the CU2rCU converter

To test the new CU2rCU tool, we have used sample codes from the NVIDIA GPU

Computing SDK [31] and the production code of the LAMMPS Molecular Dynamics

Simulator [40].

Our first experiments dealt with a representative set of examples from the NVIDIA GPU

Computing SDK. Table 3.1 shows the time1 required for their conversion in seconds. In

the experiments we employed a desktop platform equipped with an Intel(R) Core(TM)

2 DUO E6750 processor (2.66 GHz, 2 GB RAM) and a GeForce GTX 590 GPU, running

Linux OS (Ubuntu 10.04). We used nvcc version 5, as well as Clang version 3.0. Table 3.1

also reports the number of lines of the original application and the modified sources

obtained by our tool. The total time required for the automatic conversion of all these

examples, 10.26 seconds, compared with the time spent on a manual conversion by

an expert from the rCUDA team, 30.5 hours, clearly shows the benefits of using the

converter. We note that the tasks of manually converting the code, on the one hand,

and those for creating the converter, on the other hand, were fully disconnected among

them, being carried out by different people, in order to avoid a bias in the comparison.

We note also that an automatic source code conversion leads to a slightly larger amount

of modified lines (though some of them correspond to sentences split into two lines).

Nevertheless, the code automatically generated is similar to the one obtained from a

manual conversion.

In addition to testing the converter with NVIDIA SDK codes, we have evaluated it on

a real-world production code: the LAMMPS molecular dynamics simulator. This is a

classic molecular dynamics code that can be used to model the interactions among atoms

or, more generically, as a parallel particle simulator at the atomic, meso, or continuum

1Conversion and compilation time shown in this section have been gathered in an iterative way so
that a given compilation (or conversion) has been repeated until the standard deviation of the measured
time was lower than 5%.
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Table 3.1: CU2rCU Conversion Statistics.

Lines of Code
CUDA SDK Sample Time (s) CUDA Modified/Added

Name Acronym Code Num. %

alignedTypes AT 0.259 186 32 17.20

asyncAPI AP 0.191 78 6 7.69

bandwidthTest BT 0.407 708 0 0.00

BlackScholes BS 0.364 281 13 4.63

clock CL 0.196 75 8 10.67

concurrentKernels CK 0.196 100 11 11.00

convolutionSeparable CS 0.591 319 18 5.64

cppIntegration CI 0.685 129 12 9.30

dwtHaar1D DH 0.221 266 11 4.14

fastWalshTransform FW 0.360 241 20 8.30

FDTD3d FD 1.082 860 13 1.52

matrixMul MM 0.394 272 34 12.50

mergeSort MS 0.917 1124 105 9.34

scalarProd SP 0.358 138 10 7.25

scan SC 0.548 359 26 7.24

simpleAtomicIntrinsics SA 0.367 211 6 2.84

simpleMultiCopy SM 0.202 211 22 10.43

simpleTemplates ST 0.211 241 13 5.39

simpleVoteIntrinsics SV 0.196 222 19 8.56

SobolQRNG SQ 1.278 10586 8 0.08

sortingNetworks SN 0.761 571 70 12.26

template TE 0.357 97 7 7.22

vectorAdd VA 0.192 88 8 9.09

LAMMPS Molecular Dynamics Simulator

Package USER-CUDA LA 6.910 14742 1409 9.56

scale. The entire application comprises more than 300,000 lines of code distributed

over 30 packages. Some of those packages are written for CUDA, such as GPU or

USER-CUDA, which are mutually exclusive. We have evaluated our tool against the

USER-CUDA package, with over 14,000 lines of code. The bottom part of Table 3.1

shows the results of the conversion. The time spent by a CUDA expert to adapt the

original code was two weeks with full-time dedication.

Moreover, we have compared the time spent in the compilation of the original CUDA

source code of the SDK samples and LAMMPS with the period spent in their conversion

and subsequent compilation of the converted code by our tool. The results, shown in

Figure 3.3, demonstrate that the time of converting the original code and later compiling

it is similar to the compilation time of the original sources. To explain why both times
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Figure 3.3: nvcc compilation time compared with CU2rCU conversion plus compilation
time for CUDA SDK samples and LAMMPS.

Table 3.2: Comparison of CUDA and rCUDA Compilation Phases.

Times Each Phase is Executed
Compilation
Phase

CUDA rCUDA

cu2rcu 0 1

gcc 6 5

cudafe 2 2

cudafe++ 1 1

filehash 1 0

nvopencc 1 1

ptxas 1 1

fatbin 1 1

are similar, in Table 3.2 we present a comparison of the phases in the CUDA and

rCUDA compilation flows, in terms of how many times each phase of nvcc is invoked2.

The CU2rCU compilation phase can be regarded as a gcc one because we are really

calling Clang, which is also a C compiler. Therefore, we could state that, in both flows,

the gcc compilation phase is actually executed six times. In the CU2rCU compilation

phase we must also take into account that, apart from compilation time, we are doing

source transforms, which also take time. In the rCUDA compilation flow, this time is

compensated for, since (1) it does not require the filehash phase [34], present only in

the CUDA flow, and (2) Clang is faster than gcc. Hence, the total time is similar in

both cases.

2 The states cudafe, cudafe++, filehash, nvopencc, ptxas, and fatbin refer to calls to NVIDIA
internal compilation tools, while gcc refers to calls to the GNU compiler. All these calls are automatically
performed by the NVIDIA nvcc compiler and, therefore, are transparent to users. For details about why
each of the tools are called and about what happens at each step, see [34].
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3.3 Performance evaluation

Once we can run any CUDA source code with the rCUDA framework thanks to the

CU2rCU tool described in the previous section, we are now in the position to carry

out a thorough performance evaluation. Notice that apart from the referred tool to

adapt programs to the rCUDA framework, the version of rCUDA used in the following

experiments (version 4) also includes an enhanced internal architecture (see Table 2.2

in Chapter 2), which is part of a previous thesis [16].

In Figure 3.4(a) we introduce the performance of the SDK samples converted in

the previous section. This figure presents normalized execution time for CUDA and

rCUDA over a QDR InfiniBand fabric. Notice that a raw comparison between rCUDA

and CUDA is intrinsically unfair, since the rCUDA framework initializes the CUDA

environment in the remote GPU server only once, during the rCUDA daemon start-up,

whereas CUDA does the initialization each time an application is executed. Hence,

when an application leverages CUDA, it has to wait for the initialization of the CUDA

environment. On the contrary, applications making use of rCUDA do not have to wait for

such initialization because it is already done in the rCUDA server. Therefore, to provide

a complete view of the rCUDA performance, we have also included in Figure 3.4(a) the

execution time for the local CUDA but with the CUDA environment already initialized

(i.e., the GPU environment previously initialized by other process), labeled as CUDA

initialized in the figure.

As shown in Figure 3.4(a), the execution time for rCUDA is, in general, noticeably

smaller than that of CUDA, despite the access to a remote GPU. The reason is

the initialization overhead. This can be clearly observed when introducing into the

comparison the CUDA-initialized execution time, which is also noticeably smaller than

that of CUDA and, at the same time, similar to the rCUDA execution time in most

of the samples. Table 3.3 shows that the CUDA initialization time is almost constant

for all these samples. Since the execution time for the major part of the samples is

short (less than 2 seconds), this initialization time (over 1.3 seconds) impairs the aim

of these experiments, which is showing rCUDA’s overhead. In this regard, we can also

observe that, for long samples, the difference between CUDA and rCUDA is smaller. For

example, in the FD and SN samples (over 26 and 12 seconds, respectively), the influence

of the initialization time is blurred. Hence, to unmask the actual delay introduced by

the network, as well as the overhead of the rCUDA framework, from now on we will

compare rCUDA execution time versus that of CUDA initialized. In this regard, we can

classify the relative performance between CUDA initialized and rCUDA into three main

cases: one including those samples for which rCUDA presents an overhead higher than

10% (right side of the plot), one including the samples presenting an overhead lower
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Figure 3.4: Performance of the SDK samples converted in the previous section.

than 10% (middle part of the plot), and one including the samples that execute faster

within the rCUDA framework than with regular CUDA initialized (left side of the plot).

Next, we analyze these three cases in more detail.

To explain the results in Figure 3.4(a), we have used the NVIDIA profiling tools [41]

to measure the time spent in transfers (i.e., time spent in memory copies between host

memory and the device memory, also referred to as CUDA memcopy) and the time

employed by computations (i.e., time employed by CUDA kernels). Figure 3.4(b) details

these measurements, as well as the cost that this time (CUDA memcopy + CUDA

kernels) represents with respect to the total execution time of the samples (plotted
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Table 3.3: Initialization time of the CUDA environment in the analyzed CUDA SDK
Samples.

Time (s)
CUDA SDK Sample CUDA CUDA CUDA rCUDA

Initialization Initialized

Samples that run faster with rCUDA than with CUDA

simpleAtomicIntrinsics 1.490 1.340 0.150 0.076

clock 1.488 1.341 0.147 0.079

concurrentKernels 1.519 1.351 0.168 0.093

simpleVoteIntrinsics 1.488 1.341 0.147 0.084

dwtHaar1D 1.491 1.363 0.128 0.089

scalarProd 1.559 1.340 0.219 0.175

asyncAPI 1.675 1.341 0.334 0.273

SobolQRNG 1.732 1.340 0.392 0.359

sortingNetworks 12.735 1.325 11.410 11.369

Samples that present an overhead with rCUDA <10%

convolutionSeparable 5.057 1.342 3.715 3.717

scan 4.269 1.229 3.040 3.059

alignedTypes 5.274 1.367 3.907 3.926

fastWalshTransform 8.062 1.335 6.727 6.887

FDTD3d 26.506 1.648 24.858 25.646

mergeSort 1.854 1.340 0.514 0.538

BlackScholes 3.839 1.361 2.478 2.696

Samples that present an overhead with rCUDA >10%

bandwidthTest 2.215 1.351 0.864 1.237

matrixMul 1.725 1.360 0.365 0.589

simpleMultiCopy 1.920 1.342 0.578 1.205

simpleTemplates 1.564 1.341 0.223 0.528

vectorAdd 1.490 1.350 0.140 0.346

template 1.488 1.341 0.147 0.404

cppIntegration 1.488 1.340 0.148 0.412

with the continuous black line). As shown in Figure 3.4(a), for samples CS, SC, AT,

FW, FD, MS, and BS, the overhead introduced by rCUDA is bearable (i.e., lower than

10%). The reason is that all these samples spend, in general, more time in computations

than in transfers. This property benefits rCUDA in the sense that the time spent in

computations in the GPU is the same for CUDA and rCUDA, thus compensating for

the overhead of rCUDA due to the transfers across the network. The only exception is

sample FD, in which the time spent transferring data is greater than the computations

time. The explanation for the low overhead of this sample is that it has a long duration

(over 24 seconds with CUDA initialized), so that the overhead of transferring data across

the network is minimized.

In Figure 3.4(a), there are also samples for which the overhead introduced by rCUDA is
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considerable (i.e., higher than 10%). This is the case of BT, MM, SM, ST, VA, TE, and

CI. The explanation for samples BT and SM is that they spend more time in transfers

than in computations (see Figure 3.4(b)). The execution time for the rest of the samples

is too short, less than 0.5 seconds, which maximizes their overheads just opposite the

way long samples minimize it.

Surprisingly, some samples run faster with rCUDA than with CUDA initialized. This

is the case of the SA, CL, CK, SV, DH, SP, AP, SQ, and SN. Even if we assume that

the overhead of the rCUDA framework is negligible, they still should present worse

results than those of CUDA initialized, given that the additional delay introduced by

the network will still be present. Figure 3.4(b) reveals that these samples present few

memory transfers, so that the network overhead is negligible, but this fact still does not

explain why rCUDA outperforms CUDA initialized.

A deeper profiling revealed that the analyzed samples have synchronization points, such

as calls to cudaDeviceSynchronize or cudaStreamWaitEvent, that take more time

when using CUDA than when using our framework. For instance, the unique call

to cudaDeviceSynchronize in sample AP takes 529 microseconds in CUDA, whereas

it takes only 41 microseconds in rCUDA. The reason for this lies in the internal

algorithm used in the rCUDA framework used to determine the finalization of the CUDA

tasks, which favors rCUDA in these simple samples. Briefly, this algorithm performs

a nonblocking wait during a small period of time before calling the synchronization

function. If this nonblocking wait is successful, the synchronization function is not

called, and control is immediately returned to the program. Thus, less time is used at

synchronization points.
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Figure 3.5: Execution time of the CL sample in CUDA compared with rCUDA using
different intervals for polling the network devices. The value for the polling interval
within CUDA is the default one used by the CUDA driver. Executions for CUDA
were done using one node equipped with 4 Quad-Core Intel Xeon E5520 processors
and one NVIDIA Tesla C2050. For the rCUDA experiments, two nodes with the same
specifications as the node employed with CUDA were used, both connected by a QDR

InfiniBand network.
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Figure 3.6: CUDA SDK normalized execution time with the GPU previously
initialized by other process (CUDA initialized) compared with rCUDA using different
intervals for polling the network devices (0, 200 µs, 400 µs, 600 µs, and 1000 µs).
Executions for CUDA were done using one node equipped with 4 Quad-Core Intel
Xeon E5520 processors and one NVIDIA Tesla C2050. For the rCUDA experiments,
two nodes with the same specifications as the node employed with CUDA were used,

both connected by a QDR InfiniBand network.

Nevertheless, the time saved in synchronization points in rCUDA does not fully explain

the shorter execution time of these samples. For instance, for sample AP, the execution

time with rCUDA is 61 ms faster than with CUDA initialized (see Table 3.3), while the

time saved (for the reasons explained above) represents only 0.488 ms. After further

research, we found an additional factor that affects execution time: the network polling

interval (i.e., the frequency used to poll the network for work completions). This interval

in the rCUDA implementation is lower than the default polling interval to the PCIe made

by CUDA. To demonstrate this, in Figure 3.5 we report the execution time of the CL

sample when incrementing the rCUDA network polling interval. As we can observe, this

factor clearly affects the final execution time, making rCUDA perform better or worse

than CUDA initialized depending on its value. Figure 3.6(a) presents the normalized

execution time of all samples for which rCUDA is faster than CUDA initialized, but

using different polling intervals, confirming the relevance of this interval. Figure 3.6(b)

presents similar results for the rest of SDK samples analyzed in Table 3.3.
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3.4 Support for multithreaded applications and CUDA

libraries

Typically, providing support within rCUDA for the new features introduced in a

given CUDA version just requires the implementation of new functions in the rCUDA

framework. The exact effort needed to address each new version of CUDA depends

on the number of new functions to be introduced into rCUDA and the impact of each

new CUDA feature on the rCUDA framework. In this regard, introducing the new

functionalities provided by CUDA 4 and 5 into rCUDA basically meant, from a simplistic

point of view, increasing the rCUDA code. However, in practice, some of the new

features introduced in CUDA 4 and 5 affected rCUDA far more deeply. More specifically,

supporting CUDA 4 implicitly implied dealing with multithreaded applications, whereas

the appearance of CUDA 5 brought a new way to deal with CUDA libraries. In this

section we highlight how rCUDA was evolved in order to integrate both new features.

3.4.1 Support for Multithreaded Applications

The support for multithreaded applications (first introduced in CUDA 4) has made

rCUDA evolve from a non-thread-safe framework to a thread-safe one. This evolution

required deep changes in the internal structure of rCUDA. The way rCUDA provides

support for multithreaded applications will be thoroughly analyzed next.

Figure 3.7(a) illustrates one possible scenario, where all the threads of a multithreaded

application access the same remote GPU, which is shared among them. The

improvements to rCUDA reach further than just supporting new CUDA features; indeed,

the new release also allows an application to access all remote GPUs located in different

nodes. We refer to this new feature as multinode support, as shown in Figure 3.7(b).

The combination of the new capabilities of rCUDA enables the scenario represented in

Figure 3.7(c), where each thread of a multithreaded application can access remote GPUs

located in different nodes.

In the following we present some experiments to analyze these new features. In all the

results shown in this section, CUDA experiments were carried out in a node equipped

with 2 Quad-Core Intel Xeon E5440 processors and a Tesla S2050 computing system

(4 Tesla GPUs); and rCUDA executions were done using 8 nodes, each equipped with

4 Quad-Core Intel Xeon E5520 processors and one NVIDIA Tesla C2050. The QDR

InfiniBand fabric was leveraged for rCUDA.
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Figure 3.7: Using rCUDA in different scenarios.

In the first experiment, we used the MonteCarloMultiGPU sample from the NVIDIA

GPU Computing SDK, which evaluates fair call price for a given set of European stock

options using the Monte Carlo method. We have modified this sample in order to operate

on a bigger problem size (a set of 2,048 stock options) and to allow us to specify the

number of GPUs to use in the evaluations.

Figures 3.8(a) and 3.8(b) display the total computation time for this SDK sample.

In the experiments, the problem size is constant for all the executions (2,048 stock

options), while the number of GPUs and threads involved in the computation varies.

This approach allows us to compare the results from different executions in order to

assess whether the use of more GPUs and/or threads really reduces the total computation

time. It also allows us to compare the scalability features of regular CUDA with those

of rCUDA.
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(a) Streamed version: each GPU executes its part
of computation associated with the sole thread.
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(b) Threaded version: each GPU executes its part
of computation associated with a different thread.

Figure 3.8: Total computation time for the MonteCarloMultiGPU sample from the
NVIDIA GPU Computing SDK. All the executions operate with the same problem size
(2,048 stock options). “Trend rCUDA” refers to the trend line with power regression

type for rCUDA results.

Figure 3.8(a) shows the results of the streamed version of the MonteCarloMultiGPU

sample, where one CPU thread handles all GPUs. The problem size is divided among

the employed GPUs. Hence, each GPU computes a part of the problem. In the single-

GPU case, all the computation is done by that accelerator. Figure 3.8(b) shows the

results for the multithreaded version of the MonteCarloMultiGPU sample in which there

is one CPU thread for each GPU. The problem size is also divided among the employed

GPUs, but this time each GPU is handled by a different thread.

As shown in Figures 3.8(a) and 3.8(b), both versions of the MonteCarloMultiGPU sam-

ple, the streamed one and the multithreaded one, provide similar results. Additionally,

the total computation time in both versions improves when increasing the number of

GPUs. Furthermore, rCUDA not only mimics the behavior of the original CUDA in

terms of scalability but also allows an application to use a larger number of GPUs. In

this regard, remember that the four GPUs used in these experiments with CUDA were

in the same node, while the eight GPUs used in the executions with the rCUDA frame-

work were located in eight different nodes. The experiments with CUDA for 5, 6, 7,

and 8 GPUs were not feasible because of the lack of a node which such an extraordinary

equipment. Thus, Figures 3.8(a) and 3.8(b) clearly show how rCUDA allows the aggre-

gation of all the GPUs in a cluster and makes them available to a single application. In

summary, the limit is no longer the number of available GPUs, but the capability of the

application programmer to exploit all of them.

Table 3.4 presents the overhead introduced by rCUDA in these experiments. In the

worst case, a mere 3.4% of overhead is introduced. Notice that these tables consider

only the cases up to four GPUs; data for regular CUDA beyond that number is not

available because of the equipment limitations.
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Table 3.4: Overhead introduced by rCUDA in MonteCarloMultiGPU sample.

Streamed Version Multi-threaded Version

Num. of Num. of rCUDA overhead Num. of rCUDA overhead
GPUs Threads (%) Threads (%)

1 1 3,162 1 3,159

2 1 3,424 2 3,361

3 1 3,384 3 3,421

4 1 3,381 4 3,373

To further illustrate the features of the new rCUDA version, we consider a more

complex application, which extends the libflame library [42] to perform dense matrix

computations taking advantage of multiple GPUs. As in the previous tests, CUDA

experiments leveraging more than four GPUs were not feasible because of the lack of that

class of equipment. Performance results for this application are depicted in Figure 3.9.

As this figure shows, using more GPUs does not translate into higher performance in

this case. The best results are achieved by using CUDA with 3 GPUs; the results were

slightly worse with 4 GPUs. With rCUDA, timings improve up to 4 GPUs and remain

almost constant when using more GPUs. Once again, rCUDA’s behavior is similar to

that of the original CUDA in terms of scalability. In this case, however, using a larger

number of GPUs is not beneficial because of the nature of the application.

With respect to the overhead introduced by rCUDA in these experiments, Table 3.5

shows that it is higher than in the MonteCarloMultiGPU case. To explain this, we

have measured separately the time spent in transfers and in computations for both

applications (MonteCarloMultiGPU and the libflame matrix-matrix multiplication).

The results are shown in Figure 3.10. Collecting data for more than four GPUs was
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Figure 3.9: Total execution time for a matrix-matrix multiplication using the
libflame library. All the executions operate with the same problem size (matrix of 18
million of single-precision elements). Each GPU executes the part of the computation
associated with a different thread. “Trend rCUDA” refers to the trend line with power

regression type for rCUDA results.
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Table 3.5: Overhead introduced by rCUDA in the matrix-matrix multiplication using
the libflame library.

Num. of Num. of rCUDA overhead
Threads GPUs (%)

1 1 26,245

2 2 16,284

3 3 12,597

4 4 7,668
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(a) MonteCarloMultiGPU sample (streamed version).
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(b) MonteCarloMultiGPU sample (threaded version).
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(c) Matrix-matrix multiplication using the libflame library.

Figure 3.10: NVIDIA profiling results for the different applications tested. In
particular, time employed by computations (i.e., CUDA kernels) and by memory
transfers (i.e., CUDA memcpy). Notice that the time depicted in the plots is the

aggregation of the time used by each of the GPUs leveraged in the experiments.
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Figure 3.11: Integration of CUDA libraries in CUDA 5.

not possible because we leveraged the NVIDIA profiling tools for the measurements,

which are not supported by rCUDA yet. As shown in this figure, both versions

of MonteCarloMultiGPU spend almost all their time performing computations. In

contrast, the matrix-matrix multiplication spends more time in transfers than with

computations. Furthermore, the time spent in transfers increases because the number

of GPUs involved in the execution is larger, thus reducing the scalability of the

application. On the other hand, performing many more computations than transfers

helps rCUDA in the sense that the time spent in computations in the GPU is the

same for CUDA and rCUDA, thus compensating the overhead of rCUDA due to the

transfers across the network. This explains the low overhead introduced by rCUDA in

the MonteCarloMultiGPU example, as well as the higher overhead introduced in the

matrix multiplication.

3.4.2 Support for CUDA Libraries

CUDA 5 introduced a significant change in the implementation of the CUDA libraries

(CUBLAS or CUFFT, for example) and the way in which these libraries use the APIs

offered by CUDA (Runtime and Driver APIs). These new features deeply affected

rCUDA in terms of compatibility with CUDA. Before CUDA 5, the CUDA libraries used

both the CUDA Runtime API and the CUDA Driver API. The latter was used indirectly

by calling a function of the CUDA Runtime API (i.e., cudaGetExportTable) that simply

bypassed the call to the CUDA Driver API function (i.e., cuGetExportTable). Since

rCUDA does not offer support for the CUDA Driver API, the CUDA libraries were not

supported. Nevertheless, in CUDA 5 these libraries have been modified, and now they

use only the CUDA Runtime API. Since rCUDA already supports the CUDA Runtime

API, the support for any library using the CUDA Runtime API is implicit. Figure 3.11

illustrates this aspect. The experiments presented in the previous section that used the

libflame library also validate the support for CUDA libraries presented in this section,

given that the functions of libflame internally make use of the CUBLAS library.
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3.5 Summary

In this chapter we have shown the feasibility of creating a tool that automatically

unextends CUDA source code, which leverages the CUDA extensions to the C language,

to its plain C equivalent code. This tool overcomes the limitations imposed by the

undocumented functions used by the NVIDIA nvcc compiler regarding remote GPU

virtualization.

A thorough analysis of the performance of this tool shows that the time it requires to

convert and compile a given CUDA code is very similar to the time required by the nvcc

compiler, thus making it feasible to substitute the regular nvcc-based compilation flow

by a CU2rCU-based one.

Regarding the program codes that can be used with the rCUDA framework, thanks to

the enrichments presented in this chapter (the CU2rCU source-to-source converter and the

multithread support), it is now possible to execute any CUDA program. As shown in the

performance evaluation figures, CUDA programs that present high computation/transfer

ratios will experience, in general, a much lower overhead than do programs that transfer

large amounts of data to/from the GPUs. Notice, however, that even when using a local

GPU with CUDA, a large amount of transfers to/from the GPU is not a good practice,

given that such transfers also result into a performance reduction in the traditional local

CUDA usage.

Finally, as previously commented at the beginning of this chapter, the research carried

out for the development of the CU2rCU converter finally derived, in subsequent versions

of rCUDA, in the binary compatibility with CUDA. This means that applications can be

executed with rCUDA without requiring any conversion. Actually, applications can be

executed with rCUDA even without being recompiled, provided that they were compiled

using dynamic libraries. This new feature was, in practice, a tremendous step forward in

the path to transfer rCUDA to industry. In following chapters, we will be using versions

of rCUDA including this binary compatibility.



Chapter 4

Tuning rCUDA for InfiniBand

Networks

Using a remote GPU introduces some overhead, mainly due to the virtualization

framework and the network fabric. On the one hand, the GPU virtualization framework

increases the latency to the real GPU, as requests must be forwarded to the remote

GPU and responses delivered back to the application demanding GPU services. On

the other hand, as GPUs are no longer located at the other end of a PCIe link within

the host, but in a remote node, data have to traverse at least two PCIe links and two

network interfaces, as well as the entire network fabric between the node requesting

GPU services and the node where the actual GPU resides. Therefore, in addition to

latency, bandwidth also suffers, given that PCIe bandwidth is usually noticeably larger

than network bandwidth, thus increasing the performance gap between the local and

remote uses of GPUs. In this regard, the performance of the interconnection network is

key to achieve reasonable performance results by means of remote GPU virtualization.

Additionally, the ability of the remote GPU virtualization framework to squeeze as

much performance as possible from the underlying interconnect is crucial for reducing

overall overhead. In this chapter we present how rCUDA has been tuned for the high

performance InfiniBand (IB) [43] network. We also introduce how the evolution of this

interconnect influences the design of rCUDA as well as impacts the performance of this

middleware. The work presented in this chapter has been published in [44–47].

45
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Link with Industry

Once the rCUDA framework is binary compatible with CUDA, we are able to test its

performance using real applications. Notice, however, that not only rCUDA is a live

technology which evolves and improves over time, but also the underlying hardware

and software make progress (see Figure 1.1). For this reason, it is also important to

analyze the performance of a technology like rCUDA in the right industrial context,

therefore using modern platforms. Although GPUs also become more powerful, the

hardware which most influences the performance of rCUDA is the network, as we have

already commented. In this regard, the InfiniBand interconnects experienced noticeable

improvements during the implementation of this thesis. Thus, in 2011 FDR InfiniBand

fabrics were introduced, attaining a bandwidth of 56Gbps. In 2013, dual-port FDR

adapters appeared, and in 2015, EDR InfiniBand was introduced, both fabrics offering

100Gbps of bandwidth. This evolution of the InfiniBand network has also caused an

evolution in the design and performance of the rCUDA middleware.

4.1 Introduction

The previous chapter has presented a first performance evaluation of the rCUDA remote

GPU virtualization framework using mainly samples from the NVIDIA GPU Computing

SDK, and using QDR InfiniBand as network fabric. In this chapter we evaluate

the performance of rCUDA using production codes and more modern platforms. We

specially focus on analyzing the impact of the newer InfiniBand interconnects on the

performance of rCUDA.

On the other hand, it has been shown in Chapter 2, Figure 2.4, that the bandwidth

attained by the rCUDA framework greatly depends on the direction of the memory

copy (from host to GPU, or vice versa), as well as on the type of host memory used in

the data transfer (pageable host memory or page-locked host memory). Therefore, it is

necessary to properly design the rCUDA framework in order to get the best performance

in every case.

This chapter details the performance analysis and optimizations carried out for

InfiniBand networks in order to maximize the performance of rCUDA. First, in

Section 4.2 we analyze the influence of FDR InfiniBand on the performance of the

rCUDA remote GPU virtualization framework. Second, in Section 4.3 we present a new

version of rCUDA supporting InfiniBand dual-port adapters, such as the InfiniBand

Connect-IB (FDR x 2) ones, and also evaluate its performance. Next, in Section 4.4 we

expose different optimizations to be used when developing applications using InfiniBand
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Verbs and study their impact on rCUDA. Then, in Section 4.5 we analyze how the

high bandwidth provided by EDR InfiniBand, along with the optimizations presented in

previous sections, allows rCUDA not only to perform very similar to local GPUs, but also

to improve overall performance for some applications. Finally, Section 4.6 summarizes

the main contributions of this chapter.

4.2 Influence of FDR InfiniBand on the Performance of

rCUDA

In order to minimize the impact of the network overhead, the latency and bandwidth of

the interconnect should be comparable to those of PCIe. Although the performance gap

between the internal PCIe interconnect and the external fabric was considerable in the

past, there have appeared several networking technologies with throughput comparable

to that of PCIe. As shown in Figure 4.1, the theoretical throughput of FDR InfiniBand

is very close to that of PCIe 2 (PCIe version supported by GPUs used at this point

of the rCUDA evolution). In this section we analyze the influence of FDR InfiniBand

on the performance of rCUDA, comparing its impact on a variety of GPU-accelerated

applications versus other networking technologies, such as QDR InfiniBand or Gigabit

Ethernet. Results show that the FDR interconnect, featuring higher bandwidth than its

predecessors, allows to reduce the overhead of using GPUs remotely, thus making this

approach even more appealing.

The rest of the section is organized as follows. In Section 4.2.1 we compare the bandwidth

and latency of PCIe with those of the networks considered in this work. In the next two

sections we analyze the performance of several GPU applications using remote GPUs,

again with different networks: we first use the NVIDIA CUDA Samples in Section 4.2.2;
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and then we evaluate some GPU-accelerated production applications in Section 4.2.3.

Finally, Section 4.2.4 summarizes the main conclusions of our Section 4.2.

4.2.1 Basic Performance Comparison of the Networks

The performance of data transfers to/from the remote GPU is mainly influenced by

the bandwidth and latency of the communication path. When transferring small

amounts of data, latency is the most important factor while, when transferring large

blocks, bandwidth is crucial. In this section we start our analysis of the influence of a

high bandwidth network such as FDR InfiniBand on the performance of remote GPU

virtualization. To do so, we compare the bandwidth and latency of PCIe when using

CUDA, with those observed for rCUDA over three different network technologies, namely

FDR InfiniBand, QDR InfiniBand and also Gigabit Ethernet.

4.2.1.1 Testbed System

The setup employed for the experiments carried out in this section, which will also be

the same for the rest of the tests presented along this section, consists of two servers,

each with the following characteristics:

• Two Intel Xeon hexa-core processors E5-2620 (Sandy Bridge) operating at 2.00GHz

• 32 GB of DDR3 SDRAM memory at 1,333 MHz

• 1 Mellanox ConnectX-3 single-port InfiniBand Adapter

• CentOS Linux Distribution release 6.3, with Mellanox OFED 1.5.3 (InfiniBand

drivers and administrative tools), CUDA 5.0 with NVIDIA driver 285.05, and

rCUDA 4.0.1 (the latest stable release from February 2013)

Additionally, one of the nodes has an NVIDIA Tesla K20 GPU. On the other hand, both

nodes are interconnected by a Gigabit Ethernet network with a Cisco SLM2014 switch,

and also by an InfiniBand fabric. Two different Mellanox switches are leveraged for the

InfiniBand fabric: an MTS3600 switch providing QDR compatibility, and an SX6025

for FDR compatibility. Depending on which of them is actually used, QDR or FDR

features are leveraged.
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Figure 4.2: Bandwidth test for copies from host to device with pinned host memory,
using CUDA and the rCUDA framework over different networks.

4.2.1.2 Influence on Bandwidth

In this section we analyze the memory copy (memcopy) bandwidth between host memory

and the device memory for several scenarios:

• Local GPU: memcopy bandwidth across PCIe (referred to as “CUDA” in the

figures).

• Remote GPU: memcopy bandwidth for different networks: Gigabit Ethernet

(rCUDA GbE), QDR InfiniBand (rCUDA QDR) and FDR InfiniBand (rCUDA

FDR).

• Both the local and remote scenarios are evaluated using pageable host memory as

well as pinned host memory.

In order to analyze the influence on bandwidth, we employ the bandwidthTest

benchmark from the NVIDIA CUDA Samples, with the shmoo option, which performs

memory copies of a large range of sizes. Figure 4.2 presents the results of this test using

pinned host memory, while Figure 4.3 illustrates the results for pageable host memory.

As expected, rCUDA over GbE provides the worst results, with its bandwidth reaching

a maximum of 113.1MB/s in both cases (pinned and pageable). When using pinned

host memory, rCUDA over FDR InfiniBand achieves a substantial gain (46.01%) with

respect to QDR InfiniBand. Furthermore, its throughput is very close to that obtained

by regular CUDA over a local GPU, with a difference of 0.5GB/s (9.4%). Regarding the

use of pageable host memory, rCUDA over InfiniBand renders a higher bandwidth than

native CUDA with a local GPU. This is due to the fact that memory copies between

rCUDA clients and remote GPUs are pipelined using preallocated buffers of pinned

memory, as explained in [15], exploiting thus the higher throughput of this type of

memory.
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Figure 4.3: Bandwidth test for copies from host to device with pageable host memory,
using CUDA and the rCUDA framework over different networks.

In summary, the higher bandwidth of FDR InfiniBand, in conjunction with a careful

framework design, allows remote GPU virtualization frameworks to experience a

bandwidth similar to that of PCIe all across the entire path between the local application

demanding GPGPU services and the remote GPU.

4.2.1.3 Influence on Latency

In order to analyze the impact of the improvements on interconnect latency, we employ

a synthetic test similar to the previous bandwidth test, but using negligible volumes of

data (concretely, from 1 to 64 bytes). Table 4.1 shows the results for this experiment,

obtained from the average of 100 repetitions of each scenario. Again, GbE presents the

worst performance. On the other hand, Table 4.1 also reveals that the use of rCUDA over

FDR InfiniBand does not improve latency with respect to QDR InfiniBand. However,

standard deviation values exhibit a more constant behavior for FDR, demonstrating a

higher stability.

To determine how latency to remote GPU affects application performance, we have

implemented one additional synthetic benchmark which also copies a small dataset (64

bytes). However, in this case, it performs a varying number of copies, from 100 to

Table 4.1: Latency test using CUDA and the rCUDA framework over different
networks.

Time (µs)
Copy size (bytes) CUDA rCUDA: FDR QDR GbE

1 (100-copy average) 11.62 50.73 50.34 130.63
2 (100-copy average) 11.56 50.53 50.49 130.05
4 (100-copy average) 11.59 50.32 50.32 130.59
8 (100-copy average) 11.55 50.69 50.26 130.68
16 (100-copy average) 11.56 50.71 50.06 130.50
32 (100-copy average) 11.67 50.64 50.22 133.03
64 (100-copy average) 11.71 50.87 50.12 135.18
Max. standard deviation 0.06 0.18 1.55 2.15
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Figure 4.4: Latency test varying the number of iterations for CUDA and the rCUDA
framework over different networks. X-axis in logarithmic scale.

102,400, doubling the number of copies in each iteration (i.e., 100, 200, 400, etc.). This

resembles the behavior of applications, which typically will perform several sequential

requests to the GPU along their execution. As Figure 4.4 shows, rCUDA over GbE

performs very poorly starting from 25,000 iterations, whereas rCUDA over InfiniBand

begins its degradation from 50,000 iterations. In general, the exact numbers show that

QDR InfiniBand achieves slightly better results (an average of 5ms).

To sum up, the latency results show that, although the FDR InfiniBand version

noticeably improves performance when the application can benefit from its superior

bandwidth, this interconnect does not enhance performance, with respect to QDR

InfiniBand, when the application is sensitive to latency.

4.2.2 NVIDIA CUDA Samples

In this section we leverage the entire NVIDIA CUDA Samples suite, also referred

to as CUDA SDK samples, to analyze remote GPU virtualization performance in

a comprehensive way. The NVIDIA CUDA Samples contain simple code programs

covering a wide range of applications and techniques using CUDA, which we consider

useful for an initial study.

Figure 4.5a presents the normalized sample execution time for CUDA and also for

rCUDA over FDR InfiniBand, QDR InfiniBand, and GbE. Times are normalized to

those obtained with local CUDA. The average of 10 repetitions is used, and the maximum

Relative Standard Deviation (RSD) observed was 0.390 for sample boxFilterNPP (BN)

when executed with CUDA, 0.147 for sample transpose (TA) in the case of rCUDA

over FDR InfiniBand, 0.187 for sample volumeRender (VR) with rCUDA over QDR

InfiniBand, and 0.563 for sample simpleCUFFT (FF) with rCUDA over GbE. In order to

complete the data in Figure 4.5a, we have also measured the amount of bytes transferred
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between the rCUDA client and server (to take into account bandwidth), and the number

of requests sent from the rCUDA client to the rCUDA server (to consider latency). The

results for this experiment are displayed in Figure 4.5b.

Comparing rCUDA over GbE, we observe in these figures that most of the samples that

exhibit a poor behavior (i.e., normalized time greater than or equal to 1.5) whether ex-

ceed 100MB of transfers (sent or received) or 1,000 requests to the rCUDA server. This is

the case of 19 out of the 28 samples, namely bandwidthTest (BT), simpleStreams (IE),

alignedTypes (AT), TA, FF, smokeParticles (SK), simpleCUBLAS (CB), matrixMul-

CUBLAS (MC), cdpLUDecomposition (LU), Mandelbrot (MB), scan (SC), freeImage-

InteropNPP (FI), histEqualizationNPP (HE), BN, imageSegmentationNPP (IS), sim-

pleDevLibCUBLAS (LC), conjugateGradient (CG), segmentationTreeThrust (TT),

and interval (IN).

Although sample reduction (RE) does not exceed these thresholds, it is close to both

of them, 65MB of data and 749 requests sent to the rCUDA server, which explains

the overhead. Samples sortingNetworks (SN) and FDTD3d (FD) transfer more than

100MB, but in these cases the overhead of using GbE is canceled by the long execution

time of the samples, 9.93 and 17.47 seconds, respectively. For the same reason, sample

convolutionFFT2D (F2), which takes almost 6 seconds, is not much affected by its large

number of requests (over 1,300). On the contrary, samples bilateralFilter (BF), VR,

recursiveGaussian (RG), and simpleMPI (MI) are too short, less than 1 second, which

distort their overheads, in spite of performing neither more than 100MB of transfers nor

1,000 requests.

Concerning rCUDA over InfiniBand, the figures reveal that the samples performing worst

are TA, FF, SK, CB, MC, LU, MB, BF, RG, and MI. The reason for some of them (CB,

MC, LU, and MB) is a large amount of requests to the rCUDA server (over 2,800). The

execution time of the rest of samples is too short, less than 1 second, which distort their

overheads, despite not going beyond this limit. Samples SC, FI, HE, BN, IS, LC, CG,

and TT also have a large amount of requests, but these samples use CUDA libraries [48]

and the vast majority of the requests are originated by the load of these libraries, which

are optimized by rCUDA, resulting in a lower overhead. Considering the amount of bytes

transferred in these samples, they are insufficient to penalize rCUDA over InfiniBand.

Sample IE is the only one that transfers a considerable amount of data, over 12GB, but

the network overhead is hidden by the long duration of the sample, nearly 20 seconds.

When comparing the different networking technologies, almost all the samples perform

as expected: rCUDA over InfiniBand always runs faster than rCUDA over GbE. Sample

stereoDisparity (DI) takes similar time to rCUDA over the different networks because

it performs very few transfers and very few requests to the remote server. These two
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factors, added to its long duration, nearly 50 seconds, hide the network overhead.

Regarding rCUDA over InfiniBand, the FDR InfiniBand executions are, in general,

faster than the QDR InfiniBand runs, except for samples TA, MB, SC, and IS. These

cases perform few transfers and a large number of requests to the rCUDA server, 1,729,

4,020, 6,669, and 6,048, respectively. This allows them to benefit from the slightly lower

latency of QDR.

In conclusion, although the samples analyzed in this section are simple and usually

involve few transfers and requests to the rCUDA server, they reveal the following

insights:

• For rCUDA over GbE, transfers over 100MB and requests from 1,000 up drive

to bad performance, because of the low bandwidth and high latency of this

interconnect.

• For rCUDA over InfiniBand, these samples do not present enough transfers to

arise InfiniBand throughput constraints. However, in terms of latency, samples

with 2,800 or more requests start showing higher overheads.

• Compared to FDR InfiniBand, rCUDA over QDR InfiniBand benefits from its

lower latency when samples imply thousands of requests to the rCUDA server.

Nevertheless, in general, FDR InfiniBand takes advantage of its higher bandwidth,

overcoming QDR InfiniBand in 87.5% of the studied samples.

• The actual execution time of the samples introduce a considerable noise in

this study and modify the thresholds mentioned above concerning transfers and

requests. Thus, longer samples minimize the impact of these limits, while shorter

ones maximize it.

4.2.3 Influence of FDR InfiniBand on Production Applications

In order to study more thoroughly the influence of the network on remote GPU

virtualization, in this section we analyze some production codes selected from the

NVIDIA Popular GPU-Accelerated Applications [49].

4.2.3.1 CUDASW++

CUDASW++ [50] is a bioinformatics software for Smith-Waterman protein database

searches that takes advantage of the massively parallel CUDA architecture of NVIDIA

Tesla GPUs to perform sequence searches. In particular, we have used its last release,
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Figure 4.6: CUDASW++ execution time for queries of different sequence lengths,
using CUDA and rCUDA over different networks. Primary Y-axis shows rCUDA’s

overhead and secondary Y-axis execution time.
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Figure 4.7: rCUDA profiling measurements for CUDASW++ executing queries of
different sequence lengths. Primary Y-axis shows MB sent/received by CUDASW++
to/from server when using the rCUDA framework. Secondary Y-axis presents requests

sent to the rCUDA server.
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Figure 4.8: NVIDIA profiling result for CUDASW++ executing queries of different
sequence lengths. In particular, time employed by computations (i.e., CUDA kernels)

and memory transfers (i.e., CUDA memcopy).
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version 3.0, for our study, along with the Latest Swiss-Prot database and the example

query sequences available in the application’s website: http://cudasw.sourceforge.

net.

Figure 4.6 shows CUDASW++ execution time for queries of different sequence lengths

using CUDA and rCUDA over different networks. The average of 10 repetitions is

presented, and the maximum RSD observed was 0.019 for a sequence of length 222 when

executed with CUDA, 0.010 for a sequence of length 464 in the case of rCUDA over FDR

InfiniBand, 0.010 for a sequence of length 144 with rCUDA over QDR InfiniBand, and

0.009 for a sequence of length 657 with rCUDA over GbE. The figure also presents the

overhead of using rCUDA: over InfiniBand the execution time is very close to that of

CUDA. FDR InfiniBand and QDR InfiniBand introduce average overheads of 0.67% and

1.37%, respectively. For rCUDA over GbE, the average overhead is significantly higher

though (21.88%).

The reason for rCUDA over InfiniBand performing only slightly worse than the native

CUDA is the small number of transfers and the reduced number of requests done by

the application to the rCUDA server (see Figure 4.7). For GbE, this small transfer

size (around 160MB) is enough to penalize rCUDA because of the low bandwidth of this

technology. With respect to the different InfiniBand networks, QDR InfiniBand presents

an average overhead 0.7% higher than FDR InfiniBand.

We can also observe that longer query sequences reduce the overhead introduced by

rCUDA. Figure 4.8 reveals that this is due to the fact that the time spent in transfers

(i.e., time spent in memory copies between host memory and the device memory, also

referred to as CUDA memcopy) remains always the same for all the query lengths, but

the time employed by computations (i.e., time employed by CUDA kernels) increases

with the query sequence length. Performing more computations helps rCUDA in the

sense that the time spent in computations in the GPU is the same for CUDA and

rCUDA, thus compensating the overhead of rCUDA due to the transfers across the

network.

4.2.3.2 GPU-BLAST

GPU-BLAST [51] has been designed to accelerate the gapped and ungapped protein

sequence alignment algorithms of the NCBI-BLAST (http://www.ncbi.nlm.nih.gov)

implementation using GPUs. It is integrated into the NCBI-BLAST code and produces

identical results. We utilize release 1.1 in the next experiments, where we have followed

the installation instructions for (1) sorting a database, and (2) creating a GPU database.

http://cudasw.sourceforge.net
http://cudasw.sourceforge.net
http://www.ncbi.nlm.nih.gov
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Figure 4.9: GPU-BLAST execution time for queries of different sequence lengths,
using CUDA and rCUDA over different networks. Primary Y-axis shows rCUDA’s

overhead, while secondary Y-axis represents execution time.
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Figure 4.10: rCUDA profiling measurements for GPU-BLAST executing queries of
different sequence lengths. Primary Y-axis shows MB sent/received by GPU-BLAST
to/from server when using the rCUDA framework. Secondary Y-axis presents requests

sent to the rCUDA server.
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Figure 4.11: NVIDIA profiling result for GPU-BLAST executing queries of different
sequence lengths. In particular, time employed by computations (i.e., CUDA kernels)

and memory transfers (i.e., CUDA memcopy).
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We then use the query sequences which come with the application package to search the

database.

Figure 4.9 depicts the GPU-BLAST execution time for queries of different sequence

lengths using CUDA and rCUDA over the three networks. The average of 10 repetitions

is presented, and the maximum RSD observed was 0.207 for a sequence of length 100

when executed with CUDA, 0.031 for a sequence of length 200 in the case of rCUDA over

FDR InfiniBand, 0.051 for a sequence of length 700 with rCUDA over QDR InfiniBand,

and 0.012 for a sequence of length 1400 with rCUDA over GbE. From our results we also

extract that the average overhead of using rCUDA is 7.07%, 8.63%, and 113.71% for

FDR InfiniBand, QDR InfiniBand, and GbE, respectively. Data transfers over 1.2GB

(see Figure 4.10) hurt performance for rCUDA over GbE. Concerning rCUDA over

InfiniBand, QDR InfiniBand presents an average overhead 1.56% higher than FDR

InfiniBand.

As it was the case for CUDASW++, Figure 4.11 illustrates that the time spent in

transfers is constant for all the queries with GPU-BLAST and only the time required

by computations varies. Again, we can observe that rCUDA’s overhead decreases as

computation time increases. Figure 4.11 also reveals a peak in time spent in GPU

computations when running GPU-BLAST with a sequence of length 600, which explains

a similar peak in Figure 4.9 for this sequence length.

4.2.3.3 LAMMPS

LAMMPS [40] is a classic molecular dynamics simulator which can be used to model

atoms or, more generically, as a parallel particle simulator at the atomic, mesoscopic,

or continuum scale. For the tests below, we use the release from Feb. 19, 2013, and

benchmarks in.eam and in.lj installed with the application. We run the benchmarks

with one processor and scaling by a factor of 5 in all three dimensions (i.e., a problem

size of 4 million atoms).

Table 4.2 reports the execution time for these benchmarks using CUDA and rCUDA

over the three networks, and Table 4.3 shows rCUDA’s overhead for the same tests. The

average of 10 executions is presented, and the maximum RSD observed was 0.013 for

benchmark in.lj, when executed with rCUDA over GbE. 0.005 for benchmark in.eam

in the case of rCUDA over FDR InfiniBand, 0.009 for benchmark in.eam with rCUDA

over QDR InfiniBand, and 0.004 for benchmark in.lj with CUDA. Once again, rCUDA

over GbE exhibits a poor performance due to the large transfers involved and the huge

number of requests sent to the rCUDA server, as shown in Figure 4.12. For rCUDA

over InfiniBand, QDR InfiniBand has an average overhead 2.39% higher than FDR
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Table 4.2: LAMMPS execution time for benchmarks in.eam and in.lj, scaled by a
factor of 5 in all three dimensions.

LAMMPS Execution time (s)
benchmark CUDA rCUDA FDR rCUDA QDR rCUDA GbE

in.eam 52.33 56.36 57.60 102.09
in.lj 36.39 38.02 38.90 79.37

Table 4.3: rCUDA overhead for the benchmarks in.eam and in.lj, scaled by a factor
of 5 in all three dimensions.

LAMMPS Overhead (%)
benchmark rCUDA FDR rCUDA QDR rCUDA GbE

in.eam 7.71 10.07 95.10
in.lj 4.50 6.90 118.12
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Figure 4.12: rCUDA profiling measurements for LAMMPS executing benchmarks
in.eam and in.lj, scaled by a factor of 5 in all three dimensions. Primary Y-axis shows
MB sent/received by LAMMPS to/from server when using the rCUDA framework.

Secondary Y-axis presents requests sent to the rCUDA server.

InfiniBand. Despite the large amount of requests, which could help QDR InfiniBand in

terms of latency, these experiments reveal that FDR InfiniBand better bandwidth has

more influence than its worse latency when data transfers are of a considerable size, as

also pointed out in previous sections.

In this application, the benchmark presenting greater overhead, in.eam, spends also

significantly more time in computations (see Figure 4.13) than benchmark in.lj, which

shows a lower overhead. Apparently, this behavior does not obey the conclusions

obtained in previous sections with respect to the time employed by computations and

rCUDA’s overhead. The explanation lies in the fact that here, unlike in preceding

experiments, the number of bytes sent is almost the same for both benchmarks, but the

number of bytes received and requests to the server are significantly higher for in.eam,

thus making a higher use of the network fabric than in.lj.
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Figure 4.13: NVIDIA profiling result for LAMMPS executing benchmarks in.eam and
in.lj, scaled by a factor of 5 in all three dimensions. Time employed by computations

(i.e., CUDA kernels) and by memory transfers (i.e., CUDA memcopy) is shown.

4.2.4 Summary

In this section we have analyzed how the bandwidth matching between PCIe 2.0 and

FDR InfiniBand influences the performance of remote GPU virtualization, using both

synthetic tests and real GPU-accelerated applications. Synthetic tests have revealed that

FDR InfiniBand achieves a substantial gain (over 40% with respect to the previous QDR

InfiniBand version) in terms of bandwidth to/from the remote GPU. This bandwidth

gain, when incorporated into the context of a GPU-accelerated application, which

performs computations in addition to transfers between main memory and GPU memory,

reduces overhead up to 2.39% with respect to QDR InfiniBand, clearly showing that the

new interconnect not only serves traditional applications running in the cluster but also

remotely accelerated ones. This can be seen in Table 4.4, which summarizes the most

important results for the analyzed applications. We have analyzed applications with low,

medium, and high volumes of data transfers. This analysis reveals that rCUDA over

GbE has a high overhead independently of the amount of transfers. In contrast, rCUDA

over InfiniBand exploits the much higher throughput than GbE, exposing a very small

overhead for applications with a low amount of transfers. For applications that involve

a moderate to high volume of transfers, the overhead of using rCUDA over InfiniBand

depends on the time spent in computations. Thus, if the amount of computations is

enough to compensate for the extra time spent transferring data across the network,

then the overhead of rCUDA over InfiniBand is very low. Otherwise, the overhead

becomes significant.

Concerning the two different InfiniBand versions examined in these tests, QDR

InfiniBand and FDR InfiniBand, it appears that as the size of transfers increases, FDR

InfiniBand higher throughput is more important. In this way, for the applications

considered in this study, QDR InfiniBand average overhead in comparison to FDR
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Table 4.4: Summary of rCUDA overhead using different networks, related with
average number of rCUDA transfers and requests to rCUDA server, for the studied

applications.

Application rCUDA rCUDA rCUDA overhead (%)
transfers requests FDR QDR GbE

CUDASW++ ∼160MB ∼100 0.67 1.37 21.88
GPU-BLAST ∼1200MB ∼130 7.07 8.63 113.71
LAMMPS ∼3000MB ∼16000 6.10 8.49 106.61

InfiniBand grows together with the level of transfers: 0.7%, 1.56%, and 2.39%, for

low, medium, and high volumes of transfers, respectively.

4.3 Enhancing rCUDA with Support for InfiniBand Dual-

port Adapters

As previously commented, in order to minimize the performance difference between the

traditional local use of GPUs and the remote virtualized access, the external network

fabric should offer a throughput similar to that of the internal PCIe link. Although

the differences in performance of these interconnects were notable in the past, recent

advances in networking technologies have considerably reduced the performance gap.

For example, the theoretical throughput of the latest available versions of PCIe and

InfiniBand are relatively close: 15.75 GB/s for PCIe 3.0 x16 vs. 12.5 GB/s for

FDR InfiniBand using Mellanox Connect-IB dual-port adapters [52]. Furthermore,

the effective bandwidth figures of these technologies also need to be considered, as

shown later in this section. The small difference in performance between the InfiniBand

Connect-IB and PCIe 3.0 technologies motivates the work presented in this section,

where we analyze how their combined use reduces in practice the performance penalty

of remote GPU virtualization solutions.

In this section we present the version 15.07 of rCUDA (see Table 2.2 for more details).

This version is enhanced with support for InfiniBand dual-port adapters, such as the

InfiniBand Connect-IB (FDR x 2) ones. We also analyze how the use of these network

adapters (with performance similar to that of PCIe 3.0) influence the overhead of

rCUDA.

The rest of the section is organized as follows. Section 4.3.1 details how rCUDA has been

extended with support for dual-port network cards. Section 4.3.2 studies the impact of

Connect-IB network adapters on the bandwidth and latency figures attained by rCUDA.

Finally, Section 4.3.3 summarizes the main conclusions of this section.
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Figure 4.14: Scheme of the use of dual-port network adapters. (a) CUDA requests and
responses, as well as data transfers, make use of the single available network port. (b)
CUDA requests and responses to/from the remote server employ a single logic channel
across one of the ports of the network card. Data transfers use two different logic
channels across both ports, thus doubling the attained bandwidth for bulk transfers.

4.3.1 Adding Dual-port Support to rCUDA

For the work presented in this section, we have improved rCUDA with support for

dual-port network cards. This allows a single data transfer to exploit the aggregated

bandwidth provided by both ports in order to achieve an effective bandwidth close

to 100 Gbps. This high bandwidth is attained by appropriately splitting, inside the

InfiniBand communication module of rCUDA, the transmission of bulk transfers into

smaller data chunks that are concurrently forwarded across both ports of the network

adapter.

Figure 4.14 depicts an scheme of the use of dual-port adapters. Notice that including a

second port in the data transfers is not just a matter of duplicating the original pipeline,

given that both pipelines must share work and also remain synchronized, thus turning

the adaptation process to dual-port adapters noticeably more complex.

4.3.2 Impact of Connect-IB on Remote GPU Usage

When making use of remote GPU virtualization, the latency and bandwidth properties

of the communication path between main memory, in the client node, and GPU memory,

in the remote server, greatly influence the performance of data transfers between them.
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In this regard, latency is crucial when the size of the data being copied is small whereas

for large data copies bandwidth is the most important concern. In this section we

present how the improved features of the Connect-IB network adapter, as well as the

use of PCIe 3.0 enabled GPUs, influence the basic performance characteristics of remote

GPU virtualization techniques.

In order to do so, in next subsection we compare the exact bandwidth and latency of

Connect-IB and PCIe 3.0. We then study how these bandwidth and latency features

affect the performance and internal design of remote GPU virtualization solutions. At

the end of this section we present how rCUDA has been internally improved to extract

as much bandwidth as possible from the underlying interconnect.

4.3.2.1 From Theoretical to Real Bandwidth and Latency Figures

The bandwidth and latency of the interconnects involved in remote GPU virtualization

greatly affect the performance of these solutions. Basically, the interconnects to consider

in this context are, on the one hand, the network fabric connecting the client and server

computers and, on the other, the PCIe links that network interfaces and GPUs are

attached to. In general, the closer the performance of these interconnects are, the lower

the overhead that will be experienced when making use of remote GPUs.

As mentioned in Section 4.3, the theoretical bandwidth of Connect-IB and PCIe 3.0

are relatively close. Therefore, one may expect that the performance penalty of remote

GPU virtualization mechanisms such as rCUDA will be quite reduced with respect to

the traditional (i.e., local) use of GPUs. It is well known, however, that the actual

performance of any interconnection technology largely depends on the ability of the

upper software layers using such interconnect to obtain as much bandwidth as possible

from it. Thus, the effective bandwidth and latency features of a given interconnect are

usually perceptibly lower than the theoretical ones. The actual concern, therefore, is not

about theoretical performance but about real numbers, that is, whether real bandwidth

numbers help to reduce the performance difference among the external InfiniBand fabric

and the internal PCIe or, on the contrary, make that difference larger, thus increasing

the penalty of remote GPU virtualization techniques.

To address this concern, in this subsection we compare the FDR InfiniBand fabric using

the dual-port Connect-IB network adapter against the PCIe 3.0 link, when used by

their respective upper software layers: the network driver in the case of InfiniBand and

the CUDA driver, along with the NVIDIA Tesla K40 GPU, in the case of the PCIe
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3.01. This analysis will expose the maximum performance that might be achieved by a

remote GPU virtualization solution and, additionally, will put the performance of such

a virtualization solution into the right perspective.

In order to perform such a comparison, a testbed was configured using two 1027GR-TRF

Supermicro servers, each with the following characteristics:

• Two Intel Xeon hexa-core processors E5-2620 v2 (Ivy Bridge) operating at 2.1 GHz.

• 32 GB of DDR3 SDRAM memory at 1,600 MHz.

• 1 Mellanox ConnectX-3 single-port InfiniBand adapter (PCIe 3.0 x8).

• 1 Mellanox Connect-IB dual-port InfiniBand adapter (PCIe 3.0 x16).

• CentOS 6.4 with Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and administrative

tools) and CUDA 7.0 with NVIDIA driver 340.46.

Additionally, one of the nodes had an NVIDIA Tesla K40 GPU (which makes use of a

PCIe 3.0 x16 link). Furthermore, both nodes were interconnected by a Mellanox Switch

SX6025 (FDR compatible).

The test servers are NUMA machines and NUMA effects matter for rCUDA. For this

reason, the InfiniBand adapters and the NVIDIA GPU were connected to the same

NUMA node (i.e., node 0). For all the experiments shown in this section, processes and

memory buffers are bound to this node.

Figure 4.15 shows a comparison of the actual bandwidth achieved by PCIe 3.0 and

InfiniBand. For PCIe 3.0, the bandwidthTest benchmark from the NVIDIA CUDA

Samples [53] was used to transfer data from main memory to the Tesla K40 GPU

located in the same server. Pinned memory was used. For InfiniBand, the ib write bw,

ib read bw, and ib send bw benchmarks from the Mellanox OFED software distribution

were used. Figure 4.15(a) presents results when messages are sent using the memory

semantics with RDMA write whereas Figure 4.15(b) shows results for the channel

semantics (i.e., send/receive not using RDMA). Results for the RDMA read operation

are omitted given their similarity to the ones provided by the ib write bw benchmark.

From the data in Figure 4.15 we can do two different sets of comparisons. First, we can

see that the Connect-IB technology, when used with a single port—labeled “Connect-IB

(1p)”—achieves a slightly higher bandwidth than does the previous ConnectX-3 version

1Notice that the NVIDIA Tesla K80 GPU was already available when this study was carried out.
However, for a single bulk transfer the new GPU attains lower bandwidth than the K40 GPU, what has
motivated to use the K40 GPU in this study.
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Figure 4.15: InfiniBand bandwidth test using FDR over different cards: ConnectX-3
and Connect-IB (with 1 and 2 ports). The CUDA line shows bandwidth attained when
copying data from main memory to the memory of the K40 GPU, located within the

same node.

[54] of InfiniBand (6,191 MB/s vs. 6,041 MB/s). One may believe that the reason for

this higher bandwidth rests with the PCIe connector of the Connect-IB network adapter,

which has extended the previous PCIe 3.0 x8 connector, used by ConnectX-3, to a wider

PCIe 3.0 x16 one (used by the Connect-IB adapter), thus moving from a theoretical

bandwidth of 7.87 GB/s (PCIe 3.0 x8) to 15.75 GB/s (PCIe 3.0 x16) and, therefore,

allowing the Connect-IB card to be fed with data from main memory at full speed.

However, if this were the reason, then when making use of both ports of the Connect-IB

card, the achieved bandwidth (12,382 MB/s) would not double the bandwidth with

one port but would be, at most, just twice the bandwidth attained by the previous

single port ConnectX-3 card, thus being lower than the actual value achieved in our

experiments. Therefore, the reason for the improved bandwidth may not be the wider

PCIe 3.0 connector but the enhanced internal architecture that the Connect-IB adapter

features.

The second comparison that can be made from the data in Figure 4.15 is between the

performance of InfiniBand and that of PCIe 3.0 when the latter is being used by CUDA.

In this case, the theoretical 15.75 GB/s of PCIe 3.0 x16 is reduced to 10 GB/s because
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Figure 4.16: Three-stage pipeline modeling the client-server data transfer process
within a remote GPU virtualization framework.

of the overhead introduced by the software layers, as well as the unavoidable bandwidth

losses of the hardware itself. This large performance drop was not expected in this study,

given that the previous version of the NVIDIA GPU, the Tesla K20, that made use of a

PCIe 2.0 x16 link, achieved a maximum bandwidth of approximately 6 GB/s2 out of the

theoretical 8 GB/s bandwidth of PCIe 2.0, thus introducing a loss of 25% of the available

bandwidth, in contrast to the 36.5% loss introduced by the NVIDIA Tesla K40 GPU.

Nevertheless, the unexpectedly large performance loss introduced by the CUDA software

provides a surprising conclusion: for the first time, the effective bandwidth of the external

interconnect (FDR InfiniBand + dual-port Connect-IB adapters) is noticeably larger

than the maximum bandwidth attained by the internal interconnect (PCI 3.0 x16 +

CUDA). In particular, the external bandwidth is now 23% higher than the internal

one. This fact, along with the earlier bandwidth slope of InfiniBand, introduces new

possibilities for remote GPU virtualization solutions, which so far were strongly limited

by the lower performance of the external interconnect.

However, bandwidth is not the only issue to consider when leveraging remote GPUs:

latency also matters. Actually, the process of transferring data from main memory in

the source computer to the GPU memory in the target node can be seen as a pipeline

composed of three stages (see Figure 4.16): the PCIe link from main memory to the

source network interface (stage 1); the network fabric connecting the source and the

destination network cards (stage 2); and the PCIe link at the target node connecting both

the network adapter and the GPU (stage 3). Since bandwidth in the intermediate stage

is no longer the bottleneck and, therefore, all the stages in the pipeline are equalized, the

factor that will contribute most to reduce performance when using remote GPUs, with

respect to their local use, is the increased latency to reach the GPU. While in the local

case only one stage must be traversed, in the remote case data must travel across three

stages, with the first and last ones being similar to the one in the local case (the PCIe

link), whereas the intermediate one (the network fabric) can be expected to present a

noticeably larger latency. Nevertheless, the software layers are also expected to play an

important role in the case of latency. In this case, not only are the network and GPU

software layers involved, but also the remote GPU virtualization framework should be

taken into consideration. For the sake of simplicity, in this section we study only the

2This bandwidth was attained for data copies from host to device using pinned host memory, using
a similar testbed system.
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Figure 4.17: InfiniBand RDMA write latency test using FDR over ConnectX-3 and
Connect-IB with 1 port. The CUDA line shows latency for copying data from main
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latency for InfiniBand and CUDA; we postpone the analysis of the complete picture,

taking into account the remote virtualization software layer, until Section 4.3.2.2.

To assess the latency of the Connect-IB and PCIe 3.0 + CUDA interconnects, in

Figure 4.17 we compare the latency of the previous ConnectX-3 adapter and the

Connect-IB when one port is leveraged (notice that, unlike the tools used to measure

bandwidth, the tools to measure latency within the OFED make use only of a single

port). Numbers for the latter are presented as overhead (positive or negative) with

respect to the ConnectX-3 version. Latency data for CUDA (Tesla K40) are also

depicted. Figure 4.17 shows latency numbers for the RDMA write case. Similar numbers

were obtained for the RDMA read and non-RDMA send operations.

In general, Figure 4.17 reveals that latency for the Connect-IB card is slightly increased:

latency for small data transfers increases about 5% with respect to the latency reported

for the previous ConnectX-3 version. Furthermore, latency for InfiniBand is lower than

for CUDA for transfer sizes up to 4 KB, where the higher bandwidth of CUDA (remember

that Figure 4.17 depicts latency numbers for Connect-IB with one port) causes that

latency for larger transfers with CUDA becomes lower than with Connect-IB with 1

port.

4.3.2.2 Influence on the Bandwidth of rCUDA

Next we investigate how the improved characteristics of Connect-IB and PCIe 3.0 +

CUDA influence the performance of the rCUDA. As the baseline reference, we use the

performance of CUDA, given that minimizing the overhead over CUDA performance is

the goal of any remote GPU virtualization framework. Furthermore, we consider the
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performance of the previous InfiniBand generation, the ConnectX-3 network adapter, so

that the benefits of the Connect-IB card are clearly exposed.

Figure 4.18 shows that the Connect-IB card, when using a single port, improves rCUDA

performance over the previous ConnectX-3 adapter for copies from host to device with

pinned host memory. Furthermore, when two ports are used, the maximum bandwidth

attained by rCUDA is almost the same as that achieved by CUDA (98.5% of CUDA’s

bandwidth). However, despite the faster slope of InfiniBand with respect to CUDA

reported in Figure 4.15, rCUDA presents a noticeably lower bandwidth than does CUDA

for small/medium copy sizes (up to 10 MB). This is interesting because the presence

of this delayed slope was much less noticeable in rCUDA for the slower ConnectX-3

and PCIe 2.0 + CUDA, but it is now exacerbated by the increased bandwidth of the

Connect-IB adapter. Actually, notice that rCUDA with ConnectX-3 presents the same

slope as rCUDA with Connect-IB. In this regard, when using ConnectX-3, rCUDA

reaches 80% of the maximum rCUDA bandwidth for a transfer size equal to 6 MB,

whereas in the case for Connect-IB, reaching 80% of the maximum rCUDA bandwidth

is delayed until transfer size equals 9.5 MB. Similar conclusions were obtained for the

device-to-host direction. Hence, given that the performance of InfiniBand is not causing

this slower slope, the internal design of rCUDA must be improved in order to increase

the performance for small/medium transfer sizes. This issue will be further analyzed

in Section 4.3.2.3. Before that, we complete the analysis of the performance of rCUDA

taking a look at latency.

Regarding latency, Figure 4.19 depicts the latency attained by rCUDA for the different

network adapters. Again, one can conclude from the figure that rCUDA presents an

overhead that needs to be further investigated. This concern will also appear in later

sections.



Chapter 4. Tuning rCUDA for InfiniBand Networks 69

CUDA rCUDA ConnectX-3 rCUDA Connect-IB (1p)

2 8

2
K

8
K

3
2

K

1
2

8
K

5
1

2
K

2
M

8
M

0

200

400

600

800

1000

1200

1400

1600

Transfer Size (Bytes)

T
im

e
(μ

s)

2 4 8 16 32 64 12
8

25
6

51
2

1K 2K

0

20

40

60

3
2

1
2

8

5
1

2

Figure 4.19: Latency for copies from host to device with pinned host memory,
using CUDA and the rCUDA framework over InfiniBand employing ConnectX-3 and

Connect-IB with 1 port.

4.3.2.3 Analyzing the Bandwidth of rCUDA

It has been shown in previous section that rCUDA presents low performance for short

and medium sized messages up to, approximately, 10 MB. In order to further investigate

the reasons for this poor bandwidth, we have comparatively studied the bandwidth

attained by rCUDA for three different hardware generations: InfiniBand ConnectX-2

(QDR, 40 Gbps), InfiniBand ConnectX-3 (FDR, 56 Gbps), and InfiniBand Connect-

IB (more than 100 Gbps). Figure 4.20 presents such analysis. Figure 4.20(a) depicts

the case of ConnectX-2, showing that the curves for the performance of InfiniBand

and for CUDA cross each other at 18 KB. In this way, for small messages up to

18 KB, the maximum performance attained by rCUDA will be limited by the bandwidth

achieved by the Tesla K20 GPU whereas for larger transfer sizes maximum performance

will be limited by the bandwidth of InfiniBand. This mixed boundary is depicted in

Figure 4.20(a) by the curve “Max BW”. Anyway, the figure shows that the bandwidth

achieved by rCUDA is very small up to 100 KB, where it quickly grows up to 3 GB/s,

reaching 80% of this bandwidth for a transfer size equal to 4.9 MB.

Figures 4.20(b) and 4.20(c) present similar conclusions, although in these cases the

bandwidth attained by rCUDA is limited by the performance of the Tesla K20 and K40

GPUs, respectively, which achieve lower performance than their associated InfiniBand

counterpart (InfiniBand ConnectX-3 and Connect-IB, respectively). In the same way as

for InfiniBand ConnectX-2, it can be seen in Figures 4.20(b) and 4.20(c) that 80% of

maximum rCUDA bandwidth is obtained for a transfer size equal to 6 MB (ConnectX-3

+ K20) and 9.5 MB (Connect-IB + K40), as mentioned before. One can see how

the 80% threshold is increasingly reached at larger transfer sizes as the InfiniBand
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technology improves. This can also be seen in Figure 4.20(d), which compares the

percentage used from the total available bandwidth for the three hardware generations.

This figure clearly shows that reaching maximum performance is progressively delayed as

the network fabric improves bandwidth. Finally, Figure 4.20(e) depicts the bandwidth

loss for each hardware generation (from the maximum that could be achieved). Again, as

new InfiniBand generations appear, the loss increases for transfers sizes below 10 MB,

approximately. In summary, the internal implementation of communications within

rCUDA needs to be fixed, given that rCUDA is not able to efficiently cope with the

increasing bandwidth that InfiniBand + CUDA provide with each hardware generation.

In order to address this important concern, in Section 4.4 we carry out a thorough search

for the causes of the poor bandwidth attained by rCUDA for small and medium transfer

sizes.

4.3.3 Summary

In this section we have explored how the bandwidth matching between the InfiniBand

Connect-IB network adapter and the PCIe 3.0 influences the performance of the

rCUDA remote GPU virtualization framework. We have concluded that the internal

implementation of communications within rCUDA needs to be reviewed, in order to

efficiently benefit from the increasing bandwidth that InfiniBand + CUDA provide with

each new hardware generation.

4.4 InfiniBand Verbs Optimizations for Remote GPU

Virtualization

InfiniBand is an interconnect providing high bandwidth and low latency, being commonly

used in HPC. The high performance attained by InfiniBand makes that its use in

supercomputers has considerably increased during the last years [55], as shown in

Figure 4.21. This figure presents the amount of supercomputers in the TOP500 list [56]

using the InfiniBand network as well as different versions of the Ethernet one. Actually,

as it can be seen in the figure, the presence of the InfiniBand technology in current

supercomputers is even higher than that of Ethernet, having the former a share of

44.8% whereas the latter presents a share of 37.6%. Furthermore, we can observe that

the total sum represented by systems based on any of these two interconnect technologies

accounts for more than 80% of the systems in this list, what reveals that the InfiniBand

technology is the most widely one used in the HPC domain.
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Figure 4.21: Presence of Ethernet and InfiniBand in the TOP500 list.

However, a major disadvantage of the InfiniBand network lies in the fact that its

specification [57] does not clearly define an API that can be easily learned without

attending specific courses. Indeed, it only describes a set of functions, usually referred

to as verbs (i.e., the InfiniBand Verbs–IBV), which must be available in any commercial

product adhering the specification. As a consequence, the lack of such explicit API in

conjunction with the complexity of the IBV semantics make it difficult to develop even

a simple program. This is evidenced by the publication of papers with the sole purpose

of clarifying how to interact with the InfiniBand Verbs, such as [58], [59] or [60], to name

only a few.

The net result is that InfiniBand is the most widely used interconnect in the

supercomputers included in the TOP500 list, but the lack of recent documentation makes

it difficult to get all the benefits from this network fabric. In this section we explore

two general code optimizations that may be helpful when developing applications using

InfiniBand Verbs. These optimizations achieve an average increase of up to 43% in the

attained bandwidth, what is later translated into a reduction of up to 35% in execution

time of applications using remote GPU virtualization frameworks.

The rest of the section is organized as follows. In Section 4.4.1, we discuss the

work related to our study. Next, in Section 4.4.2, we present and analyze the code

optimizations proposed in this section. Section 4.4.3 analyzes the benefits that these

optimizations bring to remote GPU virtualization frameworks. Finally, in Section 4.4.4,

the main conclusions of this work are presented.

4.4.1 Related Work

As commented before, the lack of an easy to understand programming API for InfiniBand

is one of the major concerns when developing applications that use this network fabric.
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Actually, this was what motivated G. Kerr to dissect in [58] a simple pingpong program,

in an attempt to make clear how to interact with the InfiniBand Verbs API.

In view of this, exploring optimizations for InfiniBand applications has typically re-

mained a big challenge. Several researchers have attempted to present recommendations

for achieving optimal performance. One such example is the work by Liu et al. in [61],

which presents a recent in-depth analysis of the FDR InfiniBand network, proposing

several interesting optimizations. However, the study is limited to the memory seman-

tics (i.e., Remote Direct Memory Access–RDMA), not addressing the channel semantics

(i.e., send/receive verbs not using RDMA). Additionally, the tests are done using Sandy

Bridge processors, while results over later generation processors (i.e., Ivy Bridge) could

lead to different conclusions.

Other researchers have also presented improvements in recent studies. For instance,

Subramoni et al. in [62] study the benefits of using the new Dynamically Connected

(DC) InfiniBand transport protocol, showing great improvements for both synthetic

benchmarks and production applications. Another such example can be found in

the work by Wang et al. in [63], where it is proposed an optimized GPU to GPU

communication design for InfiniBand clusters. Nevertheless, although these proposals

improve performance, both of them are focused on optimizing MPI libraries, whose

requirements differ from general applications.

From our point of view, all these previous efforts to optimize InfiniBand environments

will benefit from the work presented in this section, as the improvements here exposed

can be applied to all those fields.

4.4.2 Bandwidth Optimizations

In this section we introduce and analyze the optimizations proposed in this work. The

setup used for the experiments reported in this section consists of two 1027GR-TRF

Supermicro servers connected by an SX6025 InfiniBand Switch (FDR), each of the

servers with the following characteristics:

• Two Intel Xeon hexa-core processors E5-2620 v2 (Ivy Bridge) operating at 2.1 GHz.

• 32 GB of DDR3 SDRAM memory at 1,600 MHz.

• 1 Mellanox ConnectX-3 single-port InfiniBand adapter.

• 1 NVIDIA Tesla K20m GPU.
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Figure 4.22: InfiniBand Queue Pair (QP) scheme.

• CentOS 6.4 operating system with Mellanox OFED 2.3-2.0.0 (InfiniBand drivers

and administrative tools) and CUDA 6.5 with NVIDIA driver 340.29.

The testbed servers are NUMA machines and therefore NUMA effects matter for the

experiments shown in this section. For this reason, the InfiniBand adapter and the

NVIDIA GPU are attached to the same NUMA node (i.e., processor 0), and processes

and memory buffers are bound to this processor in the experiments.

4.4.2.1 Number of Queue Pairs per Port

As depicted in Figure 4.22, in order for an application in one computer to communicate

over an InfiniBand network with another application in a different cluster node, it must

first create a connection that consists of a queue pair (QP) at each end: one queue for

sending data and another queue for receiving them. Interestingly, a QP does not store

data but work requests submitted by the application. A work request can be seen as

a descriptor of the transfer operation to be performed. A given QP is assigned to one

port and a process may create one or more QPs associated to the same network adapter

port for communicating purposes with an application in another computer. Obviously,

the use of several QPs increases the complexity of maintaining all of them coordinated

and synchronized. In this subsection we analyze the impact on performance of using

several QPs per port, trying to determine the optimal number of QPs per port that a

programmer should use. To do so, we base our analysis in the maximum bandwidth

achieved when varying the number of QPs associated to a network adapter port. We

make use of the bandwidth benchmarks included in the Mellanox OFED software

distribution. These tests measure the bandwidth when copying different data sizes using

the channel semantics (i.e., send/receive verbs not using RDMA, ib send bw benchmark

in Figure 4.23(a)), and the memory semantics (i.e., RDMA read and write, ib read bw

and ib write bw benchmarks, in Figure 4.23(b) and Figure 4.23(c), respectively).

Figure 4.23 shows the results of the mentioned benchmarks, which were run varying the

number of QPs per port. Notice that when using more than one QP, the transferred data

are split among the available QPs. For instance, when transferring 2KB using 2 QPs,
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(c) InfiniBand RDMA write bandwidth.

Figure 4.23: InfiniBand bandwidth tests varying the number of queue pairs (QP) per
port. Primary Y-axis shows attained bandwidth, while secondary Y-axis presents the

bandwidth gain of using 2 QPs over using only 1 QP.
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1KB is sent using QP1 and 1KB is sent using QP2. Notice also that this division of labor

between the several QPs is not automatically performed but the programmer must take

care of distributing the work at the same time that all the QPs remain synchronized and

balanced. The figure shows the average bandwidth of 100 repetitions for each test. The

maximum Relative Standard Deviation (RSD) observed was 0.391 for 16B of transfer

size when using 3 QPs in the ib write bw benchmark.

From the results in Figure 4.23 two main conclusions can be derived. First, there exists

a performance difference between using one or several QPs. However, when more than

one QP are used, performance remains the same independently of the amount of QPs.

Second, results in Figure 4.23 can be divided, from the point of view of performance,

into three groups, depending on the size of the transferred data:

• Less than 2KB: using more than 1 QP translates into an average bandwidth gain

of approximately 2%.

• 2KB: the maximum peak bandwidth is achieved because the maximum transfer

unit (MTU) is 2KB, and the benefits of using more than 1 QP are more evident.

• 4KB or more: the gain of using more than 1 QP stabilizes, resulting in an average

bandwidth improvement of approximately 5%.

Therefore, based on these results, we can conclude that using more than one queue pair

per port turns into an average gain of 3.68%. Given that using 2 or more QPs per port

provides the same performance, we consider that 2 QPs per port is the optimal value,

because the more QPs per port we use, the more the programming complexity increases.

4.4.2.2 Capacity of Send/Receive Queues

As commented previously, applications communicating over InfiniBand must create

queue pairs for sending and receiving data. Choosing the length of these queues (i.e.,

number of work requests they can store) is not a trivial task: the queue should have

enough space to allocate all incoming requests from the application in order to not lose

performance, but larger queue sizes imply also higher resource consumption. This is

especially noticeable in the case of work requests involving RDMA operations, which

have associated page-aligned memory regions that must be allocated before submitting

the work request to the QP. In this subsection we study the influence of the length of

these queues in performance using the attained bandwidth as the metric.

Figure 4.24 shows the results of the bandwidth benchmarks from the Mellanox OFED

mentioned before. As in the previous section, we use the ib send bw benchmark (no
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(c) InfiniBand RDMA write bandwidth.

Figure 4.24: InfiniBand bandwidth tests varying the capacity of the send/receive
queues (i.e., number of work requests that can be allocated) from 2 requests to
256. Primary Y-axis shows attained bandwidth, while secondary Y-axis presents the
bandwidth gain of using 128 queues over using only 2 queues. Notice the logarithmic

scale of the secondary Y-axis.
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RDMA, Figure 4.24(a)), the ib read bw benchmark (RDMA read, Figure 4.24(b)), and

the ib write bw benchmark (RDMA write, Figure 4.24(a)). The benchmarks were

run varying the length of the send/receive queues. The results shown are the average

bandwidth of 100 repetitions, the maximum RSD being 0.587 for 8B of transfer size

when using a queue capacity of 128 requests in the ib read bw benchmark. As can be

observed in Figure 4.24, the queue length is particularly important for small transfer

sizes (up to 2KB), where the use of a buffer with space for 128 requests increases the

bandwidth an average of 418.69% in comparison to a buffer with capacity for 2 requests.

For transfer sizes over 2KB, the bandwidth improvement decreases in the range of 4KB

to 512KB, with an average gain of 48.46%. With regard to sizes over 512KB, the gain of

increasing the number of queues is almost null (0.22%, on average). Additionally, from

these experiments we also extract than using a queue length of more than 128 requests

results in no gain.

In summary, averaging the results in Figure 4.24 for all transfer sizes, using a

send/receive queue capacity of 128 requests provides a bandwidth gain of 217.14% when

compared to a 2-request queue capacity.

4.4.2.3 Combining both Optimizations

The optimizations presented in the previous subsections complement each other: the first

optimization increases performance for large data transfers starting from 2KB, whereas

the second optimization boosts performance for small message transfers up to 2KB,

point where the increment in performance starts diminishing. Therefore, the obvious

question arises: which would be the performance when both optimizations are combined

and applied at the same time?

Figure 4.25 presents results for the combination of both optimizations. The results

shown are the average bandwidth of 100 repetitions, the maximum RSD being 0.423

for 2B of transfer size when running the ib send bw benchmark. It can be seen in this

figure that bandwidth for transfer sizes up to 2KB is increased, in average, more than

450%. From this point, more modest improvements are achieved, although they are still

significant. In this regard, from 4KB up to 512KB, bandwidth is increased, in average,

37.68%, whereas for larger transfer sizes starting from 512KB bandwidth only increases

an average of 4.73%. In average, considering all the transfer sizes analyzed, bandwidth

is increased 43.29%.
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(c) InfiniBand RDMA write bandwidth.

Figure 4.25: InfiniBand bandwidth tests varying the capacity of the send/receive
queues from 2 requests to 128, and number of queue pairs per port from 1 QP to 2.
Primary Y-axis shows the benchmark bandwidth, while secondary Y-axis presents the
bandwidth gain of using 2 QPs and 128 queues over using only 1 QP and 2 queues.

Notice that secondary Y-axis is in logarithmic scale.



80 Chapter 4. Tuning rCUDA for InfiniBand Networks

CUDA

rCUDAzQPsz+zlengthzqueuerCUDAzlengthzqueue

rCUDAzQPs

rCUDAzoriginal

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

TransferzSizez7MB9

B
an

dw
id

th
7M

B
/s

9

0 1 2 3 4 5 6
0

2000

4000

6000

0 10 20 30 40 50 60
5300

5500

5700

5900

Figure 4.26: Bandwidth test for regular CUDA (using the GPU within the host
executing the benchmark) and also for rCUDA (using a remote GPU). Four different
versions of rCUDA are considered: the original rCUDA, rCUDA optimized by increasing
the capacity of send/receive queues, rCUDA optimized by using two QPs, and rCUDA

optimized combining both optimizations.

4.4.3 Experiments

In this section we analyze how the optimizations presented in Section 4.4.2 influence the

performance of upper software layers. For doing so we use a two level approach: first we

analyze these optimizations in the context of the rCUDA framework and later we study

the benefits provided to applications that use this framework.

4.4.3.1 Impact of the Optimizations on rCUDA

Figure 4.26 presents the results for a CUDA bandwidth test, available in the NVIDIA

CUDA Samples [64]. This test measures the bandwidth when copying data from page-

locked system memory to GPU memory. Figure 4.26 presents results when using CUDA

and different versions of rCUDA:

• rCUDA original: this is the current version of rCUDA, which already implements

an efficient communication layer based on the use of pipelined transfers [15]. We

have included these results for reference.

• rCUDA length queue: this is an enhanced version of rCUDA where, in addition to

the already existing pipelined communications, the capacity of send/receive queues

has been increased to 128 requests.

• rCUDA QPs: this version of rCUDA uses two QPs in addition to the initial

pipelined communication data transfer.

• rCUDA QPs + length queue: this version of rCUDA combines all the optimiza-

tions.
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(a) InfiniBand ConnectX-2 and NVIDIA Tesla K20.
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(b) InfiniBand ConnectX-3 and NVIDIA Tesla K20.
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(c) InfiniBand Connect-IB dual port and NVIDIA Tesla K40.

Figure 4.27: Performance of rCUDA before and after optimization.

Results shown in Figure 4.26 are the average bandwidth of 100 repetitions, and the

maximum RSD observed was 1.319 for 14KB of transfer size when using the initial

rCUDA version. However, this high RSD tends to decrease for larger sizes, reaching a

maximum of 0.461 for the biggest ones. It can be seen in the figure that when increasing

the capacity of send/receive queues to 128 requests there is a noticeable increase in

bandwidth (over 4 times more than the bandwidth obtained by the original rCUDA

software) for small/medium transfer sizes (up to 4MB). Furthermore, when using two

QPs, bandwidth is only increased by 1% with respect to the original rCUDA version.

However, in Section 4.23 we have determined an average gain of 3.68% when using

multiple QPs. Thus, rCUDA internal paths are limiting the gain. We will investigate

further during future work on this matter.
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In Figure 4.20, Section 4.3.2.3, we analyzed the bandwidth attained by rCUDA for three

different hardware generations: InfiniBand ConnectX-2 (QDR, 40 Gbps), InfiniBand

ConnectX-3 (FDR, 56 Gbps), and InfiniBand Connect-IB (more than 100 Gbps). The

conclusions of that analysis were that the internal implementation of communications

within rCUDA needed to be reviewed, in order to efficiently benefit from the increasing

bandwidth that InfiniBand + CUDA provide with each new hardware generation.

In the present section we have addressed the concerns discovered in Section 4.3.2.3, and

conveniently optimized rCUDA, as previously shown in Figure 4.26. Figure 4.27 presents

the same performance analysis shown in previous Figure 4.20, but this time using the

optimized version of rCUDA (using 2 QPs and a queue capacity of 128 requests). It can

be seen that for InfiniBand ConnectX-2 and ConnectX-3 the performance of rCUDA

has been noticeably improved, reaching almost 100% of available bandwidth for the

entire range of transfer sizes. In the case for the dual-port InfiniBand Connect-IB

adapter, results for transfer sizes up to 10 MB have been also improved, but they are

not so close to 100% of the available bandwidth, achieving almost the 80%, on average.

Notice that in this case a network card with two ports is used, whereas for the previous

hardware generations the network adapters featured only one port. Thus, this reduction

in bandwidth is due to the fact that the two ports of the Connect-IB card are not

automatically managed by the network adapter, as explained in Section 4.3, but the

application has to deal with all the synchronization issues among them, introducing

some overhead for small/medium sizes.

4.4.3.2 Impact of the Optimizations on Applications using rCUDA with

Single-port Adapters

Next we evaluate the benefits that the optimized version of rCUDA (using 2 QPs and a

queue capacity of 128 requests) provides to applications (the software layer immediately

on top of it) using InfiniBand ConnectX-3 single-port network adapters. For that

purpose, we use the HOOMD-Blue, MAGMA, and GROMACS production codes:

• HOOMD-Blue [65, 66]: it is a general-purpose particle simulation toolkit. In

particular, we have used its version 1.0.1 for our study, running a classic MD

simulation, the Lennard-Jones liquid, with 10 random particles and 10 time steps.

• MAGMA [67, 68]: it is a dense linear algebra library similar to LAPACK but for

heterogeneous architectures. We utilize release 1.6.0 along with the dpotrf gpu

benchmark, which computes the Cholesky factorization for different matrix sizes

(from 1K to 10K elements per dimension, in 1K increments).



Chapter 4. Tuning rCUDA for InfiniBand Networks 83

HOOMD-Blue MAGMA GROMACS
0

0,5

1

1,5

2

2,5
CUDA rCUDA (optimized) rCUDA

N
o

rm
a

liz
e

d
 T

im
e

(a) Normalized execution time of the applications when using regular
CUDA, rCUDA and rCUDA optimized.

HOOMD-Blue MAGMA GROMACS
0

20

40

60

80

100

0

5

10

15

20

25

Transfers Computations CUDA Calls

T
im

e
 (

%
)

C
U

D
A

 C
a

lls
 (

x1
,0

0
0

)

(b) NVIDIA profiling results: time spent in transfers (i.e., copies
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Figure 4.28: Performance evaluation of HOOMD-Blue, MAGMA, and GROMACS.

• GROMACS [69, 70]: it is a versatile package to perform molecular dynamics, i.e.,

simulate the Newtonian equations of motion for systems with hundreds to millions

of particles. We use version 4.6.5 and the ion channel system benchmark with 1K

steps.

Figure 4.28 presents the results of this evaluation. Figure 4.28(a), shows the normalized

execution time when running these applications with regular CUDA, original rCUDA,

and optimized rCUDA (the latter is referred to as rCUDA (optimized), whereas the use

of the original version of rCUDA is denoted by the rCUDA label). In order to better

analyze these results, Figure 4.28(b) shows some profiling results: time spent in transfers

(i.e., copies to/from GPU memory, also referred to as CUDA memcopy), time employed

by computations (i.e., time employed by CUDA kernels), and total number of calls to

the CUDA API. The results shown are the average of 10 repetitions, and the maximum

RSD observed was 0.671 when running the HOOMD-Blue simulation with the original

version of rCUDA.
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As we can observe in Figure 4.28(b), each application presents a different behavior.

Firstly, the HOOMD-Blue test has been selected because it represents a scenario where

there are much more transfers than computations: over 90% of the test execution

time is devoted to transfer data to/from the GPU memory. As expected, this is the

worst possible scenario for rCUDA, because the overhead due to the transfers across

the network is more evident. Thus, rCUDA needs over 2 times more than CUDA to

complete the test. However, it is also a good scenario to show the benefits of the analyzed

optimizations in terms of bandwidth gain. In this manner, the optimized version of

rCUDA presents an improvement of over the 15% with regard to the initial version of

rCUDA.

Next, GROMACS shows the opposite scenario: over 90% of the execution time is devoted

to computations in the GPU. Performing much more computations than transfers

benefits rCUDA in the sense that the time spent in computations in the GPU is

the same for CUDA and rCUDA, thus compensating the overhead of rCUDA due to

transfers across the network. Notice that this application presents a huge number of

calls to the CUDA API. Each CUDA call is forwarded by rCUDA over the network

to the remote node owning the real GPU. From the InfiniBand perspective, CUDA

calls can be seen as transfers of small size (a header of 12 bytes + a variable size

of data depending on the arguments of each CUDA call). As previously shown in

Figure 4.26, the optimization consisting in increasing the send/receive queue capacity

improved performance for small/medium transfer sizes (up to 4MB). This explains why

the rCUDA optimized version needs 35% less time to complete this test, as shown in

Figure 4.28(a),

Finally, we have used the MAGMA application experiment to show an scenario where the

time spent in transfers and computations is equilibrated (44% of time spent in transfers,

56% in computations). The number of CUDA calls is also an intermediate amount with

respect to the previous experiments. In this case, we can attribute the gain when using

rCUDA optimized (an 11% when compared to the initial version of rCUDA) to both

the increment of the maximum bandwidth because of using two QPs, and the reduction

of the time spent in sending small/medium messages due to the increased send/receive

queue capacity.

4.4.3.3 Impact of the Optimizations on Applications using rCUDA with

Dual-port Adapters

In Section 4.3, we explored how the InfiniBand Connect-IB dual-port network adapter

influenced the performance of rCUDA. After analyzing the bandwidth and the latency,
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Sequences using DNA alphabet Sites for each motif

500 0.5 million

1000 1 million

2000 2 millions

Table 4.5: Parameters used for CUDA-MEME application.

we realized that the internal implementation of communications within rCUDA

presented some performance issues. Now that these issues have been addressed, in

this section we study how the characteristics of Connect-IB influence the performance

of real applications using the optimized version of rCUDA. To that end, we use two

applications as study cases: CUDA-MEME and CTA.

CUDA-MEME: Motif Discovery in Biological Sequences

CUDA-MEME [71], is a CUDA-based parallel formulation and implementation of the

MEME motif discovery algorithm. Version 3.0.15 was used in our study along with

the test cases available in the application website [72], choosing OOPS model for motif

distribution with the parameters shown in Table 4.5.

Figure 4.29(a) presents the execution time of CUDA-MEME using CUDA and rCUDA.

The overhead of using rCUDA in these experiments is, on average, 2.43%, 1.03%, and

0.51% when using ConnectX-3, Connect-IB 1 port, and Connect-IB 2 ports, respectively.

Moreover, the overhead decreases as problem size increases. Thus, for a sequence

length equal to 2000, the overhead is 0.24%, 0.22%, and 0.17% when using ConnectX-3,

Connect-IB 1 port, and Connect-IB 2 ports, respectively. The reason for the overhead

reduction introduced by rCUDA as sequence length increases is the increased difference

between the time employed in transfers and computations, as shown in Figure 4.29(b). In

general, the more computations an application performs, the less overhead is introduced

by rCUDA because the time spent in computations in the GPU is the same for CUDA

and rCUDA, thus compensating the overhead of transferring data across the network.

These results are aligned with the ones in previous sections and reinforce the conclusion

that the overhead of remote GPU virtualization is reduced when using the InfiniBand

Connect-IB adapter. Nevertheless, the improvement obtained when using this card

is not as noticeably as it could be expected after the bandwidth increase observed in

Figure 4.18. The reason is that this is an application computation bound, in which

time spent doing computations in the GPU is clearly larger than time spent transferring

data to/from the GPU memory, as depicted in Figure 4.29(b). Therefore, given that

data transfers represent a small fraction of total execution time, a reduction in the time
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Figure 4.29: CUDA-MEME analysis.
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framework over InfiniBand employing different cards: ConnectX-3 and Connect-IB
(with 1 and 2 ports). Secondary y-axis presents the rCUDA improvement of using

Connect-IB (with 1 and 2 ports) with respect to ConnectX-3.

required for transferring data translates into a much smaller reduction in total execution

time. In the next section, we show an application bandwidth bound in order to better

reflect the overhead reduction.
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Figure 4.31: Profiling of the CTA application.

CTA: Signal Extraction

CTA [73] is a signal extraction algorithm pertaining to the entry stage of the

Cherenkov Telescope Array’s Real Time Analysis pipeline, implemented using CUDA.

The algorithm receives waveforms as input. In these experiments we have measured the

processing time of different input buffer sizes: 200MB, 500MB, 1GB, 2GB and 4GB.

Figure 4.30 shows CTA execution time using CUDA and the rCUDA framework over

InfiniBand employing different cards: ConnectX-3 and Connect-IB (with 1 and 2 ports).



88 Chapter 4. Tuning rCUDA for InfiniBand Networks

1 2 4 8 16 32 64 128 256
0

1

2

3

4

0

100

200

300

400

500

600

CUDA

rCUDAsConnectX-3s1p

rCUDAsConnect-IBs1p

rCUDAsConnect-IBs2p

ConnectX-3s1p

Connect-IBs1p

Connect-IBs2p

Number of CUDA Calls

Ti
m

e
(m

s)

In
cr

ea
se

F
a

ct
or

(x
)

Figure 4.32: Test varying the number of CUDA calls. Each CUDA call translates into
one rCUDA small message (shorter than 64 bytes). Primary y-axis shows execution
time using CUDA and the rCUDA framework over InfiniBand employing different cards:
ConnectX-3 and Connect-IB (with 1 and 2 ports). Secondary y-axis shows the increased

factor of rCUDA overhead with respect to CUDA.

The right axis of this figure also presents the improvement of using Connect-IB (with 1

and 2 ports) with respect to ConnectX-3. As it can be seen, the use of Connect-IB with

2 ports reduces rCUDA overhead up to 11% for a 200MB buffer size, and over 7%, on

average, for all the buffer sizes tested, with respect to ConnectX-3. This improvement

was expected because this application is bandwidth bound, as shown in Figure 4.31(a).

In that figure one can see that this application spends most of the time in copying data

to GPU memory (bar segment labeled as “CUDA memcopy HtoD”).

However, although in this application the overhead of rCUDA is clearly reduced when

using Connect-IB cards, the overhead of rCUDA with regard to CUDA is larger than

in the case of CUDA-MEME, as can be seen in Figure 4.30. One may think that this

higher overhead was in part expected, given that this application spends much more

time in transferring data than CUDA-MEME and, given that rCUDA does not use

100% of the available bandwidth, then the more data is transferred, the higher the

overhead is. In this regard, Figure 4.31(b) shows that this application transfers, for

the largest input buffer used, more than 4 GB to the rCUDA server. However, a simple

calculation shows that the small difference in the maximum attained bandwidth between

CUDA and rCUDA does not completely explain the execution time overhead shown in

Figure 4.30. This calculation is the following: sending 4 GB of data to the remote

server at maximum speed (10 GB/s) takes 0.4 seconds. Thus, given that the difference

in maximum bandwidth achieved between CUDA and rCUDA is only 1.5%, then the

rCUDA overhead of transferring these 4 GB of data would be 6 milliseconds, what is

much less than the overhead shown in Figure 4.30. Thus, although the lower bandwidth

of rCUDA increases execution time, it is not the main reason for the overhead.

In order to find a more contributing reason for the overhead, notice that Figure 4.31(b)

shows the total amount of data transferred, but this data does not necessarily have to
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be transferred in one single message. Furthermore, smaller transfer sizes attain lower

bandwidth. Thus, given that the 4 GB of input data will not probably be transferred

in a single chunk, it is necessary to analyze the different message sizes actually used. In

this regard, as presented in Figure 4.31(c), over 80% of the messages between rCUDA

client and server are smaller than 64 bytes. Moreover, an additional analysis of the

messages exchanged between the rCUDA client and server, attending to message type,

revealed that these small messages are not data copies to/from GPU memory, but CUDA

calls such as CUDA synchronization points, for example, which do not carry data.

Furthermore, notice that these small messages present a non-negligible latency given

that they are CUDA commands forwarded to the GPU which returns a short response.

Hence, these small messages might be seen as ping-pong messages. Therefore, it could

be possible that this large percentage of small messages is the cause for the execution

time overhead shown in Figure 4.30.

In order to analyze the impact of these small messages, we have implemented a test

which performs a varying amount of CUDA calls. Each of these CUDA calls later

translates into one small rCUDA message (shorter than 64 bytes) and its associated

response from the GPU. Results for this test are presented in Figure 4.32. As we can

see, rCUDA performance is clearly impaired by this kind of messages, thus explaining

the large overhead of rCUDA when remotely executing the CTA application.

4.4.4 Summary

The use of InfiniBand networks to interconnect high performance computing clusters

has considerably increased during the last years. However, due to the programming

complexity of the InfiniBand API and the lack of documentation, there are not enough

recent available studies explaining how to optimize applications to get the maximum

performance of this fabric.

In this section we have exposed two general optimizations to be used when developing

applications using InfiniBand Verbs. Based on our experiments we can conclude that

(1) using more than one queue pair per port clearly improves bandwidth (an average

gain of 3.68% in our experiments), (2) increasing the capacity of the send/receive queues

turns into an average bandwidth improvement of over 200%, being especially noteworthy

for small/medium message sizes (over 400% more bandwidth in our experiments), and

(3) both optimizations complement each other. In this regard, when combining both

optimizations, the average bandwidth gain is 43.29%. This bandwidth increment is key

for remote GPU virtualization frameworks. Actually, this noticeable gain translates

into a reduction of up to 35% in execution time of applications using remote GPU
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virtualization frameworks. These optimizations were released in versions 15.07, 15.10

and 16.06 of the rCUDA framework (see Table 2.2 for more details).

4.5 Influence of EDR InfiniBand on the Bandwidth of

rCUDA

During the time frame used to carry out this thesis, several generations of InfiniBand

adapters appeared, as previously shown in Figure 1.1. In this regard, by the end of

this thesis EDR 100G InfiniBand adapters came on the market. In this section we

analyze how the high bandwidth provided by this InfiniBand fabric allows remote GPU

virtualization middleware systems not only to perform very similar to local GPUs, but

also to improve overall performance for some applications.

4.5.1 Background

As commented in previous sections, remote GPU virtualization may experience a

noticeable reduction in their overhead with respect to the use of local GPUs when

high performance interconnects are used. In this regard, recent advances in networking

technologies have considerably reduced the performance gap between the intra-node

PCIe link and the inter-node fabric. For example, as depicted in Figure 4.1, the

theoretical throughput of the latest available versions of PCIe and InfiniBand are

relatively close: 15.75 GB/s for PCIe 3.0 x16 vs. 12.5 GB/s for EDR 100G InfiniBand

using Mellanox adapters. Furthermore, when considering the effective bandwidth of

these technologies instead of the theoretical numbers, EDR InfiniBand presents better

results, as shown later.

In this manner, the main contribution of this section is showing how this high effective

bandwidth provided by EDR InfiniBand allows remote GPU virtualization middleware

systems not only to perform very similar to local GPU-accelerators, but also to improve

the performance for some applications. The optimizations described in the previous

sections are also leveraged in this section.

The rest of the section is organized as follows. Section 4.5.2 further investigates the

effective bandwidth of EDR InfiniBand networks and PCIe 3.0 when used by the

latest NVIDIA GPUs at the time of performing this analysis. Section 4.5.3 provides

a performance evaluation of the rCUDA middleware using both popular benchmarks

and applications. Finally, Section 4.5.4 summarizes the main conclusions of this work.
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4.5.2 Motivation

As shown in Figure 4.1, the theoretical bandwidth of EDR InfiniBand and that of

PCIe 3.0 are relatively close. However, it is well known that the actual performance of

any interconnect largely depends on the ability of the upper software layers to obtain as

much bandwidth as possible from it. Thus, the effective performance of an interconnect

is usually lower than the theoretical one. The real concern, therefore, is not about the

theoretical numbers depicted in Figure 4.1 but about real performance, that is, whether

real bandwidth numbers help to reduce the performance difference among the external

InfiniBand fabric and the internal PCIe or, on the contrary, make that difference larger,

thus increasing the penalty of remote GPU virtualization techniques.

To address this concern, in this section we compare the EDR InfiniBand fabric against

the PCIe 3.0 link, when used by their respective upper software layers: the network

driver in the case of InfiniBand and the CUDA driver, along with an NVIDIA GPU,

in the case of the PCIe 3.0. This analysis will expose the maximum performance that

might be achieved by a remote GPU virtualization solution and, additionally, will put

the performance of such a virtualization solution into the right perspective.

The testbed used in this analysis consists of two 1027GR-TRF Supermicro nodes

featuring two Intel Xeon E5-2620v2 processors (Ivy Bridge) operating at 2.1 GHz and

32 GB of DDR3 memory at 1600 MHz. The computers also include an EDR InfiniBand

adapter. One of the nodes has installed an NVIDIA Tesla K40 GPU and also an NVIDIA

Tesla K80 GPU. Linux CentOS 6.4 was used along with CUDA 7.0 (NVIDIA driver

340.46) and Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and administrative tools).

The test servers used are NUMA machines. NUMA effects matter for the performance

evaluation presented in this section. For this reason, the InfiniBand card and the K40

GPU are connected to the same PCIe root (i.e., processor 0) whereas the K80 GPU

is connected to processor 1. For all the experiments shown in this section, processes

and memory buffers are appropriately bound either to processor 0 or 1. Additionally,

the persistence mode of the NVIDIA GPUs was enabled in order to obtain the best

performance.

Figure 4.33 shows the performance attained by the NVIDIA K40 and K80 GPUs when

the bandwidthTest benchmark from the NVIDIA samples [74] is used. It can be seen

in Figure 4.33(a) that the bandwidth achieved by copies using pinned and pageable

host memory is very different. Actually, copies using pinned memory achieve up to

four times the performance of copies using pageable memory. Moreover, it is interesting

to notice that even for the largest performance attained by the K40 GPU, maximum

effective bandwidth is about 35% lower than the PCIe 3.0 theoretical bandwidth.
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Figure 4.33: Bandwidth test for copies between host memory and GPU memory using
pinned and pageable host memory. H2D refers to the copies from host to the GPU,

whereas D2H refers to the opposite direction.

Furthermore, applications usually leverage pageable memory. Hence, in practice the

performance of memory copies to/from the K40 GPU is almost six times lower than

the theoretical performance of PCIe 3.0. This fact supports our initial assumption that

effective bandwidth should be considered instead of theoretical numbers. Regarding

the performance of the K80 GPU shown in Figure 4.33(b), it can be seen that similar

conclusions can be reached. Nevertheless, as Figure 4.33(c) shows, the performance of

the K80 GPU is lower than that of the K40 one. For this reason, in the rest of the
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section we will only consider the use of the K40 GPU, because it represents a harder

burden for our study.

Once the performance of the PCIe 3.0 link, along with NVIDIA GPUs, has been

analyzed, we continue our study with the performance of the EDR InfiniBand

network. Figure 4.34 presents the performance attained by this interconnect when the

ib write bw, ib read bw, and ib send bw benchmarks from the Mellanox OFED are

used. These tests measure the bandwidth when copying different data sizes using the

channel semantics (i.e. send/receive verbs not using RDMA, ib send bw benchmark),

and the memory semantics (i.e. RDMA read and write, ib read bw and ib write bw

benchmarks, respectively). First, Figure 4.34(a) presents the performance of the

ib send bw benchmark and compares it with the other two InfiniBand benchmarks. It

can be seen that the three benchmarks provide very similar results. Only for copy sizes

below 1K byte there is a maximum of 5% of difference among them. On the other hand,

Figure 4.34(b) compares the performance of the ib write bw benchmark with that of

the K40 GPU for copies H2D using pageable and pinned host memory. The left Y axis

shows absolute bandwidth numbers whereas the right Y axis shows the performance of

the EDR network normalized to that of the K40 (in logarithmic scale). It can be seen in

Figure 4.34(b) that the performance of the EDR InfiniBand fabric is almost 100 times

larger than that of the K40 using pageable memory for small copy sizes, whereas for

larger copy sizes the K40 GPU is about 4 times slower. In a similar way, Figure 4.34(c)

depicts a performance comparison involving the ib read bw benchmark as well as D2H

memory copies using pageable and pinned memory. Again, the EDR InfiniBand network

fabric performs better (between 100x and 5x than the K40 GPU when pageable memory

is used).

As a summary of the analysis presented in this section, when the effective bandwidth

numbers of PCIe 3.0 and EDR InfiniBand interconnects are considered instead of

the theoretical values, the main conclusion is that the EDR InfiniBand network

fabric provides higher bandwidth than the latest NVIDIA GPUs. This difference in

performance provides an interesting conclusion: the effective bandwidth of the external

interconnect (EDR InfiniBand) is noticeably larger than the maximum bandwidth

attained by the internal interconnect (PCI 3.0 x16 + CUDA). This fact introduces

new possibilities for remote GPU virtualization solutions, which so far were strongly

limited by the lower performance of the external interconnect. This conclusion is the

main motivation for the study presented in this section about the performance of remote

GPU virtualization middleware systems.
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Figure 4.34: Performance of the InfiniBand (IB) bandwidth tests, compared to the
performance of the NVIDIA K40 GPU.



Chapter 4. Tuning rCUDA for InfiniBand Networks 95

4.5.3 Experiments

This section presents the impact that the new EDR InfiniBand interconnect has on the

performance of the rCUDA middleware. For this purpose, we first analyze the maximum

bandwidth attained for memory copies between host memory and remote GPU memory.

Next, we use the Rodinia benchmark suite [75] to characterize how several application

kernels perform in this virtualized scenario. Finally, we make use of seven different

applications to analyze how the improved features of the new interconnect influence the

performance of applications using rCUDA.

4.5.3.1 Bandwidth analysis

Figure 4.35 presents a comparison between the bandwidth attained by CUDA when

using the local K40 GPU, as in the traditional way, and the performance achieved

when using the rCUDA middleware with a remote K40 GPU. The testbed used is the

same as in Section 4.5.2. The bandwidthTest benchmark from the NVIDIA samples is

used. Figures 4.35(a) and 4.35(b) use pageable host memory whereas Figures 4.35(c)

and 4.35(d) use pinned host memory. It can be seen that when pageable host memory

is used, the bandwidth achieved when using a remote GPU is higher than that obtained

for a local GPU for copy sizes larger than 100K bytes. Actually, for the H2D direction,

the rCUDA middleware achieves almost 3 times the bandwidth attained by CUDA. In

the case of the D2H direction, rCUDA doubles the performance of CUDA. This is a

well-known effect thoroughly described in previous works on rCUDA [15] and is due to

the use of an efficient pipelined communication based on the use of internal pre-allocated

pinned memory buffers. On the other hand, when pinned memory is considered, rCUDA

is able to achieve more than 90% of the bandwidth attained by CUDA for the largest

copy sizes. Nevertheless, remember than applications usually employ pageable memory

instead of pinned memory.

As a brief summary of the results presented in Figure 4.35, the main conclusion is

that CUDA applications may experience some additional acceleration when using the

rCUDA middleware due to the higher bandwidth used to move data to/from the GPU.

Nevertheless, in addition to bandwidth, other issues should also be considered, as it will

be shown in next subsection.

4.5.3.2 The Rodinia Benchmark Suite

Rodinia [75] is a popular benchmark suite for heterogeneous computing aimed to help

architects study platforms such as GPUs. It includes applications and kernels which
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Figure 4.35: Bandwidth test for copies between host memory and GPU memory using
CUDA and the rCUDA middleware over the EDR InfiniBand fabric.

target multi-core CPU and GPU platforms. The Rodinia benchmarks cover a wide range

of parallel communication patterns and synchronization techniques, which we consider

useful for an initial study.
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For the experiments shown in this section, we have used the version 3.0 of the

Rodinia benchmark, following the instructions inside each benchmark for running them.

Figures 4.36(a), 4.36(b), and 4.36(c) compare the execution time of several of the

benchmarks included in this suite (for a complete description of each of these benchmarks

please refer to [75]). Figure 4.36(a) presents results for benchmarks whose execution

time is under 1 second. Figure 4.36(b) presents results for benchmarks that require

less than 5 seconds to complete their execution and Figure 4.36(c) is devoted for a

benchmark presenting a much longer execution time. Hence, benchmarks with very

different execution times are considered in this study. It can be seen in these three figures

that the execution of these benchmarks with the rCUDA middleware is, in general, faster

than with CUDA. Figure 4.36(d) summarizes, in terms of percentage, the difference of

time between rCUDA and CUDA. This figure shows that for short benchmarks, the

remote case is in general noticeably faster than the local case. However, for the medium

benchmarks there is not such a predictable improvement. Finally, for the long benchmark

analyzed, the remote case performs better than the local case.

One may think that the better performance of rCUDA is due to the higher bandwidth

attained for copies using pageable memory. However, a deeper profiling revealed

that some of the analyzed codes have synchronization points, such as calls to

cudaDeviceSynchronize or cudaStreamWaitEvent, that take more time when using

CUDA than when using the rCUDA middleware. For instance, a call to cudaDevice-

Synchronize takes about 530 microseconds in CUDA, whereas it takes only about 40

microseconds in rCUDA. The reason for this large difference lies in the internal algorithm

used in the rCUDA middleware to determine the finalization of the CUDA tasks, which

benefits rCUDA in these short benchmarks, as shown before in Section 3.3. Nevertheless,

the time saved in synchronization points in rCUDA does not fully explain the shorter

execution time of these benchmarks. One additional factor that affects execution time

is the network polling interval (i.e., the frequency used to poll the network for work

completions). This interval in the rCUDA implementation is lower than the default

polling interval used by CUDA to poll the PCIe link, as previously demonstrated in

Section 3.3. Thus, for short benchmarks where the aggregated weight of these small

waits becomes a large fraction of the total execution time, the net result is that rCUDA

performs better than CUDA.

In summary, there are many different factors that simultaneously contribute to increase

and reduce the overhead of rCUDA with respect to CUDA. Hence, for each of the

benchmarks executed, the exact combination of these factors results in a better or worse

execution time. Nevertheless, as shown in Figure 4.36, the average overhead of rCUDA

with respect to CUDA is about 5% (considering only those cases where rCUDA increases

total execution time).
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Figure 4.36: Execution time of several Rodinia benchmarks using CUDA and the
rCUDA middleware over EDR InfiniBand.
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4.5.3.3 Production Applications

This section completes the analysis of the performance of the rCUDA middleware by

applying it to 7 production applications3: CUDASW++, GPU-LIBSVM, LAMMPS,

GPU-BLAST, MAGMA, CUDA-MEME, and BarraCUDA.

CUDASW++ [77] is a bioinformatics software for Smith- Waterman protein database

searches that takes advantage of the massively parallel CUDA architecture of NVIDIA

Tesla GPUs to perform sequence searches. We have used its last release, version

3.1, for our study, along with the Latest Swiss-Prot database and a query with 5,478

sequences. Both the database and the query are available in the application’s website:

http://cudasw.sourceforge.net.

GPU-LIBSVM [78] is an integrated software that supports vector classification, (C-

SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class

SVM). In addition, it supports multi-class classification. For our experiments, we have

used version 3.18, and the input data included in the package. More specifically, we

have scaled the available training data, without the use of the shrinking heuristics and

utilizing a 10-fold cross validation mode.

LAMMPS [40] is a classic molecular dynamics simulator that can be used to model

atoms or, more generically, as a parallel particle simulator at the atomic, mesoscopic, or

continuum scale. For the test in this work, we use the release from May 15, 2015, and

the benchmark “in.eam” installed with the application. We run the benchmark with one

processor and one GPU, scaling by a factor of 5 in all three dimensions (i.e., a problem

size of 4 million atoms).

GPU-BLAST [79] has been designed to accelerate the gapped and ungapped protein

sequence alignment algorithms of the NCBI-BLAST implementation using GPUs. We

utilize release 1.1, following the installation instructions for sorting a database and

creating a GPU database. To search the database, we then use a query with 1,400

sequences that comes with the application package.

The MAGMA [80] project aims to develop a dense linear algebra library similar

to LAPACK but for heterogeneous/hybrid architectures (current multi- core+GPU

systems). We have run the DLARFB tests, which applies a real block reflector H or

its transpose HH to an M by N matrix C, from the left. The range of matrix sizes used

(M=N=K) was from 1,088 to 4,160 in increments of 1,024.

CUDA-MEME [81] is a parallel formulation and implementation of the MEME motif

discovery algorithm using CUDA. Version 3.0.15 was used in our study along with

3All the applications have been extracted from the NVIDIA list of GPU applications [76].
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Figure 4.37: Execution time of several applications using CUDA and the rCUDA
middleware over the EDR InfiniBand fabric.

the testcases available in the application website, choosing OOPS model for motif

distribution, with 500 sequences using DNA alphabet, and 0.5 million of sites for each

motif.

The aim of the BarraCUDA [82] project is to develop a sequence mapping software

that utilizes the massive parallelism of GPUs to accelerate the inexact alignment of

short sequence reads to a particular location on a reference genome. We have used a

simulation of the most current genome build called “Illumina” as database, and a query

using a method called “STAMPY”. The read length was 37.

Figures 4.37(a) and 4.37(b) depict a comparison between the execution time of these

applications in the local and remote scenarios. In a similar way to the Rodinia

benchmarks, these applications have been selected because they present a wide range

of execution times. Figure 4.37(c) presents the overhead of rCUDA with respect to

CUDA. It can be seen that, in general, the overhead is lower than 3%. Moreover, some

of the applications present small improvements. Again, a deeper profiling reveals similar

conclusions as in Section 4.5.3.2. Therefore, as also explained in that sections, the exact

reasons for the increase or decrease of execution time when using rCUDA depends on

each application. In general, the reasons lay on the same basis as the ones detailed in

Section 3.3.
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4.5.4 Summary

In this section the impact of EDR InfiniBand on the rCUDA middleware has been

investigated. The main motivation for this study is the higher bandwidth of the

EDR InfiniBand network fabric with respect to the bandwidth attained by current

NVIDIA GPUs leveraging the PCIe 3.0 link. In addition to basic bandwidth tests, the

remote GPU virtualization rCUDA middleware has been analyzed by using 20 different

benchmarks from the Rodinia suite and 7 production applications selected from the

NVIDIA list of GPU applications.

The main conclusion from this work is the noticeable reduction of the overhead

experienced by remote GPU virtualization solutions, generally speaking, and more

specifically by the rCUDA middleware. In this regard, for most applications the overhead

is below 5%. Furthermore, some applications experience a reduction in their execution

time with respect to the local CUDA case. We can thus conclude that local and remote

GPUs perform similar when using EDR InfiniBand.

4.6 Conclusions

This chapter has presented performance analysis and optimizations carried out for

different InfiniBand networks in the context of the rCUDA middleware. First, we have

analyzed the influence of FDR InfiniBand on the performance of rCUDA. Then, we

have introduced a new version of rCUDA supporting InfiniBand dual-port adapters,

such as the InfiniBand Connect-IB (FDR x 2) ones, and have also evaluated its

performance. Next, we have exposed different optimizations to be used when developing

applications using InfiniBand Verbs and we have studied its impact on rCUDA. Finally,

we have analyzed how the high bandwidth provided by EDR InfiniBand, along with the

optimizations exposed in previous chapters, allows rCUDA not only to perform very

similar to local GPUs, but also to improve overall performance for some applications.





Chapter 5

Peer to Peer Memory Copies

between Remote GPUs

Prior to this thesis, rCUDA did not support memory copies between remote GPUs

located in different nodes. This chapter presents an efficient mechanism devised for

addressing the support for this kind of memory copies among GPUs located in different

cluster nodes. Several options are explored and analyzed, such as the use of the

GPUDirect RDMA mechanism. Results show that it is possible to implement this kind

of memory copies in such an efficient way that performance is even improved with respect

to the original performance attained by CUDA when GPUs located in the same cluster

node are leveraged. The work presented in this chapter has been published in [83]. It

has also been submitted to the Journal of Parallel and Distributed Computing. Finally,

the work presented in this chapter was introduced in version 16.11 of rCUDA, which

was officially released at the Supercomputing Conference 2016 in Salt Lake City, Utah,

USA.
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Link with Industry

As the use of GPUs for accelerating applications becomes widespread, systems with more

than one GPU begin to appear. In response to this, NVIDIA improves CUDA by offering

faster multi-GPU programming tools, such as (1) the Unified Virtual Addressing (UVA),

which provides a single address space for both system memory and GPUs memory; and

(2) a new version of GPUDirect with support for Peer to Peer communication (i.e.,

direct transfers between GPUs).

All this leads to the development of applications leveraging multiple GPUs. Once again,

rCUDA needs to evolve in response to industry trends: it is necessary to offer Peer to

Peer support for remote virtual GPUs, regardless of whether the GPUs are located in

the same remote server or in different remote servers.

5.1 Introduction

In order to better introduce the idea around P2P memory copies, Figure 5.1 presents

the possible scenarios when carrying out this kind of memory copies with CUDA and

rCUDA. As we can see, with CUDA there is only one possible scenario, depicted in

Figure 5.1(a), where the GPUs are located in the same node and are interconnected by

the PCIe link. On the contrary, when using rCUDA there are two possible scenarios

for performing copies between remote GPUs: (i) the remote GPUs are located in the

same remote node and are interconnected by the PCIe link as shown in Figure 5.1(b),

and (ii) the remote GPUs are located in different remote nodes and therefore they are

interconnected by the network fabric, as depicted in Figure 5.1(c).

Prior to this thesis, rCUDA already supported the scenario exposed in Figure 5.1(b). In

this manner, it was possible to carry out memory copies between remote GPUs located

in the same server node. However, the scenario presented in Figure 5.1(c) was not

supported. In this regard, although the scenario depicted in Figure 5.1(c) may not be

strictly required for many use cases, having the flexibility to use any of the GPUs in

the cluster regardless of their exact location provides a large improvement in overall

performance, as shown in [84]. Additionally, remote GPU virtualization frameworks

aim to provide the same semantics as CUDA does. Therefore, providing support within

the virtualization framework for P2P memory copies between remote GPUs located in

different nodes is mandatory.

In this chapter we explore different options to implement memory copies between remote

GPUs located in different nodes of the cluster. In this way, researching on different
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Figure 5.2: Scenarios with and without NVIDIA GPUDirect RDMA used with an
InfiniBand network adapter.

mechanisms to efficiently implement this support is the major contribution of this

chapter, where we show how we have adapted rCUDA to accomplish this purpose. To the

best of our knowledge, this is the first analysis on this kind of memory copies, given that

none of the existing GPU virtualization frameworks provides support for P2P memory

copies between remote GPUs located in different nodes.

The rest of the chapter is organized as follows. Section 5.2 presents previous work, mainly

related to the GPUDirect RDMA mechanism implemented by NVIDIA. Section 5.3

addresses the main goal of this chapter, where we explore different options to carry out

memory copies between remote GPUs located in different cluster nodes. A performance

comparison is carried out among the several implementation options considered in this

study. A synthetic benchmark is leveraged to that end. Next, Section 5.4 provides a

performance evaluation of the implemented P2P copies within the rCUDA middleware

using a real application. Finally, Section 5.5 summarizes the main conclusions of this

chapter.

5.2 Related Work on P2P Memory Copies

In order to efficiently copy data between the memory of GPUs located in different nodes

of the cluster, NVIDIA introduced GPUDirect RDMA [85] in 2012. It is a technology

that enables, by using standard features of the PCIe link, a direct path for data exchange

between the GPU and a third-party peer device, such as an InfiniBand network adapter

(see Figure 5.2). Support for GPUDirect RDMA was introduced by Mellanox into its

InfiniBand network adapters [86] in order to provide high-speed InfiniBand networking

for GPU-to-GPU communications.
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Table 5.1: Summary of the bandwidth results reported for GPUDirect RDMA in the
study “Benchmarking GPUDirect RDMA on Modern Server Platforms”, by Davide

Rossetti.

Path between GPU Bandwidth (GB/s)
and network card Host to Host GPU to GPU

(regular RDMA) (GPUDirect RDMA)

Intra-socket (FDR) 6.1 3.7

Intra-socket (FDRx2) 12.3 3.7

Inter-socket (FDR) 6.1 1.1(TX)/0.25(RX)

PCIe switch (FDR) 6.1 5.8

PCIe switch (FDRx2) 12.3 7

Exploring the use of GPUDirect RDMA for InfiniBand networks has become very

popular since it appeared. In this manner, a lot of researchers have attempted to use this

technology for improving performance in different scenarios. One such example is the

work by Hamidouche et al. in [87], which investigates the use of GPUDirect RDMA for

improving the communication operations of OpenSHMEM, a Partitioned Global Address

Space (PGAS) programming model. Another such example can be found in the work

by Younge et al. in [88], where GPUDirect RDMA is one of the technologies used for

running high performance molecular dynamics simulations in virtualized environments.

Other researchers have also presented improvements in the field of Message Passing

Interface (MPI) communication libraries. For instance, Potluri et al. in [89] increase

the efficiency of the inter-node MPI communication library MVAPICH2 [90] by using

GPUDirect RDMA.

In addition to all the previous works referred above, an extensive performance analysis

of NVIDA GPUDirect RDMA over InfiniBand [91] shows the real capabilities of this

technology when used in modern server platforms. Table 5.1 presents a summary of

the bandwidth results extracted from the referred analysis. According to the authors

of that study, the testbed system used was composed of two servers with Ivy Bridge

Xeon processors (E5-2690v2 at 3.00GHz), NVIDIA K40m GPUs, and Mellanox dual-

port Connect-IB network adapters (each port offering FDR performance). Results in

Table 5.1 show the bandwidth in GB/s attained when copying messages of 64KB from

host memory to host memory, using regular RDMA and from GPU memory to GPU

memory, using GPUDirect RDMA. Different scenarios are considered depending on the

exact path between the GPU and the network card:

• Intra-socket: the GPU and the network adapter are connected to the same socket

processor in both servers



108 Chapter 5. Peer to Peer Memory Copies between Remote GPUs

• Inter-socket: in one of the servers (server 1), the GPU and the network adapter

are connected to different sockets; in the other server (server 2), the GPU and

the network adapter are attached to the same socket. TX refers to the case when

copying data from GPU memory in server 1 to GPU memory in server 2. RX

refers to the reverse data path

• PCIe switch: the GPU and the network card are mounted on a riser-card and they

are connected by a PCIe switch. This configuration is used at both ends

Results marked with “FDR” were obtained using only 1 port of the dual-port Connect-

IB network adapters, whereas the ones marked with “FDRx2” were carried out using 2

ports.

As we can see, GPUDirect RDMA introduces, in general, an important performance loss

with respect to regular RDMA for copying data among host memory at both servers

instead of using GPU memory. This loss in performance is clearly affected by the path

traversed by data. In this manner, the best results are obtained in the PCIe switch

scenario, where the bandwidth when using 1 port of the network adapter is close to the

bandwidth when copying Host to Host memory (5.8GB/s vs. 6.1GB/s). In contrast,

using 2 ports turns into a very clear drop in performance (from 12.3GB/s to 7GB/s).

In the case of the intra-socket scenario, the bandwidth decreases to 3.7GB/s. The worst

results are obtained in the inter-socket scenario, where the performance loss is more

evident: 1.1GB/s and 0.25GB/s for TX and RX, respectively. The authors of [91] point

out that maybe the PCIe host interface integrated into the CPU is restricting the number

of in-flight transactions. Therefore, if there are not enough outstanding transactions the

read bandwidth becomes latency limited.

The study in [91] also provides results for latency when copying messages of 4 bytes.

In this way, the latency obtained when copying from host memory to host memory is

1.3µs, whereas the latency when moving data from GPU memory to GPU memory is

1.9µs in all the scenarios. The only exception is in the inter-socket one, where the RX

copy results in a latency of 2.2µs.

Finally, the study in [91] concludes that:

• Bandwidth: according to the authors, GPUDirect RDMA is faster than a staging

approach1 for message sizes up to 400-500KB. For larger data sizes, staging to/from

host memory and moving data via InfiniBand using regular RDMA probably

provides better performance.

1A staging approach comprises copying from the source GPU memory to host memory; then copying
from host memory to remote host memory using regular RDMA, instead of GPUDirect RDMA; and
finally, in the remote node, copying from host memory to the destination GPU memory.
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• Latency: GPUDirect RDMA provides low latency, usually below 2µs, which is

better than staging to/from host memory and moving data via InfiniBand using

regular RDMA. The authors state that using intermediate buffers requires either

synchronous (cudaMemcpy) or asynchronous (cudaMemcpyAsync) memory copies,

which take around 8µs and 9µs, respectively. Additionally, we have to add the

InfiniBand host-to-host latency: 1.3µs. Thus, the expected GPU-to-GPU latency

would be: 8µs (cudaMemcpy from GPU 1 to host 1) + 1.3µs (copy from host 1 to

host 2) + 8µs (cudaMemcpy from host 2 to GPU 2). This is clearly larger than the

latency provided by GPUDirect RDMA.

5.3 Implementing Efficient P2P Memory Copies within

rCUDA

This section presents the main contribution of this chapter, which is the implementation

of the memory copy mechanism devised for supporting memory copies between remote

GPUs located in different nodes of the cluster. Several options are explored, such as the

GPUDirect RDMA technique previously detailed.

Performance is evaluated and compared for each of the considered options. To that end,

the setup used for the experiments reported in this chapter consists of three 1027GR-

TRF Supermicro servers connected by an SX6025 InfiniBand switch (FDR). Each of

the servers has two Intel Xeon hexa-core processors E5-2620 v2 (Ivy Bridge) operating

at 2.1 GHz with 32 GB of DDR3 SDRAM memory at 1.6 GHz. They also include

one Mellanox ConnectX-3 single-port InfiniBand adapter and one NVIDIA Tesla K20m

GPU. The CentOS 6.4 operating system with Mellanox OFED 2.4-1.0.4 (InfiniBand

drivers and administrative tools) and CUDA 7.5 with NVIDIA driver 352.39 are used.

The testbed servers used in our experiments are NUMA machines and therefore NUMA

effects matter for the results shown in this chapter. For this reason, both the NVIDIA

GPU and the InfiniBand adapter are attached to the same processor socket (processor

0). Additionally, memory buffers and processes are bound to this processor in the

experiments.

In addition, and for comparison purposes, when performing P2P memory copies with

CUDA, executions have been carried out using a 7047GR-TRF Supermicro server, with

similar characteristics to those of the 1027GR-TRF servers mentioned before, but with

two NVIDIA Tesla K20m GPUs (note that memory copies with CUDA must be carried

out within the same node).
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Figure 5.3: Sequence diagram of rCUDA version 1 for memory copies between
different remote GPUs. This version uses GPUDirect RDMA to transfer the data.

5.3.1 Version 1: Using GPUDirect RDMA

The first approach considered to copy data between remote GPUs located in different

nodes of the cluster is based on the use of GPUDirect RDMA. Figure 5.3 presents

a sequence diagram of the proposed solution. When a request for copying memory

between GPUs is received (i.e., cudaMemcpyPeer), the following steps are followed:

1. InfiniBand memory regions (MRs) associated with the GPU memory addresses to

be copied are registered in the nodes hosting the GPUs

2. Information related to the registered MRs is exchanged between nodes

3. Data is copied from the source GPU memory to the destination one

4. When the data copy has finished, the MRs are unregistered

Figure 5.4 presents the bandwidth obtained for different transfer sizes when using

this version (labeled as rCUDA P2Pv1 ) for copying data between remote GPUs. For

comparison purposes, the bandwidth obtained by CUDA when transferring data between

local GPUs is also depicted (labeled as CUDA). As we can observe, the maximum

bandwidth obtained with this version of rCUDA, over 1.40GB/s, is very low. The

reason is that, for each copy, we must set-up the connection (i.e., register the MRs and

exchange information with the remote node). This set-up introduces a high overhead,

which turns into very low performance in this test.
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Figure 5.4: Bandwidth obtained for different transfer sizes when copying data between
remote GPUs. Results from CUDA P2P and version 1 of rCUDA are shown.

5.3.2 Version 2: Pre-allocating Intermediate Buffers

To improve version 1 previously explained, next we present a new version which pre-

allocates intermediate buffers at initialization to avoid the overhead introduced by

registering and exchanging MRs information for each data copy. Figure 5.5 presents

a sequence diagram of this approach. When a request for copying memory between

GPUs is received, the following steps are followed:

1. New GPU memory buffers are allocated and InfiniBand memory regions (MRs)

are registered. Information related to the registered MRs is exchanged between

nodes involved in the copy. This is done only once at initialization. These buffers

will be reused until the application finishes

2. Data is copied from the source GPU memory to the local intermediate buffer just

allocated in the GPU in the previous step

3. Data is copied from the local intermediate buffer to the remote intermediate buffer

at the remote GPU by using GPUDirect RDMA

4. Data is copied from the remote intermediate buffer to the destination GPU memory

The question that arises now is the following: given that we are using intermediate

buffers, and taking into account that RDMA transfers between host memory attain

higher bandwidth than with GPU memory, would it be a better choice to use host

intermediate buffers instead of the GPU intermediate buffers used in this version?

To answer this question we have implemented a new version, similar to the previous one,

but using host intermediate buffers. From now on, versions using GPU intermediate

buffers and GPUDirect RDMA will be labeled as the version number plus the letter A,

while versions using host intermediate buffers (and not using GPUDirect RDMA) will
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Figure 5.5: Sequence diagram of rCUDA version 2A for memory copies between
different remote GPUs. Gray boxes denote the differences with respect to version 2B
in Figure 5.6. This version uses GPUDirect RDMA to transfer data, and pre-allocates

intermediate buffers at initialization.

be referred to as the version number followed by the letter B. This is why we referred

to the version 2 previously explained as version 2A in Figure 5.5.

Figure 5.6 presents a sequence diagram of the new proposed version 2B using host

intermediate buffers. Differences with respect version 2A are highlighted in gray for

clarity. As it can be observed, the two versions are similar, the only difference being

the intermediate buffers: in version 2A they are allocated using GPU memory, while in

version 2B they are allocated using host memory.

Figure 5.7 presents the bandwidth obtained when using the new versions. Bandwidth

significantly improves, achieving a maximum of 2.25GB/s when GPU buffers are used,
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Figure 5.6: Sequence diagram of rCUDA version 2B for memory copies between
different remote GPUs. Gray boxes denote the differences with respect to version 2A
in Figure 5.5. This version uses regular RDMA to transfer data and then copy it to

GPU memory. Intermediate buffers are pre-allocated at initialization.

and a maximum of 2.90GB/s when using host buffers.

Using this approach improves performance. However, we must allocate one extra buffer,

either in GPU memory or in host memory, in each node involved in the data copy. The

size of this buffer must be the biggest possible copy size performed by the application.

For instance, in our bandwidth test, the buffer had a size equal to 64MB, the maximum

copy size in our test. Of course, this approach is only valid for testing purposes, and

cannot be used with real applications because it would require knowing in advance the

maximum data size transferred by the application. Additionally, even if this size were

known, this approach requires to use a lot of memory for the intermediate buffers.
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Figure 5.7: Bandwidth obtained for different transfer sizes when copying data between
remote GPUs. Results from CUDA P2P and versions 2A and 2B of rCUDA are shown.

5.3.3 Version 3: Using Multiple Intermediate Buffers

In order to address the concerns commented in version 2, we next present a new version

which, instead of using one large intermediate buffer in each node involved in the copy,

uses multiple smaller intermediate buffers. Thus, the whole amount of data to be copied

is split into several chunks of the size of the smaller intermediate buffers, and the copy

is performed following a pipelined approach, overlapping copies in the different stages:

1. Data chunk i-1 is copied from the source GPU memory to the local intermediate

buffer i-1

2. Data chunk i is copied from the local intermediate buffer i to the remote

intermediate buffer i

3. Data chunk i+1 is copied from the remote intermediate buffer i+1 to the

destination GPU memory

4. Steps 1, 2 and 3 are overlapped and repeated until all the data has been copied

Figure 5.8 and Figure 5.9 present sequence diagrams of the new proposed versions 3A

and 3B, respectively. As commented, version 3A uses GPU intermediate buffers, whereas

version 3B uses host intermediate buffers. Again, differences between each version are

highlighted in gray for clarity.

Figure 5.10 presents the bandwidth obtained when using these new versions (labeled as

rCUDA P2Pv3A and rCUDA P2Pv3B, respectively). We can see that bandwidth has

considerably increased in both versions, obtaining maximum values around 2.60GB/s

and 5.40GB/s for versions 3A and 3B, respectively. In the latter case, version 3B,

performance is almost the same as the one obtained by CUDA with local GPUs.
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Figure 5.8: Sequence diagram of rCUDA version 3A for memory copies between
different remote GPUs. Gray boxes depict differences with respect to version 3B shown
in Figure 5.9. This version is similar to version 2A, but uses multiple intermediate

buffers at the GPU.

5.3.4 Version 4: Adaptive Intermediate Buffer Size

In the previous version we have used a fixed number of intermediate buffers, all of them

with the same size. However, the optimal amount of buffers and the optimal buffer

size probably depends on the actual transfer size. To analyze the influence of these two

factors we have run the same bandwidth test as in Figure 5.10 with versions 3A and 3B,

but varying the number of intermediate buffers: 2, 4, 8, 16, 32 and 64. For each number
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Figure 5.9: Sequence diagram of rCUDA version 3B for memory copies between
different remote GPUs. Gray boxes refer to differences with respect to version to 3A
shown in Figure 5.8. This version is similar to version 2B, but uses multiple intermediate

buffers at host memory.

of buffers, we have also run the test with different buffer sizes: 64KB, 128KB, 256KB,

512KB, 1MB, 2MB, 4MB, and 8MB.

In the case of using GPU intermediate buffers (version 3A), the results of the analysis

point to select the following values as the optimal ones:
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Figure 5.10: Bandwidth obtained for different transfer sizes when copying data
between remote GPUs. Results from CUDA P2P and versions 3A and 3B of rCUDA

are shown.

• Copy sizes over 4MB: the optimal number and size of intermediate buffers is 16

buffers of 256KB

• Copy sizes up to 4MB: the optimal number and size of intermediate buffers is 2

buffers of 512KB

In the case of using host intermediate buffers (version 3B), this analysis reveals the

following results:

• Copy sizes over 14MB: the optimal number and size of intermediate buffers is 4

buffers of 1MB

• Copy sizes between 4MB and 14MB: the optimal number and size of intermediate

buffers is 4 buffers of 512KB

• Copy sizes between 600KB and 4MB: the optimal number and size of intermediate

buffers is 8 buffers of 256KB

• Copy sizes below 600KB: there is no apparent optimal value for the two factors

under analysis. We decided to select as the optimal value 8 buffers of 128KB,

following the trend of previous values

With the results of this analysis we have implemented a new version which automatically

varies the number and size of intermediate buffers depending on the actual size of the

data to be copied. Following our version nomenclature, we have named these new

versions as 4A and 4B. Figure 5.11 shows the bandwidth results for these new versions,

showing that version 4A improves over its predecessor, version 3A, for copy sizes up to

4MB. For larger sizes, the results are similar to those of the previous version. With
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Figure 5.11: Bandwidth obtained for different transfer sizes when copying data
between remote GPUs. Results from CUDA P2P and versions 4A and 4B of rCUDA

are shown.

regard to version 4B, we can see that it clearly outperforms version 3B, regardless of the

data size of the copy.

It is also noteworthy that version 4B obtains, in general, better performance than

CUDA. For copy sizes up to 300KB, CUDA achieves a higher bandwidth, but for larger

copy sizes, rCUDA attains better results (up to 1.42x speed-up). The explanation

for this higher bandwidth of rCUDA can be found in Figure 5.12. This figure shows

the bandwidth attained by the different CUDA and InfiniBand memcpy functions

involved in the analysis presented in this section. When using CUDA, a single call
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Figure 5.12: Bandwidth comparison of the different CUDA and InfiniBand memcpy
functions used in the analysis shown in this chapter.
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Table 5.2: Summary of the different rCUDA versions implemented for supporting
memory copies between remote GPUs.

rCUDA version
Feature 1 2A 2B 3A 3B 4A 4B

GPUDirect RDMA x x x x

Pre-allocated buffers x x x x x x

Multiple buffers x x x x

Adaptive buffer size x x

to cudaMemcpyPeer is done to copy the whole bunch of data between the two GPUs.

The PCIe bus is used to move data from one GPU to the other. On the contrary,

when using rCUDA, the data to be copied is split into smaller chunks of data and the

movement of the several chunks is overlapped by using several simultaneous calls to:

(1) cudaMemcpyAsync from GPU to host memory, (2) InfiniBand memory copy from

local host memory to remote host memory, and (3) cudaMemcpyAsync from host to

GPU memory. As we have previously commented, a pipelined approach is followed.

Therefore, the maximum bandwidth that can be achieved with this technique is the

minimum bandwidth of each individual stage. In this case, the minimum bandwidth of

the three mentioned calls is the one obtained by cudaMemcpyAsync from host to GPU

memory (labeled as cudaMemcpyAsyncToGPU in Figure 5.12). As we can see, this

bandwidth is larger than the one obtained by cudaMemcpyPeer, which explains why

rCUDA is attaining more bandwidth than CUDA.

5.3.5 Latency Analysis

In previous sections we have thoroughly analyzed the bandwidth attained by each P2P

version of rCUDA. Next, we analyze latency. As a summary, Table 5.2 presents the

most important features of the different rCUDA versions implemented for supporting

memory copies between remote GPUs.

Figure 5.13 presents the latency obtained when using CUDA and different versions of

rCUDA to copy data between remote GPUs located in different nodes of the cluster.

For clarity, results from versions 1 and 2 are not shown. It can be seen in the figure that

the best results are obtained by CUDA, with a minimum latency of 22µs. Regarding

the different versions of rCUDA, version 4A, using GPUDirect RDMA and all the

improvements analyzed in previous sections, seems to achieve the best results, with

a minimum latency of 72µs. Version 4B, not using GPUDirect RDMA, presents a

minimum latency of 78µs. Version 4A is more stable than version 4B and presents, in
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Figure 5.13: Latency obtained for transfer sizes up to 200KB when copying data
between remote GPUs. Results from CUDA and different versions of rCUDA are shown.

general, the best latency for copy sizes up to 200KB. Finally, versions 3A and 3B present

a higher latency, both with minimum values of 131µs.

In the bandwidth analysis presented in previous sections we have seen that rCUDA

obtained, in general, better results than CUDA, the only exception being copy sizes

smaller than 300KB. The latency results match those conclusions, given that CUDA

presents lower latency than rCUDA for that range of data copy sizes. In previous

sections, we explained that rCUDA achieved, in general, higher bandwidth than CUDA

because the internal functions involved in the memory copy were different and also

presented different performance, in addition to follow a pipelined approach. This better

performance was shown in Figure 5.12. Now the question is whether the reason for

rCUDA presenting a higher latency than CUDA is also because of this.

To answer this question, Figure 5.14 presents a latency comparison of the different

CUDA and InfiniBand memcpy functions involved in the memory copy between GPUs.

It can be seen that the cudaMemcpyPeer function used by CUDA to copy data between

local GPUs achieves the highest latency. In the case of copying 4 bytes of data, this

latency is equal to 22µs. On the contrary, the operations involved in data copies with

rCUDA present, individually, a smaller latency. For instance, in the case of copying 4

bytes of data, the cudaMemcpyAsync call to copy data from the GPU to host memory

at the source node requires 9µs. At the destination node, the cudaMemcpyAsync call

to copy data from host memory to GPU memory requires 17µs. Finally, the latency

for moving those 4 bytes from one node to the other across the InfiniBand fabric is

1.3µs. Notice, however, that the data copy with rCUDA follows a pipelined approach.

Therefore, the total latency of the P2P data copy is the result of the addition of the
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Figure 5.14: Latency comparison of the different CUDA and InfiniBand memcpy
functions used in the analysis shown in this chapter.

Table 5.3: Minimum latency achieved by the different rCUDA versions implemented
for supporting memory copies between remote GPUs.

rCUDA version
1 2A 2B 3A 3B 4A 4B

Latency (µs) 596 136 131 131 131 72 78

previous values, turning out a latency of 27.3µs.. This value is, however, smaller than

the latency measurement provided in Table 5.3. The reason for the difference among

both values is due to the management required to run our highly tunned pipeline, what

seems to penalize our approach in terms of latency. In this regard, one could think about

using more simple approaches for small copy sizes in order to improve latency. However,

notice that we have already tried simpler proposals, such as versions 1 and 2, and results

are worse than the ones obtained with versions presenting higher complexity, such as

versions 3 and 4 (see Table 5.3).

5.3.6 Final Version: Hybrid Approach

After analyzing different versions in the previous sections, we conclude that the optimal

version for the P2P implementation within rCUDA would be a hybrid approach

combining versions 4A and 4B. Thus, for small copy sizes up to 200KB, the best
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results are achieved by version 4A, using GPUDirect RDMA. For larger copy sizes,

the best results are obtained with version 4B, not using GPUDirect RDMA. We have

implemented one last version featuring this hybrid approach. This new version will be

the one used from now on in the rest of the chapter. Bandwidth results for this new

version are omitted for brevity, given that the results are very similar to the ones already

shown: bandwidth of version 4B in Figure 5.11, and latency of version 4A in Figure 5.13.

5.4 Experiments with a Real Application

In previous sections we have assessed the performance of the implemented P2P memory

copy mechanism by using synthetic tests. This section presents the experiments carried

out with a real application that makes use of the P2P copies provided by CUDA.

The selected application belongs to the area of network analysis, where the clustering

coefficient and the transitivity ratio are concepts often used, creating the need for fast

practical algorithms devoted to count triangles in large graphs. Furthermore, these

algorithms can be programmed to be executed in GPUs so that total execution time

is reduced. Therefore, for the performance evaluation in this section we have used an

application for counting triangles in large graphs on GPUs [92]. From now on, we will

refer to this application as TRICO (triangle count). TRICO is a CUDA implementation

of a parallel algorithm for counting triangles (i.e. 3-cycles) in large graphs which

additionally is able to take advantage of all the GPUs available in the node where

it is being executed. Additionally, this application performs P2P data copies among the

GPUs involved in its execution.

The setup used for the experiments reported in this section is the same as the one

presented in Section 5.3. In the case of the experiments with CUDA, and given that

the application can make use of several GPUs, the scenario used in the tests is the one

depicted in Figure 5.1(a) of Section 5.1. In particular, two GPUs will be provided to the

application. Regarding the experiments with rCUDA, the scenario is the one depicted

in Figure 5.1(c) of Section 5.1. Therefore, the application is running in a node without

GPUs, and it is using two remote GPUs located in two different server nodes.

Seven different graphs have been leveraged for the experiments in this section. These

graphs are described in Table 5.4. The largest one, referred to as graph number 7, is a

180 million edge graph containing 8.8 thousand millions of triangles. We have used this

graph in order to characterize the TRICO application. Figure 5.15 shows the CPU and

GPU utilization when executing the application with this largest graph in the CUDA

scenario (local GPUs). It can be seen that the CPU presents a high utilization, almost
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Table 5.4: Graphs used in the experiments with the TRICO application.

Graph Nodes Edges Triangles

1 65,535 4,912,142 118,811,321

2 131,068 10,227,970 287,593,439

3 540,486 30,491,458 444,095,058

4 434,102 32,073,440 872,040,567

5 524,287 43,561,574 1,625,559,121

6 1,048,576 89,238,804 3,803,609,518

7 2,097,152 182,081,864 8,815,649,682

100% during all the execution of TRICO. In the case of the GPUs, GPU0 starts being

used after 2 seconds of execution, while GPU1 starts working after almost 4 seconds.

Then, both GPUs also present a high usage, close to the 100% until near the end of the

execution of the application. In summary, Figure 5.15 shows that the TRICO application

makes an intensive use of the available GPUs as well as the CPU.

Figure 5.16 shows the execution time and speed-up when running the TRICO application

using the different graphs described in Table 5.4. Results are the average of 10

repetitions. The primary Y-axis of the figure shows the execution time of the TRICO

application when using CUDA and rCUDA. As we can observe, the application runs

slightly faster with rCUDA than with CUDA for all the graphs evaluated. The secondary

Y-axis shows the exact speed-up of rCUDA with respect to CUDA. On average, the

speed-up is 1.13. These results showing that the application achieves better performance

with rCUDA than with CUDA require a deeper analysis.

One possible explanation to the better results of rCUDA with respect to CUDA could

be that rCUDA provides a better bandwidth when copying data between GPUs, as
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Figure 5.15: CPU and GPU utilization of TRICO when running the largest graph.
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Figure 5.16: Primary Y-axis shows TRICO application execution time using CUDA
and rCUDA. Secondary Y-axis presents the speed-up of rCUDA with respect to CUDA.

shown in Figure 5.11. Therefore, that higher bandwidth is causing the difference in the

execution time with respect to CUDA. To find out whether this is the reason for the

better results when using rCUDA, we have profiled the TRICO application in order to

know the amount of calls to the functions that perform P2P data copies. Table 5.5

presents such profiling, showing for each CUDA function used in the application the

total time employed by the application in that function as well as the number of calls

done to the it. The average, minimum and maximum time per call is also displayed.

Surprisingly, it can be seen in Table 5.5 that there are only two calls to functions involving

copies between GPUs (i.e., calls to the cudaMemcpyPeer function, highlighted in bold in

Table 5.5). Furthermore, the time used by these calls is 34.990ms, what only accounts

for 0.27% of the total execution time of the application. This small percentage of time

does not seem to be the reason for the better results of rCUDA over CUDA. However,

let us further examine these calls to the cudaMemcpyPeer function.

In order to continue with our analysis of the better execution times achieved by the

TRICO application when using rCUDA instead of CUDA, we have next measured the

time employed in the P2P copies between GPUs with rCUDA (notice that the times

depicted in Table 5.5 were obtained with CUDA in the scenario shown in Figure 5.1(a)).

In this regard, we have measured the time required to carry out these P2P copies with

rCUDA in the scenario presented in Figure 5.1(c). Table 5.6 compares the time results

obtained with CUDA and rCUDA. The table also shows the amount of megabytes copied

during each call to the cudaMemcpyPeer function.

Interestingly, it can be seen that the first call to the cudaMemcpyPeer function takes

more time with rCUDA than with CUDA, despite that the size of the copy, 695MB,

is large enough to expose the better performance of rCUDA shown in the bandwidth
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Table 5.5: Profiling of the TRICO application when running the largest graph with
CUDA.

CUDA function % Time Time Calls Average Min Max

cudaDeviceSynchronize 87.05% 11.49s 8 1.433s 5.19us 11.42s

cudaMemcpy 4.41% 582.44ms 6 97.07ms 24.10us 531.04ms

cudaFree 4.39% 579.42ms 18 32.19ms 151.75us 219.06ms

cudaMemcpyAsync 3.81% 502.65ms 2 251.33ms 28.79us 502.63ms

cudaMemcpyPeer 0.27% 34.99ms 2 17.49ms 1.55ms 33.43ms

cudaMalloc 0.05% 6.13ms 16 383.17us 146.45us 1.19ms

cudaGetDeviceProperties 0.01% 1.95ms 4 489.61us 462.27us 543.63us

cuDeviceGetAttribute 0.01% 983.12us 166 5.92us 160ns 225.88us

cudaLaunch 0.01% 949.26us 65 14.60us 9.61us 61.66us

cudaFuncGetAttributes 0.00% 140.81us 41 3.43us 2.55us 13.43us

cuDeviceTotalMem 0.00% 109.11us 2 54.55us 53.71us 55.39us

cuDeviceGetName 0.00% 98.33us 2 49.16us 44.18us 54.15us

cudaSetupArgument 0.00% 58.70us 278 211ns 177ns 693ns

cudaGetDeviceCount 0.00% 38.47us 1 38.47us 38.47us 38.47us

cudaSetDevice 0.00% 36.23us 14 2.58us 833ns 11.89us

cudaConfigureCall 0.00% 24.50us 65 377ns 239ns 1.85us

cudaGetDevice 0.00% 18.25us 26 702ns 325ns 1.73us

cudaFuncSetCacheConfig 0.00% 3.77us 2 1.88us 1.46us 2.31us

cuDeviceGetCount 0.00% 3.61us 2 1.80us 447ns 3.16us

cudaDeviceGetAttribute 0.00% 3.25us 3 1.08us 701ns 1.69us

cuDeviceGet 0.00% 1.43us 4 357ns 202ns 498ns

Table 5.6: Time employed in the copies between GPUs by CUDA and rCUDA when
running the TRICO application with the largest graph.

Time
CUDA function Size CUDA rCUDA

1st cudaMemcpyPeer 695MB 33.433ms 125.225ms

2nd cudaMemcpyPeer 8MB 1.557ms 1.349ms

experiments (see Figure 5.11). Additionally, the time required by rCUDA to perform

the data copy is much larger than the time required by CUDA. This difference does

not match the bandwidth results shown in previous sections. On the other hand, in the

case of the second call to the cudaMemcpyPeer function, the time required to complete

the copy with CUDA and rCUDA do not follow the trend of the first copy. On the

contrary, in this second copy the time results in Table 5.6 match the trend observed

in the experiments of previous sections where rCUDA presented a better performance

than CUDA. Thus, the question at this point is what happened with the first P2P copy

shown in Table 5.6.

After a deeper analysis to find out the reason for this behavior when rCUDA is used, we

found out that, in the first call to the cudaMemcpyPeer function, rCUDA needs to carry

out the necessary initialization of the P2P mechanism to copy data between the remote
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Table 5.7: Time employed by CUDA and rCUDA in two consecutive copies of the
same size between GPUs.

Time
CUDA function Size CUDA rCUDA

1st cudaMemcpyPeer 695MB 33.433ms 125.225ms

2nd cudaMemcpyPeer 695MB 123.758ms 116.951ms

GPUs (i.e., creating the InfiniBand connections between the remote nodes where the

remote GPUs are located and pre-allocating intermediate buffers for RDMA transfers).

On the contrary, in the second call to the cudaMemcpyPeer function, this start-up is

already done and therefore rCUDA achieves the higher bandwidth already shown in

Figure 5.11.

To show that this was the reason, a synthetic test performing two consecutive copies of

the same size was carried out with CUDA and rCUDA. Table 5.7 presents the results

of this experiment. Regarding rCUDA, it can be seen that, as in the previous case

shown in Table 5.6, the first copy needs more time than the second one because it

initializes the P2P memory copy mechanism between the remote GPUs. Additionally,

when considering the second copy (notice that this time the second copy has the same

size as the first one), it can be seen that it is completed 8ms earlier with rCUDA than

with CUDA. This result matches the conclusions obtained in previous sections where

rCUDA obtained better performance as shown in Figure 5.11.

Interestingly, when CUDA is used, it can be seen that the second copy takes longer

to be completed than the first one, despite they transfer the same amount of data.

In particular, the second copy requires 92ms more than the first copy. This result

was unexpected because it was assumed that both copies would last the same amount

of time given that they are transferring the same amount of data. The explanation

to this behavior was found after reviewing the CUDA documentation of the function

cudaMemcpyPeer [93]. According to its documentation, this function is asynchronous

with respect to the host. This means that, with CUDA, this call does not return the

control to the application once the copy is completed but control is returned much earlier

and the copy will be performed asynchronously with respect to the non-GPU part of

the application. To ensure that the copy is finished, the application needs to add a

subsequent synchronization point (such as cudaDeviceSynchronize).

In order to further analyze this behavior, we modified the synthetic test program used

in Table 5.7 so that a call to cudaDeviceSynchronize is performed after each call to

the cudaMemcpyPeer function. In this way we force that the first P2P copy is completed
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Table 5.8: Time employed by CUDA and rCUDA in two consecutive copies of the
same size between GPUs. Synchronization calls are leveraged in order to get accurate

measurements.

Time
CUDA function Size CUDA rCUDA

1st cudaMemcpyPeer 695MB 123.869ms 125.336ms

2nd cudaMemcpyPeer 695MB 123.745ms 117.062ms

before the execution of the second P2P copy begins. Table 5.8 shows the new results.

It can be seen that now both calls to the cudaMemcpyPeer function last the same time

when CUDA is used. Additionally, the time required by each call when rCUDA is used is

not changed. The reason why times are kept the same with rCUDA is that, as previously

explained in Section 5.3.3, the P2P copy with rCUDA is performed following a pipelined

approach, overlapping multiple smaller copies in the different stages of the pipeline:

• Stage 1: data is copied from the source GPU memory to the local intermediate

buffer at host memory

• Stage 2: data is copied from the local intermediate buffer at host memory in the

source node to the remote intermediate buffer at host memory in the destination

node

• Stage 3: data is copied from the remote intermediate buffer at host memory to the

destination GPU memory

In order to smoothly run this pipeline, before starting the copy in stage 2, rCUDA

needs to make sure that the copy from the GPU memory to the intermediate buffer has

finished. For that purpose, a synchronization point is added. That is the reason why

both copies in Table 5.8 take the same time with rCUDA as in Table 5.7, because they

already included the synchronization points.

As a summary, we started our analysis about the better performance of the TRICO

application when it makes use of rCUDA instead of CUDA (shown in Figure 5.16) by

presuming that one possible explanation to that behavior could be the better bandwidth

achieved by rCUDA for the P2P copies (shown in Figure 5.11). However, after our

analysis we conclude that, not only this is not the explanation for the better performance,

but our implementation of the P2P copies also shows a potential overhead of rCUDA

with respect to CUDA due to the necessary initialization of the P2P mechanism to

copy data between GPUs located in different server nodes. This initialization is

performed at the first call to a CUDA function that performs P2P copies. However,
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Table 5.9: Breakdown of the TRICO application when running the largest graph with
CUDA and rCUDA. Stages marked with * include synchronization points.

Time (ms) Difference
Stage CUDA rCUDA (CUDA-rCUDA)

Read file 853.0 862.5 -9.5

Pre-initialize context for all GPUs 365.0 277.5 87.5

Memcpy edges from host to GPUs* 479.0 469.0 10.0

Calculate number of vertices 12.0 10.0 2.0

Sort edges* 538.0 459.5 78.5

Calculate node array for 2-way zipped edges* 23.0 18.0 5.0

Remove backward edges* 185.0 179.2 5.8

Unzip edges* 27.0 24.83 2.2

Calculate node array for 1-way unzipped edges* 10.0 9.0 1.0

Calculate triangles on multi GPU** 11541.0 11033.8 507.2

TOTAL SUM 14033.0 13343.3 689.7

the overhead associated with this initialization could be avoided if it were carried out

during application start up. But in this case some memory could be wasted. We will

investigate further during future work on this matter.

Let us come back to our original question: why does the TRICO application perform

better with rCUDA than with CUDA? In this regard, Table 5.7 has shown that control

after P2P copies is returned to the application earlier with CUDA than with rCUDA. On

the other hand, kernels take the same time to be completed regardless of being executed

in a local GPU with CUDA or in a remote GPU with rCUDA. As a consequence, the

application should perform better with CUDA than with rCUDA, which is not the case.

Therefore, where during the execution of the application with CUDA, the time saved by

the P2P copies is later lost?

In order to find the answer to this question, there must be in the application source code

one or more CUDA functions that perform better with rCUDA than with CUDA. To

see whether this is the case, Table 5.9 presents a breakdown of the TRICO application

when running the largest graph with CUDA and with rCUDA. A detailed explanation

of each stage can be found in [92]. As additional information, stages marked with the

symbol * indicate that there is a synchronization point in that stage. In the case of the

stage “Calculate triangles on multi GPU”, it includes two synchronization points, one

per GPU. Time required by each stage to be completed is shown in the table.

It can be seen in the table that most stages are completed faster with rCUDA than with

CUDA. Actually, those stages presenting significant improvement when using rCUDA

include synchronization points2. Remember that in Table 5.5 we showed that the major

2 The only exception is the stage “Pre-initialize context for all GPUs”. In this case the improvement
is due to the fact that the rCUDA server pre-initializes contexts on the GPUs at start-up. In this
manner, the rCUDA server is waiting for requests from client applications with the context already
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part of the execution time of the TRICO application was spent in synchronization points

(i.e., 87.05% of the time was used by 8 calls to function cudaDeviceSynchronize).

Now Table 5.9 shows that the improvement of rCUDA with respect to CUDA in those

stages containing those 8 synchronization points is 609ms. These savings, together

with the time saved in the context initialization in stage “Pre-initialize context for all

GPUs”, explains the total time saved when using rCUDA. The reason for this large time

difference in the synchronization points lies in the internal algorithm used in the rCUDA

middleware to determine the finalization of the CUDA tasks, as shown in Section 3.3,

which performs better than the method used within CUDA.

As a summary of this section, the TRICO application was considered as use-case of

an application using P2P copies. Execution times show that the application runs

faster with rCUDA than with CUDA, being the most immediate reason the better

bandwidth achieved by rCUDA for P2P copies, as shown in the previous section.

However, although rCUDA attains more bandwidth than CUDA, finally the reason

for the better performance of the TRICO application with rCUDA was the better

management that this middleware makes for determining CUDA task finalization. In

any case, the implementation presented in this chapter for the P2P data copies does not

penalize applications, although it could be still improved, as explained in next section.

5.5 Conclusions

This chapter has presented an efficient memory copy mechanism devised for enhancing

the rCUDA framework with support for memory copies between remote GPUs located

in different nodes of the cluster. The finally proposed mechanism is the result of a

thorough analysis of several implementation options, which have been explored and

whose performance has been evaluated and compared with each other. The proposed

mechanism consists in the use of multiple intermediate buffers following a pipelined

approach, where several memory copies are overlapped in different stages. In this regard,

we began our exploration with the GPUDirect RDMA technique proposed by NVIDIA

(which initially was thought to the best implementation choice) but we have finally

showed that a pipelined approach presents better performance. Notice that using a

pipeline approach for communicating data is not new. Actually, this approach can be

found in many areas such as computer networks, high performance on-chip and off-chip

interconnects, etc. However, although the concept of the mechanism is basically the same

in all these areas, the exact implementation is very different. In fact, in none of these

areas the research emphasis is put on the pipeline mechanism but on its implementation.

initialized. On the contrary, applications running with CUDA must spend some time in the context
pre-initialization.





Chapter 6

schedGPU: Fine-Grain Dynamic

and Adaptive Scheduling

for GPUs

GPUs in High-Performance Computing systems remain under-utilized due to the

unavailability of schedulers that can safely schedule multiple applications to share the

same GPU. The research reported in this chapter is motivated to improve the utilization

of GPUs by proposing a framework, referred to as schedGPU, to facilitate intra-node

GPU co-scheduling such that a GPU can be safely shared among multiple applications

by taking memory constraints into account. Two approaches, namely a client-server and

a shared memory approach are explored. However, the shared memory approach is more

suitable due to lower overheads when compared to the former approach. Four policies

are proposed in schedGPU to handle applications that are waiting to access the GPU,

two of which account for priorities. The feasibility of schedGPU is validated on three

real-world applications. The key observation is that a performance gain is achieved.

For single applications, a gain of over 10 times, as measured by GPU utilization and

GPU memory utilization, is obtained. For workloads comprising multiple applications,

a speed-up of up to 5x in the total execution time is noted. Moreover, the average

GPU utilization and average GPU memory utilization is increased by 5 and 12 times,

respectively. The work presented in this chapter has been partially published in [94],

and it has also been submitted to the IEEE Transactions on Parallel and Distributed

Systems journal. The work was carried out in two different internships: one in a major

international investment bank, and the other one at Queen’s University Belfast (United

Kingdom).
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Link with Industry

In one of the multiple events aimed at promoting rCUDA [95], we starting a collaboration

with a major investment bank in order to consider if the use of rCUDA would be

beneficial for their GPU accelerated applications. What turned out in the end to be

most valuable to that company was the ad-hoc solution described in this chapter.

At the beginning of this dissertation, however, we stated that the main objective of this

dissertation was to enhance the rCUDA remote GPU virtualization framework for its

use in high-performance clusters. Even though it may seem that the work presented in

this chapter is totally disconnected from the main objective of this thesis, notice that

we also stated that this was an industry-driven thesis, and that all the research was

primarily conducted to ultimately transfer the rCUDA technology to industry. In this

manner, the solution presented in this chapter also shares the basis of that aim: it is

developed in response to industry needs and it was intended to be eventually transferred

to industry. In addition, note also that some of the knowledge and experience acquire

in previous chapters, as well as the related research, has been used to developed the

technology presented in this chapter.

6.1 Introduction

HPC systems are becoming heterogeneous in pursuit of exascale computing [96–98].

These systems not only offer CPUs, but also provide accelerators, such as Graphics

Processing Units (GPUs). For example, Tianhe-2 and Titan listed among the top three

supercomputers in the June 2016 Top500 list use accelerators1. Heterogeneity can be

leveraged for improving performance by decomposing compute-intensive components of

an application and offloading them on to GPUs. Existing schedulers, such as Slurm [11]

and Torque [99], cannot safely schedule multiple applications for sharing the same

GPU [100], thereby exclusively locking a GPU for a single application. This results

in the under-utilization of GPUs and will have negative implications on the performance

of future exascale systems [101]. Hence, the research reported in this chapter aims to

improve the utilization of GPUs.

One way of addressing accelerator under-utilization, given that GPUs are usually coupled

to a CPU node, is by sharing GPUs among multiple applications that execute on

different CPU cores of the same node. However, there is a risk of running out of

GPU memory which can cause applications to unexpectedly end. Current techniques

that incorporate scheduling [102–104], kernel-based [105–107], synchronization [108] and

1https://www.top500.org/list/2016/06/
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Figure 6.1: Example execution of applications on a node with two CPUs and one
GPU. In Figure 6.1(a), two applications need to access the GPU, but can only be
executed sequentially using existing workload managers. Figure 6.1(b) shows the
proposed approach, in which GPU memory is accounted for to maximize utilization

allowing for co-scheduling of multiple applications on the same GPU.

architectural [109, 110] approaches cannot safely share GPUs among applications while

eliminating the above risk. Therefore, applications are currently executed sequentially,

although they may use the GPU for a relatively small fraction of the entire execution

time, as shown in Figure 6.1(a). This raises the need for a scheduler that can

account for GPU memory required by applications to safely share GPUs as indicated in

Figure 6.1(b).

In this chapter, we propose an intra-node, memory safe GPU co-scheduling framework,

referred to as schedGPU. The framework safely handles multiple application requests to

access GPUs by ensuring that memory overruns do not occur during execution. Two

implementation approaches are incorporated in the framework, namely a client-server

and a shared memory approach. The shared memory approach has fewer overheads than

the client-server approach and is therefore suitable. The access of applications to shared

memory is synchronized by developing a custom protocol that employs file locks and

system signals. This protocol avoids abandonment, the problem that arises when the

framework employs other interprocess synchronization mechanisms, such as mutexes.

Four policies are proposed and investigated in schedGPU to handle applications that

wait to be scheduled on the GPU.

The feasibility of schedGPU is validated on three real-world applications that have
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varying GPU utilization. Using schedGPU performance gain in terms of average speed-

up, average GPU utilization and average GPU memory utilization when executing

concurrent instances of an application using schedGPU is noted to be up to 10 times over

conventional execution. For workloads comprising multiple applications, using Slurm in

conjunction with schedGPU results in a speed-up of up to 5 times in the total execution

time. Moreover, the average GPU utilization and average GPU memory utilization is

increased by 5 and 12 times, respectively, when compared to not using schedGPU.

The research contribution of this chapter is an approach for intra-node scheduling in real-

time. Conventional workload managers schedule applications ahead-of-time typically

over multiple nodes. However, they do not optimize scheduling on each node. The

merit of our approach is that scheduling is performed on the fine-grain level in real-

time, therefore allowing any application to be executed without knowledge of its GPU

requirements prior to execution. The proposed approach safely co-schedules taking GPU

memory requirements into account. Existing schedulers exclusively lock a given GPU for

an application. Our novel approach safely shares GPUs among multiple applications. For

this our approach monitors the GPU resources to service applications. The advantage

of our approach is highlighted by the improvement observed in terms of speed-up, GPU

utilization and GPU memory utilization when executing applications. For example, a

performance gain of up to 10 times is observed.

The remainder of this chapter is organized as follows. Section 6.2 considers the

related research. Section 6.3 presents the key concepts of our GPU co-scheduling

framework. Section 6.4 provides the implementation approaches considered in our

framework. Section 6.5 describes the typical life cycle of an application using our

framework. Section 6.6 details a set of four policies incorporated in the framework

for scheduling applications. Section 6.7 identifies suitable real-world use-cases for

schedGPU. Section 6.8 highlights the benefits of using the proposed framework on three

applications through experimental studies. Section 6.9 summarizes this chapter.

6.2 Related Work

Numerous efforts have been made for efficiently scheduling GPU jobs. These include (i)

scheduling approaches, (ii) kernel-based approaches, (iii) synchronization approaches,

and (iv) architectural approaches.

Scheduling approaches usually include coarse-grain and fine-grain job scheduling.

Coarse-grain job scheduling has demonstrated to improve the overall cluster throughput

by scheduling concurrent applications on to the nodes of the cluster [102]. While
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throughput is improved, the research focused only on inter-node scheduling of jobs,

without considering a further level of optimization at the intra-node level. Load

balancing is a commonly used approach for fine-grain job scheduling in multiple GPU

environments [103, 104]. However, the focus has been to uniformly distribute the

executing workload across the GPUs, but not to improve utilization of the GPUs. In

this chapter, the focus is on intra-node scheduling at the fine-grain level to maximize

GPU utilization thereby improving the overall throughput.

Kernel-based approaches have included event-driven programming models for system-

wide scheduling on shared GPUs [105]. This approach does not concurrently share

the GPU, but interleaves kernel executions on the GPU, thereby limiting the potential

improvement. A mechanism for concurrent execution of GPU kernels from different

contexts have been proposed [111]. However, current GPUs account for multiple context

kernel concurrency. In addition, the mechanism does not safely handle GPU memory,

such that sufficient GPU memory is available for the executing applications. A scheduler

to facilitate multiple concurrent kernel executions in OpenCL has been proposed [112].

The scheduler is constrained in that it is limited to two kernels and may lead to potential

deadlocks. A more complex framework for synchronizing GPUs in real-time has been

investigated [106]. However, this requires modifying the Linux kernel, which constraints

its use in production environments. Similarly, an alternate real-time GPU scheduler has

been developed by modifying the GPU drivers, only supporting a specific open-source

driver [107]. Most kernel-based approaches reported in literature are limiting because

extensive modifications are required. The schedGPU framework proposed for intra-

node scheduling is not kernel-based, and only requires minimum modification at the

application level by making use of a generic API to maximize the utilization of GPUs.

It is noted that this is a significantly simpler approach than modifying kernels. Our

framework further takes GPU memory into account and safely manages the access of an

application to the GPU. The shared-memory approach incorporated in the framework

is scalable for use with executing multiple instances of the same application as well as

workloads with multiple applications since we avoid the use of a centralized scheduler.

Synchronization approaches aim to manage the implicit and explicit synchronizations

in the GPU hardware and software stack for improving application concurrency [108].

This approach avoids concurrent GPU operations to be executed sequentially. This is

limited, because an application cannot make use of multiple kernel streams and cannot

support unified memory. Our framework achieves synchronization by developing a

custom protocol that employs file locks and system signals. The problem of abandonment

that arises when using other interprocess synchronization mechanisms, such as mutexes,

is therefore mitigated.
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Architectural approaches, such as Multi-Process Service (MPS) [109, 113] or Hyper-

Q [110, 114], improves the GPU utilization rate by allowing multiple processes, or

threads, to simultaneously access a single GPU. However, in this research, GPU memory

is not considered, and therefore, jobs fail when GPU memory is not available. The

schedGPU framework on the other hand, safely handles GPU memory, and therefore

applications do not fail due to insufficient memory but wait in a queue.

We also note that workload managers such as Torque [99], PBS [115] or Slurm [11]

include mechanisms for scheduling jobs when computing platforms have GPUs. We

differentiate our framework, schedGPU, from such managers in the following two ways.

Firstly, workload managers operate at the cluster level (inter-node) and are capable of

coarse-grain job scheduling, whereas schedGPU operates at the node level (intra-node)

and performs fine-grain job scheduling to share the same physical GPU among multiple

CPUs. Secondly, the workload managers work ahead-of-time in that the configurations

need to be set before execution of the workload. However, schedGPU works just-in-

time, such that scheduling is dynamic and occurs during the execution of the workload.

Moreover, it is noted that one of the merits of schedGPU is that jobs can be scheduled

at the sub-millisecond timescales due to minimum overheads. Scheduling policies are

incorporated in schedGPU for improving GPU and GPU memory utilization, and

providing the required quality of service to applications requesting preferential services.

6.3 GPU Scheduling Framework

Consider a typical server, which comprises multiple CPU cores and one GPU. There are

two challenges in executing multiple applications on the same GPU. Firstly, consider

a scenario in which a conventional workload manager, such as Slurm, is employed

to schedule applications from multiple users, then the workload manager will handle

multiple requests to the GPU by simply executing the jobs sequentially. While such

workload managers can schedule applications on multiple servers they schedule them

ahead-of-time, leaving no room for adapting to real-time requirements. Therefore, the

jobs are executed sequentially on each server since the workload manager cannot ensure

whether the GPU memory requirements of requesting application can be met at any

time (for example, whether there is sufficient GPU memory for a second application on

the GPU).

Secondly, assume a workload manager can schedule multiple applications on the same

GPU. While this can improve GPU utilization, it could lead to potentially terminating

the job (for example, if there is insufficient GPU memory an out of memory error will
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be returned). This is because there is no safe handling of GPU memory requirements

for co-scheduling jobs.

In this chapter, we address the above challenges by presenting a framework for intra-

node GPU scheduling, referred to as schedGPU2, that facilitates the simultaneous

execution of multiple applications on a GPU. Using schedGPU multiple applications

can request GPU memory during execution time. schedGPU safely co-schedules the

applications by taking memory requirements into account and thereby avoids potential

memory allocation errors due to unavailable memory on the GPU. The schedGPU

framework is proposed and developed for CUDA-based [116] GPU applications. CUDA is

widely used in production and commercial environments when compared to the OpenCL

alternative [117].

The features of the GPU scheduling framework are:

• Intra-node scheduling : most workload managers schedule applications over

multiple nodes at the coarse-grain level. However, schedGPU schedules at the

fine-grain level to improve GPU utilization of each node.

• Scheduling in real-time: unlike conventional workload managers that schedule

applications ahead-of-time, our framework can schedule applications on to the

GPU in sub-millisecond timescales during execution.

• Memory-based safe co-scheduling : typically schedulers allow for executing an

application on multiple GPUs. Our approach facilitates the execution of multiple

applications on the same GPU concurrently to improve GPU utilization. We

consider memory requirements of each application and ensure that no application

unexpectedly ends due to insufficient GPU resources.

• Scalability : the control of most workload managers that are employed in production

is centralized. On the contrary, the control of schedGPU is distributed on each

node hence avoiding single points of failure and use on a large number of nodes.

An application that needs to safely use a GPU through our proposed framework follows

a four stage life cycle. The first stage is initializing an instance of schedGPU for the

application to allow interaction between the application and the framework. The second

stage is reserving GPU memory required by an application, we refer to as pre-allocation.

The GPU memory requests made by the application are appropriately handled by the

framework. The third stage is releasing reserved GPU memory after the application

makes use of the GPU, we refer to as post-free. Applications still waiting for the GPU

2The schedGPU framework can be requested for download from http://mural.uv.es/caregon/

schedgpu.html

http://mural.uv.es/caregon/schedgpu.html
http://mural.uv.es/caregon/schedgpu.html
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are potentially serviced. The fourth stage is shutting down the instance of schedGPU

that was initialized.

6.4 Implementation Approaches

The schedGPU framework incorporates two approaches to achieve intra-node memory

safe co-scheduling, namely a client-server and a shared memory model3.

A prototype of the client-server approach was briefly reported elsewhere [94]. However,

in this chapter, a GPU is shared between multiple applications simultaneously to improve

the overall system performance measured by metrics relevant to modern servers.

While the focus in this chapter is the shared memory approach, note that the

implementation of the client-server approach is similar to the shared memory approach

in a number of ways. For example, the data stored by the shared memory structure is

similar to that stored by the server. The access to the data in the server is synchronized

using intraprocess mutexes and conditions, which are conceptually similar to interprocess

mutexes employed in the shared memory approach. The lifecycle of an application using

this approach is similar to the client-server, with the exception that the initialization

and the shutdown stages are distributed between the client and the server. Hence, there

are client and server initialization and shutdown stages. Additionally, the policies for

notifying waiting applications are not approach specific.

6.4.1 Client-Server

In this approach, each CUDA application is a client that requests GPU memory to a

centralized server daemon, both of which are executed on the same node. The server

permits the application to continue execution if there is sufficient memory on the GPU,

otherwise the client may choose to be either blocked until memory is available or informed

using CUDA error codes.

Figure 6.2 presents the architecture of the client-server model. In this model, the CUDA

application is minimally modified by explicitly calling functions from the client library to

pre-allocate the GPU memory required by the application. The calls are forwarded to the

server using a UNIX domain socket. We chose UNIX domain sockets over TCP Loopback

3In this chapter, ‘shared memory’ does not refer to aggregating host and device memory for offering
a unified address space. This is because schedGPU schedules the access of applications to the GPU from
the host side. Instead, we refer to shared memory as the host memory which is accessible for different
applications using schedGPU. We refer to ‘shared memory data structure’ as the format of the data and
its contents that is stored in the shared memory.
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Figure 6.2: Architecture of the client-server model

sockets due to the superior performance of the former [118]. The server creates a new

thread for each client. A global view of the memory used by all clients is maintained by

the server through the NVIDIA Management Library (NVML)4. We chose to use NVML

instead of the CUDA library to avoid the creation of an additional GPU context that

consumes GPU memory. In addition, using NVML the physical devices are accessed

instead of using logical devices to avoid any ambiguities in the framework (for example,

applications using different identifiers for logical devices referring to the same physical

device).

6.4.2 Shared Memory

One disadvantage of running a centralized server is that it may unexpectedly end

resulting in the failure of the framework. Therefore, an alternate distributed approach

was considered using shared memory in which the clients are responsible for maintaining

the global state of the GPU memory in use.

The client library makes decisions based on the information available in the shared

memory data structure. Figure 6.3 shows the architecture of the shared memory

model. The client library directly makes use of NVML, unlike the library in the client-

server model. The shared memory structure is created and managed using the Boost

Interprocess library5.

The shared memory approach not only overcomes the disadvantages of the client-server

approach, but also achieves better performance that will be considered in Section 6.8.

Therefore, this chapter will focus on presenting the schedGPU framework using the

shared memory approach in more detail. Four features are incorporated in the shared

memory approach to enhance the robustness of the model. Firstly checkpointing by

4https://developer.nvidia.com/nvidia-management-library-nvml
5http://www.boost.org/doc/libs/1_59_0_b1/doc/html/interprocess.html

https://developer.nvidia.com/nvidia-management-library-nvml
http://www.boost.org/doc/libs/1_59_0_b1/doc/html/interprocess.html
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Figure 6.3: Architecture of the shared memory model

storing a backup of the shared memory structure by each client library when the

application ends.

Secondly, an integrity check and recovery. When a new client application starts, the

library checks that the shared memory structure is not corrupt. If corrupt, then it is

recovered from a previous backup. If there are no backups or if they are corrupt, then

the shared memory structure is freshly initialized.

Thirdly, a sanity check. When any client has ended or is blocked and waiting for free

memory, the client library checks that processes with allocated memory are still alive

(this is done to free the memory of clients that unexpectedly terminate). If not, the

previously allocated memory is freed for the waiting clients.

Fourthly, mitigating abandonment. If a client application unexpectedly ends, the access

to the shared memory structure is not blocked and the framework could be used by

other clients transparently. If the client had memory allocated, it will be freed.

6.4.2.1 Shared Memory Data

The data structure used for implementing the shared memory approach comprises the

following information:

• Total GPU memory: the total installed or physical device memory accessible to

the schedGPU framework.

• Total Used memory: the total memory utilized by active schedGPU client

applications.

• Itemized Used memory: memory utilized by each client application that is uniquely

identified by schedGPU.
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• Queue of client applications waiting to access GPU memory: a queue of

applications that requested more GPU memory than what was available. The

priority of an application is also included depending on the policy in use. Policies

will be described in Section 6.6.

6.4.2.2 Synchronizing Access to Shared Memory

It is necessary to synchronize the access of multiple clients to the shared memory data

structure to avoid inconsistencies. To this end we explored two methods.

The first method is based on using interprocess mutexes and conditions both provided by

the same Boost Interprocess Library that manages the shared memory data structure.

Access of each client application to the shared memory data is controlled by a mutex

which ensures that only one client modifies the shared memory structure at a given time.

A condition is associated with the mutex for either notifying clients that memory has

been freed or waiting for notifications on freed memory.

Although this is the most common method, it is restricted due to the problem

referred to as abandonment : if a process owning the mutex unexpectedly ends,

then the mutex becomes unusable and other processes endlessly wait for it. This

can be avoided by the use of lock-free methods such as robust mutexes. Such

methods are currently available for intraprocess communication (multi-threads). In

the case of schedGPU, multiple applications will need to communicate with schedGPU

simultaneously and this additionally requires interprocess communication along with

intraprocess communication. However, there are no standard and publicly available

solutions for interprocess communication6.

Therefore, in order to surmount the challenge of abandonment when using interprocess

communication in schedGPU, we investigated and developed a second method that

employs file locks instead of interprocess mutexes for controlling the access of client

applications to the shared memory data structure. If a client owning a file lock

unexpectedly ends, then the file lock can still be safely used by other clients.

However, conditions cannot be associated with file locks. So a custom protocol using

system signals7 was developed for interprocess communication. The protocol issues a

user system signal for notifying a waiting client that memory has been freed. The

waiting client on receiving the signal continues execution on the GPU. This method is

more appropriate than the first method and is therefore incorporated in the schedGPU

framework.

6http://www.boost.org/doc/libs/1_61_0/boost/interprocess/detail/robust_emulation.hpp
7http://man7.org/linux/man-pages/man7/signal.7.html

http://www.boost.org/doc/libs/1_61_0/boost/interprocess/detail/robust_emulation.hpp
http://man7.org/linux/man-pages/man7/signal.7.html
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Figure 6.4: Initialization of a schedGPU client in the shared memory approach

6.5 The Life Cycle

Three functions are offered by schedGPU8 that implements the life cycle. They

include the initialization, memory pre-allocation and memory post-freeing functions.

The shutdown stage in the framework is implicitly called when the CUDA application

terminates execution.

Initialization: Figure 6.4 shows how a schedGPU client is initialized in the shared

memory approach using the schedGPUInit() function. First of all, the client is made

ready to handle system signals that are used for internal notifications. The shared

memory data structure is then accessed or created. If the shared memory structure is

empty, then it is initialized by gathering information of the GPUs using NVML. If the

shared memory structure already contains GPU information, then an integrity check is

performed to ensure that the data is not corrupted (recovers from the shared memory

backup if the integrity check fails).

Pre-allocation: As shown in Figure 6.5 for pre-allocating memory using the preCudaMalloc()

function, the client requests the ownership of the file lock. When the ownership of the

lock is obtained, the client checks that the GPU requested is a valid device and the

requested memory is available on the GPU. If memory is insufficient, then the client

performs a sanity check on whether other clients with pre-allocated memory are still

alive. If memory is freed from other clients, then the client re-checks if there is sufficient

memory.

8The API reference can be accessed from http://mural.uv.es/caregon/schedgpu.html

http://mural.uv.es/caregon/schedgpu.html


Chapter 6. schedGPU: Fine-Grain Dynamic and Adaptive Scheduling for GPUs 143

[Yes]

[No]

[Yes]

GPU id
correct?

[No]

Pre-allocate client

Request lock     

 Got lock

Enough GPU
total mem?

[No]

[Yes]

Enough GPU
free mem?

Enough GPU
free mem?

[No]

Check other clients using
memory are alive

Blocking
call?

[No]

[Yes]

timeout

   Wait free mem      

    Mem freed

{joinSpec= 
mem freed
or timeout}

[No]

Enough GPU
free mem?Reserve mem for client

[Yes]

Figure 6.5: Pre-allocation of memory by a schedGPU client in the shared memory
approach

If the available memory is still insufficient and provided that the pre-allocation

call is non-blocking, then control is returned to the application with an error code

(cudaErrorNotReady). If the call is blocking, then the client waits for a specified time

period defined by the application until free memory is available. In the event that the

client does not pre-allocate all free GPU memory, then it does not notify other clients

of free memory. This notification is carried out during post-freeing.

Post-free: As shown in Figure 6.6 for post-freeing memory using the postCudaFree()

function, the client requests the ownership of the file lock. When the ownership of the

lock is obtained the client checks that (i) the GPU requested is a valid device and (ii) the

requested memory for freeing is already pre-allocated on the GPU. If memory is freed,

then the clients that may be waiting for memory are notified (refer to Section 6.6).

Shutdown: As shown in Figure 6.7 the client requests the ownership of the file lock.

When the ownership is obtained the client (i) ensures that it has post-freed all pre-

allocated memory, and (ii) performs a sanity check whether other clients with pre-

allocated memory are still alive. If memory is freed, then the waiting clients are notified

(refer to Section 6.6). The shutdown is implicitly handled by the postCudaFree()

function.
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6.6 Notification Policies

Client applications that wait in a queue for GPU memory are notified when memory is

available because another application released it (post-free stage). Policies are required

to schedule memory requests of waiting clients.

A variety of scheduling policies are reported for managing CPU resources [119–123].

Popular policies include First-In, First-Out (FIFO) and those that maximize resource

utilization. Given that an operating system will need to prioritize applications, priority-

based policies are implemented. We adapted these policies in the context of GPU co-

scheduling.

FIFO policy is generally favored due to its simplicity. However, it is limited in that if

the first waiting application’s GPU memory request cannot be furnished, then even if

there was a subsequent waiting client that could be scheduled to access the GPU has to

wait. This potentially reduces the utilization rate of the GPU. This can be mitigated by

using policies based on consumable resources. In the context of GPU co-scheduling, a

policy to maximize the usage of memory on the device is ideal, which in turn increases

utilization.

The basic version of both FIFO and maximizing memory utilization policies do not

consider the quality of service offered to the clients. This requires the priority of

the waiting applications to be accounted for, which provides a preferential service to

applications with higher priorities. Taking the above into account, in this chapter, we

considered four policies, two basic policies and two priority-based policies.

Consider there are n waiting clients, represented as C = {C1, C2, · · · , Cn}. We use the

following notations:

• Ci is the ith waiting client in the queue

• Cp
i is the ith waiting client with maximum priority p in the queue (used only for

priority-based policies)

• ∆i is maximum time client Ci waits for free memory

• mCi
d is the memory required by client Ci on device d

• Md is the free memory available on device d
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Policy 1 - First-In, First-Out (FIFO)

In this naive policy, the first waiting client in the queue is the first to be benefited.

Client C1 waits until there is sufficient free memory. If memory is available, then it is

preallocated to C1, and if there is more free memory then the following client is served.

If there is insufficient memory, then the client waits for a maximum time of ∆i since the

client is blocked by the scheduler. This is represented as Equation 6.1.

preallocate(Ci) =



(
(Md = Md −mCi

d ) ∧ (C − {Ci})∧

(preallocate(Ci+1))
)
, if

(
(mCi

d ≤Md) ∧ (i < n)
)

(
(Md = Md −mCi

d ) ∧ (C − {Ci})∧

exit()
)
, if

(
(mCi

d ≤Md) ∧ (i ≥ n)
)

wait(∆i), otherwise

(6.1)

Policy 2 - Maximum Memory Utilization (MMU)

In this policy, the aim is to use maximum GPU memory and therefore the request of

the first client in the queue that can be pre-allocated memory is furnished. If no clients

in the queue can be serviced, then the clients continue waiting until a subsequent client

terminates and more memory is available. This is shown in Equation 6.2.

preallocate(Ci) =



Md = Md −mCi
d ∧ C − {Ci} ∧ preallocate(Ci+1),

if mCi
d ≤Md

wait(∆i) ∧ preallocate(Ci+1) concurrently, if i < n

exit(), otherwise

(6.2)

Policy 3 - Priority FIFO

This policy is similar to the FIFO policy, but has a priority associated with each client.

Therefore, in the queue, the clients with the highest priority are pre-allocated memory.

The first client with the highest priority will be served, but if there is insufficient

memory to serve this request or there is more memory available after serving a request,

then a following client with the same priority is served. This policy is represented in
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Equation 6.3.

preallocate(Cp
i ) =



(
(Md = Md −m

Cp
i

d ) ∧ (C − {Cp
i })∧

(preallocate(Cp
i+1))

)
, if

(
(m

Cp
i

d ≤Md) ∧ (i < n)
)

(
(Md = Md −m

Cp
i

d ) ∧ (C − {Cp
i })∧

exit()
)
, if

(
(m

Cp
i

d ≤Md) ∧ (i ≥ n)
)

wait(∆i), otherwise

(6.3)

Policy 4 - Priority MMU

This policy is similar to the MMU policy, but has a priority associated with each client.

The aim is again to always use maximum GPU memory and therefore the request of the

first client with the highest priority in the queue that can be pre-allocated memory is

furnished. If no clients in the queue with the highest priority can be attended to, then

the clients continue waiting until a subsequent client terminates and more memory is

available. This is shown in Equation 6.4.

preallocate(Cp
i ) =



Md = Md −m
Cp

i
d ∧ C − {C

p
i } ∧ preallocate(C

p
i+1),

if m
Cp

i
d ≤Md

wait(∆i) ∧ preallocate(Cp
i+1) concurrently, if i < n

exit(), otherwise

(6.4)

The implications of using the above policies for executing workloads with multiple

applications is explored in the experiments shown in the subsequent sections.

6.7 Experimental Setup and Use-Cases

The hardware platform and the use-cases employed for validating the feasibility of

schedGPU are presented.

6.7.1 Hardware Platform

The experimental test-bed used for our experiments is one 1027GR-TRF Supermicro

server comprising two Intel Xeon hexa-core processors E5-2620 v2 (Ivy Bridge) operating

at 2.1 GHz and 32 GB of DDR3 SDRAM memory at 1,600 MHz. One NVIDIA Tesla
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K20m GPU which has 4,799 MiB of memory is available on the server. The CentOS 6.4

operating system and the CUDA 7.5 with NVIDIA driver 352.39 is used.

6.7.2 Use-cases

Three real-world applications are considered as use-cases in this chapter. The first is

a catastrophe risk simulation employed in the financial risk industry, referred to as

Aggregate Risk Analysis (ARA) [124]. This simulation computes a key risk metric,

namely Probable Maximum Loss (PML) on an industry size input comprising 150,000

catastrophic event trials and a collection of one thousand events and their corresponding

losses.

The second and third are applications for aligning DNA sequences in bioinformatics. The

second application, which is referred to as MUMmerGPU9 [125], is used for aligning DNA

sequence data to a reference sequence which is useful in genotyping and genomics. In

our experiments, the search pattern is a sequence length of 25 base pairs that is matched

against the reference, which is a complete genome of Bacillus Anthracis allowing up to

five differences in an alignment for 500,000 reads.

The third application is referred to as the GPU Basic Local Alignment Search Tool

(GPU-BLAST)10 [79]. The application searches a database of proteins for a nucleotide

with a sequence length of 5,000.

The use-cases were chosen based on the following three observations from Figure 6.8,

which shows the CPU and GPU utilization and the GPU memory in use during

execution. Firstly, low GPU utilization. ARA, in Figure 6.8(a), uses GPU acceleration

for a short time period at the end of the simulation. For the given input, over 16%

of GPU memory is used and therefore, up to a maximum of 6 concurrent instances of

the application can be safely executed on this GPU without potential GPU memory

allocation errors (in this chapter, we refer to this as ‘maximum concurrent instances’).

Such concurrent applications that have low GPU utilization are ideal candidates for

schedGPU since the framework can coordinate the access of multiple applications to the

GPU, which otherwise would execute sequentially.

Secondly, moderate GPU utilization. MUMmerGPU, in Figure 6.8(b), harnesses GPU

acceleration at regular intervals. For the given input, the GPU is used for approximately

50% of the total execution time and the maximum GPU memory used is nearly 15%

allowing for up to 6 parallel instances of the application to be reliably executed.

Concurrent executions of moderate GPU utilizing applications are again ideal candidates

9http://www.mummergpu.sourceforge.net
10http://archimedes.cheme.cmu.edu/biosoftware.html

http://www.mummergpu.sourceforge.net
http://archimedes.cheme.cmu.edu/biosoftware.html
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Figure 6.8: CPU and GPU utilization and GPU memory used for one execution of
the applications.
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for schedGPU since the framework can maximize the number of these applications safely

using the GPU.

Thirdly, high GPU utilization (and GPU memory is still available). GPU-BLAST

(Figure 6.8(c)) uses the GPU nearly 80% of the total execution time, but for the

given input maximum GPU memory used is over 36% of total available memory. This

allows for safe execution of up to 2 concurrent application instances. This is not an

ideal candidate for schedGPU, however performance gains may be obtained when GPU

memory usage drops below 30% towards the end of the execution.

6.8 Evaluation

In this section, we present the experiments carried out for validating the feasibility

of schedGPU. For this we (i) evaluate the overheads associated with the client-server

and shared memory approaches, (ii) highlight the benefits of employing schedGPU to

improve the throughput of concurrent executions of an individual application, and (iii)

consider the performance gain of workloads comprising multiple applications.

6.8.1 Overhead of the approaches

Figure 6.9 compares different stages of the schedGPU life cycle. Both the client-server

and shared memory approaches are considered. For the former, an additional server

initialization and server shutdown stages are required since these are distributed between

the client and the server. For the latter, initialization and shutdown are carried out by

the client since no servers are present.

It is observed that the server initialization and server shutdown stages for the client-

server approach are costly in terms of time although they occur only once. The client

initialization and client shutdown stages are however shorter. Regardless, even when

excluding the time for initializing and shutting down the server, the total time taken

by the client-server is nearly twice as taken by the shared memory approach. This

is because communications over TCP sockets introduce an overhead. Therefore, only

the shared memory approach is employed in the experiments considered in subsequent

sections.

Both shared memory approaches using mutexes and file locks offer similar performance.

In the initialization stage, the file locks method requires more time since the notification

protocol using system signals needs to be set-up. With mutexes the notification protocol
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Figure 6.9: Comparison of the stages of the schedGPU life cycle for the client-server
and shared memory approaches.

using conditions is set-up in the pre-allocation stage and hence an increase in time for

the pre-allocation stage is noted.

Given that both the shared memory approaches have similar performance, in the

following sections we consider the file lock method since it is more robust than mutexes

by avoiding the problem of abandonment.

6.8.2 Performance Gain

We further explore performance in terms of utilization of GPU resources, speed-up and

throughput in the following two ways: (i) on an experimental environment, to study

mechanisms to achieve maximum performance of the three use-cases with and without

schedGPU, and (ii) on a production environment, to assess the potential of schedGPU

using real-world workloads.

6.8.2.1 Concurrent Execution of Individual Applications

Three schedGPU functions considered in Section 6.5 were included in the three

applications. The initialization function was included at the beginning of the CUDA

program, the pre-allocation function was inserted before the CUDA memory allocations

and the post-free function was placed after CUDA release memory calls. Up to 12



152 Chapter 6. schedGPU: Fine-Grain Dynamic and Adaptive Scheduling for GPUs

1 2 4 6 12

1 instance without using schedGPU

Maximum concurrent instances without using schedGPU

12 concurrent instances using schedGPU

1 2 4 6 12

Speed-up vs. 1 instance without using schedGPU
Speed-up vs. Maximum concurrent instances without 
using schedGPU

1 2 4 6 12

(a) ARA

1 2 4 6 12
0.1

1

10

100

1000

10000

0

2

4

6

8

10

12
10.09

1.95

No. of processes

T
im

e
 (

s)

sc
h

e
d

G
P

U
 s

p
e

e
d

-u
p

1 2 4 6 12

(c) GPU-BLAST

1 2 4 6 12

(b) MUMmerGPU

1 2 4 6 12
0.1

1

10

100

1000

10000

0

2

4

6

8

10

12

1.49
1.15

No. of processes

T
im

e
 (

s)

sc
h

e
d

G
P

U
 s

p
e

e
d

-u
p

1 2 4 6 12
0.1

1

10

100

1000

10000

0

2

4

6

8

10

12

8.97

1.77

No. of processes

T
im

e
 (

s)

sc
h

e
d

G
P

U
 s

p
e

e
d

-u
p

Figure 6.10: Execution time and speed-up obtained using schedGPU when varying
number of instances of the same application that are concurrently executed.
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instances of each application were concurrently executed (the number of CPUs in the

experimental test-bed).

Figure 6.10 shows the improvement in execution time and speed-up of the three

applications when schedGPU is employed. Three scenarios were considered. The

first scenario does not use schedGPU and only one instance of the application can

be safely executed at a time. Hence, if 12 instances of an application were required

to be executed, then they are executed sequentially. The second scenario, similarly

does not use schedGPU. However, we have manually packed tasks to maximize the

usage of GPU memory. This is done for the purpose of comparison and is not realistic

as the workload managers do not know in advance the GPU memory required by

the application. The third scenario employs schedGPU and can safely run multiple

instances of the application. It is immediately inferred that when comparing our

proposed approach (the third scenario) using schedGPU against (i) the first scenario

that does not employ schedGPU there is a 10x speed-up for ARA, nearly 9x speed-up

for MUMmerGPU and close to 1.5x speed-up for GPU-BLAST, and (ii) the second

scenario the speed-up is approximately doubled when running 12 concurrent instances

of ARA and MUMmerGPU. These applications have low and moderate GPU utilization

allowing schedGPU to take advantage of the time periods that the GPU remains under-

utilized. During these time periods schedGPU services instances that request the GPU

to maximize GPU utilization. In the second scenario, the execution of large number

of instances of an application (more than 6 for ARA and MUMmerGPU respectively)

at the same time will not be possible due to insufficient GPU memory. schedGPU still

outperforms this unrealistic scenario of manually packing tasks. Not only is it feasible

to execute large number of instances using schedGPU, but also a profitable speed-up is

noted.

However, there is only a small improvement in performance for GPU-BLAST with the

execution of 4 concurrent instances achieving maximum speed-up. The application has

high GPU memory utilization almost during all of its execution time (over 30%, on

average, as shown in Figure 6.8(c)). Therefore, there is insufficient GPU memory for

boosting the performance of concurrent instances. Nonetheless, even in such cases,

schedGPU yields a small improvement in performance by making use of any spare GPU

memory.

Figure 6.11 shows the average CPU, GPU and GPU memory utilization when maximum

speed-up is obtained for the three applications using schedGPU. The amount of GPU

memory utilized by each application is indicated in the figures. GPU utilization is

maximized, which in turn results in an observed speed-up.
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Figure 6.12: Frequency distribution of GPU utilization when executing the applica-
tion with and without schedGPU.
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Table 6.1: Comparison of GPU utilization and GPU memory utilization when
executing the use-cases.

Average GPU Utilization (%),
Average GPU Memory Utiliza-
tion (%)

Maximum
Application 1 instance

without
using
schedGPU

concurrent
instances
without
using
schedGPU

12 con-
current
instances
using
schedGPU

ARA 0.51, 0.37 2.74, 0.90 5.26, 2.02

MUMmerGPU 2.46, 4.04 12.73,
26.13

20.96,
41.59

GPU-BLAST 69.48,
33.73

86.28,
63.71

90.24,
70.09

Figure 6.12 shows the frequency distribution of GPU utilization for the three applica-

tions. For all applications it is observed that the amount of time the GPU achieves be-

tween 91% and 100% utilization is increased (the time the GPU is not utilized decreases

- 0%) and yields a speed up as shown in Figure 6.10. This validates that schedGPU can

improve the utilization of resources.

Table 6.1 shows the average GPU utilization and GPU memory utilization for the

applications when one instance of the application is executed without using schedGPU,

running the maximum number of concurrent instances of the application supported

without using schedGPU and 12 concurrent instances using schedGPU are employed.

It is immediately evident that schedGPU has superior performance in that the GPU

utilization is improved by over 10 times over a single instance and nearly 2 times over

six instances for ARA. Similarly, GPU memory utilization is improved by over 10 times

for a single instance of MUMmerGPU and nearly 2.25 times over six instances for ARA.

The memory utilization of GPU-BLAST is high without using schedGPU leaving little

room for optimizing performance. However, a small improvement is noted.

6.8.2.2 Workloads Comprising Multiple Applications

Our experimental test-bed uses the Slurm [11] workload manager for scheduling jobs

from multiple users. However, given that one GPU is used in the test-bed, Slurm

handles multiple jobs requesting the GPU by sequentially executing them. As expected

this results in the under-utilization of the GPU.



Chapter 6. schedGPU: Fine-Grain Dynamic and Adaptive Scheduling for GPUs 157

0
1

00
20

0
3

00
4

00
50

0
0

2
0

4
0

6
0

8
0

10
0

A
ve

ra
ge

 o
f 1

2 
C

P
U

s
G

P
U

 M
e

m
o

ry
G

P
U

Ti
m

e 
(s

)

Utilization (%)

(a
)

U
si

n
g

F
IF

O
p

o
li
cy

0
1

00
20

0
3

00
4

00
50

0
0

2
0

4
0

6
0

8
0

10
0

A
ve

ra
ge

 o
f 1

2 
C

P
U

s
G

P
U

 M
e

m
o

ry
G

P
U

Ti
m

e 
(s

)

Utilization (%)

(b
)

U
si

n
g

M
M

U
p

o
li
cy

0
1

00
20

0
3

00
4

00
50

0
0

2
0

4
0

6
0

8
0

10
0

A
ve

ra
ge

 o
f 1

2 
C

P
U

s
G

P
U

 M
e

m
o

ry
G

P
U

Ti
m

e 
(s

)

Utilization (%)

(c
)

U
si

n
g

P
ri

o
ri

ty
F

IF
O

p
o
li
cy

0
10

0
2

00
30

0
40

0
5

00
0

20406080

1
00

A
ve

ra
g

e 
o

f 1
2

 C
P

U
s

G
P

U
 M

em
or

y
G

P
U

T
im

e
 (s

)
Utilization (%)

(d
)

U
si

n
g

P
ri

o
ri

ty
M

M
U

p
o
li
cy

F
ig

u
r
e

6
.1

3
:

C
P

U
an

d
G

P
U

u
sa

ge
w

h
en

ru
n
n

in
g

a
w

o
rk

lo
a
d

u
si

n
g

sc
h

ed
G

P
U

fo
r

d
iff

er
en

t
cl

ie
n
t

n
o
ti

fi
ca

ti
o
n

p
o
li

ci
es

.



158 Chapter 6. schedGPU: Fine-Grain Dynamic and Adaptive Scheduling for GPUs

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1
0 5 10 15 20 25

A
R

A
G

P
U

-B
LA

S
T

M
U

M
m

e
rG

P
U

0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100      

0
1

CPU Utilization per Core (%)

0,5
1

1 2 3 4 5 6 7 8 9 10 11 12

CPU Core

0
1

00
20

0
3

00
4

00
5

00

T
im

e (s)

(a
)

U
sin

g
F

IF
O

p
o
licy

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1
0 5 10 15 20 25

A
R

A
G

P
U

-B
LA

S
T

M
U

M
m

e
rG

P
U

0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100      

0
1

CPU Utilization per Core (%)

0,5
1

1 2 3 4 5 6 7 8 9 10 11 12

CPU Core

0
1

00
20

0
3

00
4

00
5

00

T
im

e (s)

(b
)

U
sin

g
M

M
U

p
o
licy

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1
0 5 10 15 20 25

A
R

A
G

P
U

-B
LA

S
T

M
U

M
m

e
rG

P
U

0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100      

0
1

CPU Utilization per Core (%)

0,5
1

1 2 3 4 5 6 7 8 9 10 11 12

CPU Core
0

1
00

20
0

3
00

4
00

5
00

Tim
e

 (s)

(c)
U

sin
g

P
rio

rity
F

IF
O

p
o
licy

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1
0 5 10 15 20 25

A
R

A
G

P
U

-B
L

A
S

T
M

U
M

m
e

rG
P

U

0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100    0

0    100

100      

0
1

CPU Utilization per Core (%)

0
,5

1
1 2 3 4 5 6 7 8 9 1

0
1

1
1

2

CPU Core

0
1

00
200

3
00

40
0

5
00

Tim
e (s)

(d
)

U
sin

g
P

rio
rity

M
M

U
p

o
licy

F
ig

u
r
e

6
.1

4
:

U
sage

p
er

C
P

U
co

re
w

h
en

ru
n
n

in
g

a
w

o
rk

lo
a
d

u
sin

g
sch

ed
G

P
U

for
d

iff
eren

t
clien

t
n

otifi
cation

p
olicies.



Chapter 6. schedGPU: Fine-Grain Dynamic and Adaptive Scheduling for GPUs 159

Table 6.2: Comparison of GPU utilization and GPU memory utilization when
executing a workload comprising multiple applications.

Average Average
Configuration Time (s) GPU GPU

Utilization Memory
(%) Used (%)

Without schedGPU 2,485.20 9.24 3.79

schedGPU FIFO 542.51 43.09 42.65

schedGPU MMU 527.22 43.74 43.25

schedGPU Priority FIFO 515.57 45.59 46.59

schedGPU Priority MMU 512.53 45.75 47.15

On the other hand, schedGPU can be employed to mitigate the above problem by

managing the access of multiple job requests requiring GPUs. If there are m real GPUs

and n CPUs, then Slurm is reconfigured (by only making changes to the configuration

file) to be in possession of m× n GPUs. On our test-bed Slurm is reconfigured to have

12 GPUs (1 real GPU × 12 CPUs). This allows for Slurm to execute up to 12 concurrent

jobs as if each CPU had access to a GPU. SchedGPU ensures that the jobs make use of

the GPU safely.

A workload comprising 12 concurrent jobs (12 jobs since there are 12 CPUs, and each

job requires one CPU and one GPU for execution) using 4 instances each of ARA,

MUMmerGPU and GPU-BLAST applications was submitted to Slurm. The applications

have the same input as presented in the previous section. Figure 6.13 shows the average

CPU and GPU utilization and average GPU memory utilization for the workload.

Figure 6.14 shows the CPU utilization of the cores for each application in the workload

(the Y-axis of the graphs plot utilization from 0-100% for each core).

When considering non-priority based policies, it is observed that using FIFO (refer

Figure 6.13(a)) there are peaks in the GPU and GPU memory utilization. This is

because when sufficient memory is not available to furnish a request, no further requests

are considered and hence memory remains under-utilized. However, using the MMU

policy (Figure 6.13(b)) GPU memory utilization is more evenly spread out. Requests of

waiting clients are immediately furnished to maximize GPU memory usage. The MMU

policy results in a reduction of nearly 3% in the execution time of the workload over

the FIFO policy as shown in Table 6.2. An improvement of nearly 1.5% is also noted

for both the average GPU utilization and average GPU memory usage for MMU over

FIFO.
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For non-priority based policies it is noted that CPU cores of the jobs waiting for GPU

memory remain idle as shown in Figure 6.14(a) and Figure 6.14(b). This is noted for

MUMmerGPU and GPU-BLAST instances since there is insufficient memory on the

GPU to furnish all requests.

Since it is observed that the MUMmerGPU takes the most time for completing execution,

all MUMmerGPU instances are assigned a high priority in an attempt to optimize

the execution of the workload by further reducing the total execution time. When

priority-based policies are taken into account, it is observed that the initial CPU

utilization increases and similar trends to non-priority based policies is observed for

GPU utilization.

In Figure 6.14(c) and Figure 6.14(d), assigning a higher priority to MUMmerGPU

instances reduces waiting times for free GPU memory, thereby the CPU is idle for

shorter periods of time. This translates into a reduction of total execution time using

the priority-based policies by 15 seconds over the best case non-priority policy (MMU)

as shown in Table 6.2. Similarly, an improvement of over 4.5% and 9% are noted for

GPU utilization and GPU memory utilization, respectively, over the MMU policy.

6.8.3 Evaluation Summary

The experimental evaluation highlights that:

• The overhead of the shared memory approach is significantly less than that of the

client-server approach, making it an ideal candidate for facilitating the schedGPU

framework (refer Figure 6.9).

• The performance gain, measured in terms of average speed-up, average GPU

utilization and average GPU memory utilization, when concurrently executing

individual applications using schedGPU is noted to be up to 10 times better than

when not using schedGPU.

• For workloads comprising multiple applications, using Slurm in conjunction with

schedGPU results in a speed-up of up to 5 times in the total execution time over

the execution without schedGPU. The average GPU utilization and average GPU

memory utilization is increased by 5 and 12 times, respectively, when compared

to not using schedGPU.
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6.9 Conclusions

Currently, there are no schedulers that can safely co-schedule multiple GPU applications

in terms of memory requirements. This results in the under-utilization of GPUs in high-

performance computing systems. In this chapter, we aimed to improve the utilization of

GPUs by proposing an intra-node GPU scheduling framework, referred to as schedGPU.

We incorporated a client-server and shared memory approach for synchronizing the

access of multiple applications to the GPU. The schedGPU framework was validated

using real-world applications both individually as single applications and collectively as

workloads. A gain of over 10 times, as measured by speed-up, GPU utilization and GPU

memory utilization, was obtained for individual applications. For workloads, a speed-up

of up to 5 times was noted. Moreover, the average GPU utilization and average GPU

memory utilization was increased by 5 and 12 times, respectively.





Chapter 7

Conclusions

The work carried out in this PhD thesis has enhanced the rCUDA remote GPU

virtualization framework for its use in high-performance computing clusters. In addition,

this dissertation has also presented a new framework, referred to as schedGPU, to

improve the utilization of GPUs and to facilitate intra-node GPU co-scheduling such

that GPUs can be safely shared among multiple applications. In this chapter, the main

contributions of these proposals are summarized, followed by an enumeration of the

scientific publications related with this dissertation and a discussion about future work.

163
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7.1 Contributions

Chapter 2 has introduced and compared several remote GPU virtualization frameworks

that were publicly available at no cost at the beginning of this thesis. Results have shown

that the rCUDA virtualization solution was the one offering both better performance

and features.

Chapter 3 has presented a new version of rCUDA improving its usability and supporting

multithreaded applications and CUDA libraries.

Chapter 4 has detailed the performance analysis and optimizations carried out for

InfiniBand networks. First, the influence of FDR InfiniBand on the performance of

rCUDA has been analyzed. Second, a new version of rCUDA supporting InfiniBand

dual-port adapters has been presented, also evaluating its performance. Next, different

InfiniBand Verbs optimizations have been exposed and their impact on rCUDA has

been studied. The new version of rCUDA resulting from this study presenting a

reduction of up to 35% in execution time of the applications analyzed with respect

to the initial version. Finally, it has been shown how the high bandwidth provided

by EDR InfiniBand, along with the optimizations exposed in previous chapters, have

allowed rCUDA to perform very similar to local GPUs. In this manner, the overhead

of the new version of rCUDA is below 5% for the applications studied when using EDR

InfiniBand.

Chapter 5 has presented an efficient memory copy mechanism devised for enhancing the

rCUDA framework with support for memory copies between remote GPUs located in

different nodes of the cluster. The experiments carried out have shown that the enhanced

version of rCUDA presents, in general, better bandwidth than CUDA in this kind of

copies, obtaining an speed-up of up to 1.42x.

Finally, Chapter 6 has presented a new framework, referred to as schedGPU, which

improves the utilization of GPUs. Results have shown a noticeable gain (up to 5x) in

both application speed-up and GPU utilization.

7.2 Publications

The following papers, directly related with this dissertation, were published in different

international journals and conferences.
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Conferences:
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Architecture: Early Experiences. In Proceedings of the 18th IEEE International

Conference on High Performance Computing and Communications (HPCC), pages

1234-1235, Sydney, Australia, 2016.

• C. Reaño, F. Silla, and M. J. Leslie. schedGPU: Fine-Grain Dynamic and

Adaptative Scheduling for GPUs. In Proceedings of the 14th International

Conference on High Performance Computing & Simulation (HPCS), pages 993-

997, Innsbruck, Austria, 2016.

• C. Reaño and F. Silla. A Live Demo on Remote GPU Accelerated Deep Learning

Using the rCUDA Middleware. In Proceedings of the 16th ACM International

Middleware Conference (Middleware), pages 3:1-3:2, Vancouver, BC, Canada,

2015.

• C. Reaño and F. Silla. A Performance Comparison of CUDA Remote GPU

Virtualization Frameworks. In Proceedings of the 2015 IEEE International

Conference on Cluster Computing (Cluster), pages 488-489, Chicago, IL, USA,

2015.

• C. Reaño and F. Silla. InfiniBand Verbs Optimizations for Remote GPU

Virtualization. In Proceedings of the 2015 IEEE International Conference on

Cluster Computing (Cluster Workshops), pages 825-832, Chicago, IL, USA, 2015.

• C. Reaño, F. Pérez, and F. Silla. On the Design of a Demo for Exhibiting rCUDA.

In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), pages 1169-1172, Shenzhen, China, 2015.

• C. Reaño, F. Silla, A. J. Peña, G. Shainer, S. Schultz, A. Castelló, E. S. Quintana–

Ort́ı, and J. Duato. Boosting the performance of remote GPU virtualization

using InfiniBand connect-IB and PCIe 3.0. In Proceedings of the 2014 IEEE

International Conference on Cluster Computing (Cluster), pages 266-267, Madrid,

Spain, 2014.

• C. Reaño, F. Silla, and J. Duato. Maximizing the performance of HPC clusters

with rCUDA. In Proceedings of the 10th International Summer School on Advanced

Computer Architecture and Compilation for High-Performance and Embedded

Systems (ACACES), pages 125-128, Fiuggi, Italy, 2014.
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Summer schools:

• C. Reaño, F. Silla, and J. Duato. Maximizing the performance of HPC clusters

with rCUDA. In Proceedings of the 10th International Summer School on Advanced

Computer Architecture and Compilation for High-Performance and Embedded

Systems (ACACES), pages 125-128, Fiuggi, Italy, 2014.

• C. Reaño, A. J. Peña, F. Silla, R. Mayo, E. S. Quintana–Ort́ı, and J. Duato.

Remote GPU Virtualization: a Performance Evaluation of Freely Available CUDA

Frameworks. In Programming and Tuning Massively Parallel Systems Summer

School (PUMPS), Barcelona, Spain, 2013.

Journals currently under review:

• C. Reaño, F. Silla, D. S. Nikolopoulos, and B. Varghese. Intra-node Memory Safe

GPU Co-Scheduling. Submitted to IEEE Transactions on Parallel and Distributed

Systems journal (TPDS).

• C. Reaño and F. Silla. Implementing P2P Memory Copies within rCUDA to

Support GPUs Located in Different Nodes. Submitted to Journal of Parallel and

Distributed Computing (JPDC).

In addition, other related papers have been published in domestic conferences:

• C. Reaño and F. Silla. Extendiendo rCUDA con soporte para copias P2P entre

GPUs remotas. In Actas de las XXVII Jornadas de Paralelismo (JJPP), pages

203-208, Salamanca, Spain, 2016.

• C. Reaño and F. Silla. Acelerando aplicaciones con CUDA: GPUs de sobremesa

frente a GPUs para servidores. In Actas de las XXVI Jornadas de Paralelismo

(JJPP), pages 198-204, Córdoba, Spain, 2015.

• C. Reaño, F. Silla, and J. Duato. Evaluación de Prestaciones de Copias 2D y 3D

con rCUDA. In Actas de las XXV Jornadas de Paralelismo (JJPP), pages 81-86,

Valladolid, Spain, 2014.

• C. Reaño, A. Castelló, S. Iserte, A. J. Peña, F. Silla, R. Mayo, E. S. Quintana–

Ort́ı, and J. Duato. Virtualización Remota de GPUs: Evaluación de Soluciones

Disponibles para CUDA. In Actas de las XXIV Jornadas de Paralelismo (JJPP),

pages 271-276, Madrid, Spain, 2013.
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• C. Reaño, A. J. Peña, F. Silla, R. Mayo, E. S. Quintana–Ort́ı, and J. Duato.

CU2rCU: a CUDA-to-rCUDA Converter. In Actas de las XXIII Jornadas de

Paralelismo (JJPP), pages 44-49, Elche, Spain, 2012.

• C. Reaño, A. J. Peña, F. Silla, R. Mayo, E. S. Quintana–Ort́ı, and J. Duato.

rCUDA: Uso Concurrente de Dispositivos Compatibles con CUDA de Forma

Remota. Adaptación a CUDA 4. In Actas de las XXII Jornadas de Paralelismo

(JJPP), pages 311-316, La Laguna, Spain, 2011.

The dissertation has also led to participate in several tutorials presented in international

conferences:

• F. Silla and C. Reaño. Reducing Power Consumption of Data Centers with

rCUDA. 2016 International Conference on High Performance and Embedded

Architecture and Compilation (HiPEAC), Prague, Czech Republic, 2016.

• F. Silla and C. Reaño. Improving overall performance and energy consumption of

your cluster with remote GPU virtualization. 16th ACM International Middleware

Conference (Middleware), Vancouver, BC, Canada, 2015.

• F. Silla and C. Reaño. On the use of remote GPU virtualization for managing the

GPUs of your cluster in a flexible way. 2014 IEEE International Conference on

Cluster Computing (Cluster), Madrid, Spain, 2014.

• C. Reaño. rCUDA hands on session - learn how it works. 2014 HPC Advisory

Council Switzerland Conference (HPCAC), Lugano, Switzerland, 2014.

During this thesis, the rCUDA framework has also been exhibited at the Mellanox

Technologies1 booth in the following international industrial/research exhibitions:

• International Conference for High Performance Computing, Networking, Storage

and Analysis (Supercomputing, SC), Salt Lake City (USA), 2016.

• International Supercomputing Conference (ISC), Frankfurt (Germany), 2016.

• International Conference for High Performance Computing, Networking, Storage

and Analysis (Supercomputing, SC), Austin (USA), 2015.

• International Supercomputing Conference (ISC), Frankfurt (Germany), 2015.

• International Conference for High Performance Computing, Networking, Storage

and Analysis (Supercomputing, SC), New Orleans (USA), 2014.

1https://www.mellanox.com/

https://www.mellanox.com/
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• International Supercomputing Conference (ISC), Leipzig (Germany), 2014.

• International Conference for High Performance Computing, Networking, Storage

and Analysis (Supercomputing, SC), Denver (USA), 2013.

• International Conference for High Performance Computing, Networking, Storage

and Analysis (Supercomputing, SC), Salt Lake City (USA), 2012.

• International Supercomputing Conference (ISC), Hamburg (Germany), 2012.

Finally, the following works indirectly related to this dissertation have been accepted for

publication:

Book Chapters:

• J. Prades, F. Campos, C. Reaño, and F. Silla. GPU as a Service: providing GPU-

acceleration to federated cloud systems. Developing Interoperable and Federated

Cloud Architecture, chapter 10, pages 281-313. 2016.

Journals:

• F. Silla, S. Iserte, C. Reaño, and J. Prades. On the Benefits of the Remote GPU

Virtualization Mechanism: the rCUDA Case. Accepted for publication in the

journal Concurrency and Computation: Practice and Experience (CCPE).

• J. Prades, B. Varghese, C. Reaño, and F. Silla. Multi-tenant virtual GPUs for

optimising performance of a financial risk application. Accepted for publication in

the Journal of Parallel and Distributed Computing (JPDC).

• A. J. Peña, C. Reaño, F. Silla, R. Mayo, E. S. Quintana–Ort́ı, and J. Duato.

A complete and efficient CUDA-sharing solution for HPC clusters. Parallel

Computing (PARCO), volume 40, issue 10, pages 574-588, 2014.

Conferences:

• F. Pérez, C. Reaño, and F. Silla. Providing CUDA Acceleration to KVM Virtual

Machines in InfiniBand Clusters with rCUDA. In Proceedings of the 16th IFIP

International Conference on Distributed Applications and Interoperable Systems

(DAIS), pages 82-95, Heraklion, Greece, 2016.
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• B. Varghese, J. Prades, C. Reaño, and F. Silla. Acceleration-as-a-Service:

Exploiting Virtualised GPUs for a Financial Application. In Proceedings of

the 11th IEEE International Conference on e-Science (e-Science), pages 47-56,

Munich, Germany, 2015.

• S. Iserte, A. Castelló, R. Mayo, E. S. Quintana–Ort́ı, F. Silla, J. Duato, C. Reaño,

and J. Prades. SLURM Support for Remote GPU Virtualization: Implementation

and Performance Study. In Proceedings of the 26th IEEE International Symposium

on Computer Architecture and High Performance Computing (SBAC-PAD), pages

318-325, Paris, France, 2014.

Workshops, short papers, posters and demos:

• S. Iserte, J. Prades, C. Reaño, and F. Silla. Increasing the Performance of Data

Centers by Combining Remote GPU Virtualization with Slurm. In Proceedings

of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pages 98-101, Cartagena, Colombia, 2016.

• F. Silla, C. Reaño, J. Prades, S. Iserte. Benefits of remote GPU virtualization:

the rCUDA perspective. In GPU Technology Conference (GTC), San Jose, CA,

USA, 2016.

• F. Silla, J. Prades, S. Iserte, and C. Reaño. Remote GPU Virtualization:

Is It Useful?. In Proceedings of the 2nd IEEE International Workshop on

High-Performance Interconnection Networks in the Exascale and Big-Data Era

(HiPINEB), pages 41-48, Barcelona, Spain, 2016.

• J. Prades, C. Reaño and F. Silla. CUDA acceleration for Xen virtual machines

in InfiniBand clusters with rCUDA. In Proceedings of the 21st ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), pages

35:1-35:2, Barcelona, Spain, 2016.

Domestic conferences:

• J. Prades, B. Varghese, C. Reaño, and F. Silla. Reduciendo el Tiempo de Ejecución

de una Aplicación de Cálculo de Riesgos Financieros a través del uso de GPUs

Virtuales. In Actas de las XXVII Jornadas de Paralelismo (JJPP), pages 245-

253, Salamanca, Spain, 2016.

• S. Iserte, A. Castelló, R. Mayo, E. S. Quintana–Ort́ı, C. Reaño, J. Prades, F.

Silla, and J. Duato. Comparativa de poĺıticas de selección de GPUs remotas en
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clusters HPC. In Actas de las XXVI Jornadas de Paralelismo (JJPP), pages 67-72,

Córdoba, Spain, 2015.

• F. Campos, J. Prades, C. Reaño, and F. Silla. Uso de aceleradores CUDA en

entornos cloud mediante rCUDA y KVM. In Actas de las XXVI Jornadas de

Paralelismo (JJPP), pages 393-402, Córdoba, Spain, 2015.

• R. Alegre, C. Reaño, J. Prades, and F. Silla. Uso de Rodinia y Parboil para

evaluar las prestaciones de la virtualización remota de GPUs. In Actas de las

XXVI Jornadas de Paralelismo (JJPP), pages 425-432, Córdoba, Spain, 2015.

• J. Prades, C. Reaño, F. Silla, and J. Duato. Virtualización de GPUs en entornos

XEN usando rCUDA. In Actas de las XXVI Jornadas de Paralelismo (JJPP),

pages 102-110, Córdoba, Spain, 2015.

• J. Prades, C. Reaño, F. Silla, and J. Duato. Virtualización Remota de GPUs:

Reduciendo el Coste del Hardware Ocioso. In Actas de las XXV Jornadas de

Paralelismo (JJPP), pages 145-153, Valladolid, Spain, 2014.

• F. Pérez, J. Prades, C. Reaño, F. Silla, and J. Duato. Uso de rCUDA en Máquinas

Virtuales KVM: Análisis y Prestaciones. In Actas de las XXV Jornadas de

Paralelismo (JJPP), pages 327-334, Valladolid, Spain, 2014.

• S. Iserte, A. Castelló, A. J. Peña, C. Reaño, J. Prades, F. Silla, R. Mayo, E. S.

Quintana–Ort́ı, and J. Duato. Extendiendo SLURM con Soporte para el Uso de

GPUs Remotas. In Actas de las XXV Jornadas de Paralelismo (JJPP), pages

135-143, Valladolid, Spain, 2014.

• S. Iserte, A. Castelló, C. Reaño, A. J. Peña, F. Silla, R. Mayo, E. S. Quintana–Ort́ı,

and J. Duato. Un planificador de GPUs remotas para clusters HPC. In Actas de

las XXIV Jornadas de Paralelismo (JJPP), pages 193-198, Madrid, Spain, 2013.

7.3 Future Directions

As for future work, this dissertation has left some matters which require further

investigation, namely:

• In Section 4.4.3 we have shown that rCUDA internal paths seems to be limiting

the potential bandwidth gain of using multiple QPs.

• In Section 5.4 we have commented that the initialization overhead of the

mechanism devised for copying data between GPUs located in different server
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nodes, could be avoided if it were carried out during application start up. However,

as we have also pointed out, in this case some memory could be wasted.

It is also planned to implement a new communications module, based on the InfiniBand

one, for supporting RoCE (RDMA over Converged Ethernet) [126] in the rCUDA

framework. In addition, different optimizations are also planned to be explored at the

communications stage.

Apart from improving rCUDA at the communications level, the following research lines

are currently in progress:

• Virtual Machines: provide GPU acceleration to several virtual machines environ-

ments concurrently.

• GPU job migration: migrate applications that make use of GPUs.

• Deep Learning: support for deep learning frameworks accelerated by GPUs, such

as Caffe [127], TensorFlow [128] or Theano [129].

• Low power processors: analyze and study the performance in environments using

not only x86 processors, but also low power ones, such as ARM processors.

• Transatlantic remote GPUs: collaboration with the Agency for Science, Technol-

ogy and Research (A*STAR) [130] for using rCUDA over InfiniCortex [131], a

transatlantic InfiniBand link, to provide access to remote GPUs located in differ-

ent continents.

• Windows: rCUDA currently targets the Linux operating system. Extend support

to Windows platforms.

• Rendering: support for GPU rendering frameworks, such as Blender [132] or

OctaneRender [133].

• Numerical computing: support for GPU accelerated numerical computing envi-

ronments such as Matlab [134].
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Graphics 
Processing 
Units (GPUs) are 
being adopted in 
many computing 
facilities given their 
extraordinary computing 
power, which makes it 
possible to accelerate many 
general purpose applications 
from different domains. However, 
GPUs also present several side 
effects, such as increased acquisition 
costs as well as larger space 
requirements. They also require more 
powerful energy supplies. Furthermore, GPUs 
still consume some amount of energy while idle 
and their utilization is usually low for most 
workloads. In a similar way to virtual machines, the 
use of virtual GPUs may address the aforementioned 
concerns. In this regard, the remote GPU virtualization 
mechanism allows an application being executed in a node of 
the cluster to transparently use the GPUs installed at other nodes. 
Moreover, this technique allows to share the GPUs present in the 
computing facility among the applications being executed in the cluster. 
In this way, several applications being executed in different (or the same) 
cluster nodes can share one or more GPUs located in other nodes of the 
cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the 
negative impact of the side effects mentioned before. Reducing the total amount of 
GPUs installed in the cluster may also be possible.

In this dissertation we enhance one framework offering remote GPU virtualization capabilities, 
referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version 
of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, 
performance, and support for new GPU features, which prevented its use in production 
environments. These issues motivated this thesis, in which all the research is primarily 
conducted with the aim of turning rCUDA into a production-ready solution for eventually 
transferring it to industry.


