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Title: 

Expression of immune checkpoints genes in tumour samples from resectable NSCLC patients. Role 

as prognostic biomarkers. 

Summary: 

Lung cancer is the leading cause of cancer-related death worldwide, with a 5-year survival lower than 

5% in advanced stages of the disease. Non-Small Cell Lung Cancer (NSCLC) represents approximately 

80% of lung cancer cases. Despite the advances achieved in the last years, there is still an urgent 

need to develop new and more efficient therapeutic strategies in this type of cancer and a lack of 

knowledge concerning the tumour microenvironment. 

Although it is widely known that the immune system is capable of preventing cancer initiation and its 

progression, it is also known that one of the hallmarks of cancer is the evasion of the immune 

surveillance through different mechanisms, one of which is the inhibition of antitumour T cell 

response.  This research focuses on the fact that cancer cells induce inhibitory signals to evade the 

immune response.  

The expression of 8 genes involved in immune-regulation (PD-L1, PD-L2, IDO-1, IDO-2, ICOS-LG, CD5, 

CD6 and CD200) was analysed by RTqPCR in 201 paired fresh frozen tumour and normal tissue 

samples of resected NSCLC. Relative expression was calculated by Pfaffl formulae using ACTB, 

CDKN1B and GUSB as endogenous controls. Non-parametric tests were used for correlations 

between clinico-pathological and analytical variables and survival was assessed by Cox regression 

analysis. For those statistically significant analysis, Kaplan-Meier curves (log-rank test), were 

represented, considering significant p<0.05.  

Patients with higher expression of CD5 and IDO-2 had a significant increase in overall survival (OS, 

53.3 months vs NR, p=0.011 and 51.9 months vs NR; p=0.050, respectively). Regarding the analysis 

performed in the adenocarcinoma (ADC) subgroup, it was observed a tendency of longer OS and 

relapse-free survival (RFS) in those patients with high expression levels of PD-L1, IDO-1 and IDO-2. A 

score including three genes: PD-L1, IDO-1 and IDO-2 was generated (PDIDO score). Patients with high 

expression levels of the PDIDO score show better RFS (17.9 months vs NR; p=0.001) and OS (29.8 vs 

NR months; p=0.0002). Multivariate analysis established that PDIDO score was an independent 

prognostic factor for RFS [HR, 0.274; 95%CI, 0.126-0.593; p=0.001] and OS [HR=0,267; 95% CI, 0.113-

0.630; p=0.003]. 

Altogether, the study of the immune profile in resected NSCLC has allowed the establishment of 

PDIDO score as an independent biomarker for RFS and OS in the ADC group of patients. Moreover, 

CD5 would be a feasible prognostic biomarker for OS regardless of histology in resectable NSCLC. 
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Título:  

Expresión de genes de inmuno checkpoints en muestras tumorales de pacientes con cáncer de 

pulmón no microcítico en estadios resecables. Posible rol como biomarcadores pronósticos. 

Resumen: 

El cáncer de pulmón es la principal causa de muerte debida a cáncer a nivel mundial, con una 

supervivencia a los 5 años menor del 5% en estadios avanzados de la enfermedad. El cáncer de 

pulmón no microcítico representa aproximadamente un 80% de los casos de cáncer de pulmón. A 

pesar de los avances logrados en los últimos años, hay una gran necesidad de desarrollo de nuevas 

estrategias terapéuticas más eficientes contra este tipo de cáncer y una falta de comprensión del 

microambiente tumoral. 

Por un lado, se sabe que el sistema inmune es capaz de evitar el cáncer, así como su progresión, pero 

también se sabe que una de las características distintivas del cáncer es la capacidad de evadir la 

vigilancia inmunológica a través de distintos mecanismos, siendo uno de ellos la inhibición de la 

respuesta antitumoral mediada por las células T. Este trabajo se basa en el hecho de que las células 

tumorales inducen señales inhibitorias que les permiten evadir la respuesta inmune.  

Se analizó la expresión de 8 genes relacionados con la inmunoregulación (PD-L1, PD-L2, IDO-1, IDO-2, 

ICOS-LG, CD5, CD6 y CD200) mediante RTqPCR en 201 muestras pares de tejido tumoral fresco 

congelado y del correspondiente tejido normal. Se calculó la expresión génica relativa mediante la 

fórmula de Pfaffl utilizando ACTB, CDKN1B y GUSB como controles endógenos. Con el fin de 

establecer correlaciones entre las variables analíticas y clinicopatológicas, se realizaron tests no 

paramétricos. Se analizó la supervivencia por análisis de regresión de Cox, y se representaron las 

curvas Kaplan-Meier (test log-rank) de aquellos análisis estadísticamente significativos (p<0.05). 

Aquellos pacientes con altos niveles de CD5 e IDO-2 presentaron mayor supervivencia global (SG, 

53.3 meses vs NA, p=0.011 y 51.9 meses vs NA; p=0.050, respectivamente). En cuanto al análisis 

realizado en el subgrupo de adenocarcinoma (ADC), se observó una tendencia de mayor 

supervivencia libre de recaída (SLR) y SG en aquellos pacientes con altos niveles de expresión de PD-

L1, IDO-1 e IDO-2. Se generó una firma génica (firma PDIDO) basada en  la expresión de los genes PD-

L1, IDO-1 e IDO-2. Los pacientes con altos niveles de expresión de la firma  tuvieron mayor SLR 

(17.867 vs NA meses; p=0.001) y SG (29.83 vs NA meses; p=0.0002).  El análisis multivariante 

estableció la firma PDIDO como factor pronóstico independiente para SLR [HR, 0.274; 95%CI, 0.126-

0.593; p=0.001] y SG [HR, 0.267; 95% CI, 0.113-0.630; p=0.003]. 

Por tanto, el estudio del perfil inmunológico en muestras resecadas de CPNM ha permitido 

establecer la firma PDIDO como biomarcador independiente de SLR y SG en el grupo de pacientes 

con ADC. Además, CD5 podría establecerse como biomarcador pronóstico de SG 

independientemente del tipo histológico en estadios tempranos de CPNM. 

Palabras clave: Cáncer de pulmón no microcítico, PCR cuantitativa a tiempo real, Expresión génica 

relativa, inmunoregulación. 
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Títol: 

Expressió de gens d’immuno checkpoints en mostres tumorals de pacients amb càncer de pulmó no 

microcític en estadis ressecables. Possible rol com a biomarcadors pronòstics. 

RESUM 

El càncer de pulmó es la principal causa de mort deguda al càncer a nivell mundial, amb una 

supervivència als 5 anys menor al 5% en estadis avançats. El càncer de pulmó no microcític 

representa aproximadament un 80% dels casos de càncer de pulmó. Malgrat els avanços obtinguts 

en els últims anys, hi ha una gran necessitat de desenvolupament de noves estratègies terapèutiques 

més eficients contra aquest tipus de càncer i la falta de coneixement del microambient tumoral. 

D’una banda, és conegut que el sistema immunològic es capaç d’evitar el càncer i la seua progressió 

però també es sap que una de les característiques distintives del càncer es la capacitat d’evadir la 

vigilància immunològica mitjançant diversos mecanismes, com la inhibició de la resposta antitumoral 

depenent de cèl·lules T. Aquest treball es basa en el fet de que les cèl·lules tumorals indueïxen 

senyals inhibitòries que els permeten evadir la resposta immune. 

Es va analitzar l’expressió de 8 gens relacionats amb la immunoregulació (PD-L1, PD-L2, IDO-1, IDO-2, 

ICOS-LG, CD5, CD6 i CD200) mitjançant RTqPCR en 201 mostres parelles de teixit tumoral fresc 

congelat i del corresponent teixit normal. Es va calcular l’expressió gènica relativa mitjançant la 

fórmula de Pfaffl utilitzant ACTB, CDKN1B i GUSB com controls endògens. Es van realitzar tests no 

paramètrics amb la fi d’establir correlacions entre les variables analítiques i clinicopatològiques. La 

supervivència es va analitzar amb anàlisis de regressió de Cox i en aquells casos en què els resultats 

foren significatius (p<0.05), es van representar les corbes Kaplan-Meier (test log-rank). 

Aquells pacients amb alts nivells de CD5 e IDO-2 presentaren major supervivència global (SG, 53.3 

mesos vs. NA, p=0.011 i 51.9 mesos vs. NA; p=0.050, respectivament). En l’anàlisi realitzat en el 

subgrup d’adenocarcinoma, es va observar una tendència de major supervivència lliure de recaiguda 

(SLR) i SG en aquells pacients amb alts nivells d’expressió de PD-L1, IDO-1 e IDO-2. Es va generar una 

firma genètica (PDIDO) basada en l’expressió dels gens PD-L1, IDO-1 e IDO-2. Els pacients amb alts 

nivells d’expressió de la firma presentaren major SLR (17.867 mesos vs. NA; p=0.001) i SG (29.83 

mesos vs. NA; p=0.0002). L’anàlisi multivariant va establir la firma PDIDO com un factor pronòstic 

independent de SLR [HR, 0.274; 95%CI, 0.126-0.593; p=0.001] i SG [HR, 0.267; 95%CI, 0.113-0.630; 

p=0.003). 

Per tant, l’estudi del perfil immunològic en mostres ressecades de CPNM ha permés establir la firma 

PDIDO com biomarcador independent de SLR i SG en el grup de pacients amb ADC. A més, CD5 

podria establir-se com a biomarcador pronòstic de SG independentment del tipus histològic en 

estadis inicials de CPNM. 

Paraules clau: Càncer de pulmó no microcític, PCR quantitativa a temps real, expressió gènica 

relativa, immunoregulació.  

Autor/a: Andrea Moreno Manuel 

Lloc i data: Valencia, juny de 2017 

Tutor/a acadèmic: Eloisa Jantus Lewintre 

Tutor/a institució: Silvia Calabuig Fariñas 

Tipus de llicència: Creative Commons 



AGRADECIMIENTOS 

En primer lugar, quería agradecer a la Dra. Eloisa Jantus y al Dr. Carlos Camps haberme dado la 

oportunidad de realizar este trabajo y enseñarme la importancia de la investigación traslacional. A 

mis tutoras, gracias por la confianza depositada en mí. 

Gracias a todos mis compañeros del laboratorio, por haberme acogido en esta gran familia, por 

haberme enseñado, ayudado y animado cuando no me salían las cosas. Aunque no podría 

agradecerles todo en una página, quería destacar: 

A la Dra. Eloisa Jantus, por ser un ejemplo a seguir, agradecer las enseñanzas recibidas y admirar su 

sabiduría y la capacidad de solucionar todos los problemas. 

A la Dra. Silvia Calabuig, por su disponibilidad, por haber resuelto mis dudas y por haberme pegado 

un estufit cuando lo he necesitado. 

A Sandra y a Alejandro, miles de gracias por estar disponibles para que les pregunte absolutamente 

todo, por enseñarme a hacer PCRs y estadística, por solucionar mis errores, y por las charlas a última 

hora de la tarde. Especialmente a Alejandro, gracias por ser mi hermano mayor en el laboratorio.  

A Marais, por enseñarme a mantener buenas costumbres en el laboratorio, y la importancia de tener 

todo ordenado. 

A Eva, por haberme transmitido su pasión por las células y haberme demostrado que el microscopio 

puede enseñarnos cosas impresionantes. 

A Susanita, mi compañera de escritura, por las tan necesarias conversaciones sobre la vida, los genes,  

las referencias y los formatos de Word. 

A Franklin y Héctor, por hacer más divertidos los ratos juntos, con sus bromas y canciones. 

Al Dr. Cristóbal Aguilar, por sus consejos y por preocuparse por mí.  

 

Gracias a mis amigos, por ayudarme a desconectar en momentos de estrés. En primer lugar, a mis 

amigos de la universidad, por haber hecho inolvidables estos cuatro años. En especial a Pepe, mi 

mejor amigo, mi nuevo hermano, no sólo por su ayuda, sino por su amistad incondicional. A Ángela, 

porque habernos ayudado mutuamente ha hecho la carrera más amena. También a Paula, Sofía, 

Yaiza y María. Estoy segura de que aunque tomemos caminos diferentes, seguiremos unidos, ya que 

las amistades que empiezan en la universidad son para toda la vida. Gracias a Paloma, por estar ahí 

para lo bueno y para lo malo. Gracias a Pablo, por aguantarme, consentirme y ayudarme todo lo que 

ha hecho falta y más. 

 

Por último, gracias a mi familia, porque sin vosotros no sería quien soy. A mi madre, por ser mi 

ejemplo a seguir, hacerme fuerte y enseñarme a seguir adelante y conseguir todo lo que me 

proponga. A mi hermano, por ser mi apoyo incondicional, y porque a veces eres tú mi ejemplo a 

seguir. A los dos, gracias por cuidarme y consentirme siempre que lo necesito. A Lupe, por su amor 

incondicional, por alegrarme todos los días. A ti, por enseñarme a luchar contra las adversidades, 

gracias por estar siempre ahí para darme fuerza en los momentos de debilidad. 



I 

 

INDEX 

1. INTRODUCTION ................................................................................................................................... 1 

1.1. THE CONCEPT OF CANCER ........................................................................................................... 1 

1.2. LUNG CANCER.............................................................................................................................. 1 

1.2.1. Epidemiology .......................................................................................................................... 1 

1.2.2. Risk Factors ............................................................................................................................. 2 

1.2.3. Diagnosis and prognosis ......................................................................................................... 2 

1.2.4. Pathology and classification ................................................................................................... 2 

1.2.5. Treatment ............................................................................................................................... 3 

1.3. IMMUNE SYSTEM AND CANCER .................................................................................................. 3 

1.3.1. Tumour microenvironment .................................................................................................... 5 

1.3.2. Immune-system related biomarkers in lung cancer .............................................................. 6 

1.3.2.1. Immune checkpoint molecules ......................................................................................... 6 

1.3.2.1.1. PD-L1 and PD-L2 ........................................................................................................... 6 

1.3.2.1.2. CD200 ........................................................................................................................... 7 

1.3.2.1.3. ICOS-LG ......................................................................................................................... 7 

1.3.2.2. Immunosuppresive factors ............................................................................................... 7 

1.3.2.2.1. IDO-1 and IDO-2 ........................................................................................................... 8 

1.3.2.3. T lymphocyte receptors .................................................................................................... 9 

1.3.2.3.1. CD5 and CD6 ................................................................................................................ 9 

2. OBJECTIVES ....................................................................................................................................... 11 

3. MATERIALS AND METHODS ............................................................................................................. 12 

3.1. PATIENT COHORT AND SAMPLE COLLECTION ...........................................................................12 

3.2. RNA ISOLATION .........................................................................................................................12 

3.3. REVERSE TRANSCRIPTION..........................................................................................................12 

3.4. QUANTITATIVE REAL TIME PCR (RTqPCR) .................................................................................13 

3.4.1. Gene expression relative quantification ..............................................................................14 

3.5. DATA ANALYSIS ..........................................................................................................................15 

4. RESULTS AND DISCUSSION ............................................................................................................... 17 

4.1. COHORT DESCRIPTIVE ANALYSIS ...............................................................................................17 

4.2. GENE EXPRESSION ANALYSIS .....................................................................................................17 

4.2.1. Rna quality assessment ........................................................................................................17 

4.2.2. Efficiencies and linearity .......................................................................................................17 

4.2.3. Relative gene expression quantification ..............................................................................18 



II 

 

4.2.4. Gene correlation analysis .....................................................................................................19 

4.2.5. Gene expression correlation with clinico-pathological variables ........................................19 

4.2.6. Immune-related gene expression patterns association with survival analysis ....................21 

4.2.6.1. Clinico-pathological variables..........................................................................................21 

4.2.6.2. Immune-related biomarkers ...........................................................................................24 

4.2.6.3. Subanalysis according to histology .................................................................................25 

4.2.7. Expression score analysis ........................................................................................................27 

4.2.8. Multivariate Cox analysis ........................................................................................................29 

5. CONCLUSSIONS ................................................................................................................................ 31 

6. REFERENCES ..................................................................................................................................... 32 

7. APPENDICES ..................................................................................................................................... 41 

APPENDIX I. SUPPLEMENTARY TABLES ........................................................................................41 

APPENDIX II. COMMUNICATIONS DERIVED FROM THIS STUDY ..................................................44 

 
 

 

 

 

 

 

  



III 

 

FIGURE INDEX 

Figure 1. The ten hallmarks of cancer. .................................................................................................... 1 

Figure 2. Representation of somatic mutations accumulated in different types of cancer ................... 3 

Figure 3. The cancer-immunity cycle....................................................................................................... 4 

Figure 4. Cancer cells and its microenvironment .................................................................................... 5 

Figure 5. Role of immune system during oncogenesis ............................................................................ 5 

Figure 6. Antigens expressed on the cell surface of tumour cells or APC and their corresponding 

receptors or ligands on the surface of T cells or NK cells ........................................................................ 6 

Figure 7. IDO enzyme and kynurenine in cancer cells. ............................................................................ 8 

Figure 8. Immune synapse representation involving CD5 and CD6 ........................................................ 9 

Figure 9. TaqMan® qPCR reaction steps ............................................................................................... 13 

Figure 10. Relative mRNA expression levels of the 8 genes analysed. ................................................. 18 

Figure 11.  Representation of correlation between clinico-pathological variables and gene expression 

markers .................................................................................................................................................. 21 

Figure 12. Kaplan-Meier curves for clinico-pathological variables significantly associated to RFS: ..... 23 

Figure 13. Kaplan-Meier curves for clinico-pathological variables significantly associated to OS........ 23 

Figure 14. Kaplan-Meier curves for immunoregulatory genes expression in the entire cohort……….. 24 

Figure 15. Kaplan-Meier curves for IDO-2 expression associated to OS and RFS in ADC subgroup ..... 27 

Figure 16. Kaplan-Meier curves of PDIDO score for OS and RFS in ADCs. ............................................ 28 

 

 

  

file:///C:/Users/anjov/Desktop/TFG%20-%20Andrea%20Moreno%20-%20Definitivo.docx%23_Toc485338974


IV 

 

TABLE INDEX 

Table 1. Temperature program of RT-qPCR. ......................................................................................... 13 

Table 2. Genes analysed in this study and their Taqman® assays used for RTqPCR. ............................ 14 

Table 3.  Efficiencies for the Taqman® assays used in this study. ......................................................... 17 

Table 4. Gene expression data of the analysed genes. ......................................................................... 18 

Table 5. Relative gene expression differences depending on clinico-pathological variables. .............. 20 

Table 6. Entire cohort: Results from univariate survival analysis based on clinico-pathological 

variables. ............................................................................................................................................... 22 

Table 7. Entire cohort: Univariate survival analysis based on immunoregulatory genes expression. .. 24 

Table 8. ADC subgroup: Results from univariate survival analysis based on clinico-pathological 

variables. ............................................................................................................................................... 26 

Table 9. Survival univariate analysis based on target genes expression in ADC subgroup. .................. 26 

Table 10. Univariate analysis of the expression of the target genes for OS in the entire cohort. ........ 27 

Table 11. Univariate analysis of the expression of the immunoregulatory genes for OS in ADC 

subgroup................................................................................................................................................ 28 

Table 12. Multivariate Cox regression analysis with the selected genes for the score calculation. ..... 28 

Table 13. Multivariate Cox regession analysis for RFS and OS in the entire cohort. ............................ 29 

Table 14. Multivariate Cox regression analysis for RFS and OS in the ADC subgroup. ......................... 30 

Supplementary table 1. TNM7 classification and staging ..................................................................... 41 

Supplementary Table 2. Patient characteristics description. ................................................................ 42 

Supplementary Table 3. Gene correlation analysis results. .................................................................. 43 

  



V 

 

ABBREVIATIONS 

ACTB: Actin beta 

ADC: Adenocarcinoma 

ALCAM: Activated leukocyte cell adhesion molecule 

ALK: Anaplastic Lymphoma Receptor Tyrosine Kinase 

APC: Antigen presenting cell 

CAF: Cancer-associated fibroblasts 

CD166: Cluster of differentiation 166 

CD200: Cluster of differentiation 200 

CD273: Cluster of differentiation 273 

CD274: Cluster of differentiation 274 

CD275: Cluster of differentiation275 

CD279: Cluster of differentiation 279 

CD28:  Cluster of differentiation 28 

CD4: Cluster of differentiation 4 

CD40: Cluster of differentiation 40 

CD40L: Cluster of differentiation 40 ligand 

CD5: Cluster of differentiation 5 

CD6: Cluster of differentiation 6 

CD72: Cluster of differentiation 72 

CD8: Cluster of differentiation 8 

CD80: Cluster of differentiation 80 

CD86: Cluster of differentiation 86 

CDKN1B: Cyclin-dependent kinase inhibitor 

cDNA: complementary DNA 

CI: Confidence interval 

Cp: Crossing point 

Cq: Quantitative cycle 

CTL: Cytotoxic T lymphocytes 

CTLA-4: Cytotoxic T-lymphocyte-associated protein 4 

DC: Dendritic cells 

DNA: Deoxyribonucleic acid 

dNTPs: Deoxynucleotides 

E: Efficiency 

EGFR: Epidermal growth factor 

GUSB: Glucuronidase beta 

HER2: Human Epidermal receptor growth factor 2 

ICOS: Inducible co-stimulator 

ICOS-LG: Inducible co-stimulator ligand 

IDO: Indoleamine 2,3-dioxygenase 

IFN: Interferon  

IL1: Interleukin 1 

IL10: Interleukin 10 

IL2: Interleukin 2 



VI 

 

LAG-3: Lymphocyte activation gene 3 

LCC: Large cell carcinoma 

LN: Lymph nodes 

MDSC: Myeloid-derived suppressor cell 

MHC: Major histocompatibility complex 

NA: Not available 

NF: Nuclease-free 

NFQ: Non-Fluorescent Quencher 

NGS: Next generation sequencing 

NK: Naturall killer 

NR: Not reached 

NS: Not specified 

NSCLC: Non-small cell lung cancer 

OS: Overall survival 

PD-1: Programmed cell death 1 

PD-L1: Programmed cell death 1 ligand 

PD-L2: Programmed cell death 2 ligand 

PS: Performance status 

RECIST: Response evaluation criteria for solid tumours 

RFS: Relapse free survival 

RNA: Ribonucleic acid 

RTqPCR: Quantitative real-time polymerase chain reaction 

SCC: Squamous cell carcinoma 

UNG: Uracil-DNA N-glycosylase 

TAM: Tumour-associated macrophages 

Th: Helper T cells 

TCR: T cell receptor 

TIL: Tumour-infiltrating lymphocyte 

TIM-3: T cell immunoglobulin and mucin domain 

TNF: Tumour necrosis factor 

TNM: Tumour/Nodules/Metastasis 

Treg: Regulatory T cells 

TTR: time to relapse 

WT: Wild type 

 

  



    Introduction 

 

 

1 

 

1. INTRODUCTION 

1.1. THE CONCEPT OF CANCER 

Cancer is a group of pathologies that can affect almost any part of the body, classified in 

more than 100 different types depending on the affected organ, each type divided as well into 

different subtypes of tumours (National Cancer Institute; NCI, 2017). 

Cancer is a disease involving dynamic changes in the genome (Ye et al., 2007) and in the 

microenvironment (Quail and Joyce, 2013); characterised by abnormal cells dividing without control, 

which can acquire the ability of invasion and as a consequence, metastasize different tissues 

(Weinberg, 2007).  

In 2000, Hanahan and Weinberg defined six essential characteristics of cancer cells: self-

sufficiency in growth signals, evasion to antigrowth signals, limitless of replicative potential, 

apoptosis evasion, sustained angiogenesis and tissue invasion and metastasis (Hanahan et al., 2000). 

In 2011, the same authors stated that the existence of tumours relies as well on normal cells 

recruited conforming the tumour microenvironment and added four new hallmarks: cellular 

energetics deregulation, genome instability and mutation, immune destruction evasion, tumour-

promoting inflammation (Figure 1) (Hanahan and Weinberg, 2011).  

 

Figure 1. The ten hallmarks of cancer.  (Hanahan and Weinberg, 2011). 

Therefore, tumours are complex masses which have lost the normal structure and function of 

the tissue, composed not only by cancer cells but also by recruited cells that enhance the previously 

mentioned characteristics. 

1.2. LUNG CANCER 

1.2.1. Epidemiology 

Nowadays the incidence of cancer in Spain is around 250.000 new cases every year, being 

28.347 the number of new lung cancer cases diagnosed. In addition, cancer is the second cause of 

death in Spain, being lung cancer responsible of the largest number of deaths related to cancer in 
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Spain, causing a total of 21.220 deaths in 2014, and one and a half million deaths worldwide 

(National Statistics Institute; INE, 2016 and Spanish Lung Cancer Group; SEOM, 2017). 

The incidence of cancer keeps increasing both in number of cases and deaths (Fitzmaurice et 

al., 2017), as well as female lung cancer incidence and mortality rates as a consequence of the 

smoking patterns acquired (Hashim et al., 2016; Malvezzi et al., 2017). 

1.2.2. Risk Factors 

There is a lot of scientific evidence supporting the fact that smoking is responsible of 

approximately 80% of lung cancer cases worldwide (Agudo et al., 2012). In addition, there are other 

factors associated with increased risk of lung cancer, such as outdoor air pollution and dietary habits 

(Tanvetyanon and Bepler, 2008; Bagnardi et al., 2010). Furthermore, approximately a 15% of lung 

cancer in the UK have been linked to occupational exposures due to asbestos, silica, radon, diesel 

engine exhausts and mineral oils among others (Parkin, 2011). Nevertheless, as the effect of these 

factors in non-smoker population remains unknown, more research should be done in order 

determine the genetic effect on lung cancer incidence, thus understanding its epidemiology  

(Wakelee et al., 2007). 

1.2.3. Diagnosis and prognosis 

At present, the diagnosis of lung cancer is primarily based on symptoms (e.g., cough, chest 

pain, hemoptysis, shortness of breath, weakness), and detection often occurs at advanced stages of 

disease when curative intervention (e.g., surgery) is no longer possible (Jantus-Lewintre et al., 2012). 

Diagnosis is based on imaging techniques and a confirmatory biopsy, in order to obtain tissue 

samples for  pathological analysis (Gridelli et al., 2015). 

Prior to prognosis and treatment determination, accurate staging is needed (Gridelli et al., 

2015). Nowadays it is followed the 7th edition of the TNM classification (Supplementary Table 1, 

Appendix I), based on the size and degree of locoregional invasion by the primary tumour (T), the 

extent of regional lymph node involvement (N) and the presence or absence of intrathoracic or 

distant metastases (M) (Shepherd et al., 2007; Mirsadraee et al., 2012). 

1.2.4. Pathology and classification 

Lung cancer is generally originated in bronchial epithelium and characterised by a slow 

growth rate. Non-small cell lung cancer (NSCLC) major histological subtypes are adenocarcinoma 

(ADC) and squamous cell carcinoma (SCC), representing 50 and 40% of the cases, respectively.  

Among other histological subtypes, the most important is known as large cell carcinoma (Chen et al., 

2014).  

From the genomic point of view, lung cancer is one of the most mutated solid tumours, 

accumulating  a mean of 200 mutations per tumour (Figure 2) (Alexandrov et al., 2013).  

Interestingly, tumours from smokers accumulate ten times more mutations than tumours from 

never-smokers (Gridelli et al., 2015). 
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Figure 2. Representation of somatic mutations accumulated in different types of cancer 

(Alexandrov et al., 2013). 

Nowadays it is known that there are driver oncogene mutations that lead to different types 

of oncogenic transformations. This has enhanced the molecular classification of NSCLC, based on 

activating mutations on the tyrosine kinase known as Epidermal Growth Factor (EGFR), as well as 

anaplastic lymphoma kinase (ALK) gene rearrangements. KRAS, BRAF and ROS mutations are also 

frequently analysed as well as HER2 amplifications (Gridelli et al., 2015). 

1.2.5. Treatment 

The treatment options for NSCLC are based mainly on the stage of the cancer, but other 

factors such as anatomopathological classification and performance status (PS) are also important. 

Surgery is the primary option for treating early-stage NSCLC. However, a proportion of lung cancer 

patients develop recurrence, even after curative resection (García-Campelo et al., 2015). 

In addition, most lung cancer patients are diagnosed in advanced stages of the disease, when 

surgery, chemotherapy or radiotherapy are not very effective.  In those cases, different types of 

chemotherapy are used depending not only on histology or patient’s PS, but also on its mutational 

status due to the availability of targeted therapies. Furthermore, a potential alternative is 

immunotherapy, which consists of treatments that stimulate the patients’ immune system in order 

to detect and attack cancer cells more efficiently (Novello et al., 2016; García-Campelo et al., 2015; 

Gridelli et al., 2015; Jiang and Zhou, 2015). 

1.3. IMMUNE SYSTEM AND CANCER  

The immune system plays an important role in the maintenance of the integrity of the 

organism; it is not only involved in protection against pathogens, but also in cancer prevention, 

development and defence. First, it can protect the host from virus-induced tumours by eliminating or 

suppressing viral infections. Second, it prevents the inflammatory environment that leads to 

tumourigenesis by eliminating pathogens and inflammation. Third, tumour cells present genetic and 

cellular alterations that allow their identification and destruction by means of tumour-specific 

antigens or molecules induced by cellular stress. This last function is called immunosurveillance 

(Vesely et al., 2011; Candeias and Gaipl, 2016). 
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There are two different types of immune responses, innate (non-specific immunity) and 

adaptive (specific immunity), which are interconnected by cytokines and antibodies production 

(Vesely et al., 2011). 

The innate immune system, which represents the first line of defence against foreign 

pathogens and transformed cells, is composed of macrophages, neutrophils, dendritic cells (DCs), 

mast cells, eosinophils, basophils, natural killer (NK) cells, and NK T cells (Bremnes et al., 2011; Vesely 

et al., 2011). 

The adaptive immune system comprises B and T cells that further promote activation of 

innate immunity and support the expansion and production of tumour-specific T cells and antibodies. 

There are two main T cell subtypes: cytotoxic T cells (CTL, CD8+) and T helper cells (Th,CD4+), which 

is formed by different subtypes, being Th1, Th2, and Th17 the most important (Bremnes et al., 2011; 

Vesely et al., 2011). These cells express antigen-specific receptors that allow a flexible and broad 

number of responses. 

In T-cell mediated responses, three main steps are required. First, antigen should be 

recognised by Major Histocompatibility Complex (MHC) by means of antigen presenting cells (APC) 

through CD3 T cell receptor (TCR). The second step consists of triggering activation signals by binding 

of B7 and CD28. The third step is cytokine secretion, which allows T cell proliferation. Afterwards, B7 

molecules bind to CTLA-4 stopping the immune response, in order to avoid excessive immune 

responses. An equilibrium between activating and inhibitory signals is required to maintain 

homeostasis and self-tolerance (Zang and Allison, 2007; Pardoll, 2012). 

The generation of cancer immunity is a cyclic process that is shown in Figure 3, divided in 

different steps:  in the first step, neo-antigens created by oncogenesis are released and captured by 

dendritic cells (DCs). In the second step, DCs present the captured antigens on MHCI and MHCII 

molecules to T cells, resulting in the activation of effector T cell responses against the cancer-specific 

antigens (step 3), which move to the tumour bed (step 4), and infiltrate it (step 5). The sixth step 

shows recognition of cancer cells by T cells through interaction between its T cell receptor (TCR) and 

its specific antigen bound to MHCI, leading to target cancer cell destruction (step 7) (Chen and 

Mellman, 2013). 

 

Figure 3. The cancer-immunity cycle  (Chen and Mellman, 2013). 
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The immune system plays an important role in the case of NSCLC, which is characterised by a 

considerable immune infiltration caused by the amount of alterations provoked by the carcinogens 

present in tobacco smoke (Vogelstein et al., 2013). 

1.3.1. Tumour microenvironment 

Cancer cells develop in a complex microenvironment, which is required for sustained growth, 

invasion and spread. Tumour microenvironment consists of diverse cell types such as cancer stem 

cells, pericytes, endothelial cells, cancer-associated fibroblasts (CAF), and immune cells that are 

attracted by tumour-cell-derived factors and embedded in an extracellular matrix (Figure 4). The 

regulatory factors are soluble mediators such as cytokines, chemokines and growth factors among 

others (Bremnes et al., 2011; Fridman et al., 2012; Becht et al., 2015).  

 

Figure 4. Cancer cells and its microenvironment (Jantus-Lewintre and Usó, 2015). 

Tumour microenvironment plays an important role avoiding immune surveillance, which 

consists of detection and destruction of nascent tumour cells. As it can be seen in Figure 5, at the 

beginning of oncogenesis, transformed cells are killed due to the recognition of neo-antigens by 

immune cells, but as tumours are comprised of different immunogenic clones, there are some 

tumour cells that present immune evasion or suppression strategies and scape the immune system; 

hence, these clones will remain alive and allow tumour development. This selection process is known 

as immunoedition (Prendergast, 2008).  

 

Figure 5. Role of immune system during oncogenesis  (Yarchoan et al., 2017). 
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This has demonstrated that cancer cells can not only avoid immunosurveillance, but also 

exploit native immune mechanisms to their own benefit ensuring cancer initiation, promotion and 

progression (Vesely et al., 2011). 

Therefore, tumour microenvironment can be associated with patient prognosis, and 

depending on its composition it can be a therapeutic target, although it often depends on  the tissue 

context and cellular stimuli (Bremnes et al., 2011). 

1.3.2. Immune-system related biomarkers in lung cancer 

Immune evasion is also achieved by regulation of the tumour-infiltrating immune cells. This 

can be mediated by soluble factors such as cytokines, prostaglandins, polyamines or enzymes, 

released by tumour cells, stromal cells or infiltrating myeloid cells. Another strategy consists of the 

increased expression of shed antigens or inhibitory molecules by tumour or dysfunctional immune 

cells of the tumour microenvironment, which leads to deregulation of T cell activity (Moss et al., 

2006; Fauci et al., 2012). The expression of these molecules is frequently used as cancer biomarkers 

and also as therapeutic targets. 

1.3.2.1. Immune checkpoint molecules 

The most frequent strategy followed by tumours to escape from the immune system consists 

of altering the immune checkpoints, which are control points in charge of regulating specific immune 

response. Some molecules that act as immune checkpoints are CTLA-4, PD-1, TCR, LAG-3, TIM-3, 

among others. It has to be remarked that B7 family molecules play a key role in checkpoint 

regulation in cancer (Figure 6) (Pardoll, 2012; Ceeraz and Nowak, 2014; Topalian et al., 2016). 

 

Figure 6. Antigens expressed on the cell surface of tumour cells or APC and their corresponding 

receptors or ligands on the surface of T cells or NK cells. B7 family members are shown in yellow.  
APC: Antigen presenting cell; MHC: Major Histocompatibility Complex; NK: Natural killer cell; TCR: T cell 
receptor (Greaves and Gribben, 2013). 

1.3.2.1.1. PD-L1 and PD-L2 

The two ligands for Programmed-cell death receptor 1 (PD-1, also known as CD279) are PD-

L1 (also known as B7-H1 and CD274) and PD-L2 (also known as B7-DC and CD273), being cell-surface 

glycoproteins from B7 family. They are co-inhibitory molecules (Figure 7), thus they limit T cell 
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proliferation and cytokine secretion activity when bound to its receptor (PD-1), which is expressed on 

activated T cells or B cells. Therefore, they regulate peripheral CD4 and CD8 T cell tolerance, 

preventing autoimmunity and maintaining T cell homeostasis  (Freeman et al., 2000; Francisco et al., 

2009; Obeid et al., 2016). 

PD ligands and PD-1 supress anti-tumour immunity and promote tumour progression by 

inactivating T cells, and activating tumour-suppressive cell populations. It has been demonstrated 

that some tumours use this pathway to obtain immune resistance. PD-L1 and PD-L2 are expressed by 

tumour cells, tumour infiltrating immune cells and also tumour-associated fibroblasts (Nazareth et 

al., 2007; Lesterhuis et al., 2011; Obeid et al., 2016). Nevertheless, their expression depends on 

different stimuli, and it has been stated that they could have different functions in type 1 and type 2 

responses regulations, as Th1 cells enhance PD-L1 expression whilst Th2 cells up-regulate PD-L2 

(Loke and Allison, 2003; Ghiotto et al., 2010). 

1.3.2.1.2. CD200 

Cluster of Differentiation 200 (CD200, also known as OX-2) is a membrane glycoprotein that 

suppresses immune activity. CD200 is consistently expressed on thymocytes, T and B lymphocytes, 

neurons and endothelial cells. It is related to the B7 family of co-inhibitory receptors (Figure 7) and 

interacts with CD200R triggering a signal to supress T-cell mediated immune responses, concretely by 

modulating macrophage or dendritic cell activity and inducing regulatory T cells. CD200R is expressed 

mostly by myeloid cells on macrophages and monocytes and some T cells (Moreaux et al., 2008; 

Snelgrove et al., 2008). As it has an immunosuppressive role, its overexpression could enhance 

immune scape (Kawasaki et al., 2007). Nevertheless, it plays a bidirectional role in cancer, by exerting 

not only immunosuppressive but also anti-inflammatory effects (Erin et al., 2015).  

1.3.2.1.3. ICOS-LG 

Inducible T-cell co-stimulator ligand (ICOS-LG, also known as CD275, B7-H2, B7RP-1, LICOS 

and GL5) is a B7 homolog protein. ICOS-LG is constitutively expressed on B cells, dendritic cells and 

macrophages and can be induced in non-hematopoietic cells, whilst its receptor is ICOS (CD274), 

expressed on activated T cells and resting memory T cells. ICOS-LG is upregulated on activated T cells 

and acts as a co-stimulatory signal for T-cell proliferation and cytokine secretion (Figure 7); it also 

induces B-cell proliferation and differentiation. Their interaction plays an important role in mediating 

local tissue responses to inflammatory conditions, as well as in modulating the secondary immune 

response by co-stimulating memory T-cell function. ICOS-LG can also bind CD28 and CTLA-4 

(Yoshinaga et al., 1999; Paulos et al., 2010; Yao et al., 2011). 

Regarding tumour expression of ICOS-LG, it has been described that it is mainly expressed on 

tumour-associated macrophages and tumour cells. It can increase T cell-mediated tumour immunity 

by co-stimulating Tregs (Martin-Orozco et al., 2010; Zhang et al., 2016). 

1.3.2.2. Immunosuppresive factors 

Some tumours present alterations in their metabolism which lead to an accumulation of 

immune-inhibitory molecules. This is supported by the fact that T cells are sensitive to low 

tryptophan levels, which leads to proliferative arrest. In addition, as a consequence of essential 
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nutrient depletion, immune-suppressive metabolites are accumulated (Munn et al., 2005; Pardoll, 

2012). 

1.3.2.2.1. IDO-1 and IDO-2 

IDO (indoleamine 2,3 dioxygenase) is an intracellular enzyme that degrades the essential 

amino acid tryptophan (Trp) along the kynurenine pathway. IDO comprises 2 isozymes (IDO-1 and 

IDO-2) and is expressed by both, tumour and infiltrating immune cells, such as eosinophils, 

granulocytes, dendritic cells and  macrophages (Astigiano et al., 2005; Metz et al., 2007; Löb et al., 

2009).  There are different opinions regarding IDO expression in tumours, while some authors state 

IDO is constitutively expressed on tumour cells (Uyttenhove et al., 2003), others state that IDO is not 

constitutively expressed in tumour cells, APCs, epithelial cells or fibroblasts, but it is induced by 

inflammatory stimulus, by means of soluble factors such as IFN-ɣ, TNF-α or IL-1 (Jurgens et al., 2009; 

Zhai et al., 2016). Tryptophan degradation is also triggered by CTLA-4-CD80/86 or CD40-CD40L 

ligation on activated T Cells (Grohmann et al., 2002).  

These enzymes inhibit immune responses through the local depletion of amino acids that are 

essential for anabolic functions in lymphocytes (particularly T cells) or through the synthesis of 

specific natural ligands for cytosolic receptors. As it can be seen in Figure 7, IDO is the limitant 

reactant of tryptophan catabolism (Löb et al., 2009; Zhai et al., 2015). Its activity causes a decrease in 

tryptophan availability and as a consequence an accumulation of kynurenines, active catabolites that 

that induce apoptosis in CD4+ T cells (Löb et al., 2009; Von Bubnoff et al., 2011).  

 

Figure 7. IDO enzyme and kynurenine in cancer cells. Indoleamine-2,3-dioxygenase (IDO)-induced 

tryptophan catabolism along the kynurenine pathway; TDO, tryptophan dioxyenase ; IDO indoleamine 2,3 

dioxygenase  (Löb et al., 2009).  

Regarding tumour activity, IDO enhances tumour immune scape as it has been established 

that secreted kynurenine binds effector T cell receptors, thus tumour-infiltrating lymphocytes are 

anergic and do not proliferate (Godin-Ethier et al., 2011).  
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1.3.2.3. T lymphocyte receptors 

1.3.2.3.1. CD5 and CD6 

CD5 and CD6 are closely related lymphocyte surface receptors of the scavenger receptor 

cysteine-rich superfamily, both expressed on the same lymphocyte populations (thymocytes, mature 

T cells and B cells) (Gimferrer et al., 2003). Cluster of differentiation 5 (CD5, also known as T1, Leu1, 

and Tp67) ligands are CD72 and CD5 itself (Biancone et al., 1996; Bikah et al., 1998). Cluster of 

differentiation 6 (CD6, also known as Tp120) ligand is ALCAM (also known as CD166), an adhesion 

molecule that belongs to the Ig superfamily (Gimferrer et al., 2003). Both, CD5 and CD6 are T cell 

receptor inhibitory molecules involved in anti-tumour immune responses, as they co-localize with the 

TCR/CD3 complex at the immune synapse (Figure 8). 

It has been discovered that CD5 down-regulation on cytotoxic T lymphocytes within the 

tumour microenvironment improves their cytotoxic activity as well as cytokine secretion (Tabbekh et 

al., 2013; Dirican et al., 2015).  

Although little is known about CD6, it also inhibits T cell activation and proliferation, by 
interfering with early cell-cell interactions needed for immune synapse maturation (Osorio et al., 
1998), and CD6/CD166 interaction mediates thymocyte-thymic epithelial cell adhesion (Gimferrer et 
al., 2004). 

 

Figure 8. Immune synapse representation involving CD5 and CD6 (Santos et al., 2016). 

By contrast, CD5-CD5L interaction during T cell-dependent immune responses co-stimulates 

T and B cell activation and proliferation in a pathway similar to CD28/CTLA-4-B7.1/B7.2 and CD40-

CD40L (Biancone et al., 1996; de Wit et al., 2011).  Furthermore, CD6 also acts as a co-stimulatory 

molecule synergizing with TCR to enhance T cell proliferation (Gimferrer et al., 2004). Thus, CD5 and 

CD6 have not only an inhibitory but also a co-stimulatory role. 

Tumour microenvironment can be associated with patient’s prognosis in cancer. As an 

example, a strong cytotoxic lymphocyte infiltration correlated with good prognosis in different 

tumour types, including lung cancer. By contrast, regulatory T cell infiltration is associated to a worse 
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prognosis as it induced anti-tumour effector T cells blockade or chronic inflammation disease 

(Bremnes et al., 2011; Fridman et al., 2012; Becht et al. 2015). 

Therefore, analysing the gene expression of PD-L1, PD-L2, CD200, CD5, CD6, ICOS-LG, IDO-1 

and IDO-2, could help to determine their potential role in tumour immune escape. The validation of 

these immunoregulatory genes as biomarkers in NSCLC would not only facilitate information about 

disease prognosis but also about potential therapeutic targets. 
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2. OBJECTIVES 

NSCLC is a heterogeneous and ethiopathologically complex disease. The knowledge of lung 

tumour microenvironment is leading to a better understanding of the evasion of immune 

surveillance and the development of new therapies, but in NSCLC remains largely unknown. The 

main objective of this Degree’s thesis is to analyse immunoregulatory gene expression that could 

provide relevant information as potential prognostic biomarkers in resectable NSCLC. 

To do so, the specific aims of this study are: 

1. To select a cohort of resectable NSCLC patients with paired normal/tumour samples and 

complete electronic medical records in order to analyse demographic and clinico-

pathological characteristics of this specific patient’s population. 

 

2. To analyse the relative gene expression levels of the immunoregulatory genes PD-L1, PD-L2, 

CD200, CD5, CD6, ICOS-LG, IDO-1 and IDO-2 by RTqPCR on tumour samples from resected 

NSCLC. 

 

3. To study correlations between expression levels of the analysed genes and some relevant 

clinico-pathological features. 

 

4. To evaluate the relative gene expression of the analysed genes alone or in combination as 

prognostic biomarkers for resectable NSCLC and in different histology subsets of patients. 
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3. MATERIALS AND METHODS 

3.1. PATIENT COHORT AND SAMPLE COLLECTION 

In this study 201 patients from Consorcio Hospital General Universitario de Valencia with 

NSCLC were included between 2004 and 2016. These patients had resected, non-pre-treated stage I 

to IIIA cancer according to the American Joint Committee on Cancer staging manual with a confirmed 

histological diagnosis of NSCLC. The study was conducted in accordance with the Declaration of 

Helsinki and the institutional ethical review board approved the protocol. All patients had signed the 

informed consent prior to the collection of their biological samples. 

Specimens collected consist of 201 fresh tissue samples obtained from surgical resection of 

patient’s tumour, after immediate separation of tumour and adjacent normal lung tissue by a 

pathologist. Tissue samples were preserved in RNAlater® (Applied Biosystems, USA) to prevent RNA 

degradation, and fresh-frozen at -80ºC until their analysis. 

3.2. RNA ISOLATION 

RNA and DNA were isolated from fresh-frozen tissue samples by using the TRIzol method (TRI 

Reagent®, Sigma, USA), following the manufacturer’s instructions. Briefly, a piece of 20-30mg of 

tissue was dissected and 1 mL of TriReagent® was added, and homogenized in a TissueLyser (Qiagen, 

Germany) by using tungsten beads. Chloroform was added to solubilize lipid content and after 

sequential centrifugations and incubations three phases could be distinguished: RNA, DNA and 

proteins. The aqueous phase containing the RNA was separated and subsequently precipitated with 

isopropanol and washed with ethanol. Afterwards, samples were re-suspended in Nuclease-free (NF) 

water (Qiagen, Germany) and treated with DNAse (Sigma, USA) to eliminate traces of genomic DNA. 

The DNA interphase was recollected in absolute ethanol and was washed first with buffer 

(10% ethanol/0.1M sodium citrate) and then with 75% ethanol. It was re-dissolved in NF water and 

stored at -80ºC until further analysis. 

RNA quantification was performed using a nano-spectrophotometer (Nano Drop 2000C, 

Thermo Fisher Scientific, USA), and its quality was also assessed by considering the absorbance ratios 

260/280 and 260/230. Samples with suboptimal concentration (<76ng/µl) or quality were excluded 

from the study. Samples were stored at -80ºC until further analysis. 

3.3. REVERSE TRANSCRIPTION 

The RNA samples were retrotranscribed using the High Capacity cDNA Reverse Transcription 

(RT) Kit® (Applied Biosystems, USA). The reactions contained 2 µl of RT buffer, 0.8 µl of dNTPs, 2 µl of 

random RT primers, 1 µl of RNAse inhibitor, 1 µl of MultiScribe Reverse Transcriptase®, varying 

sample volumes to obtain a final RNA concentration of 1000ng, and NF water (Qiagen, Germany) up 

to a final volume of 20µl. The reaction took place in a MasterCycler® thermocycler (Eppendorf, 

Germany), and the cycling program consisted of of a pre-incubation (10 minutes at 25ºC) to activate 

the enzyme, the retrotranscription of RNA to cDNA (2 hours at 37ºC) and a final step to denature the 
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enzyme (5 minutes at 85ºC). Resulting cDNA was diluted in NF water to a final concentration of 

250ng/µl and stored at -20ºC until further analyses. 

3.4. QUANTITATIVE REAL TIME PCR (RTqPCR) 

Gene expression of the cDNA previously obtained was analysed by RTqPCR using a cocktail of 

primers and hydrolysis probes (TaqMan®, Applied Biosystems, USA), designed to bind inter-exon 

regions of target genes and therefore preventing genomic DNA amplification. The structure of the 

hydrolysis probes includes a reporter dye linked to the 5’ end and a non-fluorescent quencher (NFQ) 

at the 3’ end as well as a Minor Groove Binder (MGB) attached to the NFQ in order to increase the 

melting temperature (Tm) without increasing the length of the probe (Figure 9) (VanGuilder et al., 

2008). 

 

Figure 9. TaqMan® qPCR reaction steps (Figure from Life Technologies). 

Each reaction was performed in a 384-Well Plate with a final volume of 5µl comprising: 2.5 µl 

of TaqMan® Gene Expression Master Mix (Applied Biosystems), 1.25 µl of NF water, 0.25 µl of 

TaqMan® Gene Expression Assay mix (Applied Biosystems)(Table 2) and 1 µl of sample cDNA. The 

TaqMan ® Gene Expression Master Mix contains DNA polymerase, dNTPs and a uracil N-glycolase 

enzyme that prevents reamplification of possible contaminants’ amplicons. 

The reactions took place in a thermocycler (LightCycler 480, Roche, Switzerland), following the 

cycling conditions shown in Table 1. The pre-PCR phase is required to ensure optimal UNG enzyme 

activity and activation of the AmpliTaq Gold enzyme.   

Table 1. Temperature program of RT-qPCR. 

 Temperature (ºC) Duration (min:sec) Phase 

Pre-PCR 
50 2:00 Amperase UNG 

95 10:00 Hot Start 

PCR 

(45 ciclos) 

95 00:15 Denaturation 

60 01:00 Merging-Extension 

UNG: Uracil N-glycolase 
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In order to confirm the absence of contamination, no-template controls (NTC) were included 

in each run, as well as human reference cDNA (Clontech, USA) which was used as a positive control 

and interplate normalizer. 

3.4.1. Gene expression relative quantification 

The efficiency of each TaqMan® assay was evaluated by carrying out serial dilutions 

(50ng/µL, 5 ng/µL, 0.05 ng/µL, 0.005 ng/µL and 0.0005 ng/µL) of the commercial human cDNA above 

mentioned. The efficiency (E) of one cycle in the exponential phase was calculated by using the 

following equation: E=10-1/slope.  

To correct sample deviations due to varying sample concentration, the endogenous genes 

ACTB, CDKN1B and GUSB which have constant expression were used to calculate the normalization 

factor following Pfaffl formula. These endogenous genes have previously been evaluated using 

GeNorm software, which calculates the gene-stability for different control genes, allowing selection 

of the best internal controls (Vandesompele et al., 2002; Bustin et al., 2009). 

After N amplification cycles, the fluorescent signal will overcome the background 

fluorescence establishing the quantification cycle (Cq), which will allow the determination of the 

relative quantity of each sample (VanGuilder et al., 2008).  All samples were analysed by duplication, 

and the mean Cq value was used for further analysis. Certain samples had gene expression levels 

below the limit of detection, so their relative gene expression was calculated with the maximum Cq 

value, which corresponds to the minimum detectable expression. 

In this study 8 genes (shown in Table 2) were analysed, selected for their potential role in 

immune surveillance, described in other pathologies according to a PubMed database search, which 

suggest their role in in cancer immunity. 

Table 2. Genes analysed in this study and their Taqman® assays used for RTqPCR. 

Gene Full Name Assay Amplicon Length 

ACTB Actin, Beta Hs99999903_m1 171 

CDKN1B Cyclin-dependent kinase inhibitor Hs00153277_m1 71 

GUSB Glucuronidase, beta Hs01558067_m1 71 

CD274 CD274 molecule Hs01125301_m1 89 

PDCD1LG2 Programmed cell death 1 ligand 2 Hs01057777_m1 61 

IDO-1 Indoleamine 2,3-dioxygenase 1 Hs00984148_m1 66 

IDO-2 Indoleamine 2,3-dioxygenase 2 Hs01589373_m1 101 

CD5 CD5 molecule Hs00204397_m1 114 

CD6 CD6 molecule Hs00198752_m1 88 

CD200 CD200 molecule Hs01033303_m1 64 

ICOS-LG Inducible T-cell co-stimulator ligand Hs00323621_m1 59 

Relative gene expression levels were determined based on the ratio of the target gene 

expression to the reference gene expression by using the Pfaffl formula (Equation 1). The relative 

quantification is calculated from the real-time PCR efficiencies and the crossing point deviation of an 

unknown sample versus a control (Pfaffl, 2001). The geometric mean of the expression of the three 
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endogenous genes above mentioned was considered as the expression of the reference gene 

(Vandesompele et al., 2002). 

𝑅𝑎𝑡𝑖𝑜 =  
𝐸𝑡𝑎𝑟𝑔𝑒𝑡

              ∆𝐶𝑝 𝑡𝑎𝑟𝑔𝑒𝑡 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝑆𝑎𝑚𝑝𝑙𝑒)

𝐸𝑟𝑒𝑓
         ∆𝐶𝑝 𝑟𝑒𝑓 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝑆𝑎𝑚𝑝𝑙𝑒)

 

Equation 1. Pfaffl formula for relative gene expression ratio. Target: gene analysed; Ref: endogenous 

gene; E: Gene efficiency; Cp: Crossing point; ∆Cp: Expression difference between normal and tumour 

tissue. 

3.5. DATA ANALYSIS 

Prior to statistical analyses, expression data were carefully reviewed and those values 

considered as outliers were excluded.  

First of all, descriptive analyses were conducted to determine the clinico-pathological and 

demographic characteristics of the patient’s cohort, as well as the expression of the target genes. 

The next statistical analysis performed consisted of a Kolmogorow-Smirnov test, to 

determine whether or not the data followed a normal distribution.  

Relative gene expression was assessed taking into account the median values as median is 

less affected by data variability than mean, ensuring statistical robustness. If the value of the target 

gene varies from 0.5 to 2.0, its expression does not change between tumour tissue and the normal 

pulmonary parenchyma. Therefore, it will be considered that there is differential expression between 

tumour and normal tissue if the ratio value is higher than 2, indicating that the target gene is 

overexpressed in tumour, or if ratio value is lower than 0.5, which indicates that the target gene is 

underexpressed (Usó et al., 2016).  

Gene correlations were analysed by using Spearman’s rank test, and gene expression was 

correlated with clinico-pathological variables using the non-parametric tests Mann Whitney U to 

compare two independent groups and Kruskall-Wallis to compare more than two independent 

groups.  

Survival analyses were performed considering Relapse Free Survival (RFS) and Overall 

Survival (OS); RFS spans from the date of surgery to the date of relapse or exitus and OS is calculated 

from the date of surgery to the date of exitus, following the Response Evaluation Criteria in Solid 

Tumours (RECIST) criteria. For those patients who had not relapsed or passed out, the last recorded 

follow-up was considered the end of the study (Therasse et al., 2000).  

In order to assess whether the analysed genes had prognostic value, univariate Cox 

regression was performed for each target gene. For those genes with significant prognostic value, 

survival was assessed by Kaplan-Meier curves using the log-rank test. Prior to that, continuous 

variables were dichotomized using the median as a cut-off value. 

In order to obtain more significant results, expression prognostic scores were calculated by 

combining different markers following the Z-score method. First, univariate Cox analysis was 

performed with each target gene expression and Z-score was calculated dividing its regression 
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coefficient by its error. Those genes whose |Z-score| was higher than 1.5, were introduced in a 

multivariate Cox analysis to obtain the coefficient regression which will be used to calculate the 

score. The prognostic value of the gene score was calculated as previously described (Lossos et al., 

2004; Schetter et al., 2009; Usó et al., 2017). 

To establish independent prognostic biomarkers, a multivariate Cox regression was 

performed using clinico-pathological variables and dichotomized gene expression potential markers. 

The Hazard ratio determines its significance for a 95% confidence Interval (Bradburn et al., 2003). 

Statistical analyses were performed using the Statistical Package for the Social Sciences 

(SPSS) 15.0 software (Chicago, IL), considering statistically significant p<0.05. 
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4. RESULTS AND DISCUSSION 

4.1. COHORT DESCRIPTIVE ANALYSIS 

This study included 201 patients with NSCLC in resectable stages (I-IIIA), who underwent 

resection at Consorcio Hospital General Universitario de Valencia. The patient cohort was 

characterised by a median age of 65 years, 86% of the patients were males and 88% were current or 

former smokers. Regarding histology, 46% (93/201) of the cases were SCC and 44% (88/201) ADC. 73 

patients (37.2%) received adjuvant chemotherapy post-surgery. The most relevant demographic and 

clinico-pathological characteristics are shown in Supplementary Table 2 (Appendix I). 

4.2. GENE EXPRESSION ANALYSIS 

For relative gene expression determination, 201 paired samples (tumour and adjacent 

normal lung) tissues were analysed. RNA was isolated from small pieces of tissue. An optimal RNA 

concentration was obtained from all the samples; the median for normal adjacent tissues was 

325ng/µl and 1063.1ng/µl [83.2-2616.7] for tumour tissues. 

4.2.1. Rna quality assessment 

The quality of the extracted RNA was assessed using a nanospectrophotometer. The ratios 

A260/280 and A260/230 ranged from 1.8 to 2.0 and from 2.0 to 2.2, respectively in 80% of the 

samples, indicating the extraction protocol is appropriated to obtain good quality RNA for gene 

expression analysis.   

4.2.2. Efficiencies and linearity 

The efficiency for each Taqman® assay used in this study was determined using the Cq slope 

method. Cq values for serial dilutions of the target template were obtained and plotted against log 

values of target DNA concentration in order to calculate the slope of each standard curve. Results are 

shown in Table 3. 

Table 3.  Efficiencies for the Taqman® assays used in this study. 

Gene Code Slope Efficiency % Efficiency 

ACTB Hs99999903_m1 -3.52 1.92 96.10 

CD200 Hs01033303_m1 -3.78 1.85 92.35 

CD5 Hs00204397_m1 -3.66 1.88 93.75 

CD6 Hs00198752_m1 -3.46 1.95 97.25 

CDKN1B Hs00153277_m1 -3.71 1.86 93.00 

GUSB Hs01558067_m1 -3.22 2.00 100.00 

ICOS-LG Hs00323621_m1 -3.73 1.85 92.65 

IDO-1 Hs00984148_m1 -3.56 1.91 95.00 

IDO-2 Hs01589373_m1 -3.69 1.87 93.40 

PD-L1 Hs01125301_m1 -3.22 2.00 100.00 

PD-L2 Hs01057777_m1 -3.41 1.97 98.25 
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4.2.3. Relative gene expression quantification 

In order to determine whether the analysed genes were overexpressed or underexpressed in 

tumours, the fold-change was used, which corresponds to the ratio of the expression in the tumour 

and the normal tissue. Relative gene expression data are shown in Table 4. 

Table 4. Gene expression data of the analysed genes. 

 PD-L1 PD-L2 CD200 CD5 CD6 ICOS-LG IDO-1 IDO-2 

N 200 201 200 200 201 201 193 200 

Mean 2.63 1.27 1.52 1.85 2.24 2.35 2.94 2.04 

Median 1.03 0.63 0.85 1.09 1.20 1.20 1.04 0.84 

Minimum 0.00 0.01 0.02 0.01 0.01 0.02 0.00 0.01 

Maximum 56.14 14.27 21.69 19.00 23.72 128.53 30.21 27.26 

Relative gene expression was assessed taking into account the median values as it is less 

affected by data variability than mean value, ensuring statistical robustness. Thus, relative gene 

expression median values were represented (Figure 10). 

  

Figure 10. Relative mRNA expression levels of the 8 genes analysed. Relative gene expression median 

is represented for each gene. The results represented are median ± intercuartile range. Down-regulated 

genes were represented after transformation by  -1/(median). 

It was considered that a gene was overexpressed when the median of its relative gene 

expression was above 2, and it was considered to be underexpressed when it was below 0.5. Using 

this criteria, we found a tendency of PD-L2 (0.63X) to be down-regulated in tumour, whereas no 

significant changes were obtained in the rest of analysed immune markers.  

Previous studies have reported that PD-L2 expression is lower than PD-L1 in several tissues, 

including human respiratory tract epithelial cells (Pinchuk et al., 2008; Rozali et al., 2012). This could 

be explained by the statement that PD-L1 is expressed by both tumour cells and tumour infiltrating 

immune cells, whilst PD-L2 expression is mainly detected only in tumour cells (Obeid et al., 2016). 
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Regarding the expected expression of ICOS-LG and CD200 in lung cancer, there are scarce 

and controversial published data analysing their role in carcinogenesis. Moreover, CD200 has been 

implicated in anti-tumour T cells suppression and also as an inhibitor of tumour growth, 

demonstrating a possible dual function in cancer development (Stanciu et al., 2006; Siva et al., 2008; 

Talebian and Bai, 2012). 

CD5 and CD6 expression almost did not vary between tumour and normal tissue in our 

cohort, although it has been stated that infiltrating T lymphocytes in thoracic tumours express CD5 

(Dirican et al., 2015).  Even though, it is important to remark that more than 1/3 NSCLC show no 

lymphocyte infiltration pattern in their tumours (immune desert) as was recently published by our 

group (Usó et al., 2017). 

Regarding  IDO-1 and IDO-2, both genes are reported as up-regulated in almost all human 

cancers (Sorensen et al., 2011). In lung cancer, Karanikas et al. found that IDO-1 was more expressed 

in lung tumour than in normal tissue and in lung cancer cell lines, but the number of samples 

included in this study was very low (N=28) (Karanikas et al., 2007).  

4.2.4. Gene correlation analysis 

Non-parametric Spearman’s rank test was performed in order to investigate the association 

between the analysed immunoregulatory markers, considering the relative expression values as 

continuous variables. Results are shown in Supplementary Table II (Appendix I). 

As all the analysed genes are related to modulation of immune-surveillance in tumour 

microenvironment, they were expected to be correlated. The Spearman’s correlation coefficient 

obtained showed a strong positive correlation among the studied genes (p<0.0001) in all cases 

except on the analysis between IDO-1 and CD200 or ICOS-LG. 

These correlations can be related to their function, as PD-L1, PD-L2, ICOS-LG and CD200 are 

immune checkpoint molecules, which mediate second signals that modulate T cell responses, and 

CD5 and CD6 are involved in T cell proliferation, as previously mentioned. In addition, it is known that 

these functions are enhanced by metabolic enzymes such as IDO. Herein, these molecules are co-

expressed in the tumour microenvironment because all of them play a role in tumour immune 

regulation. 

4.2.5. Gene expression correlation with clinico-pathological variables 

In order to establish a relationship between patient’s clinico-pathological variables and gene 

expression levels, non-parametric tests such as Mann-Whitney U, Kruskall-Wallis and Chi-square 

tests were performed (significant results are shown in Table 5). Demographic and clinico-pathological 

variables analysed were sex, age (considering 65 years as a cut-off value), smoking status, 

performance status, tumour size (considering a cut-off of 3.5cm), lymph node involvement, stage, 

histology, differentiation grade and mutational status of EGFR and KRAS. 
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Table 5. Relative gene expression differences depending on clinico-pathological variables. 

Variable Gene 
 

N Median Range[min-max] p-value 

Sex IDO-2 
Female 29 1.249 0.08-9.66 0.038 

Male 170 0.788 0.01-27.26 
 

Age 

PD-L2 
=< 65 95 0.9002 0.04-14.11 0.010 

> 65 93 0.532 0.01-14.27 
 

CD5 
=< 65 94 1.242 0.04-13.00 0.030 

> 65 93 0.872 0.01-19.00 
 

Tumour size PD-L2 
<=3,5 102 0.551 0.01-9.46 0.022 

>3,5 98 0.763 0.05-14.27  

Differentiation 
grade 

PD-L2 
Well/Moderate 117 0.583 0.01-14.27 0.007 

Poor 48 1.114 0.03-6.49 
 

CD5 
Well/Moderate 117 1.017 0.01-13.31 0.016 

Poor 47 1.695 0.02-10.77 
 

CD6 
Well/Moderate 117 0.947 0.01-18.32 0.013 

Poor 48 1.551 0.01-12.90  

No significant correlations were obtained for clinico-pathological variables such as smoking 

habits, lymph node involvement, PS, histology, stage, or EGFR/KRAS mutational status. However, 

some studies have reported correlation between lymph node involvement and expression of IDO and 

PD-L2 in melanoma (Obeid et al., 2016). 

Although Mann-Whitney U results state that there is a significant differential expression of 

IDO-2 among different sexes, this could be due to the lower amount of women in the patient’s 

cohort as a consequence of the epidemiology of the disease; hence more analysis should be done in 

order to validate this result.  

Interestingly, higher levels of PD-L2 correlate with bigger tumours (>3.5cm) as shown in 

Figure 11a, which is line with a previous study reporting that PD-L2 expression stabilises with tumour 

size (Obeid et al., 2016). By contrast, in another study in lung adenocarcinoma, PD-L1 expression 

correlated with tumour size and lymph node involvement, but such correlation was not found in the 

case of PD-L2 expression (Zhang et al., 2014). 

The most remarkable correlation is established between tumour’s differentiation grade and 

PD-L2, CD5 and CD6 expression (Figure 11b-d). It has been found higher expression of these 

immunoregulatory markers in poor differentiated tumours. These results are in concordance with 

previous studies that found higher PD-L2 expression in poor and moderately differentiated tumour 

than in well-differentiated (Mo et al., 2016). Another study revealed higher CD5 expression in 

differentiating thymic carcinomas than in poorly differentiated carcinomas of lung origin, as opposite 

to our results.  (Asirvatham et al., 2014). Therefore, further research is required to clear the 

relationship between tumour differentiation grade and immunoregulatory gene expression. 
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Figure 11.  Representation of correlation between clinico-pathological variables and gene expression 
markers based on error bars for 95% confidence interval (CI) of the mean.  
A) Representation of PD-L2 according to tumour size, B) representation of PD-L2 according to 
differentiation grade, C) representation of CD5 according to differentiation grade and D) representation of 
CD6 according to differentiation grade. 

4.2.6. Immune-related gene expression patterns association with survival analysis 

Of the 201 resected NSCLC patients included in the study, 84 (41.8%) relapsed and 114 

(56.8%) died during the follow-up. The median follow-up was of 34.2 months (0.6-133.8).  

4.2.6.1. Clinico-pathological variables 

The prognostic value of the different clinico-pathological variables was assessed using the 

univariate Cox regression method for RFS and OS (Table 6). 
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Table 6. Entire cohort: Results from univariate survival analysis based on clinico-pathological variables. 

Varables 
RFS OS 

HR 95,0% CI p-value HR 95,0% CI p-value 

Sex 

Male vs. Female 
1.822 0.883-3.761 0.104 2.313 0.934-5.730 0.070 

Age 

>65 vs. ≤65 
1.287 0.852-1.944 0.231 1.364 0.861-2.161 0.186 

Smoking habit 

Current vs. Former vs. Never  
1.082 0.800-1.464 0.608 0.913 0.657-1.269 0.589 

PS 

1/2 vs 0 
1.637 1.080-2.482 0.020 1.833 1.185-2.835 0.007 

Tumour size 

>3.5 cm vs. ≤ 3.5 cm 
1.421 0.947-2.132 0.089 1.353 0.859-2.132 0.192 

Stage 

II/IIIA vs. I 
1.273 0.995-1.628 0.055 1.302 0.989-1.715 0.060 

Histology 

ADC vs. SCC vs. Others 
1.086 0.812-1.453 0.579 0.975 0.699-1.358 0.879 

Lymph node involvement 

Yes vs. No 
2.046 1.340-3.123 0.001 1.622 0.998-2.363 0.051 

Differentiation grade 

Poor vs. Well/Moderate 
1.106 0.815-1.499 0.518 0.975 0.697-1.365 0.884 

KRAS Mutational Status 

Mutated vs. Wild type 
1.978 1.124-3.481 0.018 2.038 1.107-3.751 0.022 

EGFR Mutational Status 

Wild type vs. Mutated 
0.991 0.392-2.507 0.984 1.036 0.366-2.932 0.947 

Chemotherapy 

Yes vs. No 
1.864 1.240-2.800 0.003 1.446 0.918-2.278 0.112 

HR: Hazard ratio; CI: 95% Confidence interval, OS: Overall survival; RFS: relapse free survival; PS: 

performance status; EGFR: epidermal growth factor receptor. 

Significant results obtained from the univariate analysis were also evaluated using the Kaplan-

Meier method (log-rank test) in order to obtain the survival plots (RFS: Figure 12; OS: Figure 13). 
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Figure 12. Kaplan-Meier curves for clinico-pathological variables significantly associated to RFS:  

A) Performance status (PS), B) lymph node involvement, C) KRAS mutational status and d) chemotherapy. 

 
Figure 13. Kaplan-Meier curves for clinico-pathological variables significantly associated to OS: 

A) Performance status (PS), B) lymph node involvement and C) KRAS mutational status  

The survival analysis showed that patients with good performance status (PS=0) had better 

RFS  and OS (p=0.019 and p=0.007, respectively), in concordance with previous results (Peters et al., 

2014). Lymph node involvement and KRAS mutations define a group of patients associated with 

worse clinical outcomes, as previously reported (Meng et al., 2013; Suzuki et al., 2013; Qiang et al., 

2015; Yagishita et al., 2015).  
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Those patients who had received adjuvant chemotherapy had better RFS (p=0.002), but it did 

not have any association with OS, as previously reported (Peters et al., 2014). 

4.2.6.2. Immune-related biomarkers 

The prognostic value of the expression of immunoregulatory genes was assessed using the 

univariate Cox regression method for RFS and OS (Table 7). For those cases in which significant 

associations were found, Kaplan-Meier curves were represented (RFS: Figure 14A and OS: Figure 

14B) and C). Prior to that, gene expression data were dichotomised according to the median of each 

gene, splitting the data into two groups: i)”high” corresponding to those samples whose expression 

values were > median, and ii) “low” for those samples whose expression values were ≤ median.  

Table 7. Entire cohort: Univariate survival analysis based on immunoregulatory genes expression.  

 
RFS OS 

 
HR 95,0% CI p-value HR 95,0% CI p-value 

PD-L1    High vs. Low 0.949 0.627-1.436 0.803 0.763 0.483-1.206 0.247 

PD-L2   High vs. Low 0.833 0.556-1.248 0.376 0.830 0.528-1.305 0.420 

CD200   High vs. Low 1.204 0.802-1.806 0.370 1.076 0.685-1.692 0.750 

CD5     High vs. Low 0.759 0.507-1.138 0.182 0.555 0.350-0.879 0.012 

CD6  High vs. Low 1.005 0.671-1.503 0.982 0.968 0.617-1.520 0.889 

ICOS-LG  High vs. Low 0.962 0.642-1.443 0.852 1.035 0.658-1.628 0.883 

IDO-1  High vs. Low 0.873 0.579-1.316 0.516 0.809 0.510-1.283 0.367 

IDO-2  High vs. Low 0.640 0.425-0.965 0.033 0.635 0.401-1.004 0.052 

HR: Hazard ratio; CI: 95% Confidence interval, OS: Overall survival; RFS: relapse free survival; PS: performance 
status; EGFR: epidermal growth factor receptor 

 

Figure 14. Kaplan-Meier curves for immunoregulatory genes expression in the entire cohort. 

 A) IDO-2 expression associated to RFS, B) IDO-2 expression associated to OS C)CD5 expression associated to OS 

Univariate Cox analysis found that high expression levels of IDO-2 were associated with RFS 

and CD5 and IDO-2 were associated with OS. Kaplan-Meier analysis was performed to obtain the 

survival plots and showed that patients with high expression levels of IDO-2 had better RFS (29.300 

vs. 66.97 months; p=0.032) and high expression levels of CD5 and IDO-2 had better OS (53.3 months 

vs. NR; p=0.011 and 51.9 months vs. NR; p=0.050, respectively). 

These results are in agreement with the fact that IDO expression inhibits proliferation of  

tumour cells in vitro due to the decrease on tryptophan (Aune and Pogue, 1989). However, the role 
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of IDO has previously been studied by immunohistochemistry in NSCLC, and high expression was 

associated with shorter survival rates, although the authors stated that the prognostic role of IDO-

positive infiltrates should be further studied (Karanikas et al., 2007). Regarding previous analysis in 

other cancer types, on the one hand, it has been stated that IDO expression in hepatocellular 

carcinoma correlated with lower OS (Pan et al., 2008), but on the other hand high IDO expression in 

breast tumours correlated with increased OS, supporting the dual role that IDO activation may play 

in carcinogenesis and modulation of tumour microenvironment (Soliman et al., 2013).  

In our cohort, higher levels of relative expression of CD5 define a subset of patients with 

better outcome. CD5 is an inhibitory molecule involved in anti-tumour immune-responses by 

reducing cytotoxic T lymphocytes activity and cytokine secretion (Tabbekh et al., 2013), but it has 

also been discovered a co-stimulatory function during T cell dependent immune responses, which 

leads to T and B cell activation and proliferation (de Wit et al., 2011).  Previous studies have 

associated low CD5 expression levels with improved survival in NSCLC (Dirican et al., 2015). 

Interestingly, a recent study found that different CD5 haplotypes can be associated either to better 

or worse survival in melanoma, which could explain these controversial results (Potrony et al., 2016). 

According to our results, previous studies found no correlation between PD-L1 expression 

and OS in melanoma cells and NSCLC (Konishi et al., 2004; Gadiot et al., 2011). Nevertheless, PD-L1 

and PD-L2 expression were correlated with poor prognosis in advanced esophageal cancer (Ohigashi 

et al., 2005). By contrast, Obeid et al. stated that PD-L1 and PD-L2 correlated with increased amounts 

of immune cells in the microenvironment and their expression was associated with longer OS in 

advanced melanoma. These controversial results could be explained by the fact that although it is 

well established that PD-1/PD-L1 have an inhibitory role on T cell function in the tumour 

microenvironment, PD-L1 expression can be induced by interferon secretion, and PD-L2 expressed on 

B cells enhances anti-tumour protection by increasing Th1 and Th17 responses, displaying a dual 

effect on the modulation of immune response against tumours (Francisco et al., 2009; Tomihara et 

al., 2012). 

Although the rest of genes did not show significant results, they have already been described 

in the bibliography in other cancer types, such as CD6, that correlated with more aggressive disease 

in breast cancer (Burkhardt et al., 2006). Regarding CD200 and ICOS-LG expression, controversial 

results have been found, as they have been associated with improved survival as well as with poor 

prognosis in different cancer types (Tonks et al., 2007; Faget et al., 2013; Erin et al., 2015; Zhang et 

al., 2016), supporting their dual role in tumour immune-regulation. 

4.2.6.3. Subanalysis according to histology 

The prognostic value of clinico-pathological and experimental variables was also assessed 

according to histology.  

The ADC subgroup comprised 88 patients: of these, 30 (38.5%) relapsed and 28 (35.9%) died 

during the follow-up of this study.  In the univariate analysis for clinico-pathological variables, PS, 

lymph node involvement, KRAS mutational status and chemotherapy (adjuvant treatment) were 

associated with RFS, whereas only KRAS mutational status was associated with OS (Table 8). 
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Table 8. ADC subgroup: Results from univariate survival analysis based on clinico-pathological variables. 

Variable 
RFS OS 

HR 95,0% CI p-value HR 95,0% CI p-value 

Sex 

Male vs. Female 
2.075 0.912-4.721 0.082 2.004 0.761-5.821 0.160 

Age 

>65 vs. ≤65 
1.069 0.561-2.037 0.840 1.352 0.634-2.880 0.435 

Smoking habit 

Current vs. Former vs. Never  
1.378 0.909-2.088 0.131 1.262 0.776-2.053 0.348 

PS 

1/2 vs 0 
1.874 0.980-3.582 0.058 1.501 0.735-3.064 0.265 

Tumour size 

>3.5 cm vs. ≤ 3.5 cm 
1.491 0.788-2.819 0.219 1.274 0.607-2.676 0.522 

Stage 

II/IIIA vs. I 
1.132 0.754-1.698 0.550 0.860 0.515-1.434 0.563 

Lymph node involvement 

Yes vs. No 
3.314 1.634-6.723 0.001 1.394 0.561-3.466 0.475 

Differentiation degree 

Poor vs. Well/Moderate 
0.818 0.514-1.302 0.397 0.780 0.453-1.342 0.369 

KRAS Mutational Status 

Mutated vs. Wild type 
2.446 1.164-5.140 0.018 2.661 1.153-6.144 0.022 

EGFR Mutational Status 

Wild type vs. Mutated 
0.834 0.290-2.403 0.737 0.819 0.242-2.768 0.748 

Chemotherapy 

Yes vs. No 
2.458 1.290-4.683 0.006 1.170 0.552-2.480 0.683 

HR: Hazard ratio; CI: Confidence interval, OS: Overall survival; RFS: relapse free survival; PS: performance status; 
EGFR: epidermal growth factor receptor 

The prognostic value of the immune markers was also assessed within the ADC subgroup, 

using the Cox regression method (Table 9) 

Table 9. Survival univariate analysis based on target genes expression in ADC subgroup. 

 

RFS OS 

HR 95,0% CI p-value HR 95,0% CI p-value 

PD-L1    High vs. Low 0.651 0.342-1.236 0.189 0.556 0.262-1.181 0.126 

PD-L2   High vs. Low 0.630 0.329-1.207 0.164 0.752 0.357-1.587 0.455 

CD200   High vs. Low 1.485 0.779-2.831 0.230 1.285 0.607-2.720 0.513 

CD5     High vs. Low 0.744 0.392-1.413 0.366 0.583 0.274-1.239 0.161 

CD6  High vs. Low 0.742 0.390-1.415 0.365 0.810 0.384-1.708 0.580 

ICOS-LG  High vs. Low 0.793 0.415-1.515 0.482 0.920 0.432-1.958 0.828 

IDO-1  High vs. Low 0.547 0.283-1.058 0.073 0.516 0.241-1.107 0.089 

IDO-2  High vs. Low 0.343 0.176-0.668 0.002 0.381 0.175-0.830 0.015 

HR: Hazard ratio; CI: Confidence interval, OS: Overall survival; RFS: relapse free survival; PS: performance status; 
EGFR: epidermal growth factor receptor. 

Kaplan-Meier curves for IDO-2 show that the expression of this gene has prognostic 

information in ADC patients (Figure 15). Particularly, the group of patients with higher expression 
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levels of IDO-2, presented a significant improve in RFS and also in OS compared with those patients 

with lower levels of IDO-2 (RFS: 15.43 months vs. NR; p=0.001 and OS: 37.00 months vs. NR; 

p=0.012). 

 

Figure 15. Kaplan-Meier curves for IDO-2 expression associated to A) OS and B) RFS in ADC subgroup 

The SCC subgroup comprised 90 patients; 96.6% were current or former smokers. Of these, 

40 (44.4%) relapsed and 39 (43.3%) died. In contrast to the findings in ADC patients, no significant 

association was found between the clinico-pathological or experimental variables and OS or RFS in 

this group of patients (data not shown). 

4.2.7. Expression score analysis 

We also decided to create a prognostic expression score, which can provide more accurate 

prognostic information than models using single genes (Sanmartín et al., 2014; Usó et al., 2017). As 

explained in materials and methods, a univariate Cox regression analysis with expression data was 

performed in order to identify which genes were moderately associated with survival (|Zscore>1.5). 

Results are shown in Table 10.  

Table 10. Univariate analysis of the expression of the target genes for OS in the entire cohort. 

 

Regression  
coefficient 

Error HR 95,0% CI p-value Zscore 

PD-L1 -0.009 0.017 0.991 0.958-1.025 0.602 -0.522 

PD-L2 0.067 0.056 1.069 0.959-1.192 0.229 1.204 

CD200 -0.033 0.045 0.967 0.886-1.056 0.460 -0.740 

CD5 -0.034 0.061 0.967 0.858-1.090 0.579 -0.555 

CD6 -0.003 0.040 0.997 0.922-1.078 0.941 -0.073 

ICOS-LG 0.007 0.057 1.007 0.901-1.125 0.905 0.119 

IDO-1 -0.006 0.026 0.994 0.944-1.045 0.803 -0.250 

IDO-2 0.023 0.044 1.024 0.939-1.115 0.596 0.531 

HR: Hazard ratio; CI: 95% Confidence interval 

In the entire cohort, and according to the values of Z-score, none of the analysed genes had 

enough involvement in order to be introduced in a score with prognostic value. 

Then, we conducted the same analysis in the ADC subgroup (Table 11).  
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Table 11. Univariate analysis of the expression of the immunoregulatory genes for OS in ADC subgroup. 

Gene 
Regression  
coefficient 

Error HR 95,0% CI p-value Zscore 

PD-L1 -0.182 0.101 0.833 0.684-1.015 0.070  -1.809 

PD-L2 -0.127 0.199 0.881 0.597-1.300 0.523  -0.638 

CD200 -0.007 0.036 0.993 0.924-1.066 0.840  -0.201 

CD5 0.008 0.110 1.008 0.812-1.251 0.942  0.073 

CD6 0.006 0.067 1.006 0.881-1.148 0.933  0.084 

ICOS-LG -0.038 0.106 0.963 0.782-1.185 0.721  -0.357 

IDO-1 -0.183 0.105 0.833 0.678-1.024 0.082  -1.738 

IDO-2 -0.195 0.120 0.823 0.650-1.040 0.103  -1.629 

HR: Hazard ratio; CI: Confidence interval 

PD-L1, IDO-1 and IDO-2 were selected due to their association with mortality (|Z-score|>1.5). A 

multivariate Cox regression analysis was performed to obtain their regression coefficient, which was 

used to calculate the score and generate the “PDIDO score”, as indicated in Table 12 and Equation 2. 

Table 12. Multivariate Cox regression analysis with the selected genes for the score calculation. 

Gene 
Regression  
coefficient 

Error HR 95,0% CI p-value 

PD-L1 -0.179 0.095 0.836 0.694-1.006 0.059 

IDO-1 -0.173 0.108 0.841 0.681-1.039 0.108 

IDO-2 -0.097 0.123 0.907 0.713-1.154 0.429 

ADC: adenocarcinoma; HR: Hazard ratio; CI: 95% Confidence interval 

 

 

 

The value of PDIDO score for each patient was calculated, and their prognostic value was 

analysed after dichotomization using the median as cut off. Again, two groups were generated, 

named “High” (> median) or “Low” (≤ median). Kaplan-Meier analysis showed that patients with 

high PDIDO score had significant better RFS (17.867 months vs. NR; p=0.001) and OS (29.83 

months vs. NR; p=0.0002) than those presented by the genes itself (Figure 16).  

 

Figure 16. Kaplan-Meier curves of PDIDO score for A) OS and B) RFS in ADCs.  

Equation 2. PDIDO score calculation. 

A) 
B) 

PDIDO score = 0.179 * PD-L1 + 0.173 * IDO-1 + 0.097 * IDO-2 
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Therefore, PDIDO score is associated to better prognosis, although its components have been 

stablished as poor prognostic biomarkers in ADC (Zhang et al., 2014, 2017). The favourable 

prognostic value of PDIDO score can be explained by the fact that although these genes are 

immunosuppressive factors, their presence contributes to tumour inflammation, which allows 

tumour-recognition by the immune system, facilitating tumour-cells destruction (Usó et al., 2017). 

4.2.8. Multivariate Cox analysis 

In order to state whether the analysed variables (clinical, analytical, scores) could be 

established as independent prognostic biomarkers, a multivariate model for RFS and OS was 

performed including all the variables that were significantly associated with prognosis (p <0.05) in 

the previous univariate analyses.  

In the entire cohort, analysis for RFS included the following variables: lymph node 

involvement, PS, KRAS mutational status, adjuvant chemotherapy and IDO-2. For OS, variables 

included were: lymph node involvement, PS, KRAS mutational status, CD5 and IDO-2. Significant 

results are shown in Table 13. 

Table 13. Multivariate Cox regession analysis for RFS and OS in the entire cohort. 

Variable 
RFS OS 

HR 95% CI p-value HR 95% CI p-value 

KRAS Mutational Status  

Mutated vs. WT 
2.114 1.173-3.809 0.013 2.007 1.065-3.782 0.031 

Lymph node involvement 

Yes vs No 
1.947 1.225-3.092 0.005 1.840 1.097-3.087 0.021 

PS 

1/2 vs 0 
1.561 1.001-2.435 0.050 1.773 1.113-2.824 0.016 

CD5 High vs. Low    0.539 0.329-0.883 0.014 

OS: Overall survival; RFS: Relapse-free survival; HR: Hazard ratio; CI: Confidence interval; PS: Performance 
Status 

  Besides KRAS mutational status and lymph node involvement, two pathological variables 

that have previously been associated with prognosis in resectable NSCLC (Meng et al., 2013; Suzuki 

et al., 2013; Qiang et al., 2015; Yagishita et al., 2015), this is the first time that CD5 is reported as an 

independent prognostic biomarker for OS in resectable NSCLC [HR,0.536; 95% CI, 0.329-0.883; 

p=0.013]. 

 Multivariate analysis was also performed with significant results for ADC patients. In this 

case, multivariate analysis for RFS included PS, lymph node involvement, KRAS mutational status, 

chemotherapy, IDO-2 and PDIDO score. For OS variables included were KRAS mutational status, IDO-

2 and PDIDO score. Significant results are shown in Table 14.  
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Table 14. Multivariate Cox regression analysis for RFS and OS in the ADC subgroup. 

Variable 
RFS OS 

HR 95% CI p-value HR 95% CI p-value 

KRAS Mutational Status 

Mutated vs. WT 
   2.444 1.058-5.645 0.036 

PDIDO score 

 High vs. Low 
0.274 0.126-0.593 0.001 0.267 0.113-0.630 0.003 

OS: Overall survival; RFS: Relapse-free survival; HR: Hazard ratio; CI: Confidence interval 

Our results indicate that the PDIDO score is an independent biomarker for both RFS [HR, 

0,274; 95% CI, 0.126-0.593; p=0,001] and OS [HR, 0.267; 95%CI, 0.113-0.630; p=0.003]. Moreover, its 

prognostic value proved to be stronger for OS than factors such as KRAS mutational status in ADC 

patients, as it comprises molecules from two important immunoregulatory pathways. The role of 

PDIDO score in tumour microenvironment confirms the idea that the presence of immune factors 

enhances tumour inflammation triggering anti-tumour T cell responses, and is related to a better 

prognosis that non-inflamed tumours, which are not recognized by the immune system (Usó et al., 

2017). 

In summary, the analysis of the immune profile in resected samples of NSCLC has allowed the 

establishment of independent prognostic biomarkers based on the expression of immunoregulatory 

genes associated with better outcomes. The most remarkable finding is that PDIDO score is an 

independent prognostic biomarker for overall survival and relapse-free survival in early stages of lung 

ADC that could be introduced to the clinical practice to allow easy identification of patients with 

good outcome. 
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5. CONCLUSSIONS 

1. A large cohort including 201 NSCLC patients with paired tumour and normal tissue samples 

was analysed and accomplished the eligibility criteria to be included in the present study. 

Moreover, demographics and the clinical behaviour of this cohort was the expected for 

patients in resectable stages. 

 

2. Gene expression levels analysis showed that the studied genes were neither significantly 

overexpressed nor underexpressed in tumour than in normal tissue samples. 

 

3. Gene correlation analysis showed that the studied genes follow a co-expression pattern as 

they are all involved in tumour-immune regulation. Statistically significant correlations 

among gene expression and clinico-pathological variables, such as increased levels of PD-L2 

according to tumour size, and the positive correlations between poorly differentiated 

tumours and PD-L2, CD5 and CD6.  

 

4. a. Survival analyses in the entire cohort associated clinico-pathological variables such as KRAS 

mutational status, lymph node involvement and performance status with poor prognosis, as 

well as the immunoregulatory gene CD5, which was established as an independent 

biomarker for overall survival.   

 

b. In lung adenocarcinomas, a three gene score (PDIDO score) demonstrated to be 

independently and significantly associated with prognosis in both, relapse-free survival and 

overall survival.   
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7. APPENDICES 

APPENDIX I. SUPPLEMENTARY TABLES  

Supplementary table 1. TNM7 classification and staging (Goldstraw et al., 2007). 

Occult Carcinoma Tx N0 M0 

Stage 0 Tis N0 M0 

Stage IA T1a,b N0 M0 

Stage IB T2a N0 M0 

Stage IIA 

T1a,b N1 M0 

T2a N1 M0 

T2b N0 M0 

Stage IIB 
T2b N1 M0 

T3 N0 M0 

Stage IIIA 

T1, T2 N2 M0 

T3 N1,N2 M0 

T4 N0, N1 M0 

Stage IIIB 
T4 N2 M0 

Any T N3 M0 

Stage IV Any T Any N M1a,b 

T: Tumour size; N: lymph node involvement; M: metastasis. 
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Supplementary Table 2. Patient characteristics description. 

  N % 

Total  201 100 

Age 
Median 

Range 

65 

26-85 
 

Sex 
Female 

Male 

29 

172 

14,4 

85,6 

Smoking Status 

Current 

Former 

Never 

96 

83 

24 

47,3 

40,9 

11,8 

Perfomance Status (PS) 

0 

1 

2 

135 

68 

1 

66,2 

33,3 

0,5 

Tumour size 

< 3cm 

3 - 5cm 

5 - 7cm 

> 7cm 

87 

67 

29 

18 

43,3 

33,3 

14,4 

9 

Lymph node involvement 
Yes 

No 

52 

149 

25,9 

74,1 

Stage 

1-A 

1-B 

2-A 

2-B 

3-A 

43 

61 

35 

22 

40 

21,4 

30,3 

17,4 

10,9 

19,9 

Histology 

SCC 

ADC 

Others 

93 

88 

20 

46,3 

43,8 

10 

Differentiation degree 

Poor 

Moderate 

Well 

NS 

48 

83 

34 

36 

29,1 

50,3 

20,6 

EGFR Mutational Status 

Mutated 

Wild-type 

NS 

12 

89 

100 

11,9 

88,1 

KRAS Mutational Status 

Mutated 

Wild-type 

NS 

22 

146 

33 

13,1 

86,9 

Adjuvant chemotherapy  

(post-surgery) 

Yes 73 37.2 

No 123 62.8 

NS 5  

Relapse 
Yes 

No 

84 

117 

41,8 

58,2 

Exitus 
Yes 

No 

114 

87 

56,7 

43,3 

 

 

 *SCC: Squamous cell carcinoma ADC: Adenocarcinomas, NS: Not specified 
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Supplementary Table 3. Gene correlation analysis results. 

   PD-L1 PD-L2 CD200 CD5 CD6 ICOS-LG IDO-1 IDO-2 

PD-L1 Coeficiente de 
correlación 

1 ,502(**) ,330(**) ,496(**) ,482(**) ,372(**) ,150(*) ,312(**) 

Sig. (bilateral) . 0 0 0 0 0 0,038 0 

N 198 198 198 197 198 197 190 197 

PD-L2 Coeficiente de 
correlación 

,502(**) 1 ,599(**) ,600(**) ,665(**) ,554(**) ,242(**) ,549(**) 

Sig. (bilateral) 0 . 0 0 0 0 0,001 0 

N 198 200 200 199 200 199 192 199 

CD200 Coeficiente de 
correlación 

,330(**) ,599(**) 1 ,531(**) ,560(**) ,617(**) -0,027 ,396(**) 

Sig. (bilateral) 0 0 . 0 0 0 0,708 0 

N 198 200 200 199 200 199 192 199 

CD5 Coeficiente de 
correlación 

,496(**) ,600(**) ,531(**) 1 ,901(**) ,541(**) ,207(**) ,654(**) 

Sig. (bilateral) 0 0 0 . 0 0 0,004 0 

N 197 199 199 199 199 198 191 198 

CD6 Coeficiente de 
correlación 

,482(**) ,665(**) ,560(**) ,901(**) 1 ,621(**) ,184(*) ,636(**) 

Sig. (bilateral) 0 0 0 0 . 0 0,011 0 

N 198 200 200 199 200 199 192 199 

ICOS-LG Coeficiente de 
correlación 

,372(**) ,554(**) ,617(**) ,541(**) ,621(**) 1 -0,061 ,438(**) 

Sig. (bilateral) 0 0 0 0 0 . 0,404 0 

N 197 199 199 198 199 199 191 198 

IDO-1 Coeficiente de 
correlación 

,150(*) ,242(**) -0,027 ,207(**) ,184(*) -0,061 1 ,396(**) 

Sig. (bilateral) 0,038 0,001 0,708 0,004 0,011 0,404 . 0 

N 190 192 192 191 192 191 192 191 

IDO-2 Coeficiente de 
correlación 

,312(**) ,549(**) ,396(**) ,654(**) ,636(**) ,438(**) ,396(**) 1 

 Sig. (bilateral) 0 0 0 0 0 0 0 . 

 N 197 199 199 198 199 198 191 199 

** Correlation is significant at 0,01 level (bilateral). * Correlation is significant at 0,05 level (bilateral). 
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APPENDIX II. COMMUNICATIONS DERIVED FROM THIS STUDY 
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ESTABLECIMIENTO DE UNA FIRMA DE GENES INMUNOREGULADORES CON VALOR PRONÓSTICO EN 
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Andrea Moreno Manuel1, Eloisa Jantus Lewintre1, 2, 3, Alejandro Herreros Pomares1, Susana Torres 
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Introducción y objetivos 

El adenocarcinoma (ADC) es uno de los subtipos de cáncer de pulmón más frecuente. El estudio de la 

evasión de la vigilancia inmune en el microambiente tumoural ha dado lugar al desarrollo de nuevas 

terapias contra el cáncer.  Este trabajo se centra en el análisis de genes inmunoreguladores como 

posibles biomarcadores pronóstico.  

Materiales y métodos 

Se utilizó una cohorte de 88 pacientes con ADC en estadios resecables. Se analizó la expresión de 8 

genes relacionados con la regulación inmune (PD-L1, PD-L2, IDO-1, IDO-2, ICOS-LG, CD5, CD6 y 

CD200) mediante RTqPCR en muestras pareadas de tejido normal y tumoural, y se calculó la 

expresión relativa utilizando la fórmula de Pfaffl. La supervivencia se determinó mediante  análisis de 

regresión de Cox. Se consideraron significativos aquellos análisis en que p<0,05, y se representaron 

mediante curvas Kaplan-Meier (test log-rango) tras dicotomizar los datos tomando la mediana como 

valor de corte. 

Resultados 

La cohorte de pacientes se caracterizó por una mediana de edad de 65 años y buen estado funcional 

(PS=0)  en un 77% de los pacientes. Se observó una tendencia de mejor supervivencia global (SG) y 

mejor supervivencia libre de enfermedad (SLE) en aquellos pacientes con altos niveles de expresión 

de PD-L1, IDO-1 e IDO-2. Se creó una firma de expresión basada en la expresión matemática: 0.179 * 

PD-L1 + 0.173 * IDO-1 + 0.097 * IDO-2. Los pacientes con altos niveles de expresión de la firma 

presentaban mejor SG (29,83 vs NA meses; p=0.0002) y SLE (17,867 vs NA meses; p=0.001).  El 

análisis multivariatee confirmó que la firma es un biomarcador pronóstico independiente para SG 

(HR=0,267 [0,113-0,630]; p=0.003] y SLE (HR=0,274 [0,126-0,593]; p=0,001).  

Conclusión 

El análisis del perfil inmunológico de muestras resecadas de ADC ha permitido establecer una firma 

de genes reguladores como biomarcador pronóstico independiente para SG y SLE en estadios 

tempranos de ADC de cáncer de pulmón no microcítico. 

Financiado con fondos FEDER,  PI12-02838 y PI15-00753 del ISCIII. 
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Introduction:  The study of the tumour microenvironment is leading to a better understanding of the 

evasion of immune surveillance and the development of new therapies. This research focuses on the 

analysis of immunoregulatory genes as potential prognostic biomarkers in resectable non-small cell 

lung cancer (NSCLC). 

Materials and methods: The expression of 8 genes involved in immune-regulation (PD-L1, PD-L2, 

IDO-1, IDO-2, ICOS-LG, CD5, CD6 and CD200) was analysed by RTqPCR in 257 paired fresh frozen 

tumour and normal tissue samples of resected NSCLC. Relative expression was calculated by Pfaffl 

formulae using ACTB, CDKN1B and GUSB as endogenous controls. Non-parametric tests were used 

for correlations between clinico-pathological and analytical variables and survival was assessed by 

Kaplan-Meier curves (long rank-test), considering significant p<0.05.  

Results: Patient`s median age was 64 years, 82% were males, 88% were former or current smokers, 

47% were adenocarcinomas (ADC). Patients with higher expression of CD5 and IDO-2 had a 

significant increase in overall survival (OS, 53.3 vs NR months, p=0.032; 51.9 vs NR months, p=0.049, 

respectively). A signature combining the expression of CD5 and IDO-2 was able to better 

prognosticate survival (40.4 vs NR months, p=0.028). The multivariate analysis (including clinico-

pathological and analytical variables) showed that this signature has independent prognostic 

information OS (HR=0.553 [0.344-0.887], p=0.016).  

Moreover, in the subgroup of ADC increased expression of CD5 and IDO-2 was associated with longer 

OS as well as increased relapse-free survival (RFS, 19.1 vs NR months, p=0.045; 18.8 and 67.0 

months, p=0.029, respectively). The multivariate analysis established this gene signature as an 

independent prognostic biomarker for OS (HR=0.380 [0.166-0.872]; p=0.026) and RFS (HR=0.288 

[0.139-0.597]; p=0.002). 

Conclusion: The analyses revealed the prognostic value of CD5 and IDO-2, being their combination an 

independent prognostic marker in resectable NSCLC. 

Supported by grants from FEDER and PI12-02838 and PI15-00753 from ISCIII. 


